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Abstract

3D non-rigid shape recovery from a single uncalibrated camera is a challenging, under-
constrained problem in computer vision. Although tremendous progress has been
achieved towards solving the problem, two main limitations still exist in most pre-
vious solutions. First, current methods focus on non-incremental solutions, that is,
the algorithms require collection of all the measurement data before the reconstruc-
tion takes place. This methodology is inherently unsuitable for applications requiring
real-time solutions. At the same time, most of the existing approaches assume that 3D
shapes can be accurately modelled in a linear subspace. These methods are simple and
have been proven effective for reconstructions of objects with relatively small deforma-
tions, but have considerable limitations when the deformations are large or complex.
The non-linear deformations are often observed in highly flexible objects for which the
use of the linear model is impractical.

Note that specific types of shape variation might be governed by only a small number
of parameters and therefore can be well-represented in a low dimensional manifold.
The methods proposed in this thesis aim to estimate the non-rigid shapes and the
corresponding camera trajectories, based on both the observations and the prior learned
manifold.

Firstly, an incremental approach is proposed for estimating the deformable objects.
An important advantage of this method is the ability to reconstruct the 3D shape from
a newly observed image and update the parameters in 3D shape space. However, this
recursive method assumes the deformable shapes only have small variations from a
mean shape, thus is still not feasible for objects subject to large scale deformations.
To address this problem, a series of approaches are proposed, all based on non-linear
manifold learning techniques. Such manifold is used as a shape prior, with the re-
constructed shapes constrained to lie within the manifold. Those non-linear manifold
based approaches significantly improve the quality of reconstructed results and are well-
adapted to different types of shapes undergoing significant and complex deformations.

Throughout the thesis, methods are validated quantitatively on 2D points sequences
projected from the 3D motion capture data for a ground truth comparison, and are
qualitatively demonstrated on real example of 2D video sequences. Comparisons are
made for the proposed methods against several state-of-the-art techniques, with results
shown for a variety of challenging deformable objects. Extensive experiments also
demonstrate the robustness of the proposed algorithms with respect to measurement
noise and missing data.
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Chapter 1

Introduction

This chapter provides a brief review of the 3D shape and motion recovery problem.

Several successful applications based on solutions of this problem are detailed and the

limitations of these existing approaches discussed. Finally, a summary is presented of

the original contributions made in this thesis.

1.1 Background

The main task of computer vision is to analyse, process and understand the world from

images captured by visual sensors. Shape and motion estimation is one of the most

fundamental problems in computer vision, which has made remarkable progress over

the last two decades. Solutions for this problem have a wide range of applications in

many different areas. They have been successfully used in object recognition, robot

navigation, augmented reality, biomedical engineering, human-computer interaction

and entertainment. Among these, 3D reconstruction employs a variety of techniques,

but the complexity of the task differs widely under different conditions. The first section

provides an overview of existing techniques of recovery using a single camera, in the

wider context of reconstruction problems.
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The problem can be seen as simultaneous recovery of object’s 3D structure and its

relative camera motion. Obtaining information about the geometry of 3D shapes and

the corresponding camera information from a set of images is a challenging problem,

also known as Structure from Motion (SfM). The task is difficult because the image

formation is not invertible [113]. Given only 2D projected position of scene points in

a camera plane, it is impossible to recover their distance from the camera. To address

this, additional information is needed to solve the reconstruction problem. The idea

was first introduced by Ullman in [137] who provides the original proof of existence of

the solution under orthographic camera model. A solution to the perspective model was

formulated in [112]. After these seminal works, numerous methods have been presented

in this field under the assumption of scene rigidity, which means the geometry of object

is fixed, the only motion included in the model is camera motion.

One of the most influential solutions of rigid SfM was proposed by Tomasi and

Kanade [129]. They demonstrated a factorisation algorithm based on the singular

value decomposition (SVD) for reconstruction of rigid objects by making an assumption

that the camera operates under an orthographic projection model. The factorisation

algorithm can be extended to deal with weak perspective projection [106, 104, 71] and

perspective camera models [58, 68, 134, 105, 69]. Since then, techniques for rigid shape

recovery via point-based SfM have achieved maturity [125, 47]. With more and more

challenging SfM applications, the rigid model became insufficient to represent a scene.

The algorithms have been developed to deal with multiple rigid objects [31, 59, 8] and

articulated rigid objects [132].

By the 2000s, the reconstruction of rigid objects became a well-established pro-

cess. However, in real environments many objects of interest are non-rigid as they

deformation over time, e.g. human body due to movement [3, 53], face due to articu-

lation [19, 150] and other objects of interest [46]. Therefore the research has expanded

13



into deformable object reconstruction. In contrast to rigid object reconstruction, de-

formable shape reconstruction is still challenging, mainly because it is a severely under-

constrained problem. This is particularly true for the articulated deformable objects

or the object which contains large and complex deformations. Such time varying shape

recovery problem is known as Non-Rigid Structure from Motion (NRSfM).

Bregler et al. [19] were the first to adopt the factorisation algorithm to deformable

3D structures by introducing a low rank shape model to represent deformable shapes.

As a time-varying object usually cannot arbitrarily deform, the idea of this model is

to describe a deformable shape as a linear combination of a small number of basis

shapes. Due to its simplicity, this shape model has been widely used to tackle the

NRSfM [9, 151, 5]. Departing from the low rank shape model, a model based on

point trajectory information was proposed in [5] by Akhter et al. who described a

duality theorem in 3D structure representation which models independent 3D point

trajectories. The main advantage of this representation is that the basis trajectories

can be predefined, thus removing a large number of unknowns from the estimation

[53, 52].

Considering that the inherently high number of degrees of freedom and motion

degeneracy, depend only on the 2D measurements, such methods may fail to provide

meaningful reconstruction. To counter this effect, it is common to introduce prior

information to define additional constraints into minimisation of the 2D re-projection

error. Statistic priors and physical priors are the most commonly used constraints

in the NRSfM problem and both approaches have been proven to produce high quality

reconstructions.

Both low rank shape model and trajectory space bases model are regarded as statis-

tic prior. Other statistical priors include Probabilistic Principal Components Analysis

(PPCA), which was firstly applied to NRSfM problem in [130] as a hierarchical Bayesian
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prior [49]. Bartoli et al. [9] introduced another type of statistic prior based on coarse-

to-fine model. In that method, the basis shapes are ordered starting from a mean shape

and deformation modes are iteratively added. Recently Zhou et al. [156] proposed a

method operating in the presence of nonlinear motion and non-Gaussian distribution

using the Markov chain Monte Carlo technique which is applied to minimise the resid-

uals of the estimated shapes. An alternative approach to SfM is bundle adjustment

demonstrated by Del Bue, in which rigid shape prior was introduced [37].

Since shapes do not deform in an arbitrary way, physical prior can help to force the

object moving in a specific way. The methods using physical prior include inextensible

surface [141, 103], smooth constraint on deformation [23], piecewise planar [139, 126, 45]

or partially rigid/non-rigid model [38, 79]..

Linear techniques perform well only if the deformations are relatively small or sim-

ple, but fail to deal with more complex deformable shape. To move away from the

linear representation of deformable shapes, Rabaud and Belongie [109] integrated the

Locally Smooth Manifold Learning algorithm to regularise the NRSfM problem. How-

ever, there is no guarantee that the manifold is planar or isometric to a plane. Despite

the manifold learning techniques becoming increasingly popular and having been suc-

cessfully used in different applications including medical image analysis [148], object

classification [86] and segmentation [42], these techniques have not been widely applied

in the NRSfM problem.

1.2 Applications

3D reconstruction technology has been successfully used in many different areas, rang-

ing from medical imaging and biometrics to computer gaming, animation and film

production. The third dimension (depth information) plays a significant role in under-
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standing and analysing static or dynamic objects and environments.

Many new applications require reliable depth data in order to improve performance.

It is particularly important in many medical areas. A typical example is the minimally

invasive surgery. Although the image guided surgery might be able to meet the require-

ment, 3D shapes would bring more information than only using 2D images. The study

in [142] evaluated the effect of 2D and 3D visualisation on robotic surgery and proved

that loss of 3D vision significantly increased perceived difficulty and slowed down the

progress of the task. NRSfM can be used to help assess the size and shape of organs.

This is a rapidly growing application area and it is anticipated that, within the next

few years, the medical industry will launch affordable 3D vision systems.

Real time rigid structure from motion techniques have often been applied to Aug-

mented Reality (AR) systems. AR technology can be seen as inserting artificial objects

in a video. In advanced AR tasks, interaction with real world needs to be considered

as well. It is obviously impossible to get realistic insertion which appears consistent

with the background video if the scene in the video and camera motion is unknown.

For more challenging cases, the augmented objects may be inserted in a dynamic scene,

which makes it even more difficult to build a comprehensive map of the scene in real

time since the shape of the object in the environment changes over time.

This reconstruction technique has recently become very popular in the entertain-

ment industry. For example, in the movie “Avatar”, a multi-camera system was used

to track and reproduce an actor’s skeletal motion from a 3D point cloud. The point

cloud was created using 2D data collected from the cameras during a performance. It

was then re-targeted on the 3D animated characters in post-processing, which greatly

reduced the animators’ workload. Technology used in movie industry usually relies on

the Motion Capture (MoCap) system. The system is composed of 6-12 synchronised

infrared cameras. To capture something, reflected markers are placed on the surface,
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and each marker has to be captured by at least three cameras in order to get precise

3D data. Basically, the MoCap system uses 3D optical marker-based technology and

is able to track and analyse movement. The system can handle many complex motion

capture problems and has been used for engineering, entertainment and life sciences.

Although the use of infrared markers together with a multi-camera system to track

and reconstruct the body or objects has been employed successfully, to use them in

some cases is still unrealistic; for example, in the previous mentioned medical imaging

applications for robotic surgery, human computer interaction and surveillance appli-

cations. Markerless reconstruction seems especially useful for these situations. Visual

surveillance systems are employed for observation and protection of public and private

areas. Since the subjects are observed unknowingly by the camera(s), the marker-based

systems are not applicable for such surveillance applications. Most existing systems are

primarily based on 2D information; a comprehensive review of current 2D surveillance

system is provided in [61]. But when using 2D techniques it is very hard to handle

the occlusion problem and track multiple people, whereas 3D data can resolve those

problems.

Microsoft Kinect is an example of successful application of the 3D sensor in the

gaming industry for real-time human pose detection and recognition [121]. With the

availability of using RGB-D sensor, where “D” is the depth map produced by a sensor,

it has become very popular recently, especially for tasks which have traditionally been

difficult to solve. Unlike the MoCap system, the RGB-D cameras are not expensive

and do not require a complicated calibration process. These types of sensors opened

up a new area in 3D computer vision.
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1.3 Motivation and Aims

The aim of structure from motion research is to jointly reconstruct 3D deformable

shapes and estimate the corresponding camera motion trajectory based on observa-

tions from a set of images. The original formulation of the problem uses a moving

monocular camera as the only sensor. But with advances in technology, alternative

sensors and multiple camera system have been used to achieve the goal. One exam-

ple mentioned previously is the infrared cameras in the Motion Capture system. In

comparison with a single camera, the system setup and synchronisation of multiple

cameras is rather complex, despite the fact that different visual sensors would bring

more accurate reconstructed results. The main difficulties with the MoCap system are

the need for markers and the requirement that the cameras need to be kept in a fixed

position in relation to each other. Since handheld cameras are more portable, do not

relay on reflected markers and are not restricted to specific types of objects, the input

data used in our reconstruction techniques are only considered to be obtained from

monocular video sequences.

The problem of reconstruction on rigid objects or static scene is well-understood.

Current implementation of rigid SfM is able to handle the case of missing data in the

measurements, large-scaled scene and has the ability to process data on real time, while

most non-rigid shape reconstruction systems are still extremely restricted. Most extant

works in structure from motion for deformable objects focus on non-incremental solu-

tions. These batch type algorithms require collecting all the measurement data before

the reconstruction takes place. This methodology is inherently unsuitable for applica-

tions that require real-time. An ideal online system should be capable of incrementally

learning the model, and updating the model by using current measurements. Estima-

tion of 3D structure and camera information needs to be done when the corresponding
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frame arrives. On the other hand, most of these batch approaches only perform well

when the deformations are relatively small or simple, but fail when more complex

deformations need to be recovered. The main limitation of the current linear represen-

tations of shapes is that they overlook the problem that non-linear deformations are

often observed during the reconstruction process.

Generally speaking, the work reported in this thesis focuses on the recovery of non-

rigid 3D shapes from 2D observations acquired with a single camera. More specifically,

it explores the recovery of highly deformable shapes through integration of the learned

shape prior manifold into the NRSfM solver. The purpose of this work is motivated

by the current general progress in the NRSfM area, but concentrates mostly on the

following three aspects:

- Bridging the gap between batch and real time methods;

- Proposing non-linear manifold methods to recover large and complex deformations;

- Allowing methods extension to handle the case with missing data in the measure-

ments, e.g. due to occlusion or feature track loss.

The work conducted was targeted on “feature-based” method throughout the the-

sis, in which the feature points are detected and tracked in the images before the

reconstruction process.

1.4 Contributions

This thesis presents a series of novel approaches for non-rigid shape and motion recovery,

especially for complex deformations; for example articulated human motion movements

and highly deformable surfaces. The main contributions of this thesis are summarised

as follows:

• A new approach to estimate shape of deforming object using prior learned 3D defor-
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mation shape model is proposed. The method has developed several extensions for

this prototype algorithm. The proposed extensions include two aspects: constraints

imposed on the basis shapes, the basic “building blocks” from which shapes are re-

constructed; as well as constraints imposed on the mixing coefficients in the form

of their probability distribution, which improves performance of the optimisation

process.

• Building on this method, an incremental approach is presented for recursively recov-

ering shape and motion. An important advantage of this method is the ability to

reconstruct the 3D shape from a newly observed image and update the parameters

in 3D shape space. This is motivated by the incremental principal component anal-

ysis (IPCA). The main novelty in our method is to propose an adaptive algorithm

for construction of shape constraints improving stability of the on-line reconstructed

shapes. Then the recursive algorithm is extended with additional step solving to the

missing data problem (caused by self occlusion or tracking failure). The extended

algorithm can efficiently handle the case of missing data in the measurements for

both batch and incremental mode.

• Most of the existing approaches, including ours, assumed that 3D shapes can be

accurately modelled in a linear subspace. The non-linear deformations are often

observed in highly flexible objects for which the use of the linear model is impractical.

The approach is proposed based on a non-linear manifold learning technique, called

diffusion maps. Such manifold is used as a shape prior, with the reconstructed

shapes constrained to lie in the manifold. This method achieves good results when

dealing with objects undergoing significant and complex deformations. In the case

of articulated deformations, e.g., full-body movement, rather than performing an

initial segmentation stage on different body parts, the whole data are considered
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as a single entity without the need for recognising different body parts. Instead, it

learns a corresponding low dimensional manifold from the training examples. Such

techniques have rarely been applied in the context of non-rigid shape reconstruction.

Our approach integrates the learned non-linear shape prior manifold into the NRSfM

solver. The advantage of our method is that it can be adopted for reconstruction of

highly deformable, complex objects.

• Additional modification on the affinity model construction in manifold learning is

made to use random forest clustering. The main advantage of using manifold forest

compared to standard diffusion maps is the fact that in the manifold forest the

neighbourhood topology is learned from the data itself, rather than being defined by

the Euclidean distance.

• Although the manifold based approach significantly improves the reconstruction qual-

ity and is well-adapted to large deformation of complex objects, building a dense

representation of the manifold requires a large amount of training data which is not

feasible in many real applications. The manifold based method can be improved with

the algorithm modifications, enabling reconstructions when only a small number of

training samples are available and the measurements matrix is incomplete. The prob-

lem is addressed by grouping shapes into evolving clusters, with the shapes in each

cluster represented in the linear subspace, estimated based on the observations and

the prior learned manifold.

1.5 Thesis Outline

The remainder of the thesis is organised as follows. Several dominant approaches for

3D shape reconstruction are presented in Chapter 2, which provides a comprehensive

review of current research. Chapter 3 gives a detailed description of the proposed linear
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method, which uses standard PCA to obtain constraints on the basis shapes, as well as

constrain on the values of the weighting coefficients. Inspired by this model, Chapter 4

presents a methodology which bridges the gap between current batch mode NRSfM and

online NRSfM. A new method is proposed to update the model with regards to prior

probability of the shape coefficients by applying IPCA. This is an incremental approach

of estimating the deformable objects. Chapter 5 describes a non-linear manifold based

reconstruction algorithm. We focus on using diffusion maps as a dimensionality reduc-

tion method to learn a non-linear shape prior. In Chapter 6 two improved versions

of the algorithm described in Chapter 5 are proposed. The first is a new approach

to build non-linear manifold by using random decision forests. The second includes

modifications to the algorithm, which enable reconstructions when only small number

of training samples is available and measurements matrix is incomplete. Performance

analysis and discussion of the practical implementation issues of the proposed recon-

struction algorithms is covered in Chapter 7. Chapter 8 provides comparison for all

the proposed methods. Chapter 9 concludes the thesis, discusses potential additional

improvements and gives suggestions as to the future directions of this research.
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Chapter 2

Current Approaches to 3D Reconstruction

This chapter focuses on existing algorithms for 3D shape reconstruction. We start

with a single view methodology, and then briefly introduce multiple views reconstruc-

tion research in the earlier research. We provide details of existing rigid factorisation

frameworks, including probably the most successful, the Tomasi-Kanade factorisation

algorithm and other commonly used approaches. Then, we present a number of algo-

rithms which have been developed for reconstruction of deformable objects, including:

low rank shape model, smooth trajectory model, manifold learning methods and other

alternative methods. We also provide the literature on solving the missing data problem

and sequential approaches.

2.1 Shape-from-X

Objects observed in a 2D image can be seen as a projection of the objects in the 3D

world. One significant task in computer vision is to recover the depth information of the

objects from single or multiple images. The study of how the shape of the objects can be

inferred from several cues is known as “shape-from-X”, where X represents different cues
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including motion, shading, photometric, texture, blurring etc. [25]. Reconstruction can

also be classified according to the number of images used for reconstruction.

2.1.1 Single view reconstruction

Shape reconstruction from a single image is possible, but cannot be done without prior

knowledge related to the image scene [65]. The prior may involve camera information

[32], or the geometric scene information, such as parallel lines [146] or vanishing points

[26, 143]. The performance of shape from single-image cues can be improved by adding

more constraints, e.g. applying shading or texture to infer shapes.

When using “shading” as a cue for shape reconstruction, estimating a 3D shape of a

surface can be achieved using only a single image [70]. A comprehensive survey of shape

from shading techniques was presented by Zhang et al., in which they compared four

main different approaches and claimed that finding a unique solution to the problem

is difficult, thus additional constraints are required [154]. Shape from texture can be

understood as a problem of estimating the shape of the observed surface from a given

image of a textured surface [136]. Moreover, different cues can be used together to

produce an accurate geometric reconstruction [28]. For example, as demonstrated in

[145], reconstruction from a single view using a combination of shading and texture

by producing a normal estimate can minimises the error between the texture and the

shading estimate.

2.1.2 Reconstruction from multiple views

Obviously using more images will bring more information for reconstruction; photomet-

ric stereo is a long studied technique which is based on the shading cue, but requires

more than one image. The idea of reconstructing shapes by using three or more im-

ages taken under changing illumination conditions was originally introduced in [149].
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Most previous work on photometric was developed for rigid objects [10, 67], while a

non-rigid photometric stereo was presented recently in [66]. This algorithm is able to

acquire, track and reconstruct the detailed deformable 3D shapes from video sequences

of untextured data.

Using “motion” as a cue requires a sequence of images, and with an assumptions that

the disparity between consecutive frames is small, otherwise it needs to be considered

a “stereo-like” problem [136]. Our research focuses specifically on “motion”, where the

recovery of the 3D geometry is obtained from the spatial and temporal changes in an

image sequence.

Our research aims to recover deformable objects from multiple images. We used

optical camera as the only sensor with all the images captured by an uncalibrated

single camera. Neither the shape of the objects nor the camera information is known in

advance. The literature on estimation of 3D shape and motion is immense. In recent

decades, a large number of algorithms and techniques have been proposed to solve this

problem. We present the description of some of these algorithms.

2.2 Rigid Structure from Motion

Structure and motion recovery from image sequences is an active area of research in

the computer vision community. It usually requires certain assumptions on the camera

and scene in order to simplify the problem. Most of the work focused on static scene

or rigid objects, which implies that the shape of the object is not changed or deformed,

thus the reconstructed results can be gradually refined.
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The projective reconstruction problem

When a scene is observed by human eyes, the distance objects appear smaller than the

objects which are close to the eyes.This is known as perspective. Perspective camera

model is the most common geometric model of a camera. For example, parallel lines

in an image may not be seen as parallel, instead they are distorted by a projective

transformation.

Perspective reconstruction has been successfully applied where the object model

was assumed rigid. The reconstruction process consists of two main steps: projective

reconstruction and Euclidean reconstruction. The first step is to recover the projective

shape and motion from the measurement data only; and the second step usually imposes

the rank constraints to obtain Euclidean structure.

After the seminal work of self-calibration [44], Sturm and Triggs [124, 133] de-

scribed a non-iterative factorisation method for uncalibrated cameras. According to

the pairwise constraints among images, this approach uses only epipoles and a set of

fundamental matrices to estimate the scaled image measurements. But the result of

this algorithm strongly depends on the accuracy of the epipolar geometry. An error

in the estimation of fundamental matrix and epipoles would affect the reconstruction

results. Han and Kanade [59] presented an alternative method using bilinear projective

factorisation algorithm; this iteratively improves the depth information, eliminating the

need for calculation of fundamental matrices. Mahamud and Hebert [83] also proposed

an iterative method which concurrently recovered the projective depths, together with

structure and motion.

To recover the Euclidean shape from the projective reconstruction, Hartley [64]

presented a global optimisation by assuming the camera is intrinsic parameters were

unchanged throughout the sequence. Although this method has shown to directly
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recover structure and camera parameters, the complicated non-linear optimisation pro-

cess requires a reliable initial estimation. To improve this, the method was further

studied in [68, 134, 105, 69], where different additional constraints on either the cam-

era or the scene are needed. The first complete theoretical convergence analysis for

the iterative algorithms was provided by Oliensis and Hartley [98], where they proved

that the previous methods may not converge to useful minima, and also proposed an

iterative extension of [124] which effectively avoids this problem.

An investigation of different camera models is presented in [63]. Using the full

perspective camera model can indeed help to obtain a correct 3D reconstruction of

the object, but too many unknown variables lead to an under constrained problem.

However, in some cases perspective projection model is unnecessary if the range of

object depth is relatively small compared to the distance between camera centre and

the object.

The affine reconstruction problem

In certain cases when the depth variation of an object is much smaller than the distance

between the object and the camera, the perspective camera model can be approximated

as an affine camera [65]. Affine camera model includes orthographic, weak perspective

and paraperspective projections. Most factorisation based SfM techniques begin with

the assumption of an affine camera model. Using an orthographic projection model

can greatly simplify the problem since recovery of the camera intrinsic parameters is

no longer required.

