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Abstract 

Synaptic vesicle (SV) exocytosis is vital to maintaining neuronal transmission at 

chemical synapses and defects in this processes has been linked to various 

psychiatric and neuronal disorders. Further, distinct modes of exocytosis have 

been implicated in post-synaptic plasticity and these latter processes maybe 

compromised in many neurodegenerative disorders. Therefore, it is vitally 

important to elucidate the machinery involved in SV exocytosis and decode the 

regulatory pathways for distinct modes of SV exocytosis. Herein, synaptosomes, 

pinched off nerve terminals, prepared from cerebral cortex of adult male Wistar 

rats were used as a model system to investigate these processes. Especially, A. 

Ashton had previously demonstrated the existence of KR mode of exocytosis in 

these synaptosomes and determined that the distinct modes can be regulated by 

adjusting the activity of various kinases and phosphatases. 

Synaptosomes were maximally labelled with 100 µM FM2-10 dye such that all the 

releasable vesicles, from readily releasable pool (RRP) and reserve pool (RP), were 

loaded with the dye. The exocytosis of the dye was then studied by employing 

various secretagogues (high K+ {HK}, 4-aminopyridine {4AP} or ionomycin {ION}) 

in the presence of 5 mM [Ca2+]e; these  stimuli only induced a single round of 

release. This dye release was then directly compared to Glu release from terminals 

treated identically (more than 80% of these synaptosomes are glutamatergic), and 

differences between dye and Glu release were studied following various drug 

treatments. 

The results show that the inhibition of dynamins can increase the FM2-10 dye 

release during certain stimulation conditions (4AP5C and ION5C; where 5C 

represents 5 mM [Ca2+]e) without changing the Glu released indicating that 
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dynamin(s) are required for the closure of the fusion pore (and therefore KR) 

during the employment of these stimuli. However experiments involving blockade 

of the ATPase activity of non-muscle myosin-II suggest that myosin-II may also be 

able to regulate the fusion pore, independent of dynamin-I, when a different 

stimulus (HK5C) is employed. The three stimuli employed here produced distinct 

kinetics for changes in [Ca2+]i and suggest that dynamin-I may only be able to 

regulate KR mode of exocytosis when the Δ[Ca2+]i is relatively lower (overall 

Δ[Ca2+]i < 140 nM) and that myosin-II replaces dynamin-I in this function when 

these Ca2+ changes are relatively higher (overall Δ[Ca2+]i < 140 nM).   

In order to investigate the phosphoregulatory pathways of these two phospho-

proteins (dynamins and myosin-II) the activity of various enzymes including 

protein phosphatase (PP) 2A, PP1, calcineurin and PKC protein kinase C (PKC) was 

modulated externally. The data indicate that the properties of dynamin-I and 

myosin-II can be regulated by phosphoregulation induced by PKC and this induces 

their function in the KR mode of exocytosis. When the Δ[Ca2+]i is lower (overall 

Δ[Ca2+]i < 140 nM), the relevant PKC remains deactivated and dynamin-I can 

continue to close the fusion pore of exocytosing vesicles thereby causing KR. On 

the other hand if the overall Δ[Ca2+]i is greater than 140 nM then relevant PKCs are 

activated which will then phosphorylate dynamin-I and myosin-II rendering the 

former inactive and the latter active such that myosin-II can now replace dynamin-

I in closing the fusion pore. Western blot analysis revealed that dynamin-I is 

dephophorylated at Ser 795 residue by PP2A, and that this residue can be 

phosphorylated by Ca2+ activated PKC as increase in phosphorylation of Ser 795 

(by blockade of PP2A) or by supramaximal stimulation of PKC by active phorbol 

esters leads to a switch in the RRP to a FF mode, it would appear that this site may 

be important for defining the mode of exocytosis. Activated PKC can also 
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phosphorylate myosin-II but the phosphorylation sites on the myosin-II oligomer 

that play such a role remain be determined. 

These significant new findings help establish that SVs can switch between modes 

of exocytosis and that there are specific proteins implicated in this process. Clearly, 

further work may reveal the importance of these processes for synaptic plasticity 

and whether certain psychiatric or neuronal diseases could be explained by 

perturbation of these distinct modes of exocytosis.  
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1.1 Introduction 

The nervous system of a vertebrate performs a variety of diverse and complex 

functions that require the exchange of information between neurons and/or 

between a neuron and a target cell (Rizo and Rosenmund, 2008). In chemical 

synapses, this information is mainly exchanged through synaptic vesicles (SVs) 

that release the neurotransmitter in all-or-none manner — the quantal vesicular 

model of neurotransmitter release (Shupliakov and Brodin, 2010). The 

neurotransmitter release is a highly regulated event and is very fast in its action, 

typically taking only 0.1 milliseconds from the arrival of an action potential to the 

Ca2+-evoked SV exocytosis. Apart from transmitting a signal, neurotransmitter 

release also contribute to the acute, dynamic and long term efficiency of pre-

synaptic plasticity and it helps in shaping the properties of neural networks and 

information processing in the brain. Due to this, the SV exocytosis is tightly 

regulated so that it occurs at the right time and with the correct probability (Rizo 

and Rosenmund, 2008). 

1.2 Synaptic vesicle pools 

The SVs are broadly divided into three vesicle pools depending upon their location 

in the pre-synaptic nerve terminal. The Ready Releasable Pool (RRP) is situated 

closest to the membrane and possibly even docked to the pre-synaptic membrane 

making them the first set of vesicles to be released upon stimulation. The 

reserve/recycling pool (RP) is situated proximate to the pre-synaptic membrane 

and is released once the RRP has exhausted. The third pool, called Resting/silent 

pool, is located relatively far from the pre-synaptic membrane and it is believed 

that it is not released under normal physiological conditions (Harata, et al., 2006). 

It is widely believed that after the fusion, the SV fully collapses into the plasma 
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membrane and loses its integrity and identity, a process called full-fusion (FF; 

Figure 1.1b). On the other hand, a SV, after its fusion, may be retrieved back into 

the nerve terminal without the loss of its identity and can be recycled quickly, a 

process called kiss-and-run (KR; Figure 1.1a). Although, the KR mode of vesicular 

exocytosis is not widely accepted, the data obtained by Ashton and group strongly 

supports the KR mode of exocytosis (Ashton et al., unpublished work). The data 

also suggests that the stimulation of synaptosomes with strong stimuli (in the 

presence of 5 mM Ca2+; see later for definition) causes the RRP to undergo KR 

mode of exocytosis and the RP fuses via the FF mode of exocytosis (Ashton et al., 

unpublished work). 

 
Figure 1.1: The diagrammatic representation of (a) Kiss-an-run and (b) full-

fusion modes of exocytosis. Partially adapted from (Harata, et al., 2006)  

(a) 

(b) 
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1.3 Synaptic Vesicle 

A synaptic vesicle is an important organelle of a pre-synaptic neuron as it acts as 

storage for the neurotransmitter and facilitates its release into the post synaptic 

cleft via stimulation dependent exocytosis. The SVs are roughly 40 nm in diameter 

(Figure 1.2) and undergo fusion when terminals are depolarised and the [Ca2+]i 

increases due to Ca2+ entry through various VGCCs. This fusion of SVs occurs in 

specific regions, called the active zone, of the presynaptic membrane and involves 

release of the neurotransmitter that they contain. Following exocytosis, the SVs are 

retrieved through various endocytic pathways and are reloaded with the 

neurotransmitter, ready for next round of release (Figure 1.5). Although the SVs 

were first identified in early 1950s, the complete regulatory mechanism involved 

in their exo and endocytosis is not yet fully understood. Various mechanisms of 

exo and endocytosis are discussed further in the chapter. 

A SV is shown to have more than 400 different types of proteins including a wide 

variety of transport and trafficking proteins that help in SV loading and trafficking 

respectively (Shupliakov and Brodin, 2010). Some of the important proteins of a 

SV include vacuolar H+ ATPase (acidification of SV), neurotransmitter specific 

transporter proteins (like VGLUT), synaptotagmin, synaptobrevin, synapsin, and 

synaptophysin, among others (Takamori et al., 2006; Lang & Jahn, 2008). Typically, 

proteins account for almost 60% of the dry weight of a synaptic vesicle (Figure. 

1.2) demonstrating the complex regulatory mechanisms through which the SV exo 

and endocytosis may be controlled by these proteins (Shupliakov and Brodin, 

2010). The functions of many of these proteins still remain to be identified but it is 

believed that the functions of SV proteins are divided into four major categories: (i) 

those involved in neurotransmitter uptake and storage, (ii) those involved in 
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facilitating or regulating exocytosis/fusion, (iii) those that participate in 

endocytosis/recycling of SV, and finally (iv) those that are involved in SV 

biogenesis and maintenance (Sudhof & Rizo, 2011).   