A direct solution for recovery of both motion and structure of the object is the

classical algorithm of point based SfM with factorisation. Tomasi and Kanade [129]

first proposed a factorisation algorithm based on the Singular Value Decomposition

(SVD), which was used for the reconstruction of a rigid object under an orthographic
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Figure 2.1: Two camera models. (Left) Perspective projection model. (Right) Ortho-
graphic projection model.

camera model. In this, the algorithm factorises the measurement matrix into shape

and rotation matrices under a rank constraint. Since then, techniques for rigid shape

recovery via point based SfM have achieved maturity over the following decades [47,

84, 125]. Subsequent work focused on a factorisation approach applied to multiple rigid

objects [60].

For dealing with dynamic scenes, Costeira and Kanade first presented a method for

separating and recovering the motion and shape of multiple independently unknown

number of moving objects in a sequence of images [31]. Han and Kanade followed

the idea but with consideration of degenerate cases [59], and assumed that objects are

moving linearly with constant speed. The method in [8] did not require constraints on

moving speed, but assumed that the object has to move along a line.

Rigid objects may be linked by joints, such as the human body, hand gesture etc.

[151]. The factorisation method was first extended to the case of articulated object

reconstruction in [132]. Unlike multiple moving objects, the relative motion of articu-

lated objects is interlinked, thus the dependency can be seen as articulated constraints

which should be incorporated from the beginning.
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2.2.1 Problem formulation

Given a point in a world coordinate system, denoted as sp = [xp, yp, zp]
T and trans-

formed into the tth image coordinate system through rotation Rt and translation tt,

its orthographic projection xtp onto tth image, is given by:

xtp =

utp
vtp

 =

[
Rt|tt

]
·

sp

1

 =

rt1 rt2 rt3 txt

rt4 rt5 rt6 tyt

 · [xp yp zp 1

]T
(2.1)

where xtp represents the pth 3D point sp projected onto tth image; the orthographic

camera matrix Rt only encodes the first two rows of rotation matrix with rotation

constraint RtR
T
t = I. It can be seen that when xtp are given with respect to the

origin at the centre of gravity calculated for all projected points in the tth frame,

tt = [txt tyt]
T = 0.

Considering P feature points tracked in F video frames, the 2F×P observation

matrix can be expressed as:

W =


x11 · · · x1P

... xtp
...

xF1 · · · xFP

 =


R1

...

RF


[
s1 · · · sP

]
= MS (2.2)

where M is a stack of motion (rotation) matrices representing camera orientation for

each frame and S represents all 3D feature points on reconstructed objects concatenated

into a single matrix. Each of the columns in measurements W represents the trajectory

of a single feature point across all frames and each of the rows represents all of the

feature points in a single frame. Now the problem can be summarised as to estimate

appropriate shape S and motion M only from a set of 2D image trajectories W. The

two most often used approaches are factorisation algorithm and bundle adjustment.
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2.2.2 Tomasi-Kanade factorisation algorithm

To reconstruct a rigid object or a static scene, factorisation is a long-standing and

well-known algorithm. Kanatani and Sugaya provided comprehensive descriptions and

complete derivation of this technique [74]. Given its simplicity this is widely exploited in

many applications and also frequently used as a first step in an optimization procedure

designed to reconstruct time-varying shape structure.

One of the best known approaches for rigid object based on factorisation technique

has been developed by Tomasi and Kanade [129] in the early 90s. They factorised

measurement matrix into two factors, shape and motion matrix, under the rank theorem

described in [129]. These two factors can be described as a bilinear model which has

lower dimensionality if compared with data space. Tomasi and Kanade’s factorisation

method is sometimes misunderstood as reconstructing 3D by matrix factorisation using

SVD. In reality, it is only an affine approximation to the camera and shape matrix and

the real resulting matrices are obtained by imposing orthonormality of the rotation

matrices. Factorisation by SVD is nothing but a means for numerically computing the

least-squares solution [74].

Suppose first two rows of camera rotation at time t can be represented as a pair of

unit vectors, it and jt, pointing the orientations of the horizontal and vertical camera

reference axes throughout the images, then the motion M in Equation 2.2 can be

written as,

M = [i1 · · · iF , j1 · · · jF ]T (2.3)

According to the rank theorem [129], M is a 2F × 3 matrix and the size of shape

S in Equation 2.2 is 3× P which implies that the measurements W is at most rank 3

with absence of noise. Because it and jt are mutually orthogonal unit vectors, so they
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must satisfy the constraints with,

|it| = |jt| = 1, and iTt jt = 0 (2.4)

To keep the rotation matrix unique, the first camera reference system is aligned

with the world reference system, therefore the unit vectors i and j in the first frame

can be written as i1 = (1, 0, 0)T and j1 = (0, 1, 0)T . By applying the rank constraint,

the measurement matrix W is initially decomposed into two terms, affine motion M̂

and affine shape Ŝ, using rank-3 truncated SVD decomposition,

SVD : W ≈ U2F×3D3×3V3×P = (UD1/2)(D1/2V) = M̂Ŝ (2.5)

The affine motion M̂ and affine shape Ŝ have the same size as desired motion M

and shape S. In fact, the affine solution is a linear transformation of desired solution,

and therefore the decomposition is not unique, any 3×3 invertible matrix Q can satisfy

the following equation,

M̂Ŝ = (M̂Q)(Q−1Ŝ) = MS (2.6)

To solve the inherent ambiguity in the factorisation, metric constraints are imposed

to find a unique Q. Based on the constraints in Equation 2.4, it is possible to calculate

Q by solving the following over-constrained, non-linear data fitting problem,

iTt QQT it − jTt QQT jt = 0,

iTt QQT jt = 0.

(2.7)

Once Q has been determined, the desired motion and shape can be easily computed

as,

M = M̂Q and S = Q−1Ŝ (2.8)
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Figure 2.2: Extracted frames with tracked feature points from “Hotel” sequence.

−100

0

100

−200

−100

0

100

−150

−100

−50

0

50

100

150

−100

−50

0

50

100

150

−200

−100

0

100

−100
0

100

Figure 2.3: (Left) Front view of the output rigid 3D reconstructed shape. (Right) Top
view of the output rigid 3D reconstructed shape

As the solution is determined up to a rotation of the reference system, the fist frame

should be aligned with the world reference system.

Experimental results

We reproduce the experiment which was originally presented in [129]. The “Hotel”

sequence is obtained from CMU database [1]. The feature points are extracted and

tracked using the Kanade-Lucas-Tomasi (KLT) feature tracker [82, 128]. Figure 2.2

shows the extracted frames with the tracked feature points from the sequence of images.

Figure 2.3 shows both front view and top view of 3D reconstructed results obtained by

the factorisation algorithm.
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2.2.3 Projective factorisation

Affine model can be seen as a special case of perspective projective model. When

the camera is close to the observed object or the scene has significant depth, the or-

thographic or weak-perspective projection model no longer approximates the problem.

The perspective effect will lead the existing methods to produce distorted reconstruc-

tion results.

Under the perspective projection, a 3× 4 camera matrix at time t is defined as:

Pt =


fx α uc

0 fy vc

0 0 1


[
Rt tt

]
(2.9)

where fx, fy are focal length in width and height, [uc, vc]
T are the coordinates of the

cameras principal point.

Suppose sp is an unknown homogeneous coordinate vectors of a 3D point, Pt is the

unknown projection matrix. The image projection equation projects sp onto the image

at time t is,

λtpxtp = Ptsp (2.10)

where the unknown scaling factor λtp is projective depth. The complete set of all

the points in all the perspective frames, together with their corresponding projective

depth can be gathered into a single 3F × P measurement matrix,

W =


λ11x11 · · · λ1Px1P

...
. . .

...

λF1xF1 · · · λFPxFP

 =


P1

...

PF

 [S1 · · ·SP ] = PS (2.11)
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with the correct projective depths λ, the rescaled measurement matrix W has rank at

most 4, since shape matrix S and motion matrix P are at most rank 4. If the true

projective depths λtp are known, it is possible to follow the factorisation method, which

is similar to the orthographic case. Sturm and Triggs [124] described a non-iterative

factorisation method for uncalibrated camera. This method only needs to estimate

the fundamental matrices F and epipole components e using pairwise images and then

recursively chained together to calculate the equation with λ1p = 1,

λ(t+1)p =

(
et(t+1) ∧ x(t+1)p

)
·
(
Ft(t+1)xtp

)∥∥et(t+1) ∧ x(t+1)p

∥∥2 λtp (2.12)

Once the projective depths are obtained, it is possible to factorise projective shape

and motion from rescaled measurement matrix by SVD. But unlike the orthographic

projection, there are no further rotation constraints here for projection matrix P. Thus

to find linear transformation, the constraints can be either added to the projection

matrix [59] or shape matrix [65].

2.3 Non-Rigid Structure from Motion

To extend the rigid SfM into the case of 3D non-rigid objects [2], the seminal work pro-

posed by Bregler et al. in [19] was the first to represent shapes as a linear combination

of a set of basis shapes which describes the main modes of deformation. Those basis

shapes are unknown but fixed for each sequence. The 2D measurement matrix has

been factorised into shape coefficients, a camera motion matrix and 3D basis shapes

using SVD, which is similar to the method proposed in [129]. This low rank shape

model has been widely used in the non-rigid and articulated object reconstructions.

Representing the 3D deformable shape as the linear combination of 3D basis shapes

is called 3D morphable model. Such model was successfully used to obtain full 3D
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models of faces in [17], where the 3D model of the shape was built by using a large

face database as a priori. Such model was originally inspired by the 2D active shape

model which later extended to model human facial expressions of the same face. Fol-

lowing this shape model, factorisation for articulated NRSfM was proposed in [101],

but small inaccuracies in the affine values obtained from the initial affine decomposition

greatly affect the subsequent estimation process. Xiao et al. [150] proposed a closed-

form solution and demonstrated an ambiguity in orthonormality constraints that using

only orthonormality constraints is insufficient to provide unique solutions to estimated

structures. They employed the traditional orthonormality constraints, but also intro-

duced additional constraints to further determine shape basis, however this method

does not cope well with noisy data. To overcome this, iterative optimisation methods

based on bundle adjustment were introduced in [144] as a last step of reconstruction,

in order to improve the quality of the estimation. Recent approaches have focused on

solving problems related to the inherently large number of degrees of freedom, which

together with motion degeneracy (very limited camera motion during data acquisition)

may eventually result in worthless reconstructions.

2.3.1 Problem formulation

In the case of non-rigid objects, the 3D shapes deform over time, which makes the prob-

lem more difficult to solve. Considering a set of 2D images viewed by an orthographic

camera, tracking P feature points in F video frames, the measurement matrix can be

formed as,

W =


x11 · · · x1P

... xtp
...

xF1 · · · xFP

 =


R1 0

. . .

0 RF



−S1−

...

−SF−

 = RS (2.13)
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The problem consists of shapes {S1, . . .SF } and the camera rotation {R1, . . . ,RF }

recovery from the 2D observations W, thus can be formulated as the following optimi-

sation problem,

arg min
Rt,St

F∑
t=1

‖Wt −RtSt‖2 (2.14)

where Wt represents the 3D points projected onto tth image. The camera translation

can be eliminated, by expressing 2D observations with respect to the data points cen-

troid calculated in each observed image. It is obviously an under constrained problem

since shape and motion are both changing with time. Describing the deformation using

F independent shapes St = [st1 · · · stP ], with stP representing coordinates of the nth

3D feature point in frame t may entail more unknown variables (3F + 3FP ) than the

number of observed input data (2FP ) from the observation. However, it is clear that

motion is not random; feature points are highly correlated in time and space. There-

fore, an object is unlikely to deform completely arbitrarily over time. To deal with

this, low rank shape model and smooth trajectory model are two major approaches to

determine a structure which lies in a lower dimensional subspace.

2.3.2 Low rank shape model

Using a low rank shape model to represent the non-rigid structure is one way of reducing

dimensionality of the problem [19]. A linear combination of K basis shapes, Bd, could

be used to mathematically represent a morphable 3D model represented in each frame,

St = αt1B1 + αt2B2 + · · ·+ αtKBK =

K∑
d=1

αdBd (2.15)

where basis shapes Bd are unknown but fixed, whilst deformation coefficients αd are

adjustable over time. Figure 2.4 illustrates an example of a deformable model. As

shown “symbolically” in the figure, second basis shape provides a greater contribution
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Figure 2.4: A graphical representation of the deformable shape model as a weighted
superposition of several basic shapes (shown shapes do not represent a true appearance
of the basic Bi). The size of the shape visually encodes the corresponding shape’s
weight

than any other basic shape. The whole shape matrix S can be rearranged as:

S =


−S1−

...

−SF−

 =


α11 · · · α1K

...
. . .

...

αF1 · · · αFK



−B1−

...

−BK−

 (2.16)

To deal with the case of non-rigid shapes under orthographic camera model, a

low rank shape model has proved a successful representation. The advantage of this

approach is that it can tackle the problem without any prior information about the

object or the scene, or any other multiple views and 3D input. The core of this method

is to express the measurement matrix as a trilinear product of three matrices: pose,

basic models and time varying coefficients. Given that,

W =


R1 0

. . .

0 RF




α11 · · · α1K

...
. . .

...

αF1 · · · αFK

⊗ I3



−B1−

...

−BK−



=


α11R1 · · · α1KR1

...
. . .

...

αF1RF · · · αFKRF



−B1−

...

−BK−

 = MB

(2.17)
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where ⊗ is the Kronecker product, motion M is a 2F × 3K matrix which contains

rotations Rt with weighting factors αtp and basis shapes Bd have size 3K×P , the rank

of W must be at most 3K in the absence of noise. The variables in Equation 2.17 can

be estimated by minimising the following reprojection error:

arg min
αtd,Rt,Bd

F∑
t=1

∥∥∥∥∥xt −Rt

K∑
d=1

αtdBd

∥∥∥∥∥
2

(2.18)

As K is usually a relatively small number, in this formulation the total 3F +FK+

3KP number of parameters is much smaller than given 2FP coordinates, which makes

the problem under-constrained.

Non-rigid factorisation algorithm

The factorisation algorithm presented by Bregler et al. [19] was the first that can

tackle the non-rigid object reconstruction problem without the use of prior information,

multi-camera or other 3D input. They demonstrated how 3D deformable objects, such

as human faces and animals, can be recovered from image streams taken by a single

camera by solving multiple factorisation steps.

The first step is to compute shape bases B by factorising the measurements W.

Equation 2.17 shows that the measurement W has rank at most 3K and can be fac-

torised into 2 matrices: Basis shape B and motion matrix M contain camera rotation

Rt and deformable coefficients αtp. Using SVD by only considering the first 3K singular

vectors and its corresponding singular values, the factorisation can be done as,

SVD : W ≈ U2F×3KD3K×3KV3K×P = M̂B̂ (2.19)

The solution is not unique and is defined up to an ambiguity matrix G ∈ R3K×3K ,
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such as W = (M̂G)(G−1B̂) = MB.

The second step is to extract the rotation and the coefficient of each basis shapes

from motion matrix M. The row (2t−1) and 2t in M are the two rows that correspond

to the frame t, which can be rearranged and factorised in the following form,

mt =


αt1rt1 αt1rt2 · · · αt1rt6

...
...

. . .
...

αtKrt1 αtKrt2 · · · αtKrt6

 =


αt1
...

αtK


[
rt1 rt2 rt3 rt4 rt5 rt6

]
(2.20)

According to the metric constraint presented in Equation 2.7, the linear transfor-

mation Q can be found by enforcing orthonormality of all rotations.

The limitation of this approach is that the motion matrix is non-linear; when an

inaccurate set of basis shapes have been chosen, it may not be possible to remove

the affine ambiguity. Besides, the method is very sensitive to noise since it strongly

relies on rank theorem, which leads to reconstruction fail for the object with large

deformations. However, this method is still effective to provide initialisation solutions

for other approaches [18, 131].

The original work of non-rigid factorisation [19] has utilised only the orthonormality

constraints on camera rotations to solve the problem. However, enforcing only the

rotation constraints may lead to ambiguity that the shape bases are not unique and

cannot guarantee the desired solution. To improve this, Xiao et al. proposed a set

of novel constraints by enforcing both the basis and the rotations [150]. According to

their closed-form solution, substituting Gd = HdH
T
d , the constraints are written as,

 M̂2t−1GdM̂
T
2t−1 − M̂2tGdM̂

T
2t = 0, t = 1 : F

M̂2t−1GdM̂
T
2t = 0, t = 1 : F

(2.21)
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Hd can be determined by using SVD or other decomposition algorithm, once Gd

has been obtained.

Since NRSfM is an ill-posed problem, using additional constraints can help to solve

the problem of upgrading the metric space. Some representative work such as Bartoli

et al. [9] introduce prior information based on coarse-to-fine scheme and compose

low-rank shape model with euclidean transformations. However Dai et al. argue that

these additional constraints are not necessary and limit the practical applicability of

the methods [34]. Thereby they proposed a simple method without assuming any extra

prior constraints, by implementing semi-definite programming of trace minimisation

problem. However inherent prior knowledge has still been used such as the method is

based on low-rank shape model, and the number of basis shapes are still required for

the metric upgrade step.

2.3.3 Smooth trajectory model

Although the majority of works use the low rank shape model and achieve successful

results, an obvious drawback of this model is the shape basis are different in each

sequence, thus needs to be estimated for every sequences. Besides, for more complex

deformable shapes, such as inextensible surfaces or elastic objects, a large number of

basis shapes are required to fit the model. Figure 2.5 illustrates representative shape

and trajectory space.

Akhter et al.’s original work

According to the duality theorem, as described in [5], representing a non-rigid shape

using the above shape basis model is dual to the trajectory basis model, in which each

point trajectory is represented as a K dimensional point within an unknown linear

trajectory space. The trajectory for each point is approximated by a linear combination
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Figure 2.5: An example of shape and trajectory space. Left: Each point in shape basis
space comes from independent shapes. Right: Each point in trajectory basis space
comes from trajectory of each point over the whole sequence.

of a small number of basis trajectories. The basis trajectory can be predefined in an

object independent way using K low-frequency Discrete Cosine Transform (DCT) basis

and therefore avoid training for the bases.

Akhter et al.’s work proposed a factorisation approach but using the basis trajectory

model. This allows the Equation 2.17 to be rewritten as, W = (DΘ)B = MB, where D

is a block-diagonal rotation matrix and Θ contains basis vectors of the time-trajectory

of 3D points,

D =


R1

. . .

RF

 ,Θ =



ωT1

ωT1

ωT1

ωTF
...

ωTF

ωTF


(2.22)

where the f th column of ω is the f th frequency cosine wave with entries,

ωtf =
σf√
F

cos

(
π(2t− 1)(f − 1)

2F

)
, t = 1 . . . F, f = 1 . . .K (2.23)
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where σ1 = 1 and, for f ≥ 2, σf =
√

2. The model only needs to consider camera param-

eters and trajectory coefficients, thus requires less parameters than shape basis model,

see section 5.3. In this work, the rotation matrix D is recovered first using Euclidean

upgrade step. Once rotations are determined and basis trajectories are predefined in

advance, the trajectory coefficient matrix B can be easily obtained.

However, because of the rank constraint (the measurement matrix has at most

3K), the method cannot model high-frequency deformation. This may result in over-

smoothed solutions, and therefore this method is restricted to a model with slow and

smooth deformation.

Alternative trajectory model

Following Akhter et al.’s baseline algorithm, several alternative methods for comput-

ing the DCT coefficients in the model are presented. Gotardo and Matinez proposed

an effective way of using higher-frequency DCT components without increasing the

factorisation rank [53]. The method describes a smooth shape trajectories approach

which models 3D shapes instead of independent 3D point trajectories of [5]. Thus the

shape coefficient matrix containing α in Equation 2.17 can be rewritten as a linear

combination of a small number (d in this case) of low-frequency DCT basis vectors,


α11 · · · α1K

...
. . .

...

αF1 · · · αFK

 = ΩdX, X ∈ Rd×K (2.24)

where Ωd is a DCT basis matrix with entries as in Equation 2.23. So the only unknown

is X which describes the 3D shape trajectory in DCT domain. This method can also

solve the rigid structure from motion problem by using the DCT basis to model camera

trajectory.
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2.3.4 Manifold learning approaches

Most of the existing methods are restricted by the fact that they try to explain com-

plex deformations using a linear model. Recent methods have integrated the manifold

learning algorithm to regularise the shape reconstruction problem, by constraining the

shapes as to be well represented by the learned manifold. Rabaud and Belongie firstly

claimed in their work [109] that the possible 3D shapes of an object may not lie on a

linear low-dimensional manifold. Based on the low rank shape model, that work as-

sumed that shapes lie on a d-dimensional manifold, and every neighbourhood of shape

approximately lies on a d-dimensional linear subspace. In order to minimise the cost

function which consists of the reprojection error and smoothing terms, the initial val-

ues are calculated by Rigid Shape Chain, in which sequences are clustered as several

rigid shapes. After initialisation, the optimisation of the shapes is performed using

two criteria: the cost function, and the shape manifold dimensionality constraint for

which Locally Smooth Manifold Learning technique has been used. Later they pro-

posed a method focusing on a globally linear manifold and used shape embedding as

initialisation [110].

Other manifold based methods departed from the basis trajectory model. Gotardo

and Martinez demonstrated the “kernel trick”, which used for non-linear dimensionality

reduction [119] can also be applied to standard NRSfM problem [52]. Recently Hamsici

et al. [57] modelled the shape coefficients in a manifold feature space. This method has

the ability to recover the shapes from a newly observed image. The mapping was learned

from the corresponding 2D measurement data of upcoming reconstructed shapes, rather

than a fixed set of trajectory bases. They introduced Rotation Invariant Kernels (RIK)

to provide similarity measure for two 3D shapes based on their 2D projections which

can eliminate the fact that two frames are taken from different points of view. But

43



Figure 2.6: (left): Representation of the linear subspace shape model; (right): manifold
interpretation of shapes with complex deformation

the problem is the 2D observations can be completely different when the images are

taken from different angles of view. Meanwhile, because of different depths, similar 2D

images may not represent similar 3D shapes. In comparison, [52] defines a non-linear

model while [57] models 3D shapes in a linear space; [52] uses point trajectory bases

as input data for building a kernel function, while [57] directly uses shapes from 2D

images.

2.3.5 Other methods

Template based reconstruction is an alternative method which usually relies on a known

reference frame and works well, especially for reconstruction of inextensible surfaces.

Reconstruction is achieved from input images and a reference image, for which the

corresponding 3D shape of the object is known. Since this is still an ill-conditioned

problem [99], the most commonly used constraints in the reconstruction involve pre-

serving either Euclidean or Geodesic distances as the surface deforms, thus it regularises

the problem by solving either the convex optimisation problem [117, 23, 89] or in closed

form sets of quadratic equations [118, 90]. This inextensibility prior of deformable sur-

face has been extensively used for template based reconstruction and shown to be a

sensible constraint for many shapes [141], including the human body and different types
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of animals. However, the way to compute 3D template is difficult and sometimes even

impossible.

Notice that the restriction of most existing NRSfM methods is that they try to

explain the complex deformations using a global model. An alternative piecewise model

has been recently developed [126, 139, 45]. Piecewise approaches mainly attempt to

solve dense NRSfM problem. As a single shape can be approximated by a series of

patches, they divided the surface into overlapping planer [139] or regular patches [45],

then individually reconstructed them. This model is able to cope well with strongly

deforming objects. However, necessity for dividing the surface into a set of overlapping

patches (often preformed manually) is generally viewed as the severe drawback of this

model.

The most recent dense NRSfM method is proposed by Garg et al. in [48], in which

they provide robust dense 3D estimation for every pixel in the reference image of a

deformable shape using only the original footage. The method departs from a trace

norm minimisation approach similarly to [34], but using a multi-frame motion flow field

as input.

2.4 Articulated object reconstruction

Articulated motion is one significant problem in structure from motion and has been

studied since the last decade [132, 151, 101]. Sinclair et al. derived a direct constraint

for recovery of Euclidean structure for articulated objects using perspective projection

camera under the assumption that the objects were coupled by a hinge (two objects are

coupled by one degree of freedom) [122]. For objects coupled by a universal joint (two

objects are linked by two or three degrees of freedom, their rotations are independent),

a direct extension of factorisation algorithm to the articulated object reconstruction
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was proposed by Tresadern and Reid in [132] where they look at articulated objects

that cannot be represented by a single statistical shape model. Their work shows how

to segment the objects in order to group feature tracks and determine the type of

coupling between two objects.

One particularly interesting problems in articulated motion is human motion analy-

sis. The applications of estimating the 3D pose are completely different between biome-

chanical modelling, diagnosis and rehabilitation and to the human motion capture used

in movies and video games. At the early stage of research on human motion recon-

struction, different parts are approximated as a set of rigid articulated links [132, 101]

in order to simplify the problem. Recently, research has increasingly moved to more

difficult cases of this problem, when the objects are articulated while at the same time

change shapes. Non-rigid articulated structure representation has also been formulated

following the idea of probability model [114] and piecewise model [45]. For all of the

methods, the most challenging part is recognition of the different parts of the articu-

lated objects, for which the quality of segmentation directly leads to the reconstruction

results. So, rather than having an initial segmentation stage to assign motion as a set

of intersecting motion subspaces which may lead to unexpected errors, in our methods

the whole data can be considered as a single entity without the need for body part

recognition.

2.5 Reconstruction with missing data

Most algorithms assume that the input measurement matrix is complete, with all the

feature points detected in all the images. This is unlikely to happen in practice, as some

of the feature points will not be detected in all the images. This could be because of the

feature point detection problems or because some parts of the 3D object may not be
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visible from all camera positions. This means some of the entries in the measurement

matrix may be unknown. This makes the shape reconstruction more challenging. The

methods addressing this problem can be divided into three categories: imputation,

alternation and non-linear optimisation.

Imputation algorithms attempt to fill in the missing entries using a complete subset

of the data [129, 153]. The original method was presented in [129], where the authors

believe that the information in partially filled measurements is sufficient to determine

all the feature points and camera positions. The work in [153] shows how to impute

missing data in non-rigid reconstruction problem. Their model is based on smooth

trajectory assumption, which can handle various levels of missing observations. In

practice, these methods are simple but cannot handle real data, which often tend to

be very noisy. In spite of this, imputation algorithm is still sufficient to provide initial

estimation for alternation and non-linear optimisation algorithms.

Alternation algorithms solve the problem based on closed-form solution, using a

rank constraint imposed on the measurement matrix without estimating the missing

values in advance [101, 84]. The algorithms relied on observation and required either

motion or shapes to be known [24]. Most existing methods for this problem followed

this idea by iteratively updating motion and shape in terms of observed measurements

[52]. Note that optimising the complete matrix using only rank constraint is often not

sufficient, but for these methods it is difficult to incorporate additional constraints [53].

Therefore a careful initialisation is needed, otherwise the results can easily drift into a

local minima.

Non-linear optimisation is a direct solution for shape and motion recovery when

measurement data are missing. By employing non-linear minimisation for cost function,

the measurements can be gradually refined and produce jointly optimal 3D structures

and camera motion. This problem is known as bundle adjustment and has been studied
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for many years [135]. Even though the inherently high number of degrees of freedom

may lead to failure of obtaining reliable 3D reconstructions, additional constraints can

naturally be included in the cost function.

2.6 Sequential approaches

So far most non-rigid structure from motion methods only refer to batch approach,

which implies that all the frames have to be processed at once after the measurement

data has been collected. The off-line computations exclude theses methods from being

used in many potential real-time applications. Real time tracking and scene estimation

using a monocular camera as the only sensor has recently seen great progress [35, 76, 96,

36]. This problem is called real time SfM, or monocular simultaneous localisation and

mapping (SLAM). From Davison’s seminal work of sparse feature point based SLAM

with a single moving camera [35] to live dense reconstruction of a scene [96], real time

rigid SfM has already been well-studied and is now being considered in commercial

applications.

The gap between batch algorithm and real time processing is that the batch methods

used in the NRSfM problem usually are not able to deal with updating the new frame,

thus making the on-line processing impossible. To fill in the gap and build the bridge

between them, sequential mode can update the model by reformulating the problem in

terms of new arriving frames. Morita and Kanade extended the traditional factorisation

algorithm into the sequential case, by updating only the first three eigenvectors instead

of re-calculation the singular value decomposition for all the data [91]. For the work

in [43], the authors added a smoothing penalty on the camera trajectory, updating the

structure accordingly as new views were added. Following that idea, the first work of

deformable shape and motion recovery in the sequential domain was recently proposed
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by Paladini et al. [100], in which they updated the current model by adding the

new modes incrementally when the current one cannot model the current frame well

enough. In addition, they also presented a 3D implicit low-rank shape model which

departs from the classical explicit low-rank shape model. This work is inspired by the

Klein and Murray’s parallel tracking and mapping system described in [76], where they

developed a real time system based on parallel threads - one dealing with robustly

tracking erratic hand held motion, the other thread produces a 3D map.

2.7 Summary

This chapter introduced the preliminary knowledge on 3D reconstruction and provided

a comprehensive review of existing approaches to 3D shape recovery from monocular

sequences. Although a lot of research effort has focused on the development of efficient

algorithms for recovery of deformable shapes, the following problems still remain in

most existing systems:

The deformable shape reconstruction is rather challenging, mainly because of the

inherent basis of ambiguity of the problem. Different structure and motion may be

found if the measurements are factorised by enforcing constraints on the camera motion.

In the next chapter, we proposed a linear method to solve the ambiguity. The main idea

is based on the assumption that the shapes in a sequence can be treated as a set of basis

shapes. By directly integrating the constraints to shape bases and their corresponding

weighting coefficients, the algorithm avoids the ambiguity in the SVD-based methods,

and the bundle adjustment can further optimise the results.

For most current approaches, especially concerning deformable shape recovery, real-

time processing is still difficult. In Chapter 4, we proposed sequential approach as

a trade-off between batch and real-time 3D reconstruction. Prior knowledge can be
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learned and updated online with regards to probability of the shape coefficients.

Apart from the problem mentioned above, the biggest outstanding problem in pre-

viously reported research is the fact that 3D shapes may not be accurately modelled in

a linear subspace. This is particularly true for articulated objects or an object which

contains large and complex deformations. The non-linear manifold learning techniques

can be applied in a reconstruction area and will be detailed in the rest of the thesis.
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Chapter 3

Shape Recovery with Linear Constraints

3D reconstruction of non-rigid objects without using any prior models may lead to a

local solution which correctly minimises the 2D re-projection error but fail to recover the

depth information. To overcome this, using prior knowledge of the shape can improve

accuracy and stability in the reconstruction process. In this chapter, we depart from

the classical low rank shape model discussed in Chapter 2, then introduce the proposed

shape model including estimate of the weight probability density function. We show

comparative results with existing methods and also present successful reconstructed

shapes on both synthetic and motion capture based data.

3.1 Introduction and related work

Structure and motion recovery from image sequences is one of the fundamental problems

in computer vision. At the early stage of this research, it usually assumes a static scene

or rigid objects, so the results can be gradually refined during the reconstructed process.

To extend rigid SfM to the case of recovering 3D deformable objects, Bregler et al. [19]

first described a low rank shape model to represent varying shapes. This constructive

work not only provide an extension of Tomasi-Kanade’s factorisation algorithm under
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rigid assumption [129], but also inspired many other methods and models in the field.

They factorise the 2D data matrix, using SVD, into object configuration weights, a

camera motion matrix and 3D basis shapes used to represent the reconstructed object

structure. But the accuracy of these methods strongly depends on the initial affine

decomposition, small inaccuracies in the affine values greatly affect the subsequent

estimation process. To eliminate the ambiguity, Xiao et al. [150] proposed a closed-

form solution to focus on deformable structure from a sequence of images taken with

an uncalibrated camera. They employ the traditional orthonormality constraints, but

also introduce basis constraints to further determine shape basis, however this method

does not cope well with noisy data. To overcome this, iterative optimisation methods

[144], based on bundle adjustment [135], were subsequently introduced.

One of the fundamental issues when solving NRSfM problems is that the algorithms

may result in meaningless reconstruction because of a high number of degrees of free-

dom and motion degeneracy. Del Bue demonstrated an alternative approach of bundle

adjustment, which introduces object shape prior information [37]. This approach can

improve performance for both rigid and non-rigid SfM, obtaining reliable 3D recon-

structions when an appropriate initial guess is provided. But in practice, when only

constrained by minimisation of the 2D re-projection error and a single basis shape, the

optimisation of large number of variables, without a high quality initial guess, often

results in convergence to a local minimum.

3.2 Contributions

The main contribution of this chapter is a novel approach for reconstruction of 3D

deformable structures, such as articulating face, from 2D video sequences taken by an

orthographic camera. We proposed to add specific constraints within the state-of-art
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batch-processing scheme previously proposed by Del Bue [37].

Current methodologies apply a non-linear optimisation method to minimise image

re-projection error for non-rigid object reconstruction and recovery of camera param-

eters. Although such methods are proven and widely adopted, their success strongly

depends on the quality of the initial estimation. This initialisation oversensitivity can

be reduced by the introduction of shape constraints, through integration of the prior

information in the cost function. This inspired us to propose a new approach to es-

timate a shape-varying object using prior learned 3D deformation shape model. The

advantage of this approach is that the proposed constraints reduce the likelihood of a

non-linear optimisation procedure converging to a local minimum. Furthermore, the

final results are not strongly dependent on the initial estimate used in the optimisation

process, ensuring the system does not require complex initialisation.

3.3 Deformable Shape Model

As mentioned, the results obtained without using any prior information about shape

and/or trajectory are sensitive to the level of noise present in the data and the algo-

rithm initialisation. The greater number of degrees of freedom may lead to smaller

re-projection error, but result in unrealistic reconstructed shapes. Appropriate prior

shape information can help to augment the accuracy of motion and shape recovery.

The key idea in our method is to use a learned shape space model.

3.3.1 PCA

Our method departs somewhat from the linear combination of weighted shape basis

model presented in the preceding section. We propose to use standard Principal Com-

ponent Analysis (PCA) to impose constraints on the basis shapes.
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Principal Component Analysis is an effective statistical technique for dimensionality

reduction. In the last two decades, it has been employed in a wide range of applications

across many areas of computer vision. In this application the idea is to represent each

of the shapes in the training dataset in a low dimensional shape space that reduces the

large number of observed variables into a small number of principal components. Sup-

pose a training dataset has N shapes and the set of points in ith shape are represented

by Xi. The mean shape, X̄, of all the training dataset is given by: X̄ = 1
N

N∑
i=1

Xi and

eigenshapes Ei and eigenvalues γi are obtained from the covariance matrix, defined as

C = 1
N

N∑
i=1

(Xi − X̄)(Xi − X̄)
T

Any of the shapes from the training dataset can be then

approximated by:

Xi
∼= X̄ + γiE = X̄ +

[
γi1 . . . γiK

]
E1

...

EK

 (3.1)

K is the number of dimensions after reducing the dimensionality, γi describes the con-

tribution of ith eigenshape and is calculated using the inner product between Ei and

Xi− X̄. Every input data Xi projects into a point in the K − 1 dimensional subspace,

spanned by the selected eigenvectors [93].

Figure 3.1 shows a working example of PCA, where the left image gives a Gaussian

distribution together with two principal components; the right image is a projection on

the eigenvector and its corresponding largest eigenvalue. The transformation preserves

most geometric information of the data.
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Figure 3.1: Left: Gaussian distribution; Right: Projection on the eigenvector corre-
sponding to the largest eigenvalue.

3.3.2 Proposed shape model

Inspired by the idea of PCA and following the deformable shape representation

described in Equation 2.16, our proposed shape model is given by:

St = µB0 +

[
αt1 · · · αtK

]
B1

...

BK

 (3.2)

There are K +1 basis shapes, B0 as the first basis shape is similar to mean shape

X̄ computed from all the faces in the training datasets. Therefore µ is a scaling factor

for first basis shape which controls the overall size of the shape. The rest of the basis

shapes, B1 to BK are forced to be close to the corresponding eigenshapes. The basis

shapes are only “encouraged” to be close to the mean shape and eigenshapes, instead

of being forced to exactly match.

By stacking the shapes St for each time instant, then projecting them onto the

2D images using an orthographic projection model, equation 3.2 can be re-written in
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compact matrix form:

W =


µ1R1B0

...

µFRFB0

+


α11R1 · · · α1KR1

...
. . .

...

αF1RF · · · αFKRF




B1

...

BK



=


µ1R1

...

µFRF

α11R1 · · · α1KR1

...
. . .

...

αF1RF · · · αFKRF





B0

B1

...

BK


=


−M1−

...

−MF−





B0

B1

...

BK


= MB

(3.3)

3.4 Prior probability on shape coefficients

Given that deformation is not random, with prior knowledge it is possible to restrict the

estimated deformation of the object; assuming it is known how the weighting coefficients

αtd are distributed in K dimensional space. If the prior is not applied to constrain the

weights, it may lead to the reconstructed shapes representing infeasible deformations.

To further constrain the reconstructed shapes, a prior probability on the values of

the weighting coefficients is added to the model. The Parzen window density estimation

[102] in the face-eigenspace was used for this purpose.

p(α) =
1

N

N∑
i=1

1

h2
φ

(
γi − α
h

)
(3.4)

where N is the number of shapes used to estimate the probability density function, and

φ (�) is a kernel function. For the isotropic Gaussian kernel function the estimate of the

density function is given by:
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Figure 3.2: Probability distribution of configurations for first two basis shapes in 2D.

p(α) =
1

N

N∑
i=1

1√
2πσ

exp

(
−‖γi − α‖

2

2σ2

)
(3.5)

The dimensionality of this function is defined by the number of eigenshapes used in

the approximation. As an example, shape coefficients probability distribution for 2D

shape space is shown in Figure 3.2.

3.5 Non-linear refinement

As the information about shapes and weights probability distribution is learned in

advance, the optimisation process comes down to minimising a cost function built as a

superposition of four components.

The first component of the cost function measures the re-projection error between

the feature points detected in the observed images and corresponding projection of 3D

points in the estimated shapes. The re-projection error is given by:

εre =

F,P∑
t=1,p=1

‖wtp − w̃tp‖2 with w̃tp = Rt

K∑
d=0

αtdBdp (3.6)
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Assuming that the reconstructed object is viewed by an orthographic camera, ro-

tation matrix Rt represents an orthographic camera matrix. The second component of

the cost function enforces orthonormality of all Rt and is expressed as:

εrot =
F∑
t=1

∥∥RtRt
T − I

∥∥2
(3.7)

The prior on the shape basis given in Equation 3.8 is included as the third component

of the cost function:

εbs =
∥∥B0 − X̄

∥∥2
+

K∑
d=1

‖Bd −Ed‖2 (3.8)

Given that the reconstructed object is not part of the training dataset, we are

much more concerned about recovering the 3D shapes, rather than having accurate

basis shapes.

Last but not least, following from the discussion in Section 3.4, the fourth com-

ponent of the cost function introduces constraints on the weighting coefficients. We

restrict the search for optimal weights within the high probability region of the learned

weights probability distribution by maximising p(αt).

The overall proposed cost function combines minimisation of the re-projection er-

ror with efficient constraints for rotation matrices, shape basis, as well as weighting

coefficients:

min
Rt,Bd,αt

(εre (Rt,Bd, αt) + ϕ1εrot (Rt) + ϕ2εbs (Bd)− ϕ3p(αt)) (3.9)

where scalars ϕ1, ϕ2, ϕ3 are the designed parameters controlling the importance of

each constraint in the cost function. ϕ2 is the importance factor for the constraint set

on basis shapes. Consider that the reconstructed shapes are different from the training

shapes, thus Bd is only forced to be close to the basis shape. Bd would be too similar
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to the basis shapes if ϕ2 is set too high. ϕ3 is the parameter for the constraint on

the weighting coefficient. Without the constraint, the weighting coefficients may go

anywhere in the shape space which may lead to meaningless reconstructed shapes. The

scalars ϕ1, ϕ2, ϕ3 are selected experimentally as 1, 0.1 and 1, respectively in our case.

The selection was based on a systematic search of the parameter space. A non-linear

optimisation based on bundle adjustment using Levenberg-Marquardt algorithm was

applied to minimise this compound cost function.

3.6 Initialisation

In the proposed method, rather than using the method described in Section 2.3.2 to

initialise the data, the method proposed in [37] is implemented. The method uses the

generalised SVD (GSVD) [16] followed by orthonormal decomposition [39]. The method

formulates the problem as two bilinear models W = MB = [M1|M2] [B1|B2]T , where

the factors with subscript “1” subscript “2” are derived from single prior shape and

image measurements, and subscript “2” refers to the remaining prior shapes. Thus an

initial shape is given by a rigid shape which is computed from measured data and prior

shape model. However, in our model, the mean shape and the eigenshapes have been

trained in advance, thus we have more than one prior shape that means we can calculate

the initial affine motion directly, as M0 = WB†, where B is approximated as mean

shape and eigenshapes and B† is the pseudo inverse of B. Then to initialise rotation

and weights, orthonormal decomposition [18] is applied to decompose the initial motion

matrix M0.

Brand[18] proposed a method to factorise motion matrix for each frame using or-

thonormal decomposition into a rotation matrix and a shape coefficient vector. M0
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can be written as M0 =


M1

...

MF

. Each motion matrix Mt, where t = 1 . . . F , is a 2 row

sub-block, see equation 3.3, which can be rearranged as,

Mt → M̂t =

[
αt1rt · · · αtKrt

]
(3.10)

where rt =

[
rt1 · · · rt6

]T
. Then the motion matrix is post-multiplied by a K × 1

vector c = [1 · · · 1],

at = krt = M̂tc, with k = αt1 + . . .+ αtK (3.11)

The column vector at can be rearranged as a 2×3 matrix, as at → At =

krt1 krt2 krt3

krt4 krt5 krt6

.

Consider rotation Rt is an orthonormal matrix, thus AtR
T
t =

√
AtAT

t . The rotation

can be computed as RT
t =

√
AtAT

t /At.

Once rotation has been estimated, it is possible to get weighting coefficients from

the rotation. Rearrange Equation 3.10 as M̂t → M̃t =

[
αt1r

T
t · · · αtKrTt

]
. The

coefficients for each frame t can be derived as,

M̃trt =

[
αTt1rtr

T
t · · · αTtKrtr

T
t

]
= 2

[
αTt1 · · · αTtK

]T
(3.12)

3.7 Missing data

The two algorithms proposed above assume that the measurement matrix W is com-

plete, with all the feature points detected in all the images. This is unlikely to happen

in practice as some of the feature points will not be detected in all the images. This
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could be because of the feature point detection problems or because some parts of the

3D object may not be visible from all the camera positions. This means some of the

entries in the measurement matrix W may be unknown. This section describes a simple

but efficient method for the solving missing data problem, by recovering the missing

entries in measurement W before reconstruction of 3D shapes and camera motion.

If the input data is incomplete, instead of using more complex and time-consuming

optimisation process to estimate the missing values [52, 41], we predict the 2D coordi-

nates of these points only based on the current measurement and learned eigenshapes.

Assuming the total P feature points are to be reconstructed, we can write I = Π̄t+ Π̄∗t ,

where I is an identity matrix and Π̄t is a P × P diagonal matrix:

Π̄t(p, p) =


0, if the point p is missing in t image

1, if the point p presents in t image

(3.13)

According to Equation 2.17, measurement matrix can be factorised into motion

M and shape basis B matrices. The incomplete measurements, which contain only

detected points in t frame, can be represented as:

ŵt = wtΠt (3.14)

and the missing measurements as:

ŵ∗t = wtΠ
∗
t (3.15)

where matrix Πt and Π∗t are obtained from Π̄t and Π̄∗t by removing all columns for which

entries are all zeros, wt represents row 2t − 1 and 2t of the matrix W. Substituting

Equation 3.14 into Equation 2.17, the incomplete measurement can be written as:
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ŵt = MtBΠt.

We first compute the motion matrix Mt in terms of the visible points and its

corresponding eigenshapes in t frame, Mt = ŵt(EΠt)
†, where (EΠt)

† represents Moore-

Penrose pseudoinverse of EΠt, with eigenshapes E used as basic shapes. Once the

motion Mt is obtained, the missing values can be calculated as ŵ∗t = MtEΠ∗t . Thus

the completed measurement matrix is:

wt = ŵtΠ
T
t + ŵ∗tΠ

∗
t
T (3.16)

In the case of batch processing, the eigenshapes E are learned during off-line training

and the whole measurement W is calculated before doing further reconstructions. In

sequential mode, missing values in each frame have to be estimated when the new frame

arrives. Note that the eigenshapes have been updated using incremental PCA, the

eigenshapes used for calculating the missing values should consist of off-line eigenvectors

E and online learned eigenvectors U.

3.8 Experiments

The experiments to evaluate the proposed methodology were based on batch formula-

tion of an articulating face and human motion. In the case of reconstruction of objects

undergoing only small deformations, the estimated shape can be accurately represented

using a model with a relatively small number of degrees of freedom, thereby allowing for

linear deformations. We firstly introduce the training data and show the learned shape

model. Then, to demonstrate the performance of the proposed methods, extensive ex-

perimental evaluation has been provided. We show qualitative and quantitative results

on different datasets, and compare the proposed method with previous approaches. We

have applied our approaches to the Hi4D-ADSIP [85] database, including video clips of
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seven different facial expressions (anger, disgust, fear, happiness, sadness, surprise and

pain) at three intensity levels (mild, middle and extreme) and videos showing people

reading predefined phrases (“talking subjects”). Ground truth data of an articulating

face was captured using Passive 3D scanner with 3D tracking of 83 feature points.The

points were projected onto the image sequences under the orthographic camera model.

The models and algorithms used for comparison are as follows:

SP: Factorisation with shape priors [37].

MP: The metric projection method [101].

BPCA: The proposed batch approach

3.8.1 Shape model

The off-line training datasets are taken from the BU-3DFE database [152]. A total

number of 2400 with 83 feature points, rigidly co-registered using standard Procrustes

Analysis [54], 3D face images of different subjects exhibiting different facial expressions

were used for learning the shape model and the distribution of weights. The feature

points tracked in the testing data have to be the same points extracted on the surface

of the model from the training datasets. Consider that real measurements are noisy, to

test the method in a use which reflects real reconstruction, the noisy measurement has

been considered in later experiments in Section 3.8.2. In the case of real applications,

the correspondence between points in different images must be found in advance. This

has been discussed in Chapter 9. Figure 3.3 shows an example of the shapes built using

the learned mean face with eigenfaces.