 

 
Figure 1.2: Molecular model of an average brain SV showing all the surface 

vesicular proteins. (Shupliakov and Brodin, 2010) 
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1.4 Synaptic vesicle fusion/exocytosis 

Synaptic vesicle fusion/exocytosis is essential for the transmission of neuronal 

signal across a synapse. The synaptic vesicle fusion is mediated by a number of 

proteins and only a few of the important proteins are discussed below.  

1.4.1 Role of SNAREs 

Soluble NSF Attachment Protein Receptor (SNARE) proteins regulate most types of 

intracellular membrane traffic and contain characteristic sequences called SNARE 

motifs that have a high tendency to form coiled coils. The three SNARE proteins — 

synaptic vesicle SNARE synaptobrevin and the plasma membrane SNAREs 

syntaxin-1 and Synaptosomal-associated protein-25 (SNAP) — form a highly 

stable ‘SNARE complex’ that is disassembled upon binding to SNAPs and N-

ethylmaleimide sensitive fusion protein (NSF) through the ATPase activity of NSF 

(hence the name SNARE). The SNARE complexes plays a major role in the 

formation of the fusion pore (Figure 1.3) although Alabi & Tsien (2013) suggest 

that one SNARE complex is sufficient for fusion pore formation whilst three SMARE 

complexes can drive expansion of the fusion pore. 

Due to its involvement in the formation of fusion pore, the modulation of the 

binding activities of all the three SNARE proteins can play a crucial role in the 

mechanism of neurotransmitter release. There have been few studies to determine 

the phosphorylation sites of SNARE proteins. For e.g.: Dubois et al., 2002 identified 

Thr 21 and Ser 14 as the phosphorylation sites on syntaxin-1A by casein kinase 

(CK) I and II respectively. Syntaxin-I can also be phosphorylated at Ser188 by death-

associated protein in a Ca2+ dependent manner. The phosphorylation at this site 

decreases Syntaxin-I binding to mammalian uncoordinated 18-1 (Munc 18-1), a 

syntaxin-binding protein that regulates SNARE complex formation and is required 
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for synaptic vesicle docking, there by affecting the vesicle exocytosis (Tian, et al., 

2003). Note, in more recent times Munc 18-1 has also been implicated in a late step 

in fusion (Jahn & Fasshauer, 2012). Similarly, SNAP-25 can be phosphorylated at 

Ser 187 and Thr 138 (Nagy, et al., 2004; Kataoka, et al., 2008; Takahashi, et al., 

2003) 

1.4.2 Role of Sec1/Munc18-1 (SM) 

Similar to SANRE proteins, SM proteins are essential for most types of intracellular 

membrane traffic and this theory is strongly supported by the fact that the Munc 

18-1 knockout mice show totally impaired neurotransmitter release. There are 

several models proposed in order to explain the precise mechanism by which the 

interaction of Munc 18-1, SNARE complex and other factors leads to the vesicular 

exocytosis. However, it is clear from these proposed models that Munc 18-1 

interaction with SNARE complex, especially syntaxin-1, leads to the conformational 

changes of the SNARE complex that favours fusion (Figure 1.3; Südhof & Rizo, 

2011). However it still remains unclear whether Munc 18-1 stimulates fusion 

indirectly (that is, by promoting SNARE complex assembly) or directly. 

Munc 18-1 is a substrate for protein kinase C and Cyclin-dependent kinase 5 and it 

has been successfully shown that Munc 18-1 can be phosphorylated by these two 

kinases (Lilja, et al., 2003). The two major sites of phosphorylation of Munc 18-1 

are Ser306 and Ser313 and phosphorylation of these sites leads to inhibition of its 

interaction with syntaxin 1A (as determined by binding assays in vitro using 

glutathione S-transferase-synataxin-1A fusion proteins). However, it is not 

confirmed yet as to whether these sites can be phosphorylated by protein kinase C 

in vivo but it can be phosphorylated in vitro including in synaptosomes (Vries, et 

al., 2000). 
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Figure 1.3: Synaptic vesicle fusion mediated by SNARE and SM proteins. 

Syntaxin is shown in yellow (without its N-terminal region), synaptobrevin is 

shown in red, SNAP-25 in green and Syntaxin in yellow (without its N-terminal 

region). The synaptotagmin C2A and C2B domains are shown in purple and blue 

respectively, orange circles representing bound Ca2+ ions. The left panel represents 

the two membranes before fusion, with some bending in the middle that is induced 

by the mechanical action of the assembled SNARE complex. This effect, together 

with perturbations caused by binding of synaptotagmin to one or both of the 

membranes, would lead to membrane fusion, represented in the right panel (Rizo, 

2010).  
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1.4.3 Munc 13s and RIMs 

Munc 13s and RIMs play important roles in vesicle priming and diverse forms of 

presynaptic plasticity. The two major isoforms of these families include Munc 13-1 

and RIM1a. The Munc 13s are primarily involved in the vesicle priming and in the 

Munc 13 knockout mice there is a complete removal of spontaneous and evoked 

vesicular release. Munc 13-1 is also shown to participate in pre-synaptic plasticity 

which was demonstrated by distinct changes in synaptic amplitudes upon high-

frequency stimulation following manipulation of Munc 13-1 or Munc 13-2 

(Rosenmund, et al., 2002).  

RIMs were initially thought to act as a Rab3 effector but now it is believed that it 

has many more functions because only a subset of the family has Rab-binding 

region and upon the deletion of RIM1a, a much stronger inhibition of 

neurotransmitter release is observed as compared to the absence of Rab3A itself 

(Südhof & Rizo, 2011). Similar to Munc 13s, RIMs also play a role in vesicle 

priming. Moreover, RIMs also shows the ability to interact with several other 

proteins at the active zone indicating that RIMs might be also involved in 

organising the active zone.  

Lonart, et al., 2003 demonstrated that RIM1α can be phosphorylated at Ser413 and 

Ser1548 by protein kinase A suggesting that PKA-mediated phosphorylation of the 

active zone protein, RIM1α induces pre-synaptic Long-term potentiation. 

1.4.4 Synaptotagmin and complexins 

Synaptotagmin and complexins are considered to be the Ca2+ sensors and are 

responsible for the Ca2+ triggered vesicle release. Synaptotagmin-1 is a vesicle 

protein with two C2 domains that assume the β-sandwich structures. The two C2 
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domains are C2A and C2B domains that bind to three and two Ca2+ ions 

respectively. It has been found that mutations that modulates the Ca2+ affinity of 

the synaptotagmin-1 leads to the parallel changes in the Ca2+ sensitivity of release 

(Figure 1.3; Xu, et al., 2009). Apart from acting as Ca2+ sensors, Synaptotagmin-1 

also interacts with the plasma membrane and with the SNARE complex there and 

regulates vesicular release.  

The function of complexins (Jahn & Fasshauer, 2012) is also closely coupled to that 

of synaptotagmin-1 and SNARE complex (Figure 1.4). It is believed that complexins 

acts as clamps for the fusion machinery at the active zone and interaction of 

complexins with SNARE complex helps creating a metastable state that serves as a 

substrate for synaptotagmin-1 to trigger fast release. However, it has also been 

implicated in facilitation of fusion via its N-terminal end which, like its central helix 

which binds to a grove on the surface of the SNARE complex, may have other 

interactions (Jahn & Fasshauer, 2012). 

Davletov, et al., 1993 showed that that synaptotagmin-1 can be phosphorylated at 

Thr 128 by casein Kinase II. Later it was also found that synaptotagmin-1 is a 

substrate for various kinases like Ca2+/calmodulin-dependent protein kinase II 

(CaMKII), protein kinase C (PKC), and casein kinase II (caskII). It was shown, in 

vitro, that the CaMKII and PKC phosphorylates Thr 112 and CASKII phosphorylates 

an additional Thr 125 residue (Hilfiker, et al., 2001).  
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Figure 1.4: A diagram illustrating the notion that all the discussed proteins 

interact at the fusion pore site. The interaction of Munc18-1, Munc 13 and 

complexin with the SNARE complex may be compatible, mutually exclusive, or 

partially competitive. The precise way in which these interactions may happen 

during the process of exocytosis is still poorly understood and a matter of debate 

(Rizo and Rosenmund, 2008).  
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1.5 Synaptic vesicle endocytosis 

A typical nerve terminal in the brain contains about 200 releasable SVs and yet the 

individual exocytic events can occur with high frequency in the range of 5–50 Hz 

and for prolonged lengths of time (greater than 30s) which may cause synaptic 

fatigue. However, the synaptic fatigue does not occur under normal physiological 

conditions as the SVs are rapidly recycled to prevent the depletion of the 

releasable vesicles (Heymann and Hinshaw, 2009). SV endocytosis can occur via 

three pathways, Clathrin-mediated endocytosis, bulk endocytosis and Kiss-and-run 

endocytosis. 