3.8.2 Evaluation

The performance of our proposed shape model with prior information based on batch

type operation was evaluated in a number of experiments.
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Figure 3.3: Learned shapes variability: the superposition of the mean shape with first
three eigenshape with different weights coefficients.

The accuracy of 3D shape reconstruction is affected by the number of basis shapes.

For the first set of experiments, we start with testing on four facial sequences, three

for extreme level of facial expression (happiness, sadness and surprise) data and one

for “talking subjects”. The results are listed in Table 3.1, evaluated in terms of 3D

reconstructed shape error and 2D re-projection error, for cases where differing number

of basis shapes are used for reconstruction. The 3D error is measured by normalised

mean error over all frames and all points:

e=
1

∆FP

F∑
t=1

P∑
p=1

etp, ∆=
1

3F

F∑
t=1

(∆tx+∆ty+∆tz) (3.17)

where ∆tx,∆ty,∆tz are the standard deviations of x,y and z coordinates of ground truth

shape at tth frame and etp is the Euclidean distance between corresponding point p at

frame t in the reconstructed and ground truth shapes.The 2D re-projection error is
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#Basic shape 3 5 7 10 15

3D error

Happiness 0.1410 0.0776 0.0696 0.0704 0.0703
Sadness 0.1411 0.0996 0.0916 0.0889 0.0898
Surprise 0.1591 0.1193 0.1152 0.1172 0.1169
Talking 0.1582 0.0856 0.0790 0.0674 0.0670

2D error

Happiness 0.0156 0.0081 0.0059 0.0054 0.0053
Sadness 0.0169 0.0101 0.0068 0.0064 0.0060
Surprise 0.0195 0.0082 0.0066 0.0061 0.0059
Talking 0.0267 0.0121 0.0084 0.0076 0.0065

Table 3.1: The influence of the number of basis shapes. Reconstruction error with
respect to the number of basis shapes for the selected facial expression sequences.

calculated using ∑F

t=1

∑P

p=1

(
wtp−w

′
tp

)
/σFP (3.18)

where σ is the standard deviation of the measurement data and w
′
tp represents re-

projection 2D points getting from the projection of reconstructed shapes using recovered

camera motion. As expected, more accurate results were obtained when increasing

the number of basis shapes due to the greater number of trained eigenfaces used to

constrain the reconstructed shapes. Without noise, the recovered shape is very similar

to the true shape with the reconstruction error close to zero. With noise present in

the measurements, reasonably accurate shapes are still obtainable, showing that the

method is robust.

The results shown in Figure 3.4 are for tracking 83 points over a 259 frame sequence

of anger. We present both front and side views of a selection of facial reconstructions

extracted from the sequences.

In real image sequences, feature points often disappear and reappear from the image

as the object deforms and camera moves. As a result, the measurement matrix is

incomplete due to occlusions. To test the performance of the proposed methods in that

case, we follow the evaluation procedure originally proposed in [131] to simulate the
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Anger

Figure 3.4: Results for anger facial expression sequences. First row: Input images
tracked with feature points. Second and third row: Front and side views of the 3D
reconstruction using the proposed method.

missing data by discarding 2D entries uniformly at random with 10%, 20%, 30%, 40%

and 50% probability. To simplify results visualisation, all the sequences are separated

into four groups: three for different intensities of facial expression and one for “talking

subjects”, with 10 sequences taken from different subjects per group. 3D reconstruction

errors for BPCA and their corresponding standard deviation calculated for each group

are shown in Figure 3.5(a).

In most cases, measurement noise usually appears when inaccurate tracking takes

place, affecting the 2D observation data. The aim of the following experiment is to

evaluate the performance with noise in measurement and different ratios of missing

data. Gaussian noise with noise levels up to 8% was applied for extreme surprise

facial expression sequence where the missing points were selected randomly with levels

between 0% and 50%. The measurement W was perturbed by Gaussian noise according

to the standard deviation of the measurement data with given level of noise. The

experiments for each level of noise and each level of occlusion were repeated 10 times.

Figure 3.5(b) shows the results of the proposed method.
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Figure 3.5: (a) Reconstruction results for all of the facial expression data with oc-
clusion. The figure shows the dependence on increasing amount of missing data. (b)
Reconstruction results for varying levels of missing data and 5 level of noise for extreme
surprise facial expression sequence.

3.8.3 Comparison with previously proposed methods

For the comparative evaluation, performance of the proposed method is tested

against two previously proposed approaches, namely: factorisation with shape prior

(SP) [37]; and the metric projection method (MP) [101]. The experiments in this case

were performed for all 30 facial expression sequences and 10 talking sequences. To

better visualise the results the data was divided into the same groups (mild, middle,

extreme and talking) as in Section 3.8.2. The average 3D error, maximum error and

standard deviation of each group were calculated. Table 3.2 summarises results of

these tests and indicates that the proposed BPCA produces better performance than

the previous methods. Extreme level of facial expression and Talking sequences usually

contain larger deformation than Mild and Middle level of expressions, which leads to

higher reconstruction error using the proposed method.
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Method Mild Middle Extreme Talking

SP
3D error 0.1741 0.2249 0.2867 0.2629

Max error 0.2755 0.2878 0.3579 0.2930
Std.dev. 0.0491 0.0376 0.0475 0.0422

MP
3D error 0.1063 0.1431 0.2467 0.1886

Max error 0.1646 0.1916 0.4355 0.2238
Std.dev. 0.0316 0.0342 0.1009 0.0399

BPCA
3D error 0.1193 0.1266 0.1641 0.1588

Max. error 0.1862 0.1941 0.2956 0.2237
Std. dev. 0.0306 0.0382 0.0564 0.0415

Table 3.2: Average 3D reconstruction error / Max 3D error / standard deviation for
different approaches

3.9 Summary

We have developed several extensions for the recently proposed algorithm for recovering

3D deformable object and camera pose from a video sequence. The proposed extensions

include use of learned shape model and distribution of the weights, in the cost function

which improves performance of the optimisation process.

Although the method works well, the implicit assumption that the 2D points have

to be the projections of the same 3D points on the surface is a limitation of the method.

Furthermore the reconstruction can only be done after all the measurement data has

been collected, which is obviously not suitable for any real-time applications. The

recent progress on the algorithm of real-time 3D reconstruction system for deformable

objects will be shown in the coming chapter.
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Chapter 4

Incremental Approach with Online Learned

Shape Prior

Most existing approaches to the non-rigid structure from motion problem use batch

type algorithms, with all the data collected before 3D shape reconstruction takes place.

Such a methodology is not suitable for real-time applications. Concurrent on-line esti-

mation of the camera position and 3D structure, based only on the measurements up

to that moment, is a much more challenging problem. In this chapter, a novel approach

is proposed for recursive recovery of non-rigid structures from image sequences. The

proposed, adaptively learned constraints have two aspects, consisting of constraints

imposed on the basis shapes, the basis building blocks from which shapes are recon-

structed, as well as constraints imposed on the mixing coefficients in a form of their

probability distribution. The constraints are updated when the current model inad-

equately represents new shapes. This is achieved by means of Incremental Principal

Component Analysis (IPCA). Results of the proposed method are shown on synthetic

and real data of articulating face.
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4.1 Introduction

Although tremendous progress has been made on SfM for both rigid and non-rigid

shapes, the main limitation of most extant works is that they only refer to off-line (batch

method) computations. The downside of batch methods is that the reconstruction

can only start once all measurement data has been collected. To extend batch mode

to the case of online (recursive) operation, Morita and Kanade [91] first presented

a sequential factorisation method, by considering the feature positions as a vector

time series and updating only the first three eigenvectors instead of computation of

singular value decomposition. Subsequent research for sequential shape and motion

recovery has been developed by Mouragnon et al. [92], who demonstrated a generic

and incremental method by minimising an angular error between rays. Similarly, for

the work in [43] the authors added a smoothing penalty on the camera trajectory,

updating the structure accordingly as new views are added. Solutions to execute SfM

in real-time can be classified as filter based framework [123, 40] or keyframe-based

[77] optimization and have proven to be successful. These methods give motivation

for real-time implementations, which nevertheless, have so far only dealt with rigid

objects or static environment. As yet a limited number of works have been published

covering online deformable structure recovery. Most recently, Paladini et al. [100]

have made progress in this. They divided the NRSfM problem into two processes:

model based tracking and model updating. Their work proposed a rank-growing system

which updates the current shape model when the 2D re-projection error exceeds an

expected value. This technique makes online NRSfM more tractable but whilst the

higher number of degrees of freedom may lead to smaller re-projection error, this can

result in unrealistic reconstructed shapes, unrepresentative of the true object. The

method does not address the self-occlusion problem either, where measurements are
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assumed to be complete, which is rarely valid.

4.2 Contributions related to previous work

The methodology proposed in this chapter is based on our previous work presented in

Chapter 3, which utilises appropriate prior shape information. The key idea in this

existing method was the use of a learned shape space model. The method departed

from the linear combination of a set of shape bases presented in the preceding section,

with standard PCA to obtain constraints on the basis shapes.

The idea was to represent each of the shapes in the training dataset in a low di-

mensional shape space that reduces the large number of observed variables into a small

number of principal components. The overall shape model was similar to the one given

in Equation 2.16, but with additional constraints imposed both on the basis shapes Bi

and the deformation coefficients αi. The B0 was constrained by the mean shape X̄

computed over all faces in the training datasets, with α0 controlling the overall size of

the shape. The rest of the basis shapes, B1 . . .BK are forced to be close to the corre-

sponding eigen-shapes. Given that deformations are not random, additional constraint

was applied to the deformation coefficients αi through imposition of a prior probability

on their distribution.

4.3 Recursive algorithm

Figure 4.1 is a flowchart of the proposed recursive method. Generally, the proposed

algorithm contains two modules: the reconstruction module and the model update

module.

For the recursive shape recovery, the shape is divided into off-line and online compo-

nents: St=Soff
t +Son

t .The off-line part is mainly used to indicate the static overall shape
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Figure 4.1: Flowchart for the proposed recursive method

and the online part is responsible for representing the dynamic shape changes. The

method described in the preceding section was used to estimate the off-line shape Soff
t

with the prior information about shapes and weights probability distribution learned in

advance using standard PCA technique on a training database of co-registered shapes.

The online (dynamic) shape Son
t is modelled in a similar way as the off-line shape:

Son
t =

[
βt1 · · · βtM

]
B̃1

...

B̃M

 (4.1)

As for the off-line model, the online shapes are represented by a linear combination

of basis shapes B̃i weighted by the shape coefficients βi. The main difference between

Soff
t and Son

t is the way in which the shape and coefficient constraints are calculated.

Whereas constraints for the off-line shapes are calculated using standard PCA, the

constraints for the online shapes are learned recursively using the incremental PCA

(IPCA) method.
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4.3.1 Incremental PCA

Although standard PCA is allowed to optimise reconstruction of the training data by

projecting the input data onto its principal axes, it is not suitable for online learning. It

requires all the data in advance. Once each new sample arrives, the PCA is performed

for all available data up to now. The idea of incremental PCA computation was intro-

duced to overcome the drawback of batch method [55, 56, 27]. These algorithms have

been developed and used in different areas in computer vision, such as learning and

recognition [7, 155, 147]. The main advantage for incremental computation of PCA

is that it enables estimation of the shape space based on partial observations. As an

additional benefit, the original data can be removed once the eigenspace is updated,

therefore reducing the data storage requirements.

The incremental approach requires updating the current model by taking into ac-

count a new input shape. Say when a new shape St arrives, assuming the mean shape

S̄t−1, a set of eigenvectors Ut−1 and corresponding eigenvalues are obtained from al-

ready observed training dataset. The Algorithm 1 summarises the IPCA algorithm

indicating how those inputs are updated.

Algorithm 1 Incremental PCA

Input: new shape St, current eigenvectors Ut−1, current projected vectors At−1,
current mean shape S̄t−1

Output: updated eigenvectors Ut, updated mean shape S̄t, updated projected
vectors At.

1: Compute the projection of St on the shape space a = UT
t−1

(
St − S̄t−1

)
2: Get the orthogonal residual vector rt = St −

(
Ut−1a + S̄t−1

)
3: Compute append eigenvector U′ =

[
Ut−1

rt
‖rt‖

]
and append projected vector A′ =[

At−1 a
0 ‖rt‖

]
4: Standard PCA on A′ to get its mean shape S̄′′ and eigenvectors U′′

5: Update projected vector At = U′
(
A′ − S̄′′11×t+1

)
6: Update eigenvectors Ut = U′U′′

7: Update mean shape S̄t = S̄t−1 + U′S̄′′
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4.3.2 On-line novelty detection

Neto and Nehmzow employed the traditional IPCA algorithm to perform on-line novelty

detection [95]. They use the magnitude of the residual vector to check if the current

model needs to be updated or not. The algorithm of IPCA with online novelty detection

is summarised in Algorithm 2. As shown in the algorithm, the model does not need

to be updated when the Root-Mean-Square (RMS) error between original data and

the reconstruction of its projection onto the current eigenspace is smaller than the

threshold, which implies that the current model is still able to describe the new data.

The threshold is selected experimentally. Algorithm 2 is very similar to Algorithm 1,

but with one more step for novelty detection.

Algorithm 2 On-line novelty detection

Input: new shape St, current eigenvectors Ut−1, current projected vectors At−1,
current mean shape S̄t−1

Output: updated eigenvectors Ut, updated mean shape S̄t, updated projected
vectors At.

1: Compute the projection of St on the shape space a = UT
t−1

(
St − S̄t−1

)
2: Get the orthogonal residual vector rt = St −

(
Ut−1a + S̄t−1

)
3: if ‖rt‖ > rT then

4: Compute append eigenvector U′ =
[
Ut−1

rt
‖rt‖

]
and append projected vector

A′ =

[
At−1 a

0 ‖rt‖

]
5: Standard PCA on A′ to get its mean shape S̄′′ and eigenvectors U′′

6: Update projected vector At = U′
(
A′ − S̄′′11×t+1

)
7: Update eigenvectors Ut = U′U′′

8: Update mean shape S̄t = S̄t−1 + U′S̄′′

9: else
10: S̄t = S̄t−1,Ut = Ut−1,At = At−1

11: end if
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4.3.3 A recursive approach to 3D reconstruction

A summary of the algorithm for recursive 3D reconstruction is given in Algorithm 3.

Initial shapes are estimated from the first N frames (20 frames in the case of experi-

ments described in section 3.8), in which the affine solution is estimated by using the

initialisation described in the section 3.6. The initial shapes are obtained via a nonlin-

ear optimisation with shape constraints, through integration of the prior information

in the cost function following the method described in Section 3.5. For each new frame

a local bundle adjustment is used over all frames in a sliding window of length l to

optimise parameters for shape coefficients and basis shapes in order to reconstruct the

current shape. Our approach for model updating is inspired by the work of Neto and

Nehmzow [95]. They perform online novelty detection by comparing the magnitude

of a residual vector which defines the error between reconstruction of a projection

and its original data with a predefined threshold rT (threshold rT is set to 2 in our

experiment). The model is updated only if the value exceeds the threshold or the mag-

nitude of the two residual vectors between two reconstructed shapes is relatively large,

which implies that the current model is unlikely to be able to recover the deformation

in the subsequently arriving frame. Unlike the method presented in [100] where new

basis shapes are added when the current model is unable to describe the shape, and

considering that increasing the number of basis shape may lead to overfitting problem,

the basis shapes in the proposed method are updated but the same number of basis

are kept to avoid overfitting.

When all data has been updated in this stage, a re-estimation for the current frame

ensures the model better fits the observation.

The optimisation during recursive computation is based on local bundle adjust-

ment incorporating the proposed additional constraints. The online basis shapes B̃ are
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Algorithm 3 Outline of Recursive algorithm

Input: Stream of 2D correspondence points.
Output: 3D deformable shapes St and camera motion Rt for each frame.
1: Build matrix Wt|t=N where W is a 2N × P matrix.
2: Using method described in Section 3.4 estimate:{R1, · · · ,RN}, {α1, · · · , αN}, and

B =
[
BT

0 , · · · ,BT
K

]T
.

3: Calculate Soff
t = αtB; αt = [αt,0, · · · , αt,K]; t = 1 . . . N .

4: For t=N +1, initialize model to mean shape S̄t−1, eigenvectors Ut-1, and projected
vector At−1 estimated via batch PCA for Soff.

5: loop
6: Input new frame ft with 2D correspondence points.

7: Build local measurement matrix Wt =
[
wt−l+1

T , · · · ,wt
T
]T

8: Using Levenberg-Marquardt algorithm solve:
{
β̂, ˆ̃B, R̂

}
= arg min

β,B̃,R

(ε) where ε is

given by Equation 4.4, β̂ = [β̂1, · · · , β̂l], ˆ̃B = [ˆ̃B
T

1 , · · · ,
ˆ̃B
T

M ]T , R̂ = {R̂T
1 , · · · , R̂

T
l }.

9: Compute current shape:St = Soff + β̂l
ˆ̃B and rotation: Rt = R̂l.

10: Compute the projection of St on the shape space:a = Ut−1
T(St − S̄t−1)

11: Compute the residual vector rt = St −
(
Ut−1a + S̄t−1

)
12: if (‖r‖ > rT ) or (‖rt‖ − ‖rt−1‖ > 0.1) then
13: Update the shape space and the corresponding shape vectors as defined in the

Incremental PCA.
14: Re-estimate the current frame by nonlinear optimisation with new eigenvectors

Ut St and Rt

15: end if
16: Update mean shape S̄t = S̄t−1(t− 1)/t + St/t
17: go to next frame, t← t+ 1.
18: end loop
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Figure 4.2: Shape coefficients probability distribution for the first two basis shapes
estimated for frame 23, 38 and 58 respectively

forced to be close to learned eigenvectors U, which are updated on each iteration. The

constraint imposed on the basis shapes is given by:

εbs =

M∑
d=1

∥∥∥B̃d −Ud

∥∥∥2
(4.2)

According to Equation 3.4, the prior probability of the on-line shape coefficients β can

be written as:

p(β) =
1

T

T∑
i=1

1√
2πσ

exp

(
−‖Ai − β‖2

2σ2

)
(4.3)

Where Ai is the ith shape vector. An example of the weight probability distribution

for the first two weights is shown in Figure 4.2.

The cost function is built as:

ε =

f∑
t=f−l+1

∥∥∥∥∥wt − (Soff + Rt

M∑
d=1

βtdB̃d)

∥∥∥∥∥
2

+ϕ1

f∑
t=f−l+1

∥∥RtRt
T − I

∥∥2
+ϕ2εbs−ϕ3p(βt)

(4.4)

Minimising ε by the same method applied in Equation 3.9.
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4.4 Experimental results

In this section, the experiments are designed to evaluate the performance of the pro-

posed recursive approach. We also produce comparison results between the proposed

sequential approach and the batch approach (described in Chapter 3) on different se-

quences. In all the experiments, the 3D errors are calculated by normalised mean

3D error over all frames and all points using Equation 3.17. The data we used for

experiments was introduced in Section 3.8.

4.4.1 Evaluation

First we tested the proposed incremental approach on articulating facial expression

sequence with ground truth data. Figure 4.3 shows representative sequential results.

The top graph plots the 3D reconstruction error, with selected illustrative corresponding

faces; the bottom shows the magnitude of residual vector of reconstructed shapes for

each frame. The input is an image sequence with a facial expression of happiness.

As expected, at first the error increases as each new frame arrives. Once the online

adaptive learning algorithm has learned the shapes, the error decreases gradually. The

error increases as new types of variations appear, but the algorithm can still learn

quickly. As the new shapes occur, which is the case when the shape is a variation of a

similar shape which has already been learned, the residual drops off to almost zero, an

incidence of this is seen in the last 10-15 frames.

In the on-line reconstruction, some frames may be dropped when the calculations

for the current frame have not finished before the next frame arrives. The following

experiment was designed to test the sensitivity of our method with respect to percentage

of missing frames. The simulated missing frames were selected randomly at 5%, 10%,

20% and 40% of the total number of frames. The results for the happiness facial
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Figure 4.3: (a) 3D reconstruction error for each frame with selected corresponding
faces. (b) Magnitude of residual vector of reconstructed shapes for each frame.

expression sequence are shown in Table 4.1. The average 3D error and the standard

deviation were estimated based on 10 trials. The 3D reconstruction error for this

sequence without missing data is 0.0980. The experiment has been repeated twice,

with respectively one and two frames missing at any given time. It should be noticed

that the method is not very sensitive with respect to the number of missing frames.

This can be explained by the fact that the proposed algorithm does not explicitly model

temporal variations of the data and therefore the method is not too sensitive to missing

frames, as long as the data can be well modelled by the online learned shape space

Frame Missing% 5% 10% 20% 40%

One frame
Mean 3D error 0.1022 0.1139 0.1156 0.1229

Max error 0.1186 0.1254 0.1351 0.1319
Std.dev. 0.0072 0.0087 0.0105 0.0065

Two frames
Mean 3D error 0.1071 0.1129 0.1223 0.1247

Max error 0.1173 0.1251 0.1293 0.1385
Std.dev. 0.0076 0.0089 0.0045 0.0096

Table 4.1: Average 3D reconstruction error / Max 3D error / standard deviation for
missing frames.
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4.4.2 Sequential mode vs. Batch mode

We compare the performance of our algorithms, the proposed incremental approach

IPCA is tested against BPCA which was introduced in last Chapter. Similarity, to

better visualise the results, the data were divided into the same groups as indicated

in Section 3.8.2. Table 4.2 summarises results of these tests. Although the same data

was used for training, as observed in the table, IPCA significantly improves the recon-

structed results since the online adaptive learning algorithm is applied to incrementally

learn the shape variations also from the testing data. Considering that the training data

only contain static facial expressions, which may not be able to represent all the shapes

in the testing sequences, updating the probability distribution of weighting coefficients

in terms of new estimated shapes is especially important.

Method Mild Middle Extreme Talking

BPCA
3D error 0.1193 0.1266 0.1641 0.1588

Max. error 0.1862 0.1941 0.2956 0.2237
Std. dev. 0.0306 0.0382 0.0564 0.0415

IPCA
3D error 0.0553 0.0591 0.0633 0.0599

Max. error 0.0745 0.0736 0.0770 0.0752
Std. dev. 0.0091 0.0068 0.0063 0.0114

Table 4.2: Average 3D reconstruction error / Max 3D error / standard deviation for
our approaches

Other existing sequential algorithms [91, 100] for either rigid or non-rigid object

recovery did not display any difference in the results, when compared with original

batch method. This was expected, as these methods are essentially based on the same

theory. The results demonstrate that the proposed method performs better than those

algorithms without online shape model updates. This is because the probability distri-

bution of shape coefficients is updated with incoming new shapes. As shown in Table

4.2, batch method BPCA is able to provide satisfactory results, but the errors are still
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much bigger than the errors obtained for the proposed recursive method IPCA.

Sensitivity to noise and missing data

For real cases, most previously proposed approaches are very sensitive to noise, which

lead failure to converge to correct solution. The next experiment was designed to test

the influence of inaccurate measurement, by adding increasing levels of Gaussian noise

to the measurement data W. The algorithm introduced in Section 3.7 can be extended

into the sequential approach for filling the missing entries in the measurement matrix.

We compare our batch and recursive methods with the other two batch approaches:

factorisation with shape priors (SP)[37] and metric projection method (MP)[101] in

terms of sensitivity to the noise present in the measurement data. The reconstruction

errors are evaluated for 10 trials, with measurement error modelled by independent

Gaussian noise. The level of additive noise is set to 2%, 4%, 6% and 8%. The results

are shown in Figure 4.4. For higher levels of noise, the increase in average 3D error

is similar for all four methods, but the proposed methods are relatively stable when

compared to the previous methods and can achieve much smaller errors, especially

the recursive method; even when the noise level has increased to 8%, the estimated

maximum error is 0.1958.

We also performed a similar experiment using all the facial expression data to

test the case when 2D observation is incomplete. Together with Figure 3.5(a), the

reconstruction error for IPCA and BPCA are shown in Figure 4.5(a). Our recursive

method IPCA has small standard deviation over all the tested levels of occlusion and

achieved much smaller errors, both in terms of the mean and standard deviations.

It is important to note that the results for talking sequences from BPCA has large

errors when the amount of missing data increases, whereas the recursive method clearly

outperforms batch method. It is because the basis shapes we used to predict missing
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Figure 4.4: Sensitivity to noise, all the methods for the extreme surprise facial expres-
sion data.

measurement data are obtained from the updated eigenvectors, while the batch mode

algorithm has only learned eigenvectors from the training data, which only contain

facial expressions.

Figure 4.5(b) shows the results in the case of inaccurate and incomplete 2D mea-

surements tested using extreme surprise facial expression sequence. Similar to Section

3.8.2, the missing points were selected randomly with levels 10%, 20%, 30%, 40%, 50%

and the noise levels vary between 0% and 8%.

Visualised results

The results shown in Figure 4.6 are for tracking 83 points over a 229 frame sequence of a

surprised facial expression. We present both front and side views of a selection of facial

reconstructions extracted from the sequences, as well as the 2D images with extracted

feature points. For comparison, the side view of reconstructions is to demonstrate

the relative performance of depth information recovery. The front views of the results

obtained from BPCA are not shown here, because they look very similar to the results
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Figure 4.5: (a) Reconstruction results for all of the facial expression data with oc-
clusions. The figure shows the dependence on increasing amounts of missing data.
(b)Reconstruction results for varying levels of missing data and 5 levels of noise for an
extreme surprise facial expression sequence. Results using recursive method IPCA.

obtained from IPCA. As is visible in the figures, both approaches yield satisfactory

reconstructions, whereas IPCA performs better in depth recovery. More comparison

results on different facial expression sequences are shown in Appendix A.

4.5 Limitations

The main limitation of our approach is that the deformations of the object are repre-

sented in a linear subspace. An important problem is that the non-linear deformations

are often observed. Although our method achieved satisfactory reconstructed results,

it is only successful for small deformable objects, such as articulating face and simple

human body movement. The current method is still unable to reconstruct the objects

with large and complex deformations.
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Figure 4.6: Results for surprised facial expression sequence. First row: Input images
tracked with feature points. Second and Third row: Front and side views of the 3D
reconstruction using IPCA. Fourth row: Side views of the 3D reconstruction using
BPCA.

4.6 Summary

We have presented a new approach to solve the recursive deformable shape recovery

problem and have demonstrated the accuracy and robustness of our method in a series

of challenging situations. Our method successfully recovers shape and camera motion

parameters as new frames arrive; additionally, it allows for updates to the model, thus

accounting for new shape variations as objects deform over the sequence. We have also

developed several extensions to the algorithm for deformable object recovery, which

include use of learned shape model and distribution of the weights in the cost function,

thus improving performance of the optimisation process. We believe our method is a

suitable groundwork for later exploitation in real-time applications.

However, the current approach relies on a linear subspace model to represent the

deformations of the object of interest. This approach is applicable to a relatively sim-
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ple non-rigid object, especially when the reconstructed object is based on only a small

number of basis shapes. To address this deficiency, we are currently working on shapes

constrained to a smooth manifold representing learned nonlinear shape variability. The

planned approach should be more accurate and well-adapted to large deformation mod-

els, which cannot be accurately represented by a linear subspace.
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Chapter 5

Non-linear Manifold Learning in Deformable

Shape Reconstruction: Part I

One of the existing limitations of the methods proposed so far is that they mainly ad-

dress the problem of small deformations. The main reason for their failure when recov-

ering objects with large, complex deformations is attributed to the reliance on a linear

shape model. This chapter focuses on modelling non-linear deformable objects with

large complex deformations, such as deformable cloth or articulated full-body motion.

In this case, the existing methods based on linear manifold are no longer applicable.

We argue that the linear models require more parameters than our method, which was

based on the non-linear manifold learning approach. The proposed methodology has

been validated quantitatively and qualitatively on 2D points sequences projected from

the 3D motion capture data and real 2D video sequences. The comparisons of the

proposed manifold based method against several state-of-the-art techniques are shown

on different types of deformable objects.
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5.1 Contributions

Note that the data dimensionality may not represent the true complexity of the prob-

lem, low-dimensional data is often embedded in much higher dimensional spaces. A

specific type of shape variation might be governed by only a small number of param-

eters, therefore can be well represented in a low dimensional manifold. We learn a

non-linear shape prior using the diffusion maps method. The method is able to recon-

struct 3D deformable structures exhibiting large and complex deformations. The key

contribution at this method is the introduction of the shape prior that constrains the

reconstructed shapes to lie in the learned manifold.

5.2 Manifold learning techniques

In many problems, data is hard to represent or analyse due to its high dimensionality.

However, such complex data might be governed by a small number of parameters. The

goal of the manifold learning is to find the embedding function, mapping the data from

a high dimensional space to a reduced dimensional space. Assuming X is a dataset with

M samples, the goal of dimensionality reduction problems is to find an embedding Ψ

from data X = {X1 · · ·XM} in a high N dimensional, observation space to a reduced

n dimensional space {x1 · · ·xM}. A mapping is defined by:

Ψ : X 7→ Ψ(X) = (Ψ1(X), · · · ,ΨK(X)) , where X ∈ RN ,K � N (5.1)

This section describes some of the most important manifold learning techniques for

dimensionality reduction problem. We start with a brief introduction to linear manifold

and demonstrate the limitations of linear methods.
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Figure 5.1: An example that linear methods cannot handle non-linear datasets. (a)
Original 2D spiral data. (b) Linear mapping PCA from the original 2D space to the
1D real line is colour coded.

5.2.1 Linear manifold learning

PCA is the most widely used linear dimensionality reduction technique. The goal is

to find an optimal subspace which captures as much of the variability in the data as

possible. The subspace is defined by only a few principal components of the data

covariance matrix. PCA is simple and efficient, as presented in Chapter 3; only using

the first few components is enough to interpret the whole datasets, such as human facial

expressions.

The linear manifold techniques are successful if the relationship between the vari-

ables is linear, but can fail to explain any non-linear co-variability present in the mea-

surements. Figure 5.1 is an example that PCA cannot explain non-linear spiral data.

The drawback of linear methods is that they try to preserve large distances between

data points. However, in some cases, distances are only meaningful in local neighbour-

hoods. The following section presents non-linear graph-based methods which address

this problem.
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5.2.2 Graph-based methods

In contrast to linear methods, graph-based methods are non-linear and are able to

handle a wider range of data variability and preserve local structures at the same

time. The linear manifold method like PCA is straightforward, the recovered input

data lies on a linear subspace of high dimensional space. The problem with this is

that the input data may have complex non-linear dependencies and preserving local or

indeed global structures in the data may not be possible utilising linear projections.

The graph-based algorithms demonstrate a major advantage over the classical linear

dimensionality reduction methods. They are non-linear and preserve local geometry of

the data.

Graph-based algorithms usually consist of the following steps:

First, build the similarity graph G of the data. The connectivity of the data is

represented using a local similarity measure. Contrary to the global methods, in which

all the connections between data are being considered, the local graph only defines

the distance within a certain neighbourhood. Outside the neighbourhood, the distance

between pair of data can be seen as infinity.

In order to estimate the local properties, kernel function k(Xi,Xj) is applied to the

graph and used to define a weighted adjacency matrix Y of the graph G. For example,

applying a Gaussian kernel to the graph can be written as Yij = exp
(
−‖Xi −Xj‖2/2δ

)
,

where δ is a scale parameter. Each entry of Y is calculated as Yij = k(Xi,Xj) if ith

and jth vertex are connected, otherwise Yij = 0 . More generally, the kernel function

satisfies the following properties:

1. Symmetric: k(Xi,Xj) = k(Xj ,Xi).

2. Non-negative preserving: k(Xi,Xj) ≥ 0.

According to the built adjacency matrix, the optimal embedding is able to preserve
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the local geometry of the original data.

One typical group of graph-based methods is called “kernel eigenmap methods”

which consists of some well-known techniques, such as Locally Linear Embedding (LLE)

[115], Laplacian Eigenmaps [12] and Isomap [127]. As proved in [29], all these methods

can be seen as special cases of a general framework based on diffusion processes, which

is termed Diffusion maps.

5.2.3 The diffusion maps

Diffusion maps is a graph based technique with quasi-isometric mapping from origi-

nal shape space to reduced low-dimensional diffusion space. It has become a popular

method in data dimensionality reduction given their capability to recover underlying

structures of a complex manifold, as well as robustness to noise and data outliers.

We firstly recall the original framework of diffusion maps as described in [29]. Given

a set of shapes X1 · · ·XM∈M, where M is the manifold embedded in RN , Euclidean

distance for each pair of shapes ‖Xi −Xj‖2 is calculated to build a similarity graph.

The entries of the adjacency matrix Yij,i, j ∈ 1 . . .M define the weighted similarity

graph for all connected vertexes. Using Gaussian kernel Yij = exp(−‖Xi −Xj‖2/2δ)

in this case, where δ is chosen to be the average smallest non-zero value of ‖Xi −Xj‖2

which calculated as δ = 1
M

∑M
i=1 min

j:Xi 6=Xj

‖Xi −Xj‖2. As mentioned before, instead of

connecting all the data to learn the low-dimensional representation, diffusion maps as

a sparse spectral technique only focuses on preserving the local similarities measured in

the data space. Therefore we apply k -nearest neighbour (kNN) sparsification scheme,

retaining k edges for each point and removing other connections to avoid outliers.

Since mapping the shapes to the reduced space Rn is not unique, the optimal

embedding is proved to be the eigenvalues and the associated eigenvectors of the dif-

fusion operator. The operator P = D−1Y, where degree matrix D is diagonal with

90



dii =
∑

j Yij , and dij = 0 ∀i 6= j, thus each entry of the operator P is constructed as

Pij = Yij/dii , which can be interpreted as the probability of transition from Xi to Xj .

The similarity of the shapes can be represented by diffusion distance, which de-

scribes the intrinsic geometry of the data. The diffusion distance between two points

in higher data space is equivalent to the Euclidean distance in the reduced diffusion

space (The justification is provided in Appendix B), which is defined as,

L (Xi,Xj) = ‖Ψ(Xi)−Ψ(Xj)‖ (5.2)

The diffusion distance can be computed using eigenvalues λl and eigenvectors ϕl of P,

L2 (Xi,Xj) =
∑
l≥1

λ2
l (ϕl(Xi)− ϕl(Xj))

2
(5.3)

Thus, the embedding for diffusion maps is derived as,

Ψ(Xi) 7→ [λ1ϕ1(Xi), · · · , λKϕK(Xi)]
T (5.4)

The scheme given in Algorithm 4 summarises the diffusion maps.

Algorithm 4 Outline of Classical Diffusion maps

1: Create similarity graph
2: Apply kernel function to the graph and build the adjacency matrix Y, in which
Yij = exp(−‖Xi −Xj‖2/2δ), Yij ∈ Y.

3: Compute degree matrix D, in which dii =
∑

j Yij , and dij = 0 ∀i 6= j, dii, dij ∈ D
4: Build diffusion operator P, in which Pij = Yij/dii , Pij ∈ P.
5: Define embedding Ψ for diffusion maps in Equation 5.4.

Laplace-Beltrami operator

The Laplace-Beltrami operator was firstly introduced in [30] for providing the den-

sity invariant embedding of the data. As claimed in [94], the embedding provided by
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Figure 5.2: (a) Original 2D spiral data. (b) Non-linear method Diffusion maps mapping
data from the original 2D space to the 1D real line is colour coded. (c) Embedding
data in 1D. Diffusion maps does capture correctly the intrinsic 1D manifold.

eigenmap methods depends both on density and geometry of the data points. But the

density may be unrelated to intrinsic geometry, thus a good representation of the data

should not be variant to the density. The operator is similar to the diffusion opera-

tor, but with an additional re-normalisation step. Building Laplace-Beltrami operator

summarised in Algorithm 5, is used to replace Step 3 and 4 in Algorithm 4.

Algorithm 5 Building Laplace-Beltrami operator

1: Define density q (·) as qi =
∑M

j=1 Yij

2: Renormalise adjacency matrix Ŷij = Yij/qiqj
3: Apply the normalised graph Laplacian construction to the renormalised adjacency

matrix di =
∑M

j=1 Ŷij

4: Define Laplace-Beltrami operator Pij =
Ŷij
di

When embedding the data via the Laplace-Beltrami approximation in diffusion

maps, we only need to replace the diffusion operator with the Laplace-Beltrami opera-

tor.

Figure 5.2 shows the embedding of “Spiral data” using diffusion maps with the

Laplace-Beltrami operator. The “Spiral data” was originally shown in Figure 5.1,

which cannot be modelled by the linear method. However, when using diffusion maps,

2D data can be well-represented in one dimensional reduced space.
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(a) (b) (c)

(d)
(e) (f)

Figure 5.3: (a)Parabola surface with ψ = 2. (d)Parabola surface with ψ = 0.7. (b,e)
Embedding of (a,d) via fully connected graph. (c,f) Embedding of (a,d) via k -nearest
neighbour graph.

Figure 5.3 illustrates the simulated parabola surface given by the equation f (x, y) =

x2+y2

ϕ and its corresponding embeddings in two dimensional reduced space. In the

figure, the left column illustrates two parabola surfaces with different value of ψ. The

middle column represents the embedding via Laplace-Beltrami approximating using a

fully connected graph. The right column is the embedding using k-nearest neighbour

graph. The results suggest that building sparse graph for manifold learning focuses on

retaining the local similarities measured in the input space.

A real data example is shown in Fig.5.4, where we illustrate the embedding of shapes

from cardboard data [138] together with representative corresponding shapes extracted

from 1000 training samples.
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Figure 5.4: The reduced space of cardboard dataset

5.3 Shape model comparison

Recalling the Equation 2.13 in Section 2.3.1, the measurement matrix is denoted by

W ∈ R2F×P which contains 2D input points xtp = [xtp, ytp]
T with indices t and p

referring to the pth point in the tth image.

W=


x11 · · · x1P

... xtp
...

xF1 · · · xFP

=


R1 0

. . .

0 RF



−S1−

...

−SF−

= RS (5.5)

Without loss of generality, we assume that the coordinates of the feature points are

given with respect to the centre of gravity calculated for all the points in the corre-

sponding image. We also assume that the orthographic projection accurately models

the image acquisition. The goal is to recover camera orientations matrix R and the

concatenated time-varying shapes matrix S, based only on the 2D measurement in ma-

trix W. It is an under constrained problem since shape and motion are both changing

with time. Thus Equation 5.5 cannot be directly solved. Low rank shape model and
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smooth trajectories model are successfully employed to deal with this problem. We

now review these two models and propose our new non-linear manifold model.

Low-rank shape model

As introduced in Section 2.3.2, a deformable 3D shape St can be represented as a

linear combination of K unknown but fixed basis shapes Bl:

St =
∑K

l=1
αtlBl (5.6)

where the deformation coefficients αl are adjustable over time. This low-rank shape

model can be obtained by performing Singular Value Decomposition (SVD) or Prin-

cipal Components Analysis (PCA). The measurement matrix can be decomposed and

represented by pose, basis shapes and time varying coefficients matrices, therefore it

can be rearranged as Equation 2.17. Since basis shapes B ∈ R3K×P , and M ∈ R2F×3K

the rank of measurement matrix W is 3K at most in the absence of noise. The fac-

tor M and B are computed by factorising the measurements W. The solution is not

unique and is defined up to an ambiguity matrix Q ∈ R3K×3K . According to [150],

the limitation of the closed-form solution in this approach is that the motion matrix

is nonlinear; when an inaccurate set of basis shapes have been chosen, it may not be

possible to remove the affine ambiguity.

Smooth trajectories model

According to the duality theorem, described in [4], representing a non-rigid shape

using the above shape basis model is dual to trajectory basis model, in which each point

trajectory is represented as a K dimensional point within an unknown linear trajectory

space. The trajectory for each point is approximated by a linear combination of a small
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number of basis trajectories Al:

Tp =
∑K

l=1
Alβββpl (5.7)

where βββpl are 1×3 coefficient vectors for the basis trajectory The basis trajectory can be

predefined in an object independent way using Discrete Cosine Transform (DCT) basis

and therefore avoid the training process. The model only needs to consider camera

parameters and trajectory coefficients, thus requires less parameters than the shape

basis model (see Table 5.1).

Non-linear manifold model

Our model departs from the linear shape model. The shape basis B in the proposed

method are selected from the learned shape manifold. Unlike the low rank shape model,

where all the reconstructed shapes are represented as a linear combination of unknown

but fixed K basis shapes, in the proposed method, the basis shapes may be different in

each frame. Although it may seem to increase the number of parameters in the model, it

should be recognised that all the basis shapes are selected from the manifold and are not

estimated as a part of the optimisation process. The parameters to be estimated in the

proposed approach include only the camera motion and shape coefficients, representing

the shape in the local linear barycentric coordinates system approximating the manifold

at the location corresponding to the current estimate of St.

Comparing the three models, the number of unknowns for each model is given in

Table 5.1. In most cases, K<10, F, P>100, the proposed model requires less parameters

than low rank shape model and has a similar order of magnitude as the trajectory model.

Although the number of parameters depends on number of frames F in our method, it

is important to note that they are not depending on the number of feature points P.
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That makes our approach suitable for a shape which contains large number of feature

points.

Shape Trajectory Proposed

Camera 3F
Coefficients FK 3KP F (K +1)

Basis 3KP / /

Total 3F+FK +3KP 3F+3KP 3F+F (K +1)

Table 5.1: Comparison of number of unknowns in low-rank shape model, trajectory
model and our proposed non-linear manifold model

5.4 Deformable shape reconstruction

In this section, an overview of the proposed manifold based reconstruction algorithm

is given, followed by a detailed description of the diffusion maps including description

of out-of-sample and pre-image problems.

As known from [150], enforcing only the rotation constraints cannot guarantee a

unique solution for the camera motion and the basis shapes. To solved this, the designed

shape prior can help to attract a shape towards the manifold and therefore avoid

incorrect reconstruction.

A summary of the algorithm for recovery of non-rigid object and estimation of

camera motion is given in Algorithm 6. Initial shapes S′ and camera motion R′ are

estimated by running a few iterations of the optimisation process in batch NRSfM,

using the linear basis shapes model introduced in Section 3. For each initial shape, a

Nyström extension is used for embedding these new samples into the reduced space.

Intuitively, if the points in reduced space are relatively close, the corresponding shapes

in high-dimensional space should represent similar shapes. Based on this observation,

the reconstructed shape in each frame can be represented as the weighted sum of K +1

basis shapes from the learned manifold (The selection of number of K is discussed
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in Section 3.6). The coefficients of corresponding basis shape are calculated based

on the barycentric coordinates of K +1 closest points in reduced space. Once the

basis shapes and their coefficients have been obtained, an optimisation is applied to

minimise the image reprojection error with an additional smoothing term and basic

rotation constraint over all frames. However, the quality of the optimisation result

depends on the accuracy of initial shapes. Updating basis shapes in each iteration can

help to circumvent the problem. The basis shapes are being kept updated as long as

2D measurement error rt exceeds the defined threshold rT (10−3 in our case) or the

error between two adjacent frames is relatively large, which implies that the current

results are unlikely to explain the shapes well.

Algorithm 6 Outline of Diffusion Maps based reconstruction

Input: Stream of 2D observations, diffusion map Ψ of training dataset X (Section
5.2.3)

Output: 3D deformable shapes S and camera motion R for each frame.
1: Initialisation of estimating Initial shapes S′ and camera motion R′.
2: while (‖r‖ > rT ) or

(
‖rt‖ − ‖rt−1‖ > 10−3

)
do

3: Shape projection onto manifold (shape Embedding) (Section 5.4.1)
4: Find K +1 closest points bl, l = 1 · · ·K +1 in low dimensional space, where K is

the dimensionality of the reduced space.
5: Shape update (Section 5.4.2)
6: Non-linear optimisation by minimising 2D measurement error and shape smooth

term to obtain updated shapes St and camera motion Rt,t= 1 · · ·F .(Section
5.4.3)

7: end while

5.4.1 Out-of-sample extension

In general, the diffusion map Ψ is only able to provide an embedding for the data which

is given in the training set. However, in our reconstruction algorithm, it is necessary to

calculate embedding for shapes which are not presented in the training set. Instead of

re-training the whole manifold, a more efficient way is to assimilate the shape into the
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lower dimensional feature space using both the embedding function and the geometric

relation of new data with training samples. To extend the embedding for new data,

the mapping can be approximated with the Nyström extension [6, 14].

The Nyström extension

In [14], the authors describe a series of extensions for eigendecomposition based un-

supervised learning algorithms, such as LLE, Isomap, Laplace eigenmaps, and MDS.

The idea is to extend the current embedding function known from the training set to a

new point using Nyström extension, which is one of the popular techniques employed

in machine learning.

Nyström extension can be easily extended to Diffusion maps. Suppose St∈RN is

a new data which has not been presented in the training set. Knowing that for every

sample in training dataset:

∀Xi ∈ X ,
∑

Xj∈X
p(Xi,Xj)ϕk(Xj) = λkϕk(Xi), k = 1 . . .M (5.8)

Having a shape St not present in the training set X , an embedding St 7→
(

Ψ̂1(St), · · · , Ψ̂K(St)
)

of this new shape is calculated from:

Ψ̂k(St)=
∑

Xj∈X
p(St,Xj)ϕk(Xj) (5.9)

where p(St,Xj) is calculated the same as in Diffusion maps.

Related extension algorithms such as “geometric harmonics” proposed in [78] and

manifold regularisation based natural extensions, developed by Belkin et al. [13], are

also possible to solve the problem.
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5.4.2 The pre-image problem

The pre-image problem is concerned with finding the inverse mapping of a point x ∈ RK

given in the reduced space back to the manifold Xi = Ψ−1 (xi),with X ∈ RN . Assuming

we look for a shape St given by its embedding xt, if this shape St does not exist in

the training dataset, the exact pre-image might not be found in that case. To resolve

this problem, Arias et al. [6] proposed to find an approximate pre-image by optimising

a certain optimality criteria. Inspired by this, we assume that the pre-image can be

represented as a linear combination of its neighbours on the manifold selected from

the training samples. The simplest way to achieve this is to identify the K +1 nearest

points of xt in the reduced space. This can be efficiently calculated by using a Delaunay

triangulation. Since diffusion maps provides quasi-isometric mapping, the data must

keep a similar structure when embedded into the reduced space and therefore the

neighbours on the manifold correspond to the closest neighbours in the reduced space.