1.5.1 Clathrin-mediated endocytosis (CME) 

Clathrin-mediated endocytosis involves retrieval of exocytosed SV with the help of 

clathrin and this occurs away from the active zone (peri-active zone). The SVs that 

undergo full-fusion mode of exocytosis – where the SV membrane completely 

collapses into pre-synaptic membrane – are usually retrieved by this mechanism of 

endocytosis (Figure 1.5). Clathrin-mediated endocytosis extensively involves 

curvature generation and sensing by various proteins as the fused SV membrane 

needs to be recovered by an invagination of the pre-synaptic plasma membrane 

(Kleist et al., 2011). The initial stage of CME involves formation of clathrin coat on 

the SV to be retrieved. The clathrin coat is composed of two layers: (i) an inner 

layer of adaptor proteins that include AP-2, AP180/CALM, Epsin and Stonin, and 

(ii) and outer layer of clathrin. During the formation of the coat, proteins like 

endophilin, amphiphysin, and syndapin contribute to the membrane curvature 

generation and sensing (Milosevic et al., 2011; Südhof & Rizo, 2011; Guan et al., 

2010). Once a substantial invagination of the membrane is achieved, the SV is 

retrieved by membrane fission by proteins like dynamin (Ferguson & De Camilli, 
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2012; discussed later). After this fission stage, the clathrin-coat disassembles from 

the vesicle membrane and the vesicle thus generated is made available for use in 

subsequent round of exocytosis. Since the protein composition of a SV membrane 

is vital to proper functioning of a SV, there must be check points to ensure that all 

the essential proteins are included during recycling via this pathway. However, 

such mechanisms are not fully understood yet.  

1.5.2 Bulk endocytosis 

This type of endocytosis involves retrieval of a large portion of the plasma 

membrane from which the SVs are later generated by distinct pathways. Bulk 

endocytosis is mainly thought to be involved only during strong stimulations 

where multiple SVs may fully fuse into the plasma membrane in a very short 

duration. This excess plasma membrane can be rapidly retrieved using formation 

of large invaginations that later contribute to the formation of several SVs (Figure 

1.5; Clayton et al., 2008; Hayashi et al. 2008). The exact mechanism of SV retrieval 

from this bulk endocytosed membrane is not yet clear and it is thought that the 

increase in surface to volume ration during bulk exocytosis may lead to buckling of 

the plasma membrane resulting into large invaginations (Saheki & De Camilli, 

2012). Once a large endosomal membrane is retrieved by this process, a coat 

(similar to clathrin) dependent process may be involved in retrieving individual 

SVs from the large endocytosed membrane with the help of actin and F-BAR 

(Andersson et al., 2008; Wu et al., 2010).  

1.5.2 Kiss-and-run exo/endocytosis 

A SV may release its neurotransmitter via a transiently open fusion pore such that 

this pore closes within a short duration of exocytosis (<0.5 sec; Figure 1.5). This 

allows the SV to be recycled without fully collapsing into the plasma membrane. If 
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this occurs, the SV bypasses the entire process of CME and the need for molecular 

sorting of essential SV proteins/cargo can be avoided. Thus, this type of 

exo/endocytosis provides rapid means for replenishing the releasable pool of SVs. 

Many studies have suggested the existence of Kiss-and-run (KR) in various model 

systems (Aravanis et al., 2003; He et al., 2006; Zhang et al., 2009) but its existence 

still remains debatable for SV exocytosis in nerve terminals of the CNS. Most of the 

evidence provided for the existence of KR remains indirect and are based on 

observations that are usually incompatible with CME or bulk endocytosis (He et al., 

2006; Zhang et al., 2009).  
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Figure 1.5: A schematic representation of different pathways of SV 

endocytosis. Following exocytosis, the SVs can be retrieved via (1) CME, (2) KR, or 

(3) Bulk endocytosis. Stages (4) and (5) represent the alternative pathways that a 

bulk endoctyosed membrane could follow for the retrieval of SVs. Abbreviations: 

EI – Endocytic intermediates; LE – late endosome; EE – early endosome; CCP – 

clathrin coated pit; MVB – multivesicular body. (taken from Saheki and De Camilli,. 

2012)  
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1.6 Dynamins 

Dynamin is a 100 kDa GTPase enzyme belonging to a family of large GTP-binding 

proteins that is known to play a crucial role in vesicle endocytosis. There are three 

isoforms of dynamin: dynamin-I, dynamin-II and dynamin-III. The dynamins have 

a role in the multiple forms of membrane fission and fusion events such as vesicle 

fission from the plasma membrane and membrane budding events within intra-

cellular organelles. All forms of dynamins have unique properties of self-assembly 

and the ability to bind and tubulate lipids which make them “fit” for the membrane 

fission and fusion functionality. All the three isoforms of Dynamin have an N-

terminal GTPase domain, a middle pleckstrin-homology domain (mediates lipid 

membrane binding via interaction with a family of phosphoinositide 

phospholipids), a GTPase effector domain and a proline-rich domain (protein-

protein interaction domain for various signalling and cytoskeleton proteins) at the 

C-terminus (Figure. 1.6). During rapid SV recycling, all the three dynamins play a 

role in vesicle scission. In particular, dynamin-I can mediate the bulk of SV 

endocytosis during a depolarization stimulus and is essential for vesicle recycling 

during high or prolonged synaptic activity. Dynamin-II is mainly involved in the 

conventional clathrin-mediated uptake of surface receptors or membrane and in 

the slow vesicle endocytosis that occurs after the removal of the stimulus. Lastly, 

dynamin-III has been shown to perform similar functions as that of dynamin-I but 

is much lower in abundance. Dynamins appear to be involved twice in the 

endocytic mechanism: early in the constriction of the invaginating vesicle and late 

in its scission (Lu, et al., 2009; Heymann and Hinshaw, 2009). 
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Figure 1.6: The diagrammatic representation of the Dynamin showing all the 

domains and the phosphorylation sites. GTPase: N-terminal GTPase domain, 

involved in hydrolysing the GTP; MD: Middle Domain; PH: Pleckstrin-Homology 

domain, together with MD mediates lipid membrane binding; AD: Arginine rich 

domain; PRD: Proline rich domain, together with RD involved in interaction with 

other BAR domain proteins (adapted from Heymann and Hinshaw, 2009).  

 

The role of dynamin, in nerve terminals, is regulated by various kinases and 

phosphatases. Although, the importance of phospho-regulation of dynamin is not 

elucidated in exocytosis, it is known, to some extent, as to how the phospho-

regulation of dynamin can affect the vesicle endocytosis. In non-stimulated 

neurons, the dynamin-I is constitutively phosphorylated and is inactive. Upon 

stimulation, an influx of Ca2+ stimulates vesicle exocytosis and dephosphorylation 

of dynamin-I by calcineurin. The dephosphorylated dynamin-I can in some model 

of dynamin-I action form a complex with the bin-amphiphysin-rvs (BAR) domain 

of syndapin-I which may help in localization of dynamin-I to the site of 

endocytosis. This localisation of dynamin—syndapin-I complex is necessary for the 

membrane retrieval, in which other BAR domain containing proteins may also be 

involved. After the endocytosis is complete, the cyclin-dependent kinase 5 (cdk5) 

and GSK3 rephosphorylates dynamin-I and this may promote the disassembly of 

the dynamin—syndapin-I complex (see Figure 1.7).  
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Graham, et al., 2007 undertook a systematic identification of all phosphorylation 

sites of dynamin-I in rat brain nerve terminals and confirmed that the 

synaptosomal (pinched off nerve terminal) dynamin-I has seven phosphorylation 

sites in vivo:  Ser 774, Ser 778, Ser 822, Ser 851, Ser 857, Ser 512, and Ser 347 

(Figure 1.6). Their findings also revealed that the initially believed Thr 780 

phosphorylation site does not undergo phosphorylation in vivo and that it is 

restricted to in vitro conditions only (Tomizawa et al., 2003). Moreover, their 

quantification analysis led to the conclusions that Ser 774 and Ser 778 were the 

major sites of phosphorylation (up to 69% of the total), followed by Ser 851 and 

Ser 857 (12%), and Ser 853 (2%) (Graham et al., 2007). The functional role for the 

two major phosphorylation sites of dynamin-I has been identified. Upon the influx 

of Ca2+ - in response to a depolarisation – calcineurin (PP2B) is activated which 

then dephosphorylate dynamin-I at Ser 774 and Ser 778 (Xue et al., 2011). This 

promotes mobilisation of dynamin-I for SV endocytosis, especially CME, and brings 

about the scission of the “budding” vesicle membrane and therefore complete the 

recycling of the SV (Figure 1.5). After the scission is completed, dynamin-I gets re-

phosphorylated at Ser 778 by Cdk5 (Graham, et al., 2007) and at Ser 774 by GSK3 

(Clayton et al., 2010). The phosphorylation at these sites causes dissociation of 

dynamin-I from the endocytic machinery and is localised back to the cytosol until 

next round of endocytosis (Graham, et al., 2007; Saheki & De Camilli, 2012) (see 

Figure 1.7). 

Similar to dynamin-I, dynamin-III is also phosphorylated at homologus sites 

strongly supporting the hypothesis that dynamins I and III share common 

functions and control mechanisms. On the other hand, there is not much data 

available on the phosphorylation of dynamin-II except for the fact that dynamin-II 

can undergo src-induced phosphorylation at Tyr 416 which then facilitates scission 
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of caveolae in endothelial cells (Shajahan, et al., 2004). Moreover, it is also known 

to be phosphorylated and dephosphorylated at Ser 764 by cyclin-dependent kinase 

1 and calcineurin respectively (Chircop et al., 2011). This site appears to be a 

major phosphorylation site (~80%) and is linked to the regulation of cytokinesis. 

Mutation at this site, to produce a phospho-mimetic or phospho-deficient dynamin, 

did not affect CME or bulk endocytosis (Chircop et al., 2011). 

Dynasore (DYN) is a rapid, selective and potent inhibitor of the GTPase activity of 

dynamin 1, 2, Drp1 and mitochondrial dynamin (at ≥ 80 µM). After its discovery in 

2006, it has been extensively used in various model systems to study SV 

endocytosis (Macia et al., 2006; Lu et al., 2009; Chung et al., 2010). It has also been 

established that the inhibition of dynamins by DYN has no immediate effect on the 

SV exocytosis. The majority of the previous research involving pre-synaptic 

neurons as a model system have used between 80 µM to 160 µM DYN to 

completely block endocytosis (Newton et al., 2006; Chung et al., 2010). In this 

study, 160 µM DYN was used to ensure complete inhibition of all the dynamins that 

are normally blocked by DYN.      
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Figure 1.7: The regulatory cycle of dynamin in relation to vesicle endocytosis. 

The influx of Ca2+ during a stimulus induces synaptic vesicle exocytosis with the 

help of synadapin-I (please note that many other proteins are involved as 

discussed earlier). The influxed Ca2+ also activates calcineurin (CaN) which will 

then dephosphorylate dynamin-I making it active. The activated dynamin-I can 

then form the rings around the neck of the fused vesicle membrane and its GTPase 

activity will lead to the recycling of the vesicle and dissociation of dynamin-I, 

syndapin-I and other associated proteins. Following the passage of the stimulus, 

Cdk5 and GSK3 will rephosphorylate dynamin thereby replenishing the cytosolic 

pool of phosphorylated dynamin-I.  (Adapted from results obtained by Robinson 

and colleagues, eg. Clayton et al. (2009). 

 

  

GSK3 
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1.7 Myosin II 

The non-muscle myosin-II has a diverse cellular function and is composed of a pair 

of heavy chains (HCs), a pair of essential light chains and a pair of regulatory light 

chains (RLCs) (Figure 1.8). The myosin-II has been proved to be involved in the 

mobilization of RP to near the synaptic membrane (Ryan, 1999). Recently, it has 

been suggested that dephosphorylated myosin-II can act as a molecular motor by 

hindering the dilation of fusion pores thereby possibly regulating the size of the 

pore (Neco, et al., 2008). Moreover, it can also regulate the amount of vesicular 

release by manipulating the duration of the fusion pore opening (Aoki, et al., 2010). 

It has been widely accepted that phosphorylation of myosin-II regulates the motor 

activity and filament assembly. During many cellular events, the myosin–II HCs and 

RLC are phosphorylated thereby regulating its function. The phosphorylation on 

Ser 19 of the RLC stimulates the actin-activated ATPase of myosin-II and promotes 

the assembly of myosin-II into filaments. This phosphorylation can be carried out 

in vitro by Ca2+/calmodulin- dependent myosin light chain kinase (MLCK), Rho 

kinase or p21-activated kinase. Myosin-II is also a good substrate for protein 

kinase C (PKC). When activated by phorbol esters (PMA), PKC can phosphorylate 

Ser 1/2 residues of RLC in vivo and it can also phosphorylate Thr 9 in vitro. This 

PKC phosphorylation, not only inhibits the rate of MLCK phosphorylation, but also 

inhibits the ATPase activity of myosin-II once it is phosphorylated by MLCK 

(Bresnick, 1999). In case of heavy chains of myosin-IIa, Ser 1917 and Ser 1944 are 

phosphorylated by PKC and casein kinase II; whereas, on the other hand, Ser 1939 

and Ser 1941 of myosin–IIb are phosphorylated by PKC (Bresnick, 1999). 

Myosin-II can be selectively but reversibly inhibited by using a cell permeable 

inhibitor called blebbistatin (Blebb). Blebb has a high affinity and selectivity for the 
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non-muscle class-II myosin and inhibits them by inhibiting the actin-activated 

ATPase activity (Kovacs et al., 2004; Shuet al., 2005). In this study, 50 µM Blebb 

was used to selectively inhibit the myosin-II. 

 

 
Figure 1.8: Schematic representation of structure of myosin-II. The long coiled 

structure represents the two heavy chains (HC) and the globular amino-terminal 

head contains ATP and actin binding sites. Two essential light chains (ELC; black) 

and two regulatory light chains (RLC; gray) which regulate the function of myosin-

II are also shown. The regulatory light chains contain many of the phosphorylation 

sites identified so far. (Bresnick, 1999)  
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1.8 Working hypothesis 

Previous research by A. Ashton and colleagues provided evidence for the existence 

of KR in synaptosomes and also demonstrated that the two modes of exocytosis, 

KR and FF, can be regulated by regulating various phosphatases and kinases 

(Unpublished observations). Since dynamins and myosin-II are phosphor-proteins 

that have been previously shown to regulate the fusion pore in various non-

neuronal systems, it was hypothesised that these proteins may also be involved in 

the regulation of the fusion of small synaptic vesicles in the central nervous 

system. Furthermore, their contribution to the closure of fusion pores to induce KR 

exocytosis should depend upon their phosphorylated state.   
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1.9 Main Aim 

The main aim of this study was to determine the role of dynamins and myosin-II in 

the regulation of the mode of SV exocytosis and to establish the identity of 

phosphastases and kinases that would regulate the functions of these proteins in 

this process. Finally, an attempt was made to establish a link between specific 

phosphoregulation sites on dynamin-I and the role of this protein in regulating the 

mode of exocytosis by the use of phospho-serine specific antibodies and western 

blotting of synaptosomal samples that were known to be undergoing a specific 

mode of exocytosis. 

1.9.1 Specific Aims 

1. To determine if dynamins (I and II) played any role in regulating the mode 

of SV exocytosis.  

2. To determine if myosin-II can regulate the fusion pore of exocytosing SVs. 

3. To investigate if phosphatases like PP2A and calcineurin can affect the 

mode of exocytosis. 

4. To determine if protein kinase C is involved in the regulation of the fusion 

mode. 

5. To investigate the relation between various phosphatases, kinases and 

proteins (identified herein) for their role in regulating the SV exocytosis 

mode. 

6. To identify specific phosphorylation sites of dynamin-I important for their 

regulation of the mode of exocytosis. 
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Chapter 2 

Materials and Methods
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2.1 Preparation of Synaptosomes 

The synaptosomes – pinched off nerve terminals – prepared from the cerebral 

cortex of the adult male Wistar rats (Charles River, USA) were used as a model 

system in this study. The synaptosomes are well established model system that 

contained all the machinery required for the neurotransmitter storage and release 

via SVs. They exhibited the normal physiological properties of a pre-synaptic 

neuron and responded well to the pharmacological treatments (Fernandez-

Busnadiego et al., 2010). 

In order to obtain the synaptosomes, the rats were killed humanely by cervical 

dislocation and the cerebral cortex was swiftly removed and placed into 320 mM 

sucrose plus 10 mM Hepes (pH 7.4; 4 oC) buffer (homogenisation buffer; Figure 

2.1). This tissue was then homogenised using a motor driven Teflon (pestle)-based 

homogeniser (Potter-Elvehjem tissue homogenizers) that was especially made for 

preparing synaptosomes. The shear force is provided by the rotating pestle (900 

rpm) and the clearance of 150 µm ensures the production of intact and functional 

synaptosomes (Sihra, 1997). This was then centrifuged at 1941 × g for 10 min to 

separate the cell bodies from the synaptosomes. The supernatant was then 

centrifuged at 21,075 × g for 20 min followed by the suspension of the resulting 

pellet, containing the synaptosomes, in basal physiological buffer (L0). The 

suspension was again centrifuged at 21,075 × g for 20 min and the pellet, thus 

obtained, was re-suspended in 16ml of oxygenated L0 buffer (4 oC). Once prepared, 

the synaptosome suspension was constantly gassed with Oxygen. These 

synaptosomes represent the P2 fraction and were not purified further.  
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Figure 2.1: Schematic representation of synaptosome preparation from rat 

cerebral cortex.  
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2.2 Glutamate Release Assay 

2 ml of the synaptosomes, prepared by using method described in 2.1, was washed 

(with L0 buffer) and re-suspended in 1 ml of L0 buffer at RT (between 20-22 oC). 