Each point xt can be represented as xt =
∑K+1

l=1 θtlbtl, where btl is the lth nearest point

of xt. The weights θtl are computed as the barycentric coordinates of xt, thus can be

obtained by optimising the following function:

arg min
θtl

F∑
t=1

∥∥∥∥∥xt−
K+1∑
l=1

θtlbtl

∥∥∥∥∥
2

with

K+1∑
l=1

θtl=1, 0≤θt≤1 (5.10)

Once the weights θtl are estimated, The shape St can be approximated as a set of

weighted training samples St=
∑K+1

l=1 θtlBtl, where the training sample Btl is the pre-

image of btl.
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5.4.3 Cost function

The cost function to be minimised consists of the reprojection error, shape smoothing

terms and rotation constraint. The cost function is given as:

arg min
Rt,θtl

F∑
t=1

‖Wt−RtSt‖2+ ϕS

F∑
t=2

‖St−St−1‖2+ ϕR

F∑
t=1

εrot (5.11)

where εrot=
∥∥RtRt

T−I
∥∥2

enforces orthonomality of all Rt. ϕS and ϕR are regularisation

constants selected experimentally (0.1 and 1 in our case which has been selected based

on a systematic search of the parameter space.). The cost function above was minimised

by using Levenberg-Marquardt algorithm.

5.4.4 Iterative estimation

The accuracy of the optimised results strongly depends on initialisation, since the map-

ping in the out-of-sample extension is based on initial shapes. To eliminate the effect,

we iteratively updated the shapes and motion by embedding current estimated shapes

to the reduced space. The basis shapes are updated until the 2D measurement error is

smaller than predefined threshold rT and the error between two adjacent frames is small

enough. Figure 5.5 illustrates an example of how the initial shapes are redistributed in

the reduced space after the algorithm has converged.

5.5 Experimental results

The proposed methodology has been validated quantitatively, and qualitatively on both

motion capture and real data for different types of deformable object. To demonstrate

the advantages of our method over previously proposed methods, the experiments are

mainly focused on reconstructing complex deformations. To demonstrate the perfor-
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Figure 5.5: Embedded initial shapes (green dots), reconstructed shapes (red dots),
together with ground truth shapes (blue dots) of capoeira sequence in reduced space.

mance of the algorithm, extensive experimental evaluation has been provided.

The models and algorithms used for comparison are as follows:

MP: The metric projection method [101].

PTA: The DCT based point trajectory approach [4].

CSF: The column space fitting method [51].

KSFM: The kernel non-rigid structure from motion [52].

IPCA: The incremental principal components analysis based method proposed in

Chapter 4.

DM: The proposed method in this chapter.

The data which were used for testing include: two articulating face sequences, sur-

prise and talking, both captured using a passive 3-D scanner with 3D tracking of 83

facial landmarks [85]; two surface models, cardboard and cloth [139]. Diffusion maps

requires training process, so training datasets for two face sequences are taken from the

BU-3DFE [152], and for two surface sequences are obtained from [139]. All the training

data has been rigidly co-registered. The same testing data has been applied for other

102



methods, which do not require training.

5.5.1 The influence of embedding dimensionality

For the first set of experiments, we started with tests on motion capture data. The

accuracy of 3D shape reconstruction is affected by the dimensionality of the manifold

representing prior information. To find the relationship between manifold dimension-

ality and the reconstruction error, experiments were carried out with all the test se-

quences and dimensionality, changing between 3 and 10. To simplify the visualisation

of results, all the sequences are separated into two groups, which are: facial sequences

(surprise, talking), and surface sequences (cardboard, cloth). For evaluating the results,

the normalised means of the 3D error were compared over all frames and all points,

see Equation 3.17. Figure 5.6 shows the means of reconstruction error for each group

and the overall average results when different manifold dimensions K are used. As

expected, in general, increasing the number of manifold dimensions decreases error.

This is especially true for the group of surface sequences, which represents relatively

large deformations. Higher dimensional manifolds preserve more information from the

original data leading to better results. However, for data with small deformations, the

3D error levels off and does not strongly depend on K. This does make sense as only

a small number of basis shapes is required to describe the data variability, containing

only a relatively small number of degrees of freedom.

5.5.2 Comparison with previous methods

For the comparative evaluation, performance of the proposed method is tested against

all the five other approaches listed above for all 12 sequences. Table 5.2 summarises the

results, showing 3D reconstruction errors of each method and each sequence, together

with the optimal number of bases for which minimal reconstruction error on the test
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Figure 5.6: Average normalised mean 3D error and standard deviation of different
number of dimensions in reduced space. Bars left to right: Group of facial sequences,
group of surface sequences, , all the sequences.

data is obtained. We followed the same evaluation procedure as reported in [52]; the

3D errors of the PTA, CSF and KSFM methods are chosen with their best parameter

K, by running the trials with K varying from 2 to 13. The best result for DM method

is chosen by changing manifold dimension K from 3 to 10. Considering the ambiguity

of estimated camera motion [4], the shapes are aligned using a single global rotation

based on Procrustes alignment method.

As shown in the Table 5.2, trajectory based methods PTA, CSF and KSFM are

able to provide results comparable to the proposed method on objects with small de-

formations (e.g. faces etc.). This is because these objects exhibit mostly a rigid motion,

the deformations are only seen around the lips and chin. But those methods provide

relatively large errors on highly non-rigid human motion sequences (e.g. dance etc.).

DM is the only method that presents accurate reconstructed results almost every times,

even for full-body motion capture sequences. Note that although the initial shapes of
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MP PTA CSF KSFM IPCA DM

Surprise 0.2558 0.0386(12) 0.0396(3) 0.0381(4) 0.1289 0.0352(10)

Talking 0.0991 0.0862(10) 0.0573(3) 0.0498(4) 0.0986 0.0350(10)

Cardboard 0.4185 0.2894(8) 0.3237(3) 0.2753(2) 0.2445 0.1064(10)

Cloth 0.3997 0.3526(6) 0.2609(6) 0.1806(2) 0.1909 0.0287(7)

Table 5.2: Normalised mean 3D error calculated for different sequences.

our method may not belong to the manifold M, after the optimisation process, the

results demonstrate good convergence since the 3D errors are relatively small. An im-

portant observation is that, in the trajectory based methods, the optimal number of

bases K has to be independently estimated for each sequence. Choosing too big K may

lead to an ill-conditioned problem; but the point trajectory cannot be comprehensively

represented if K is too small, while the results from our method are more predictable.

5.5.3 Real-data experiment

We tested our approach on a video sequence showing paper being bended, taken with

a video camera. In the video, 81 features were tracked along 61 frames, showing

approximately two periods of bending movement. Figure 5.7 shows a comparison of

our reconstructed shapes with the results obtained from MP, PTA, KSFM methods.

5.6 Summary

The paper presented a new approach to integrate the idea from non-linear manifold

learning techniques into the NRSfM framework, for the task of reconstructing complex

and highly deformable shapes. The diffusion maps have been introduced in order to

build non-linear shape prior manifold. This approach significantly improved the recon-

struction quality and is well-adapted to large deformation of complex objects, especially

105



for non-rigid articulated body movement, which cannot be accurately represented in a

linear subspace. The evaluation suggests that the robustness used by our approach is

important in getting good results, even with noisy datasets.

It should be pointed out that the improved performance of the proposed method in

terms of 3D shape reconstruction accuracy comes at the cost of required availability of

a representative training dataset, and therefore the comparison of the proposed method

with respect to the other methods may not be seen as fair. Indeed, in this sense it can

also be argued that the method does not fit the definition of the SfM problem, due to

the use of this additional information.

As we only use a limited number of shapes in the training process, the future work

should focus on two different areas. One is collecting and generating data for building

a sufficiently dense representation of the manifold to further improve the performance.

The other is learning the manifold by only using a small number of training samples.

Since in most cases, collecting sufficient number of 3D training data may not be accept-

able, developing a method which is only based on small training set seems especially

important. As manifold learning has shown to be a very powerful approach for analysis

of the shapes, we believe the manifold based method is a suitable groundwork for the

reconstruction of deformable shapes.
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Figure 5.7: Selected 2D frames from the video sequence of a paper bending. Front and
top views of the corresponding 3D reconstructed results using our method (DM), MP,
PTA and KSFM
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Chapter 6

Non-linear Manifold Learning in Deformable

Shape Reconstruction: Part II

A common approach to recover structure of 3D deformable scene and camera motion

from uncalibrated 2D video sequences is to assume that shapes can be accurately rep-

resented in linear subspaces. These methods are simple and have been proven effective

for reconstructions of objects with relatively small deformations, but have considerable

limitations when the deformations are large or complex. To solve this, in Chapter 5

the manifold learning techniques have been introduced and integrated into the problem

of reconstruction of deformable objects. Although the method achieved better recon-

struction performance, it still can be improved. Two methods presented in this chapter

improve the current approach in two different aspects. First, the structure of data is

learned from the data itself in the proposed method based on random forests tech-

niques, rather than estimated using Euclidean distances between pairs of data items in

the standard diffusion maps. Second, as claimed before, building a dense representation

of the manifold requires a large amount of training data which is not feasible in many

real applications. To address the problem, a method is proposed for estimating accu-
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rate reconstructions by using a relatively small number of training samples. To better

compare with previous method, the manifold is learned based on standard diffusion

maps in this method. Both techniques described in this chapter are the extensions of

the method previously proposed in Chapter 5.

Improved method I

The first part of this chapter describes a novel approach to reconstruction of deformable

objects utilising a manifold decision forest technique. The key contribution of this work

is the use of random decision forests for the shape manifold learning. The learned

manifold defines constraints imposed on the reconstructed shapes. Due to nonlinear

structure of the learned manifold, this approach is more suitable to deal with large and

complex object deformations when compared to the linear constraints.

Deformable shape recovery from a single uncalibrated camera is a challenging,

under-constrained problem. Most of the existing methods are restricted by the fact that

they try to explain the complex deformations using a linear model. Recent methods

have integrated the manifold learning algorithm to regularise the shape reconstruction

problem by constraining the shapes as to be well represented by the learned manifold.

Using shape embedding as initialisation was introduced in [110]. Hamsici et.al [57]

modelled the shape coefficients in a manifold feature space. The mapping was learned

from the corresponding 2D measurement data of upcoming reconstructed shapes, rather

than a fixed set of trajectory bases.

Contrary to other techniques using manifold in the shape reconstruction, our man-

ifold is learned based on the 3D shapes rather than on 2D observations. The proposed

implementation is based on the manifold forest method described in [33]. The main

advantage of using manifold forest as compared for example to standard diffusion maps

[29] is the fact that in the manifold forest the neighbourhood topology is learned from
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the data itself rather than being defined by the Euclidean distance. The method has

been tested on different types of 3D motion capture data and real 2D video sequences.

Performance of the proposed method has been assessed against several state-of-the-art

algorithms, demonstrating that the method significantly outperforms the existing ones.

To the best of our knowledge, random forests technique has never been applied in the

context of non-rigid shape reconstruction. This work is the first to integrate the ideas

of manifold forests and deformable shape reconstruction.

6.1 Randomized decision forest

Random forests have become a popular method, given their capability to handle high

dimensional data, efficiently avoid over-fitting without pruning, and possibility of par-

allel implementation. We firstly give a brief review of the randomized decision forests

and their use in learning diffusion map manifolds. Although other choices are possible,

our method is focused only on the binary decision forest.

6.1.1 Decision tree

The Decision tree is one of the most popular classification and regression algorithms in

data mining and machine learning field. The basics of decision trees were introduced

in [21] by Breiman et al. Inspired by this model, other algorithms focused on learning

optimal decision trees by selecting the best attribute to split the dataset at each node

have been proposed. The typical ones are ID3 and C4.5 algorithms, both proposed by

Quinlan [107, 108]. The decision trees in our method are built by making decision in

each node of the tree based on randomly selected features. Like most machine learning

algorithms, the operation of randomized decision trees can be divided into training and

testing phases.
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Tree training

In supervised learning a training point usually appear as a pair of data (x, y) , where x

is the input feature vector, and y represents the label. Given a set of training data X .

The trees are randomised, by randomly selecting a subset of feature at each internal

node. The decision function at the internal node is used to decide whether the data Xi

reaching that node should be assigned to its left or right child node. That is, at node

m the training set Xm is split into XLm and XRm according to the results of test function

h(x, αm). The split parameters αm of the test function at node m is selected as result

of the maximisation of the information gain which produce the highest confidence in

the final distributions:

α∗m = arg max
αm

Im (6.1)

with energy model,

Im = I(Xm,XLm,XRm , αm)

XLm = {(x, y) ∈ Xm |h(x, αm) = 0}

XRm = {(x, y) ∈ Xm |h(x, αm) = 1}

(6.2)

During the training process, starting from the root node m = 0, the data are split

and sent to left or right child node by finding the optimal split parameters according

to the objective function defined in 6.1. Each child node receives different subset of

the training set, with Xm = XLm
⋃
XRm and XLm

⋂
XRm = ∅. The tree is constructed

following this procedure with randomly selected features x at each internal nodes until

the data arrives at a leaf. However, it is unnecessary to grow a tree till each data has

been occupied its own leaf node, which would lead expensive computation, difficult in-

terpretation and will result in over-fitting. Stopping criteria would affect tree structure

and it needs to be applied in order to get the optimal structure. It is common to stop
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growing the tree if the number of samples at a node is too small or the depth of tree

exceeds the pre-defined limit.

Equation 6.2 is a general case of energy model. The frequent choose is to maximise

the information gain as,

Im = H (Xm)−
∑

i∈{L,R}

∣∣X im∣∣
|Xm|

H
(
X im
)

(6.3)

H (�) represents the Shannon entropy for discrete probability distributions and in-

dicates a cardinality for the dataset. The entropy is defined as,

H (Xm) = −
∑
c∈C

p(c) log(p(c)) (6.4)

where C represents a set of all classes and is the probability function of class c. c

indicates the class label.

In the case of continuous probability distributions, H (�) represents differential en-

tropy which is an extension of Shannon entropy,

H (Xm) = −
∫
y∈Y

p(y) log p(y)dy (6.5)

where Y contains all the continuous labels, and p(·) is the probability density function.

Tree testing

The tree testing is rather simple. A previously unseen data can be sent to the left or

right child node depending on the result of the testing function h (·, ·) until it arrives

to a leaf. After training, the samples are assigned to each of the leaf node. Since the

data splitting are applied at every internal nodes based on the features, intuitively the

samples who reach the same leaf contain similar attributes. The new testing data is
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more likely to end up in a leaf which has similar training samples. Each leaf node

produces the posterior distributions, as p(y |x). The tree predictor can be obtained by

using maximum a posteriori probability estimate as y∗ = arg max
y

p(y |x).

Limitations

Although random decision trees have various advantages and were proven to be useful,

several limitations still remain in their applications. One significant problems in deci-

sion trees is over-fitting, that is the learners may create over complex trees which do

not generalise well to new samples. A common strategy is to remove sections of tree

that provide little information of the data which may only cause by noise. However, it

does not solve it completely. Furthermore, single learner is also not suitable for high

dimensional data.

6.1.2 Ensemble trees

Ensemble learning technique aims to construct a set of weak classifiers and combines

them to create a strong classifier. In contrast to many single classifier models where

only one hypothesis is learned from the training data, the ensemble methods try to build

multiple learners solving the same problem. Since each single model in an ensemble

has their limitations, the ensemble learning can manage the strengths and weaknesses,

producing a better overall accuracy.

Ensembles of trees also called random decision forests which combine the idea of

decision trees and ensemble learning methods. A random decision forest is an ensemble

of such decision trees. The trees are trained independently from each other. Once the

random forest has been trained, the new sample can be simply put through all trees.

During the testing, each tree yields its own hypothesis. Evaluating the prediction

of an ensemble is typically combines all tree predictions by simply averaging all the
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distributions produced by each tree [20]. For example, a forest consists of total T

number of trees, we denote the posterior distribution of tth tree as pt(y |x), t ∈ {1 . . . T},

then the prediction model is,

p(y |x) =
1

T

T∑
t=1

pt(y |x) (6.6)

Figure 6.1 illustrates a synthetic multi-class classification example. We investigate

the effect of the forest size (number of trees in a forest), one of the most influential

parameters of a forest. Three-class spiral data are generated as training set. The

data contain two dimensions, where each dimension represents a feature (Figure 6.1a).

Figure 6.1 b-d show the testing classification posterior of all the points in feature space

with varying number of trees (T = 1, 10, 100) using in the training. All the experiments

were run with tree depth D = 6, and used a general oriented weak learner model [33].

The colour are obtained from the combination of three solid colours (red, green and

blue) representing the uncertainty of classes. e.g. highly mixed colour corresponds

low predictive confidence of the points in this region. According to the visualised

results, using only a single tree produces undesirable, over confident prediction results.

Increasing the number of trees in the forest can help to get much smoother posteriors.

The results have shown that the accuracy of an ensemble trees can significantly exceed

the single tree model.

6.2 Density forests

The problem is closely related to data clustering. Although significant amount of

research have been done on forest-based data clustering, we followed the work in [33],

where it is proposed to use an unsupervised information gain based optimisation.

Given a set of observed data without training labels X = {X1 . . .XM}, the in-
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Figure 6.1: A classification example evaluate the performance of random forests with
varying tree numbers. 1th row: Input three-class labelled spiral data. 2nd row: The
testing posterior produced by random forest consists of T = 100, 10, 1 individual trees
respectively.

dividual trees are trained independently in parallel. The optimal parameters at mth

internal node are obtained by maximising the information gain (see Equation 6.1), with

the generic information gain defined as in Equation 6.3. Since the training labels are

not provided, unsupervised entropy is defined as the differential entropy of a d-variate

Gaussian distribution,

H (Xm) =
1

2
log
(

(2πe)d |Λ(Xm)|
)

(6.7)

where Λ(Xm) is the covariance matrix of X with size d× d. Substitute 6.7 into 6.3,
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the information gain can be rewritten as,

Im = log (|Λ(Xm)|)−
∑

i∈{L,R}

∣∣X im∣∣
|Xm|

H
(∣∣Λ(X im)

∣∣) (6.8)

Once the training data has reached the leaf, the output of the testing data x in the

tth tree is represented by a multi-variate Gaussian distribution N (·),

pt(x) =
πl(x)

Zt
N (x, µl(x),Λl(x)) (6.9)

l(x) denotes the leaf reached by the testing data x. µl and Λl are the mean and

associated covariance matrix of all points reaching the leaf l. πl(x) is the scaling vector

indicating the proportion of all training points reaching the leaf l. Zt is seen as the

partition function providing probabilistic normalisation [33].

The forest density is given by the average of all tree densities in the ensemble model,

p(x) =
1

T

T∑
t=1

pt(x) (6.10)

Figure 6.2b-d illustrates the output of density forests trained on the input data - the

shape of a three-arm spiral in Figure 6.2a, for varying numbers of trees (T = 1, 10, 100)

and tree depth (D = 4, 6, 10). Bright pixels represent high density values and dark

pixels represent low density values. As observed in the figure, deeper trees (D = 10)

may lead to over-fitting. This is particularly true when only few trees are used in

a forest. However due to the randomness of each trees (trees are independent with

respect to each other), increasing forest size T helps to produce smooth densities, thus

avoid over-fitting problem and greatly improve the results. On the other hand, since

the distribution of input data is rather complex in this example, under-fitting problem

may be caused by a smaller D.
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Figure 6.2: A density forest example with varying tree numbers T and tree depths D.
1st row: A three-arm unlabelled spiral data. 2nd to 4th row Forest densities for different
T and D.
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6.3 Forest model for manifold learning

Manifold learning, as introduced in Section 5.2, aims to find smooth mapping, such

that Ψ : X → Ψ(X), where X ∈ Rn, n � N , while preserving local geometry of the

dataset X with X ∈ X .

In Chapter 5 we introduced the idea of using diffusion maps technique in dimension-

ality reduction problem. Now the manifold forests can be constructed upon diffusion

maps [29] with the neighbourhood topology learned through random forest data cluster-

ing. It generates efficient representations of complex geometric structures even when the

observed samples are non-uniformly distributed. The diffusion map is a graph-based

non-linear technique with quasi-isometric mapping from original shape space onto a

lower dimensional diffusion space.

Manifold forests are closely related to density forests, but with extra steps on build-

ing affinity matrix and estimating the mapping function Ψ(·). Details are provided

next.

6.3.1 The affinity model

In the proposed method, the affinity model in manifold learning is built by applying

random forest clustering. Let X = {X1 . . .XM} be a dataset with M training samples,

the data partition is defined based on the leaf node l(�) that the input data Xi would

reach. The entries of the affinity matrix Yt for tree t are calculated as,

W t
ij = e−L

t(Xi,Xj), i, j ∈ 1 . . .M (6.11)
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where the distance L is obtained using different affinity models. The most commonly

accepted one is the use of Gaussian kernel, where the affinity model is defined as,

Lt (Xi,Xj) =


‖Xi−Xj‖2

δ l(Xi) = l(Xj)

∞ otherwise

(6.12)

The length parameter δ is chosen to be the average smallest non-zero value of ‖Xi −Xj‖2.

Applying binary model is another option. As a special case of Gaussian model with

δ →∞, building binary affinity is simpler and can be considered to be a parameter-free.

Lt (Xi,Xj) =


0 l(Xi) = l(Xj)

∞ otherwise

(6.13)

This is a parameter-free model that the distance between a pair of points is zero if they

end up in the same leaf, otherwise set the distance as infinity. However, as affinity

matrix calculated based on a single tree is not representative, the ensemble of T trees

is used to get an overall affinity matrix Y by averaging over all affinity matrices from

each single tree: Y = 1
T

∑T
t=1 Yt.

6.3.2 Estimating the mapping function

Coifman et al. presented a justification behind using normalised graph Laplacian [29]

by connecting them to diffusion distance. Each entry of the diffusion operator P is

constructed as Pij = Ŷ ij/dii with dii =
∑

j Ŷ ij . Ŷ is a renormalised affinity matrix

of Y using an anisotropic normalised graph Laplacian, such that Ŷ ij = Yij/qiqj with

qi =
∑

j Yij , qj =
∑

i Yji. The convergence of optimal embedding Ψ for diffusion

maps is proven in [29] and is found via eigenvectors ϕ and its corresponding n biggest
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eigenvalues λ of the operator P, such that 1 = λ0 > λ1 ≥ . . . ≥ λn,

Ψ : Xi 7→ [λ1ϕ1(Xi), · · · , λnϕn(Xi)]
T (6.14)

The detail of using diffusion maps has been presented in section 5.2.3. Figure 6.3 is

an example of embedding of original 2D spiral data to 1 dimensional real line with

colour coded. The figure shows that manifold forest capture correctly the intrinsic 1D

manifold. The plots in Figure 6.4 shows the 3D parabola surface f (x, y) = x2+y2

φ , with

φ = 2 (same as in Figure 5.3a) and the mapping into the 2D plane using binary and

Gaussian affinity models described above. Although the shape in reduced space can

reflect the original shape better when the similarity measure is calculated in terms of

the Euclidean distance for the data ending up in the same leaf, define the distance

using binary one can greatly improve the computation speed, especially for the data in

a very high dimensional space.