The suspension was then stimulated with 30 mM K+ and 5 mM [Ca2+]e (HK5C) – 

that caused all the releasable vesicles to exocytose – for 90 sec. The synaptosomes 

were then incubated at RT for 10 min. It should be noted that although these 

previous two steps are not related to the actual assay itself, they were performed 

in order to treat the synaptosomes identically to those synaptosomes used for the 

FM2-10 dye release assay – where a pre-stimulation with HK5C is required to load 

terminals with the dye. Thus, these two extra steps make it possible to directly 

compare the results from the two studies due to identical sample treatments. After 

this, the synaptosomes were incubated with the relevant drug or the equivalent 

amount of solvent (dimethyl sulfoxide (DMSO); for control samples) at 37 oC for 5 

min unless stated otherwise. The samples were then washed and finally re-

suspended in 1.6 ml of L0 buffer plus the corresponding amount of drug or DMSO 

(to compensate for the reversibility of certain drugs) unless stated otherwise. 121 

µl aliquots of these were then added to the 12 wells of a row of Greiner 96 well 

microtitre plate (black with transparent bottom) that already contained 20 µl of L0 

buffer (see Figure 2.2).  

After this, 10 µl of 20 mM β-NADP+ (1 mM final) and 9 µl of glutamate 

dehydrogenase type-II (GLDH2; 36 mUnits final) were added to each well and the 

resulting mixture was incubated at RT for 10min. At this stage, all the glutamate 

present outside the synaptosomes – if any –would be converted to α-ketoglutarate 

by GLDH2 in the presence of a cofactor β-NADP+ which itself was converted to β-

NADPH. Although the oxidative deamination of glutamate by GLDH2 is a reversible 
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reaction, in these experiments the reaction always favours forward direction due 

to loss of ammonia from the open well plate.  

GLDH2: L-Glutamate + H2O + β-NADP+  ⇌ α-ketoglutarate + NH3 + β-NADPH + H+  

The production of β-NADPH produced “background” fluorescence at this step 

(since it is a fluorophore unlike its oxidised state) and helped in an indirect 

quantification of the glutamate released from synaptosomes upon stimulation with 

the relevant stimulus. This step ensured that there was no glutamate left in the 

extracellular buffer prior to the stimulation of the synaptosomes and that after the 

stimulation, only the glutamate released by SVs contributes to the increase in 

fluorescence. 

After the incubation, wells 6-12 were treated with the desired stimulus, but 

without [Ca2+]e (for e.g., K+ concentration was raised to 30 mM if the stimulus to be 

used was HK5C) and the corresponding Ca2+ containing stimulus to the wells 1-5 

(e.g., 30 mM K+ plus 5 mM Ca2+ in case of HK5C). The effect of these stimuli was 

then measured in wells 1-9 using Tecan GENios ProTM plate reader (at excitation 

wavelength: 340 nm; emission wavelength: 465 nm; gain: 70; read mode: bottom; 

and for 21 cycles/308 sec). The measurement was performed for approximately 5 

minutes in order to ensure that all the glutamate exocytosed from synaptosomes is 

hydrolysed by GLDH2. Following the measurement, a volume of 10 µl of L0 buffer 

was added to wells 7-9 and 10 µl of 1 mM glutamic acid (freshly prepared) was 

added to wells 10-12,. The effect of the addition of 10 nmol of Glu was then 

measured for 15 cycles/194 sec (in wells 7-12) using the same settings. This last 

step was crucial as it helped in, after complex calculations (see appendix A.1), 

converting the arbitrary fluorescence units into glutamate release (nmole/mg 
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protein) if required and also helped in normalising the sensitivity of the overall 

assay.    

In initial assays we looked to see when all the glutamate that was released had 

been hydrolysed by GLDH2 so that the fluorescence signal plateaued at this point. 

At room temperature, this took over three minutes and to ensure that we did 

measure maximal release we set the time to be approximately five minutes which 

translates to 21 cycles for the measurement of 9 wells. Also, only 9 wells were used 

for the initial measurement because the use of 9 wells conveniently gave us just 

over five minutes of measurement for 21 cycles. Using more wells would have 

taken longer or we would have less individual time points. The use of wells 7-9 and 

10-12 were adapted earlier by A. Ashton and was not changed during this research 

(continued excluding well 6 for final measurement) as addition of one more row 

would mean longer time required for the assay and would generate less data 

points per minute.  
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Figure 2.2: A schematic representation of the generalised microtitre plate 

setup used during glutamate measurement assay. For each row, wells 1-5 were 

used for stimulated samples while 6-12 were used for corresponding basal buffer. 

Following this measurement, wells 10-12 were used for glutamate quantification 

(by adding 10 nmol glutamic acid, final) while wells 7-9 were used for background 

subtraction. Among independent experiments, the sequence of drug and control 

samples was shuffled among different rows in order to compensate for the 

differences in time delay between synaptosome preparation and final fluorescence 

measurement.
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2.3 FM2-10 Dye Release Assay 

For each test (represents wells 1-8 of a row on microtitre plate), a volume of 2 ml 

synaptosomes, prepared by using method described in 2.1, was gassed with O2 at 

RT for 15 min after which the synaptosomes were washed and re-suspended in 1 

ml L0 buffer. To this, 100 µM of FM2-10 dye was added and incubated for 60 sec 

followed by stimulation with HK5C for 90sec. During this stage, all the releasable 

SVs (RRP and RP) were released (see section 3.4) thereby facilitating the labelling 

of these vesicles by FM2-10 dye. After the incubation, the stimulus was removed 

(by centrifugation at 9589 x g for 45 sec) and the synaptosomes were re-

suspended in 1ml L0 with 100µM of FM2-10 dye and incubated for 5 min. This step 

ensured that even the vesicles that might take several minutes to internalise (for 

e.g. RP SVs) were labelled with the dye, thus all the releasable SVs contained dye. 

After this, the synaptosomes were treated with the desired amount of drug of 

interest or equivalent amount of DMSO (v/v; for control samples) and incubated at 

37 oC for 5 min (unless stated otherwise) giving the drug enough time to act on its 

target. After this point, 1 mM advasep-7 (final concentration) was added to the 

mixture (at RT). This removed the FM2-10 dye from the synaptosomal plasma 

membrane reducing the background fluorescence, so that mainly the SVs were 

labelled with the dye (as adavsep-7 is membrane impermeable). This step was 

followed by repetitive washings before finally re-suspending the synaptosomes in 

1.5 ml of L0 along with the corresponding concentration of the drug or DMSO (to 

ensure constant presence of the drug in the system thus preventing the 

reversibility of the drug) unless stated otherwise.  

Aliquots of 160 µL were then added to wells 1-8 of a row of a Greiner 96 well 

microtitre plate (black with opaque bottom; Figure 2.3). Fluorescence 
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measurements were performed using Tecan GENios ProTM plate reader (at 

excitation wavelength: 465 nm; emission wavelength: 555 nm; gain: 40; read 

mode: top; and for 461 cycles). Just prior to the measurement of each well, the 

synaptosomes in that well were either stimulated with the desired stimulus (HK5C, 

ION5C or 4AP5C) or were subjected to the equivalent volume of L0 by using the 

injector function of the plate reader. Out of the eight wells from each row, four 

were stimulated (stimuli samples) and in the remaining four wells equal amount of 

L0 (basal) was added to each. This procedure was repeated for all the eight rows of 

the plate. After the experiment, all the basal data were subtracted from the stimuli 

data of the corresponding treatment and the resulting data were thus a true 

representation of the Ca2+ dependent SV release, expressed in terms of decrease in 

fluorescence.    
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Figure 2.3: A schematic representation of the generalised microtitre plate 

setup used during FM2-10 dye release assay. For each row, wells 1-4 were used 

for stimulated samples while 5-8 were used for L0 basal buffer, or vice a versa. 

Among independent experiments, the sequence of drug and control samples was 

shuffled among different rows in order to compensate for the differences in time 

delay between synaptosome preparation, stimulation and final fluorescence 

measurement.           
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2.4 Measurement of Intracellular Free Calcium Concentration 

BACKGROUND 

In order to estimate the [Ca2+]i achieved after stimulation, Fura-2-acetoxymethyl 

ester (Fura-2-AM) assay was used in this study. Fura-2-AM is a cell permeable but 

Ca2+ insensitive ester form of the Fura-2 acid. When Fura-2-AM enters the cell, 

esterases cleave off the acetoxymethyl(AM) groups leaving the negatively charged 

Fura-2 fluorophore molecules trapped inside the cell as they are unable to cross 

the plasma membrane. This acid form of Fura-2 is sensitive to Ca2+ which produces 

maximum fluorescence when bound to Ca2+ and excited with 340 nm wavelength. 

It also produces maximum fluorescence in Ca2+ free environment when excited at 

380 nm. For both the conditions, the emission wavelength remains at 512 nm. 

Thus, the concentration of [Ca2+]i is proportional to the ratio of fluorescence at 

340/380 and can be expressed by Grynkiewicz equation (Grynkiewiczet al., 1985): 

[𝐶𝐶𝐶𝐶2+]𝑖𝑖(𝑛𝑛𝑛𝑛) = 𝐾𝐾𝑑𝑑  ×  𝛽𝛽 ×
(𝑅𝑅 − 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚)
(𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑅𝑅)

 

Where, Kd (for Ca2+ binding) = 224 nM, R = 340/380 ratio, Rmax = 340/380 ratio 

under Ca2+-saturating conditions, Rmin = 340/380 ratio under Ca2+-free conditions, 

and β = ratio of average fluorescence at 380 nm under Ca2+-free and -bound 

conditions.  

 

PROCEDURE 

For this set of experiments, synaptosomes were prepared using the method 

described in section 2.2.1 of this chapter. Synaptosomes were then incubated with 

5 µM Fura-2-AM at 37oC for 30 min while being oxygenated constantly. At this 
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stage, Fura-2-AM would enter the synaptosomes where it would be hydrolysed by 

esterases there by trapping the dye inside the synaptosomes. Following the 

incubation, synaptosomes were washed twice - in small aliquots of 1 ml - with cold 

L0 buffer using bench top centrifuge (9589 x g for 45 sec) to remove extracellular 

Fura-2-AM, if any, before oxygenating the final re-suspension at 4oC until required. 

From this pool of synaptosomes, a volume of 2 x 0.8 ml of aliquots was taken for 

each row of microtitre plate to be used for a single test condition. These aliquots of 

synaptosomes were stimulated with 2 x 0.2 ml of HK5C for 90 sec following which 

the stimulus was removed by centrifugation at 9589 x g for 45 sec. The resulting 

pellets were re-suspended in 2 x 0.5 ml of L0 buffer before finally incubating them 

at RT for 10 min. Although, these last two steps involving stimulation and 

incubation of synaptosomes at RT was not required for this assay, they were 

nevertheless performed in order to make the sample treatments comparable 

across different assays used in this study (see earlier comments about comparing 

Glu and FM2-10 dye assay; section 2.2.2). 

Following the 10 min incubation period, the synaptosomes were incubated for 5 

min at 37 oC with the relevant concentration of drug of interest or an equivalent 

volume of DMSO for control conditions. The extracellular drug, if any, was then 

removed by centrifugation followed by washing with 1 ml of L0 buffer and 

centrifugation at 9589 x g for 45 sec. The resulting pellet was re-suspended in 1.6 

ml of oxygenated L0 buffer containing the desired concentration or volume of the 

drug (unless stated otherwise) or DMSO, respectively. A volume of 120 µl aliquots 

of this re-suspension was then added to each of the 12 wells of a row of a black 

Greiner 96 well plate along with 40 µl of L0 buffer in each of the wells making the 

total volume to 160 µl for each wells. The fluorescence of the Fura-2 was then 
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measured at excitation wavelength: 340±35 or 390±25 nm; emission wavelength: 

535 nm; gain: 30; read mode: top; and for 40 or 160 cycles. 

The ratiometric nature of this assay added to the complication of the fluorescence 

measurement and could be described, in summary, as follows. Each well was 

measured for its fluorescence one at a time with the first well being measured for 

40 cycles at excitation wavelength of 340 nm and emission of 535 nm. Following 

the 40 cycles of measurement, the well was injected with 40 µl of either a desired 

stimulus (see Figure 2.5) or L0 buffer and measured for 160 cycles. The same 

method was repeated for well number 2 but in this case the measurement was 

taken at the excitation wavelength of 390 nm which would be later used to 

estimate the 340/390 ratio for this pair of wells. For each row, six wells were 

stimulated with 40 µl of stimulus and the rest were subjected to 40 µl of L0 buffer 

just prior to the measurement using the injector function of the plate reader. The 

ratios of 340/390 estimated from wells subjected to L0 buffer were subtracted 

from the ratios estimated from stimulated wells in order to estimate the ∆[Ca2+]i 

exclusively due to the external stimulus employed. Thus, each row of 12 wells 

produced three sets (triplicates) of 340/390 ratio for the given stimulus and drug 

(or control).  

After measuring all the 12 wells of a row, aliquots of 2.25 mM Ca2+ and 0.3% Triton 

X-100 (final concentrations) were added to each of the wells that was previously 

stimulated with a Ca2+ containing stimulant (either 1-6 or 7-12) such that the final 

volume reached 240 µl per well. Similarly, for the remaining wells that were 

subjected to L0 buffer previously, were treated with a final concentration of 15 mM 

EGTA (a Ca2+chelator) and 0.3% Triton X-100. Following this, all the twelve wells 

were measured simultaneously for 40 cycles, first at the excitation wavelength of 
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340 nm followed by that of 390 nm. These fluorescence values were then used to 

calculate Rmax from those added with extra Ca2+ and Rmin from those treated with 

EGTA (see appendix A.2). 

 

 

Figure 2.5: A schematic representation of the generalised microtitre plate 

setup used during Fura-2-AM assay. For each row, wells 1-6were used for 

stimulating the samples while 7-12 were used for subjecting them to L0 basal 

buffer, or vice a versa. After the first set of measurements were taken, each wells 

containing a stimulant was used for calculating Rmax (e.g. A1-A6 in this case) 

while the remaining were used to calculate Rmax (e.g. A7-A12 in this case). Among 

independent experiments, the sequence of drug and control samples was shuffled 

among different rows in order to compensate for the differences in time delay 

between synaptosome preparation and final fluorescence measurement. 
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2.5 Result for biochemical assays 

All the graphs presented in chapters 3, 4 and 5 represent the average of 2-6 

independent experiments with each individual experiment having 2-4 independent 

sample treatments. For ease of presentation, only selected data points – at an 

interval of 2-10 sec – are shown with the error bars representing standard error of 

the means. Two tailed unpaired student t-test was employed to determine the 

significance level between the two treatments of interest.  

For a given sample, the time interval data obtained from individual experiments 

were averaged together to obtain mean fluorescence, glutamate concentration, or 

calcium concentration values at various time points with corresponding standard 

error of means. An unpaired student t-test was performed between two such data 

points of different samples, at a given time point, to obtain the significance level at 

that time point. The statistical test was similarly performed on all data points at 

time intervals of 10-15 sec and if the significance value was less than 0.05 for most 

of the time points, it was considered a significant difference between the two 

samples. In graphs, where more than two samples are shown, either the samples 

were analysed in pairs using student t-test or they were all compared together 

using two way ANOVA. The sample size (n value) used for performing the 

statistical tests was the summation of all the independent sample treatments used 

for producing the average. Please note that a table of information with “n” values 

and “p” values for all the data presented in chapter 4 and 5 is presented in 

Appendix A.3.  
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2.6 Western Blotting 

SAMPLE PREPRATION 

In order to study the phosphorylation of dynamin-I, Western blotting was 

employed in this study. For sample preparation, synaptosomes were first prepared 

from mature rat cerebral cortex using method described in 2.2.1. Following the 

synaptosomal preparation, the synaptosomes were treated with the desired drug 

or DMSO exactly as described during the glutamate sample preparation. However, 

during the final step of re-suspension, the synaptosomes were re-suspended in 

225 µl of L0 buffer (along with the drug) instead of 1.6 ml of L0 buffer. From this 

final re-suspension, 2 x 100 µl aliquots were taken into new separate microfuge 

tubes and the remaining 25 µl was saved for performing Bradford assay to 

determine the protein concentration in the given sample. 