Compare the embedding using Gaussian affinity with Figure 5.3b, the embedding

obtained from the manifold forests achieves better distribution in the reduced space

than only using diffusion maps.

Figure 6.5 shows the embedding of shape from cardboard data, together with repre-

sentative corresponding shapes extracted from 1000 training samples. The illustration

of the embedding results obtained by applying manifold forests seems more evenly dis-

tributed than applying diffusion maps shown in 5.4, especially for the points belong to

the border of the manifold.

6.4 Random forests in deformable shape reconstruction

Once the manifold has been build from the training dataset, the reconstruction can be

processed following the steps described in section 5.4. Brief descriptions are provided
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Figure 6.3: (a) Original 2D spiral data. (b) Forest density, computed with parameters
T = 100, D = 6. (c) Ensemble model of affinity matrix. (d) Manifold forest mapping
data from the original 2D space to the 1D real line is colour coded. (e) Embedding
data in 1D.

next. More details and mathematical justification can be found in section 5.4.

Initialisation

Initial shapes and camera motion are estimated by running a few iteration of the

optimisation process using the linear method described in Chapter 3. Our method is

not significantly sensitive to the initial solution as the method can iteratively update

the shapes by projecting them on the learned manifold until convergence.
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(a) (b) (c)

Figure 6.4: Manifold forest and non-linear dimensionality reduction. (a): Input 3D
parabola surface. (b): Non-linear mapping from the original 3D space to the 2D reduced
space based on binary affinity model. (c) Embedding based on Gaussian affinity model.

Mapping out-of-sample points

The manifold forests method briefly described in section 6.3 is used to find a meaningful

representation of the data, but the mapping Ψ is only able to provide an embedding

for the data present in the given training set. Suppose a new shape St ∈ RN becomes

available after the manifold had been learned, instead of re-learning the manifold which

is computationally expensive, an efficient way is to interpolate the shape onto the lower

dimensional feature space. For each new shape, such embedding is calculated based on

the Nyström extension [6],

Inverse mapping

Given a point b ∈ Rn in the reduced space, finding its inverse mapping St = Ψ−1(b)

from the feature space back to the input space is a typical pre-image problem. As

claimed in [6], the exact pre-image might not exist if the shape St has not been seen

in the training set. However, according to the properties of isometric mapping, if the

points in the reduced space are relatively close, the corresponding shapes in high dimen-

sional space should represent similar shapes since they have small diffusion distances.
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Figure 6.5: reduced space obtained from manifold forest of cardboard dataset

Based on this, the point bt can be approximated as a linear combination of its weighted

neighbouring points in feature space, such that bt =
∑n+1

l=1 θtlxtl, where xtl is the lth

nearest point of bt and the weights θtl are computed as the barycentric coordinates of

bt. Once the weights are estimated, the shape St can be calculated as well based on a

set of weighted training samples St =
∑n+1

l=1 θtlXtl, where the training samples Xtl are

the pre-images of xtl, and are equivalent to the basis shapes in Equation5.6.

Non-linear refinement

The cost function is given as,

arg min
Rt,θtl

F∑
t=1

‖Yt−Rt · St‖2 + ϕS

F∑
t=2

‖St−St−1‖2 + ϕR

F∑
t=1

εrot (6.15)

where εrot =
∥∥Rt ·Rt

T − I
∥∥2

enforces orthonomality of all Rt. ϕS and ϕR are regular-

isation constants.

However, the underlying problem is that the quality of the optimisation result

strongly depends on the accuracy of initial shapes. To avoid this, we update the basis
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shapes in each iteration until 2D measurement error is less than the defined threshold

(10−3 in our case) and the error between two adjacent frames is relatively small.

6.5 Experiments on improved method I

A number of experiments were carried out to evaluate the proposed method. We

compare the proposed random forest method (denoted as RF) with several state-of-

the-art algorithms these experiments. The algorithms and testing sequences used for

the comparison have been introduced in section 5.5.

6.5.1 Quantitative evaluation

Different number of bases n

The accuracy of reconstruction is affected by the dimensionality of the reduced space

n, corresponding to number of shape basis. The first test looked at the relation be-

tween manifold dimensionality and the shape reconstruction error. All sequences were

separated into 2 groups: facial sequences (Surprise, Talking) and surface sequences

(Cardboard, Cloth). The forests have been trained with the average 600 number of

trees. The results in Figure 6.6 show that with increasing dimension of the reduced

space n the shape reconstruction error is reduced. As expected, a higher number of

bases is required to describe a complex shape deformation, e.g. surface sequences.

6.5.2 Qualitative Evaluation

Motion capture data

Table 6.1 shows the 3D reconstruction error for RF, DM, IPCA and KSFM which

on average provide better results than other trajectory based methods. The relative

normalised means of the 3D error are compared over all frames and all points. For

124



3 5 7 10 15
0

5

10

15

20

25

30

K

3
D

e
r
r
o
r

 

 

Surprise+Talking
Cardboard+Cloth
All

Figure 6.6: Average normalised mean 3D error and standard deviation of different
number of dimensions in reduced space. Bars left to right: Group of facial sequences,
group of surface sequences, , all the sequences.

RF method the initialisation error and the error produced by the proposed algorithm

with and without non-linear refinement are presented. The errors shown in the table

correspond to the optimal n value selection. This is achieved by running the trials with

n varying from 2 to 15. The best selected n value for each tested method is shown in

brackets. The reconstructed shapes are aligned using a single global rotation based on

Procrustes alignment. As shown in the table, RF has better performance than other

methods, especially for the large deformations. Even though the initial error is big, the

RF method is still able to provide accurate reconstruction results.

Real data

The algorithms used in the motion capture experiments above are applied to real data

in Figure 6.12. In the video, 81 point features were tracked along 61 frames showing

approximately two periods of paper bending movement.
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DM RF

Initial No Opt. Opt.

Surprise 0.0352(10) 0.3154 0.2929 0.0241(15)

Talking 0.035(10) 0.9657 0.0837 0.0343(10)

Cardboard 0.1064(10) 0.2674 0.1606 0.0940(10)

Cloth 0.0287(7) 0.2967 0.1729 0.0254(7)

Table 6.1: Relative normalised mean reconstruction 3D error for DM and RF methods.
The optimal number of bases n, for which the 3D errors are shown in the table, is given
in brackets for each tested method

Improved method II

The second part of this chapter presents a method for recovering deformable shape and

motion from uncalibrated 2D video sequence in the presence of missing data. Highly

deformable shapes are hard to describe under previously used assumptions, such as

global constraint enforcing shapes to lie within a linear subspace. Considering that

the data dimensionality may not represent the true complexity of the problem, we

suggest that the shapes can be well-modelled in a low dimensional manifold. However,

building a dense representation of the manifold requires a large amount of training

data which is not feasible in many real applications. The main contribution of this

novel approach is to accurately estimate 3D reconstructions utilising manifold learned

from a relatively small number of training samples. The problem is addressed by

grouping shapes into evolving clusters, with the shapes in each cluster represented in

the linear subspace, estimated based on the observations and the prior learned manifold.

Results are presented using motion capture data and real video sequences, showing that

the proposed method can better model shapes with complex deformations compare to

several state-of-the-art techniques, and is robust against noise and missing data.

Novelty
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The main contribution of this part is a novel approach for recovery of 3D non-rigid

structures with large and/or complex deformations. The proposed method is shown to

be flexible allowing a method extension to handle the case with missing measurements

e.g. due to occlusion or feature track loss. The proposed method is based on a re-

cently introduced manifold learning technique, Diffusion maps. As claimed in Chapter

5, building a dense representation of the manifold enables to achieve better reconstruc-

tion performance when compared to other state-of-the-art approaches, but collecting

sufficient number of training data may not be feasible in practice. The algorithm

described in this section is an improved version of the original diffusion maps based

algorithm proposed in Chapter 5, with three main differences. First, the improved

algorithm enables reconstruction with small number of training samples. Second, the

proposed cost function includes additional term to relax the constraint on local basis

shapes. Unlike previous method in Chapter 5 these shapes do not have to match the

local training samples. Third, the proposed algorithm has additional step solving the

missing data problem.

6.6 Methodology

The method presented in Chapter 5 introduced the non-linear manifold, learned based

on 3D training samples, as shape prior for non-rigid shape reconstruction. Given the

learned shape manifold and the observed 2D measurements, the algorithm iteratively

refines the 3D reconstructed shapes for each frame by using its n + 1 nearest shape

neighbours on the manifold, as basis shapes. Although the method is able to achieve

high quality shape reconstructions, the requirement of large number of training data

to build a sufficiently dense representation of the manifold is not feasible for most

real applications. To overcome this, the method proposed in this paper relaxes the
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constraint for basis shapes so as to make the algorithm more adaptable to the case

when only a relatively small number of training samples have been used for the manifold

learning.

6.6.1 Shape clustering

Given a set of estimated shapes S = {S1, . . .SF }, the aim of the clustering is to

partition F shapes into K clusters, in which the shapes have similar structure, with each

shape cluster denoted by Ti, i ∈ 1 . . .K. The clusters are obtained by performing the

Delaunay triangulation in the reduced space. As defined in [15], any “angle-optimal”

triangulation of a set of points is a Delaunay triangulation of these points. This can

help to avoid “skinny triangles”, for which the corresponding shape of each vertex could

be significantly different, thus may lead to meaningless reconstructions.

Diffusion maps are based on distance preserving mapping, meaning that the points

relatively close in reduced space correspond to the similar shapes. As a consequence we

stipulate that the points in the reduced space belong to the same Delaunay simplex (i.e.

cluster), can be modelled by the same linear subspace embedded in RN , and therefore all

corresponding reconstructed shapes (represented by that cluster) can be approximated

by a linear combination of the same set of unknown but fixed basis shapes. Thus all the

shapes in the cluster i can be represented as St =
∑n+1

l=1 θtlB
i
l,∀t ∈ Ti, where a set of

basis shapes Bi =
{
Bi

1 . . .B
i
n+1

}
is spanning the tangent linear subspace representing

all the shapes from the cluster i.

The reconstructed shapes are often different from the training samples, therefore

cannot be perfectly mapped into the manifoldM. As the result we relax the constraint

for the basis shapes, only “encouraging” them to be close to the basis shapes spanning

the tangent subspace, instead of being exactly the same. The additional constraint
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applied to the ith set of basis shapes is,

εibs =

n+1∑
l=1

∥∥Bi
l −Xi

l

∥∥2
,Xi

l ∈ X (6.16)

Figure 6.7 illustrates an example of how the initial shapes are redistributed in the

reduced space after algorithm has converged. As shown in (a) the initial shapes are

embedded in a two dimensional space which fall into three clusters, K = 3. (b) shows

the embedding of optimal shapes which produced by the non-linear optimisation (see

Section 6.6.2) with K = 11.

This approach differs from the original diffusion maps based method which was

presented in Chapter 5 as all the shapes belonging to the same cluster are being jointly

optimised, whereas in original one all the shapes would have been reconstructed in-

dependently if not for the temporal smoothness constraint(not used in the algorithm

proposed in this paper). Additionally the proposed algorithm relaxes the constraint on

the tangent subspace as it only encourages that the basis shapes to be “close” to this

subspace.

6.6.2 Non-linear refinement

The parameters θtl,B
i
l and Rt are optimised simultaneously by minimising the 2D re-

projection error with additional constraints on basis shapes and rotation matrices. The

cost function can be written as,

E(Rt,B
i
l, θtl) =

∑
t∈Ti

∥∥∥∥∥Wt −Rt

n+1∑
l=1

θtlB
i
l

∥∥∥∥∥
2

+ λBε
i
bs + λR

∑
t∈Ti

εrot (6.17)

where εrot =
∥∥RtR

T
t − I

∥∥ enforces orthonomality of all Rt. The parameters λB and λR

are regularisation constants selected experimentally. A non-linear optimisation based
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Figure 6.7: Delaunay triangulations (blue line) in the reduced space; Left: Embedded
initial shapes (green dots) in a reduced space and the actual used triangles (red line),
together with representative corresponding shapes from the total of 40 training samples;
Right: Embedded reconstructed shapes (green dots) in a 2D reduced space and the
actual used triangles (red line), with some reconstructed shapes

on bundle adjustment using Levenberg-Marquardt algorithm was applied to minimize

this cost function.

As usual the quality of the provided initial shapes may seriously affect the results

of the optimisation, we try to avoid this by updating the basis shapes Bi(re-cluster the

data) and the corresponding shape coefficients in each iteration until 2D measurement

error is less than the defined threshold (10−3 in this case) and the error between two

adjacent frames is relatively small. The pre-image of the vertices of Delaunay triangles

are used to constraint the basis shapes, Figure 6.7 shows which Delaunay simplexes are

being used along the iterations. The algorithm for iteratively 3D shape estimation is

summarised in Algorithm 7.

6.6.3 Reconstruction with missing data

The algorithm described above assumes the measurements W are complete, all the

feature points are identified in all the images in the sequence. In practice, some of the
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Algorithm 7 Iteratively 3D shape estimation

Input: 2D points with known correspondence, diffusion map calculated from the train-
ing dataset X .

1: Initialisation: Obtain initial shapes S′ and camera motion R′. for each frame t.
2: repeat
3: Compute the embedding Ψ̂ of new shapes St 7→ Ψ̂(St)
4: Find n+ 1 nearest neighbours xtl and its corresponding training samples Xtl of

the embedded point bt
5: Calculate the barycentric coordinates θtl of bt
6: Perform clustering Ti of the estimated shapes S
7: Refine θtl,B

i
l,Rt as to the cost function Equation 6.17

8: Update the reconstructed 3D shapes S′t =
∑n+1

l=1 θtlB
i
l

9: Set St = S′t
10: until (‖r‖ > rT ) and

(
‖rt‖ − ‖rt−1‖ > 10−3

)
Output: 3D reconstructed shapes S and camera motion R.

points cannot be detected in all the images due to the occlusions, feature detection

problems, or tracking failures and therefore acquiring complete set of measurements is

unlikely. We present two methods which efficiently handle the case of missing data in

the shape estimation problem.

Linear approach

If the input data is incomplete, instead of considering more complex and time-consuming

optimisation algorithms, we briefly summarise a recently proposed linear method based

on Principal Component Analysis (PCA) presented in section 3.7, with the missing data

recovered before estimating the shapes and motion.

Assuming p feature points lie on the surface of an object, we set I = Π̄t+Π̄∗t , where I

is the identity matrix and Π̄t is a p×p diagonal matrix such that Π̄t(k, k) = 0 indicates

that the point k is missing in image t, otherwise Π̄t(k, k) = 1. The observations of time

t can be represented as Ŵt = WtΠt and the missing measurements as Ŵ∗
t = WtΠ

∗
t ,

where matrix Πt and Π∗t are obtained from Π̄t and Π̄∗t by removing all columns for which

entries are all zeros. According to Equation 2.17, measurements can be factorised using
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motion M and shape bases B matrices, the incomplete measurement can be written

as: Ŵt = MtBΠt.

We firstly compute the motion matrix Mt using the available 2D measurements and

the eigenshapes E, approximating the unknown bases B, obtained from the training

dataset X , Mt = Ŵt(EΠt)
†, where (·)† indicates Moore-Penrose pseudo-inverse. The

missing entries can be calculated as Ŵ∗
t = MtEΠ∗t . Thus the completed measurement

matrix is,

Wt = ŴtΠ
T
t + Ŵ∗

tΠ
∗
t
T (6.18)

Non-linear approach

Since PCA is a linear manifold, the linear method is only able to cope well with small

deformations. Although the method is not suitable when the deformations are relatively

large or complex, it still can be used for providing a good starting point for the optimi-

sation using the non-linear approach. The diffusion maps based method can be easily

extended to handle the case with missing data. To facilitate this, modification of the

Eq. 6.17 is introduced where the cost function can be rewritten as E(Rt,B
i
l, θtl,WtΠ

∗
t ).

And therefore depends explicitly on the missing observations WtΠ
∗
t . As results the cost

function in Equation 6.17 is simultaneously minimised with respect to rotation, shape

basis, shape coefficients and the missing observations. It should be pointed out that we

only optimise the missing entries in the observation not the whole 2D measurements

Wt.

6.7 Experiments on improved method II

We evaluate the performance of the proposed method on both motion capture and real

data. To identify the original diffusion maps and the proposed one, we use DM1 to
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Figure 6.8: 3D error as function of the number of training samples for the cardboard
data.

represent the original method without basis shape optimisation, requiring large amount

of training data, and DM2 represents the improved one.

6.7.1 Quantitative evaluation

As it was stipulated in the previous sections, only a small number of training samples

are required by the proposed method. We firstly investigate the effect of the number

of training shapes on the reconstruction accuracy. The average reconstruction errors

with the standard deviation calculated over 10 trials (each using different data subset

for training) are shown in Figure 6.8. It can be seen that although the two methods

are comparable when over 400 training samples are used, DM2 is more stable and

outperforms DM1 when relatively small shape sample is used for training. For the

comparative evaluation, performance of the proposed method is tested against three

previous approaches. The experiment is design to test the robustness of our approach

when data is corrupted by noise. The measurements W were perturbed by Gaussian

noise with varied level of noise. For each selected level of noise, the experiments were
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Figure 6.9: (a) Reconstruction error as function of the measurement noise for the
cardboard data. (b) The influence of the observations missing data on the reconstruction
error.

repeated 10 times. The results in Figure 6.9(a) show our method provides smaller

reconstruction errors.

To simulate the missing observations, we randomly discard 10%, 20%, 30%, 40% and

50% of the 2D entries in W. The results in Figure 6.9(b) are calculated by averaging

over 10 trials. With the missing data ratio of up to 50% , the average (maximum)

3D and 2D reconstruction errors were 0.1629 (0.1881) and 0.0032 (0.0053) respectively,

where errors were calculated as ‖W −W′‖/‖W‖ , where W′ is the reconstructed

measurement matrix.

In real cases, missing data and measurement noise are distorting the observations

in the same time. The aim of the following experiment is to evaluate the methods’

performance in such situations. We compare results of the 3D error obtained using the

PCA based method to fill the missing entries in the measurement and then apply DM2,

with the results obtained using the non-linear approach. Results plotted in Figure 6.10

show the reconstruction error as function of the amount of the missing data for different

level of noise in the observations. As it can be seen that both methods are robust with

respect to missing data, however, the non-linear method provides smaller errors both
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Figure 6.10: Reconstruction results for varying levels of missing data and 5 levels of
noise for the cardboard data. (a) Results using non-linear method with DM2; (b)
Results using linear method.

in terms of means and standard deviations.

6.7.2 Qualitative evaluation

Motion capture data

Table 6.2 shows the 3D reconstruction error for different methods on different sequences.

For DM we present both initial error and final result produced by DM1 and DM2. The

errors are chosen with the optimal number of basis n, with the optimal n selected based

on running the trials with n varying from 2 to 10. As shown in the table, DM1 and

DM2 consistently outperform other methods, especially for the sequences with large

deformations. Even though the initial error is big, the proposed method is still able

to provide accurate reconstruction results. DM1 and DM2 are comparable, but DM2

uses much less training data than DM1, e.g. for cardboard sequence, DM1 required a

dense representation of the manifold, for which 1000 shapes have been used for training,

while DM2 only used 40 shapes for training. More results comparing DM1 against other

approaches can be found in Chapter 5.

In Figure 6.11, we visually compare the results of KSFM and DM2 against ground
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Initial DM1 DM2

Surprise 0.3154 0.0352(10) 0.0208(10)

Talking 0.9657 0.0350(10) 0.0280(10)

Cardboard 0.2674 0.1064(10) 0.1114(10)

Cloth 0.2967 0.0287(7) 0.0556(5)

Table 6.2: Normalised mean 3D error (number of bases n) of reconstruction results
using different methods.

Frame 30 Frame 100

DM2 DM2KSFM KSFM

Figure 6.11: Reconstruction results on cloth sequence. Reconstructed 3D shapes (blue
circles), together with ground truth (red dots) are displayed.

truth shapes. We can observe that DM2 generally gives better results, especially for

the cloth sequence. This was to be expected since shapes can be better modelled in a

non-linear manifold.

Real data

The algorithms used in the motion capture experiments above were applied to real data

as shown in Figure 6.12. In the video, 81 features were tracked along 61 frames showing

approximately two periods of paper bending movement.

6.8 Summary

In this chapter, two improved non-linear manifold methods have been proposed based

upon our original diffusion maps method discussed in Chapter 5. Both methods perform

well, when compared to other methods, especially for large and complex deformations.

We firstly improved the method by building the non-linear manifold with random forests

techniques which learned the neighbourhood topology from the data itself rather than
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Frame 1 Frame 41
KSFM KSFMDM2 DM2RF RF

Figure 6.12: Selected 2D frames from the paper bending video sequence . Front and
top views of the corresponding 3D reconstructed results using the proposed methods
(DM2 and RF) and KSFM.

being defined by the Euclidean distance in standard diffusion maps method.

The second part of this chapter introduced another improvement which aims to

produce accurate solution to the shape recovery problem by using much less training

data. The advantage of the proposed method is that the non-linear manifold is only

learned from small number of samples, and the reconstructed shapes are clustered into

several local linear subspaces. By combining non-linear manifold technique and low-

rank shape model, the method achieves better performance when compared with linear

based methods. However the comparison of the proposed method with respect to the

other methods may be seen as unfair, as better reconstruction accuracy of the proposed

method comes at the cost of required availability of a representative training dataset.

It should be noticed that selection of the training shapes has not been optimised

leading to some badly shaped triangles in the clustered reduced space. The reconstruc-

tion results are affected if corresponding shapes are being clustered in such triangles.

Future work will attempt to address the problem by either refining the Delaunay mesh

or introducing a criterion for selection of the optimal training shapes. We are also

investigating several extensions of this work to more challenging cases, such as to deal

with the outliers and real time implementation.
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Chapter 7

Consideration of Practical Implementation

A number of approaches were proposed in the thesis to solve the problem of 3D non-

rigid reconstruction. The proposed algorithms assume that the feature points have

been detected in the images and the 2D correspondences are provided as input to the

reconstruction algorithms; see Figure 7.1. The discourse to this point has focused on the

algorithmic development of solutions to the reconstruction problem. The purpose of this

chapter is to relate the practical concerns and issues associated with the implementation

of the methods. This chapter describes several popular methods to detect and describe

the local features in the images, as well as keypoint matching and video tracking, and

therefore completes the description of the entire system. Recalling that the output of

the reconstruction algorithm is a set of 3D points in each frame, to visualise the 3D

objects in more realistic way, post processing including image-based rendering relies on

both the original input images and the reconstructed structures.

7.1 Keypoint detection and matching

Feature detection is an essential component in many computer vision applications.

Extracting feature points from images is usually performed as the first step in many
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Figure 7.1: The flowchart of a complete 3D objects reconstruction system

algorithms. The same is true for the reconstruction algorithms reported in this thesis.

Given that all the presented methods perform a feature based reconstruction, accurate

feature detection is an important preprocessing step.