From the 2 x 100 µl aliquots, one was stimulated with the desired stimulation and 

the other was subjected to L0 buffer giving the basal conditions for the 

corresponding stimulated sample. After stimulating the samples for desired 

amount of time (typically for 2, 15, 30 and 120 sec in this study), NuPAGE® LDS 

sample buffer and NuPAGE® sample reducing agent (dithiothreitol) were added to 

the sample to instantly denature the synaptosomes and all proteins. The samples 

were then mixed well using a bench top vortex mixer and were heated at 70oC for 

10 min before storing them at -20oC until further required. The protein 

concentration estimated using standard Bradford assay was used to dilute the 

prepared samples to achieve the final protein concentration of 1.5 mg of protein 

per ml of sample. 
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ELECTROPHORESIS 

Once all the samples were diluted to the desired protein concentration, proteins in 

the samples were separated based on their molecular weight by Lithium dodecyl 

sulphate (LDS)-electrophoresis. The LDS was a constituent of NuPAGE® LDS 

sample buffer, a product obtained from Invitrogen, UK, and has same functions as 

that of Lithium dodecyl sulphate (LDS) in protein denaturation and 

electrophoresis. According to the company, LDS is as effective as SDS and was 

possibly used to enhance the shelf life of the product. The electrophoresis was 

performed using Novex® NuPAGE® SDS-PAGE gel system obtained from life 

technologies, UK. The process of electrophoresis was followed as described in the 

user manual from the company and can be described in summary as follows. 

NuPAGE®Novex®4-12% Bis-Tris Midi Protein Gel (12+2 wells) was assembled in 

the electrophoresis tank as described in the manual and 1 x’s NuPAGE® MES SDS 

buffer was used as the running buffer. To each of the sample wells, 45 µl (67.5 µg 

protein) was loaded after they were incubated for 10 min at 70 oC. To the 

remaining two marker lanes, either 7 µl of diluted (1:7 dilution) MagicMark™ XP 

western protein standard or 7 µl of Novex® sharp unstained protein standard was 

loaded depending on the desired post-electrophoresis process of western blotting 

or coomassie protein stain respectively. The electrophoresis was then carried out 

for 90 min by applying a constant electric current of 120 mA (0.867 mA per cm2 of 

gel) across the height of a gel such that the electron flow is from top of the gel 

(towards sample wells) to the bottom of the gel. After electrophoresis, the gel was 

removed from its plastic housing and was subjected to either standard coomassie 

protein staining method using SimplyBlue™ SafeStain or was subjected to western 

blotting as described in the following paragraph. 
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WESTERN BLOTTING AND DETECTION 

Following electrophoresis, the separated proteins were transferred on to a 

Polyvinylidene fluoride (PVDF) membrane using an iBlot system from Invitrogen. 

After LDS-PAGE, the gel was set up on iBlot® PVDF transfer stack as described in 

the user manual and the western blotting was carried out by using P3 programme 

(20 V; 7 min) on iBlot® gel transfer device. Following the protein transfer, the 

PVDF membrane was blocked using 30 ml of blocking buffer (3% dried milk 

powder, 1% Tween-20 in TBS; pH 7.4) for 60 min. After this point, the blocking 

buffer was removed and the PVDF membrane was incubated with the desired 

concentration of desired primary antibody (see table 2.1) for 60 min at RT. 

Following the incubation, the antibody solution was removed from the system and 

the PVDF membrane was washed for 6 x 5 min using washing buffer (TBS) and 

bench top shaker/rocker. The PVDF membrane was then incubated with the 

relevant HRP conjugated secondary antibody for 60 min at RT followed by washing 

as described earlier. After the final wash, the PVDF membrane was incubated for 

120 sec with a volume of SuperSignal™ west dura chemiluminescent substrate 

such that it covers the entire PVDF membrane (3 ml in this case). The PVDF 

membrane was then visualised using ChemiDocTM XRS+ with image lab software 

(version 3.0.1 β) obtained from Bio-Rad. 

RE-PROBING PVDF MEMBRANES 

Each of the blots that were previously probed for any of the phosphoserine sites 

were stripped using a stripping buffer called Restore™ Plus Western Blot Stripping 

Buffer, obtained from Thermo scientific, USA. This proprietary buffer composition 

is not revealed by the company. However, like all the stripping buffers, this buffer 

is probably composed of a surfactant (like SDS) and a reducing agent to reduce 
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disulfide bonds (like β-mercaptoethanol) dissolved in an acidic buffer (like Tris-

HCl).  

Following the visualisation using ChemiDoc XRS+ system, the blots were washed in 

25 ml of washing buffer for 3 x 5 min. Following the washing, the blots were 

incubated in 15 ml of the Restore™ Plus Western Blot Stripping Buffer at RT with 

gentle shaking throughout the incubation period. After the stripping step, the blots 

were washed for 4 x 5 min with 25 ml of washing buffer to remove excess stripping 

buffer. Following this the membranes were blocked using 25 ml of blocking buffer 

as described earlier and subsequently probed with desired primary antibody, anti-

dynamin-I 4E67 in this case. 

 

Table 2.1: Table of information showing the concentrations of various 

antibodies used in this study.  

Name Source Dilution 
factor 

Final concentration 

Dynamin-I (4E67) Mouse 
monoclonal 

1:1000 0.2 µg IgG/ml 

p-Dynamin I (Ser 774) Sheep 
polyclonal 

1:1000 No information available for 
stock concentration 

p-Dynamin I (Ser 778) Sheep 
polyclonal 

1:400 No information available for 
stock concentration 

p-Dynamin I (Ser 795) Goat 
polyclonal 

1:150 1.33 µg IgG/ml 

Anti-mouse IgG-HRP Goat 1:5000 0.08 µg IgG/ml 

Anti-sheep IgG-HRP Donkey 1:5000 0.08 µg IgG/ml 

Anti-goat IgG-HRP Donkey 1:5000 0.08 µg IgG/ml 
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QUANTIFICATION OF BANDS FROM BLOT IMAGES 

ChemiDoc XRS+ system detects the chemiluminescence of protein bands on the 

blots and the signal intensity of the bands is directly proportional to the amount of 

protein present in corresponding bands. The band intensity also has a direct 

relation between the exposure time period and thus if a blot is exposed for an 

excessive duration, the intensity of the bands will increase and thus this would 

contribute to the error in subsequent quantification of the bands. The semi-

quantification carried out in this thesis should eliminate such discrepancies arising 

out of exposure time period, as all the bands are expressed as relative to one 

another. However, it is possible that if a blot has varying protein quantity per band 

– as with blots probed with phospohoserine antibodies – the darkest band(s) may 

become overexposed by the time other faint bands appear with acceptable 

intensity. For this reason, the blots were exposed for varying exposure time 

periods – by utilising auto exposure feature – to select a range of optimal exposure 

periods where the intensity of the band still maintains a linear relationship with 

the protein quantity. The same blot was then exposed manually for 3-4 different 

time periods (in the linear range determined by auto exposure) to get multiple 

images of the same blot.  

Once multiple images – exposed for different time periods – of a blot was obtained, 

the bands of interest were quantified using volume calculation function of the 

software and were then averaged together. The volume analysis tool of the 

software allows the user to draw a rectangle around the band of interest and the 

software then provides the summation of intensities of each pixel in the rectangle 

(a given protein band) in arbitrary units. Before summation, the software also 

subtracts the average intensity of all pixels immediately surrounding the drawn 
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rectangle (local background) from each pixel inside the rectangle.  This local 

background subtraction helps in reducing the error in quantification due to uneven 

background across the blot, if any. The arbitrary unit thus generated is directly 

proportional to the intensity of the band and therefore to the amount of protein or 

phosphorylated protein in a given band. Once all the bands present on a blot were 

quantified in this manner, they were expressed as a percentage of a particular 

selected band – generally, unstimulated control sample – in order to get the 

relative quantities of protein present in the given set of bands.  

The semi-quantification process was repeated for 2-3 independent experiments 

and the resulting values were averaged together and are presented in histograms 

of chapter 6. The error bars in these histograms represent standard error of the 

means and their statistical significance was calculated using unpaired student t-

test (α level at 0.05). Although the blots presented in chapter 6 gives clear visual 

evidence of the differences in protein quantities present per band, the semi-

quantification (and resulting histograms) provides a means to perform a statistical 

significance test on these differences.  
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Chapter 3 

Studies to Establish Optimal Conditions for 

Investigating Synaptic Vescile Exocytosis
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3.1 Introduction 

This chapter aims at establishing optimal experimental conditions required in 

order to distinguish between the two modes of SV exocytosis, viz. KR and FF. These 

optimal conditions were previously established by Dr. A Ashton before inception of 

this project. The data presented in this particular chapter is a combination of 

results obtained by Dr. A. Ashton’s previous work and the work carried out as part 

of this project. These are presented here purely to aid in better understanding of 

the study. 

3.2 Justification for the Interpretation of Results 

This study mainly aimed at investigating the effects of various drugs on the mode 

of SV exocytosis using the FM2-10 dye release assay and glutamate assay. The 

glutamate assay was used in this study as the cerebral cortex – used to prepare the 

synaptosomes – consisted of more than 80% glutamatergic neurons that release 

glutamate as their neurotransmitter via SVs (Omiatek et al., 2010).  