The Harris operator is one of the most popular feature detectors, which was pro-

posed back in 1980s [62]. In order to find the distinctive features in an image, the

detector calculates a corner score based on differential of the local energy. Given an

image intensity I, an area indicated by co-ordinates area (x, y) and a relative shift in

co-ordinates denoted by (u, v), the change E is produced by weighted sum of squared

differences (SSD) between these two patches,

E(u, v) =
∑
x,y

w(x, y)[I(x+ u, y + v)− I(x, y)]2 (7.1)

where w indicates the window image. Using Taylor expansion, the image I can be

rewritten as,

I(x+ u, y + v) = I(x, y) + Ixu+ Iyv +O2(u2, v2) (7.2)
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Eliminate the higher order term O2(u2, v2) which is assumed to be small, E is approx-

imated as,

E(u, v) ≈
∑
x,y

w(x, y)[Ixu+ Iyv]2

= [u, v]M[u, v]T

(7.3)

with M =
∑
x,y
w(x, y)

 I2
x IxIy

IxIy I2
y

. M can be factorised as,

M = u−1

λ1 0

0 λ2

u (7.4)

where u is an orthonormal matrix, λ1 and λ2 are the two largest eigenvalues of M.

Points of interest are defined in terms of λ1 and λ2, which can be grouped into three

cases:

- If λ1, λ2 are both small, the window image is most likely in the flat region, which is

not suitable to be extracted as keypoint.

- If λ1 � λ2 or λ2 � λ1, the window image is on the edge.

- If λ1, λ2 are both large, then a corner feature is found.

The Harris corner detector has corner selection criteria, with a score A calculated

for each pixel. If the score exceeds a certain threshold, the pixel is marked as a corner.

The score is calculated as,

A = λ1λ2 − k(λ1 + λ2)2 (7.5)

where k is a sensitivity parameter.

Although it is called corner detector, corner point is not the only feature which

can be detected with this operator. The corner detector may be used to identify an

image location with large gradients in both directions. To improve the performance,
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Shi-Tomasi corner detector [120] is built entirely on the Harris detector, but directly

computes the score as A = min(λ1, λ2). Finding maxima in the smaller eigenvalue to

locate good features can efficiently detect more stable corner features, which can be

used for matching or tracking.

However the major issue of the eigenvalue based corner detectors is that they are

not scale-invariant, thereby they cannot provide good features for matching images

with different sizes.

Scale Invariant Feature Transform, known as SIFT, is one of the most successful

algorithms for keypoint detection and matching, originally introduced by Lowe in 1999

[80]. SIFT aims to find local image features invariant to image scaling, rotation, illumi-

nation changes and to some extent changes in the case of multiple images of the same

scene.

The SIFT algorithm for generating the set of image features includes the following

major stages: (a) Scale-space extrema detection as the first stage of the algorithm is

to search the interest points over all scales and image locations. The potential interest

points are identified by taking the maxima or minima of a Difference of Gaussians func-

tion that occur at multiple scales. (b) Once the potential location has been obtained,

the next step is to determine the accurate position of each candidate points by inter-

polating of nearby data. Typically, far more keypoints are detected than needed, some

of which are sensitive to noise or are localised along the edges, a low contrast points

are discarded after applying a threshold on minimum contrast, and the edge responses

are eliminated following an additional threshold on ratio of principal curvatures [81].

The key step to achieve invariance to image location, scale and rotation is to assign

the orientations to the remaining keypoints based on local image gradient directions.

(c) The descriptor vector for each keypoint is generated for the local image region that

is highly distinctive to the remaining variations, such as different illumination and the
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change of 3D viewpoint.

Keypoints are matched, based on the corresponding Euclidean distance.

Although SIFT attempts to approximate the Laplacian of Gaussian by a Difference

of Gaussians filter in order to speed up the computation, the high dimensionality of

SIFT descriptor still makes for a time-consuming matching process. In consideration

of this shortcomings of SIFT, another novel detector-descriptor called SURF (Speeded

Up Robust Features) was proposed later for achieving faster solution to the matching

step [11]. Other extensions of SIFT descriptor, which include PCA-SIFT [75], GLOH

(Gradient Location and Orientation Histogram) [87] and local descriptor HMAX [111],

are shown to outperform the original method in many different tasks [88].

7.2 Video tracking

In most non-rigid object reconstruction problems, the input data is given as a video

clip or an image sequence, instead of a set of independent images. In such cases, unlike

image matching, the target objects are in consecutive video frames thus the motion

might be predicted from the previous frames. The aim of video tracking is to generate

the trajectory of each feature point over time by locating its position in every frame

of the video. Tracking can be classified into three broad categories: point tracking,

kernel tracking and silhouette tracking, each of which is used in different situations.

For this work, reconstruction of the structure of an object requires feature points to

be detected in consecutive frames. Therefore, this section concentrates on the issue of

point tracking only.

Establishment of point correspondence is a complicated problem, especially in the

presence of noise, occlusions, misdetections. Two types of algorithms are proposed,

namely deterministic and statistical. The deterministic algorithms minimise the cost
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function by applying different motion constraints. Many of the methods proposed in the

literature fit into this category, including the individual, combined, and global motion

constraint for coherent tracking of points that lie on the same object [140]. Later devel-

opments include the multi-camera tracking algorithm proposed in [72], which attempts

to preserve temporal coherency of speed and position [72]. In contrast, probabilistic

methods involve incorporating prior knowledge of the scene or object and take uncer-

tainties into account when determining correspondence. This class of methods are more

flexible, thus are able to track more complex objects in a relatively complex scene, e.g.

temporary occlusion of objects as they move behind and then past the obstructions.

Kalman filter [73, 22] and particle filter [50] based tracking are the most typical filter-

ing methods. Kalman filter produces estimates of the state of a linear system where

the measurements have to have Gaussian distribution. In other cases, for non-linear,

not-Gaussian states, the state estimation can be performed using particle filters.
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Chapter 8

Methods Comparison and Analysis

As this thesis has progressed, each chapter has included an evaluation of the proposed

methods, illustrated by way of comparison to existing approaches. The main purpose

of this chapter is to provide a review of all the methods proposed in the thesis.

The proposed algorithms concern the problem of recovering the 3D structure of

deformable objects from a sequence of images. The methods impose different types of

3D prior shape model to better constrain the highly ambiguous problem. To investigate

the performance of the algorithms developed in the course of this work, this chapter

provides comparison amongst all the proposed methods, including

BPCA: The batch approach with linear constraints.

IPCA: The incremental approach of estimating the deformable objects based on linear

model.

DM1: The non-linear manifold based approach. A dense shape manifold is learned

using diffusion maps.

DM2: Improved version of DM1, which uses a smaller number of training samples to

build a manifold.

RF: Improved version of DM1, which introduces manifold forests when learning the
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shape manifold.

The testing sequences and the data preparation retain the form, as introduced in

previous chapters, and require no further explanation. The results listed in Table 8.1

are the 3D reconstructed shape error for reconstructions comprising four specific facial

expression sequences. Three of the sequences are different levels of surprise (mild,

middle and extreme) and one talking sequence. The purpose of this experiment is to

evaluate the effect on different levels of deformation, when all the proposed methods

are applied on same type of shape variation. The experimental results obtained for

other sequences are shown in Table 8.2.

Mild Middle Extreme Talking

BPCA 0.0960 0.1319 0.1591 0.1651

IPCA 0.0757 0.0725 0.1289 0.0986

DM1 0.0270 0.0223 0.0352 0.0350

DM2 0.0184 0.0164 0.0208 0.0280

RF 0.0213 0.0203 0.0241 0.0343

Table 8.1: Normalised mean 3D error calculated in facial related sequences.

BPCA IPCA DM1 DM2 RF

Surprise 0.1591 0.1289 0.0352 0.0208 0.0241

Talking 0.1651 0.0986 0.0350 0.0280 0.0343

Cardboard 0.2648 0.2445 0.1064 0.1114 0.0940

Cloth 0.3739 0.1909 0.0287 0.0556 0.0254

Table 8.2: Normalised mean 3D error calculated in different sequences.

The linear method BPCA constraints the model based on batch PCA. The method

introduced the shape constraints through integration of the prior information in the

cost function. The optimal shape coefficients are found within the higher probability

of learned weighting distribution. The shape model in this method is based on original

low rank shape model, but relaxes the constraints for fixed basis shapes due to the
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fact that shapes may not be perfectly described by eigenshapes spanning the tangent

space. Whilst BPCA uses prior information learning without online learned shape

prior, in contrast to IPCA - which is also based on a linear model - incrementally

updates the model when new frame arrives. The method used an adaptive algorithm

for construction of shape constraints imposing stability on the online reconstructed

shapes.

Comparing the results produced by IPCA with BPCA, the recursive method out-

performs the batch method, especially for talking sequence, due to its ability to learn

from the previous shapes in the sequence; batch method can only learn the model from

the training dataset, which for these experiments only consists of facial expression data

(talking sequences are not included in the training data). Although the sequential

solution obtained by IPCA is slightly better than BPCA, its performance is still not

comparable to other non-linear methods. As reported in the Table 8.1, the results

provided by linear methods BPCA and IPCA are less accurate than those obtained

from non-linear approaches, especially for relatively larger deformations applied for the

faces, which shows that the linear model is not able to explain non-linear deformations.

Since non-linear deformations are often observed, application of the linear model

does not seem feasible for such objects. To deal with this, a series of non-linear manifold

based approaches were proposed. DM1, DM2 and RF are all local methods based on

non-linear manifold learning approaches. The manifold built in DM1 and DM2 is based

on diffusion maps, RF uses manifold forests for manifold learning. Within these three

methods, DM1 was developed first and is the precursor to the other two methods - which

requires a large number of training samples to build a dense manifold. The development

of RF followed this model, with the manifold forests built upon the diffusion maps.

Whereas DM2 requires only a relatively small quantity of training data. It can be

seen that three methods are comparable, but RF achieves better performance on most
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articulated body motion sequences, as the manifold is learned from the data itself. As

shown in Table 8.1, DM2 outperforms DM1. The likely cause of this is the outliers

which exist in the training data provided in facial expression database. Recalling that

the samples used for training in DM2 are randomly selected, it is quite possible that

these outlier training shapes were fortunately discarded. Although DM2 does require a

reduced quantity of training samples, it should be noticed that the computation time

for DM2 exceeds that for DM1 primarily because there is no need for optimisation of

the basis shapes in DM1.

Summarising the results presented in Table 8.1 and Table 8.2, it is clear that lin-

ear methods BPCA and IPCA cope well when the objects contain small and simple

deformation, but fail to explain highly deformable shapes. IPCA is the only approach

which is able to incrementally reconstruct the shape rather than provide the whole se-

quence. Although it can learn the current frame based on previous frames, as a linear

method, IPCA still fails to represent complex shapes, while the reconstruction 3D error

is rather small in the three non-linear approaches. An overview of the features of all

the proposed methods is presented in Table 8.3.

Manifold type Initialisation Recursive Missing data

BPCA PCA Rigid No Yes

IPCA PCA Rigid Yes Yes

DM1 Diffusion maps Linear method No Yes

DM2 Diffusion maps Linear method No Yes

RF Manifold forests Linear method No Yes

Table 8.3: Summary of presented algorithms
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Chapter 9

Conclusions

The work reported in this thesis mainly tackled the problem of modelling 3D deformable

objects and estimating camera motion trajectories, based on a set of observed images.

Although the reconstruction of non-rigid objects has seen significant research interest,

the inherent high number of degrees of freedom render the problem difficult to solve. In

the case of rigid objects, the shape of the object remains constant and the results may

be gradually refined over time. In contrast, the non-rigid objects are subject to defor-

mations and consequently it does not follow that more measurement data necessarily

leads to better results. The solution strategy adopted in this work was to introduce

various 3D shape prior constraints, in order to reduce the dimensionality of the prob-

lem. The following summarises the work reported in this thesis as a whole, offering

insight and observations on the work. The original contributions are indicated, and

improvements made over extant methods are highlighted. Then the discussion turns to

the potential for further work. Various directions for future research are outlined and

those most closely aligned with this research are given consideration.
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9.1 Summary

In summary, the proposed algorithms are classified according to the type of prior learned

shape manifold: linear manifold based approaches, which include using the most fun-

damental linear model PCA to learn the prior for batch and incremental algorithms,

respectively; and non-linear manifold based methods, which the prior learned manifold

is built upon non-linear embedding techniques.

Although the problem does contain a high number of degrees of freedom, the com-

plexity of the problem may not be reacted by the dimensionality of the data. The

whole idea of our 3D prior shape information is to constrain the shape in a trained low

dimensional subspace.

9.1.1 Linear manifold based approaches

In Chapter 3, a model constraint approach was introduced to estimate the shape of

a deforming object using prior learned 3D shape model. Instead of only minimising

the 2D re-projection error, several constraints are imposed on shape bases and the

corresponding weighting coefficients. Several extensions have been developed for this

prototype algorithm. The proposed extensions include use of learned shape model and

distribution of the weights in the cost function, which improves performance of the

optimisation process. The idea was introduced in:

• Lili Tao, Bogdan J. Matuszewski and Stephen J. Mein, Model constraints for non-

rigid structure from motion, British Machine Vision Conference (BMVC 2011)

PhD Workshop, 2011.

Based on the batch model, the recursive method, which also uses linear manifold

learning, was presented in Chapter 4 and was originally introduced in:
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• Lili Tao, Bogdan J. Matuszewski and Stephen J. Mein, Non-rigid structure from

motion with incremental shape prior, 19th IEEE International Conference on

Image Processing (ICIP 2012), 2012.

The algorithm can also be extended in the case when measurement data is incomplete.

The extension of the algorithm was introduced in:

• Lili Tao, Stephen J. Mein, Wei Quan and Bogdan J. Matuszewski, Recursive non-

rigid structure from motion with online learned shape prior, Computer Vision and

Image Understanding 117, 2013.

This method successfully recovers shape and camera motion parameters as new frames

arrive; additionally, it allows for recursively updating the model, thus accounting for

new shape variations as the object deforms over the sequence. This method is a suitable

groundwork for later exploitation in real-time applications.

9.1.2 Non-linear manifold based approaches

Contemporary approaches, including the work reported in this thesis, rely on a linear

model to represent the deformations of the object of interest. However, this approach

is applicable to a relatively simple non-rigid object, especially when the reconstructed

object is based only on a small number of basis shapes, such as facial expressions,

which can be well-represented based only on a linear model. But for articulated human

motion or other complex deformed surfaces, it would be difficult to constrain the shape

in a linear subspace. Thus the argument was made that to persist with the linear model

in the recovery of large and complex deformations can only lead to large reconstruction

errors. To address this deficiency, further work is therefore required to constrain shapes

to a smooth manifold, representing learned non-linear shape variability.

Chapter 5 began by introducing dimensionality reduction techniques. A comparison
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was made between different types of manifold learning methods from purely linear

methods to several local methods which are able to handle non-linear datasets. A non-

linear shape prior was learnt using one of the graph based methods - diffusion maps.

Such manifold is used as a shape prior, with the reconstructed shapes constrained

to lie in the manifold. The non-linear manifold based method is more accurate and

well-adapted to large deformation models, which cannot be accurately represented by

a linear subspace, e.g. reconstruction of full human body. This method has been

introduced in:

• Lili Tao and Bogdan J. Matuszewski, Non-rigid structure from motion with diffu-

sion maps prior, 26th IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR 2013), 2013.

Based on this approach, improvements were made to the current implementation

with respect to two different aspects. Firstly, in Chapter 6 the use of an alternative

method to learn the manifold was introduced. The random forests technique was

integrated into manifold learning and employed in the 3D reconstruction problem. The

paper which related to this idea is:

• Lili Tao and Bogdan J. Matuszewski, Deformable shape reconstruction from

monocular video with manifold forests, 15th International Conference on Com-

puter Analysis of Images and Patterns (CAIP 2013), 2013.

Note, however, that it was established that building a dense manifold requires a large

number of training samples, which may not the acceptable in practice. Another im-

provement is to achieve comparable reconstructed results using only a small number of

training samples which was recently presented in:

• Lili Tao and Bogdan J. Matuszewski , 3D deformable shape reconstruction with

diffusion maps, 24th British Machine Vision Conference (BMVC 2013), 2013.
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9.2 Future work

The potential future directions of this research include the following

Learning manifold using 2D data

Although the additional prior used in the proposed methods was imposed to better

constrain the highly ambiguous problem and achieve better reconstructed performance,

using 3D data as training samples is not necessarily always feasible in many real ap-

plications. Instead, the collection of 2D data seems more applicable in practice, and

therefore it is necessary to use 2D data in the construction of a shape manifold. Hav-

ing obtained the shape learned manifold either using 3D or 2D data, another inevitable

problem is that the shape prior are only applicable to specific types of objects, so learn-

ing the manifold based only on observations would make the problem more tractable.

One of the fundamental issues of building the manifold based on 2D data is that,

when the 2D shapes are observed from different points of view, the measurement shapes

may look completely different even if they are obtained from a same shape. To address

this problem, the most recent research modelled the shape in a manifold feature space,

in which the mapping was learned from the input data. The method proposed to use

rotation invariant kernel [57] when calculating the rotation invariant similarity between

two 2D shapes. But such kernel can only help to eliminate the effect when rotation

happens in 2D, and fails to solve the above mentioned problem. Further research is

required to address this problem.

Dense reconstruction

The recovery of the 3D structure of objects (sparse reconstruction) is achieving maturity

as a research field. A large number of methods and algorithms have been developed
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and there are numerous studies for improving the reconstruction performance. But few

among these methods are able to handle dense 3D reconstruction, especially in the case

of non-rigid objects. The work in [97] performs a real-time dense reconstruction for

rigid objects in a static scene. The method successfully estimates the camera motion

and simultaneously creates dense 3D surface. Modelling the detailed 3D objects is a

difficult task, and becomes even more challenging when applied to a deformable object.

There has been comparatively little work in the field of non-rigid dense reconstruction.

Piecewise approaches [116] achieved impressive results, but the connection of all local

patches together into a single smooth surface requires an additional post-processing

step. Some template based approaches work only under the assumption that the exact

template is known in advance.

The methods reported in this work rely on extracted features, rather than pixel level

information. For achieving dense reconstructions, the system ought to be designed such

that account is taken of every pixel in the input images. Further work towards this goal

would need to take into consideration, firstly the matching of images, then obtaining

the dense 2D correspondences between images, before using the correspondences as

input for reconstruction in the next stage of the algorithm.

Real-time computation

Another problem common to most existing methods is the reliance on batch process-

ing, the limitation of which is an inability to process data online; this is particularly

problematic for objects exhibiting large deformations. Future work in this direction

could investigate the use of manifold based approaches to extend the current work to

more challenging cases, such as recursive method or real-time reconstruction. Whilst

it is acknowledged that the current MATLAB implementation lacks actual real-time

capability, the limitations are implementation specific rather than inherent in the algo-
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rithmic solutions. Extension of the currently adopted approach to a real-time solution

might well be feasible given the bundle adjustment used for model refinement. The task

of optimising for execution time is treated by reducing computational cost, therefore

given an appropriate optimisation, real-time performance could be achieved.
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Appendix A

More results on IPCA and BPCA

This section provides more results on facial expression sequences. The explanation of

the data is presented in Section 4.4.2.

The comparison results shown in A.1 are for tracking 83 points over a 269 frame

sequence of fear and a 259 frame sequence of anger.

Fear

IPCA

BPCA

(a) fear facial expression sequence
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Anger

IPCA

BPCA

(b) anger facial expression sequence

Figure A.1: Results for different facial expression sequences. First row: Input images
tracked with feature points. Second and Third row: Front and side views of the 3D
reconstruction using IPCA. Fourth row: Side views of the 3D reconstruction using
BPCA. (a): fear facial expression sequence. (b): anger facial expression sequence.
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Appendix B

Diffusion distance

This section discusses the mathematical justification of diffusion maps presented in

Chapter 5.

Proposition 1: The diffusion distance between two points in higher data space is

equivalent to the Euclidean distance in the reduced diffusion space.

Proof:

The problem is to prove that the diffusion distance between data points XiandXj

in shape space is L2 (Xi,Xj), is equal to the Euclidean distance in reduced space∑
l

λ2
l (ϕl(Xi)− ϕl(Xj))

2

The diffusion distance is given by,

L2 (Xi,Xj) =
∑
l

|Pil − Plj |2 (B.1)

where Pl =
∑
l

λlϕl(·)φTl . ϕl and φl are the right and left eigenvector of P. Thus the
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above equation is written as,

∣∣∣∣∣∑
l

λlϕl(Xi)φ
T
l −

∑
l

λlϕl(Xj)φ
T
l

∣∣∣∣∣
2

=

∣∣∣∣∣∑
l

λlφ
T
l (ϕl(Xi)− ϕl(Xj))

∣∣∣∣∣
2

(B.2)

Substitute φl = D
1
2ϕ′l to Equation B.2, where ϕ′l is the eigenvector of P′ = D

1
2 PD−

1
2

(see Proposition 2), we then obtain,

∣∣∣∣∣∑
l

λlϕ
′T
l D

1
2 (ϕl(Xi)− ϕl(Xj))

∣∣∣∣∣
2

(B.3)

In diffusion space, the distance can be written as,

(∑
l

λlϕ
′T
l (ϕl(Xi)− ϕl(Xj))D

1
2

)
D−1

(
D

1
2

∑
l

λlϕ
′T
l (ϕl(Xi)− ϕl(Xj))

)T
=
∑
l

λlϕ
′T
l (ϕl(Xi)− ϕl(Xj))

∑
l

λlϕ
′T
l (ϕl(Xi)− ϕl(Xj))

(B.4)

Because
{
ϕ

′T
l

}
is an orthonormal set, thus, we get ϕ

′T
l ϕ
′
l = 0. Therefore Equation B.4

can be rewritten as
∑
l

λ2
l (ϕl(Xi)− ϕl(Xj))

2
, that is,

L2 (Xi,Xj) =
∑
l

λ2
l (ϕl(Xi)− ϕl(Xj))

2
(B.5)

Proposition 2: Given a diffusion operator P as P = D−1Y, the matrix P′ defined

as P′ = D
1
2 PD−

1
2 has

1. the same eigenvalues as P.

2. the left and right eigenvectors of P, ϕl and φl can be represented by the right eigen-
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vectors ϕ′l of P′ , as D
1
2ϕ′l and D−

1
2ϕ′l, respectively.

Proof:

Substitute P = D−1Y into P′ = D
1
2 PD−

1
2 such as,

P′ = D−
1
2 YD−

1
2 (B.6)

Since the affinity matrix Y is symmetric, thus P′ is symmetric as well. and therefore

it exists an orthonormal set of eigenvectors of P′ written as,

P′ = V′ΛV′
T

(B.7)

where V′ is and Λ the orthonormal eigenvectors and the diagonal matrix containing

the eigenvalues of P′, respectively. From P′ = D
1
2 PD−

1
2 , we can obtain,

P = D−
1
2 P′D

1
2 (B.8)

Substitute Equation B.7 into Equation B.8 to obtain,

P = D−
1
2 V′ΛV′

T
D

1
2

= (D−
1
2 V′)Λ(D−

1
2 V′)

−1

= VΛV−1

(B.9)

Therefore, the eigenvalues of P and P′ are the same. The right eigenvectors of P is

defined by the columns of V = D−
1
2 V′. The same, the left eigenvectors of P is defined

by the row of V−1 = D−
1
2 V′. Thus the right and left eigenvectors of P, ϕl and φl, can

be derived by the eigenvectors ϕ′l of P′, such as,

ϕl = D
1
2ϕ′l and φl = D−

1
2ϕ′l (B.10)
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