It has been established that in order for the FM2-10 dye to be maximally released 

from the loaded SVs, the SVs need to undergo the FF mode of exocytosis as this 

exposes the internal SV membrane to the extracellular milieu for a relatively 

longer duration giving the dye enough time to be released, thereby losing its 

fluorescence (Cheung & Cousin, 2011; Omiatek et al., 2010). On the other hand, the 

glutamate can be fully and quickly released even if the exocytosis is via a 

transiently open fusion pore as observed during KR (Omiatek et al., 2010; Zhang et 

al., 2007). Thus, the release of glutamate occurs during both, KR and FF whereas 

the FM2-10 dye requires FF mode of exocytosis for its release. Thus, if a drug has 

no effect on the glutamate release but can affect the FM2-10 dye release, then one 

can say that the drug is affecting the mode of SV exocytosis (see Figure 3.1). 
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Figure 3.1: A schematic representation of the rationale behind the 

interpretation of the results/data. (A) A SV can undergo exocytosis either via 

(B1) KR where Glu is maximally released but FM2-10 dye is not or via (B2) classical 

FF mode of exocytosis where both, Glu and FM2-10 dye are maximally released. 

This efflux of FM2-10 dye from the SV membrane causes it to lose its fluorescence. 

Thus when the Glu release remains unaltered, differences in FM2-10 dye 

fluorescence can be used to identify the mode of SV exocytosis. Representation is 

over simplified, not true to scale and many other proteins involved in these 

processes are not shown/known. 
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It could be argued that the FM2-10 dye may be released by means other than SV 

exocytosis and in such situation one would be measuring fluorescence changes 

that cannot be fully attributed to SV exocytosis. In the absence of Ca2+, A. Ashton 

has shown that HK and 4AP stimulations fail to release any FM2-10 dye from the 

synaptosomes. Therefore, FM dye release is Ca2+ dependent, a classic criterion for 

SV exocytosis. If we had the relevant safety approvals, this could perhaps be 

demonstrated by prior treatment of synaptosomes with clostridial neurotoxins e.g. 

botulinum type A toxin or tetanus toxin. However, this experiment is not as easy as 

one might expect, because one may have problems in loading SVs with dye during 

the intoxication. However, in work presented here and A. Ashton’s unpublished 

work there is always a close correlation between the amount of Ca2+ dependent 

Glu exocytosis and FM2-10 dye exocytosis (under conditions where all release is 

by full fusion). 
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3.3 Achieving Maximal Glu Release 

For the direct comparison of FM2-10 dye and Glu release data, it is also necessary 

that the stimuli employed in the study produces maximal Glu release and thereby 

induces the maximum number of SVs to release (RRP and RP). Submaximal Glu 

release would make it impossible to determine if a particular drug has an effect on 

the distinct pools of SVs and such drug treatment could even have excitatory or 

inhibitory effects on these different pools which may not be apparent. In order to 

establish this condition, various secretogogues employed in this study were used 

in the presence of different [Ca2+]e and the data is presented in Figure 3.2. It is 

evident that 5 mM [Ca2+]e produces the maximal Glu release and any further 

increase in [Ca2+]e either has no effect on the Glu release (for e.g. HK) or decreases 

the Glu release, as seen with ION and 4AP. Thus, for all the study, a concentration 

of 5 mM [Ca2+]e was used to stimulate the synaptosomes unless otherwise stated. 

The biphasic response to [Ca2+]e as seen here has been described previously and 

was not further investigated herein. 

Figure 3.2 also shows that 4AP5C produes much lower Glu release when compared 

to HK5C and ION5C. The changes in [Ca2+]i upon stimulation are presented in 

Figure 3.3 which provides a possible explaination for this. 4AP5C produces much 

smaller change in [Ca2+]i relative to the other two stimuli and thus it can only 

release a part of the releasable SVs (Ashton et al., unpublished work). It has been 

previously established in Dr. A. Ashton’s laboratory that these SVs belong to the 

RRP and the other two stimuli release both, RRP and RP (data not presented). It is 

also note worthy that even though HK5C and ION5C eventually achieves the same 

level of [Ca2+]i, the kinetics associated with ∆[Ca2+]i is different. HK5C produces 

much of its increase in the [Ca2+]i during the initial stimulation period which 
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eventually plateaus (<10 sec) probably due to the densitisatioon of VGCCs 

(Bähring & Covarrubias, 2011). On the other hand, ION5C produces an increase in 

the [Ca2+]i at a slower rate and continues to do so during the rest of the stimulation 

period eventually achieving the same maginitude of change in [Ca2+]i as that 

observed during stimulation with HK5C.   
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Figure 3.2: Measurement of evoked glutamate in the presence of various 

extracellular calcium concentrations show that 5 mM [Ca2+]e induces 

maximum glutamate release for all the three secretagogues (A) HK (B) ION and 

(C) 4AP (independent experiments≥3). The data in this Figure represents an 

average of author’s and A. Ashton et al.’s experiments.  

(A) 

(B) 

(C) 
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Figure 3.3: Measurement of cytosolic free calcium show that all the three 

stimuli employed in this study produced a change in [Ca2+]i with different 

kinetics and the final [Ca2+]i achieved was much lower for 4AP5C when compared 

to that of HK5C or ION5C stimulations (independent experiments ≥ 3). The data in 

this Figure represents an average of author’s and A. Ashton et al.’s experiments. 
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3.4 SVs Undergo Only One Round of Exocytosis 

The synaptosomes in this study are subjected to a long duration of stimulation and 

measurement (typically between 60 – 330 sec) due to the kinetics of the FM2-10 

dye release and the GLDH2 assay. Thus, there is the possibility that the SVs can 

undergo multiple rounds of exocytosis during stimulation/measurement period. If 

this occurs, then the recycled vesicles could re-load with neurotransmitter – in this 

case Glu – and release it in the extracellular buffer there by contributing to the 

amount of Glu released. On the other hand, once a SV loses its FM2-10 dye, it 

cannot be re-labelled during the subsequent release cycles and thus no dye will be 

released. It is also possible that the SVs can undergo several rounds of Glu release 

(by KR) before ultimately releasing their FM2-10 dye content (by FF). Thus, in 

order to compare the Glu and FM2-10 dye release assay for mode determination, it 

is necessary to establish that the SVs undergo only one round of release 

throughout the stimulation/measurement period.  

This hypothesis was tested by acutely treating the synaptosomes with 1 µM 

bafilomycin A1 which irreversibly blocks the Glu reloading in all the SVs by 

blocking the vacuolar H+ATPase pump that is required for SV reacidification after 

endocytosis. It has been shown, however, that the BAF does not affect the Glu 

content of the non-exocytosed SVs and does not interfere with their release under 

these acute conditions (Ikeda & Bekkers, 2008). In the current study, a 

concentration of 1 µM BAF was added to the synaptosomes at the same time as the 

stimulus and the Glu release was measured. If the SVs were undergoing multiple 

rounds of exocytosis, then the Glu release during control conditions would be 

higher than the acutely treated BAF synaptosomes. It is apparent from Figure 3.4 

that this acute treatment produced the same Glu release as the control 
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synaptosomes for all the three stimuli employed indicating that there was only one 

round of SV fusions. Thus one can compare the Glu and FM2-10 dye release assays 

of this study in order to determine the mode of SV exocytosis. 
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Figure 3.4: The amount of Glu released by SV exocytosis is not affected by the 

acute treatment of 1 µM BAF during (A) HK5C, (B) ION5C and (C) 4AP5C 

stimulation (independent experiments ≥ 3). Please note that the data in this Figure 

is a courtesy of A. Ashton et al. and author did not directly contribute towards these 

experiments. 

(A) 

(B) 

(C) 
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3.5 Maximal labelling of Synaptic Vesicles by FM2-10 dye 

In all experiments reported herein, 100 µM FM2-10 dye was employed. This was 

the concentration employed by many researchers (Cheung et al., 2010; Baldwin et 

al., 2003). However, a study conducted by Clayton et al. (2008a) suggested that the 

labelling of SVs via bulk endocytosis using FM2-10 dye was actually dependent on 

the concentration of the dye used with FM2-10 dye being able to label the bulk 

endocytic membrane only at 1 mM concentration. They claimed that 100 µM FM2-

10 dye (as used in this study) failed to label all of the endocytic membrane 

retrieved through bulk endocytosis (Clayton et al. 2008a), and that a great majority 

of SVs would recycle via bulk endocytosis during strong stimulation paradigms 

(Clayton et al. 2008b). This paper is very confusing and convoluted since these 

authors had previously used 100 µM FM2-10 dye and it has provided them with 

much of the evidence for their conclusions about bulk endocytosis (Clayton et al. 

2008b). In fact, it is not clear that the interpretations are correct (Clayton et al. 

2008a), but just to ensure that the results reported, herein, are valid (due to 

labelling of all releasable SVs), some experiments were performed using 1 mM 

FM2-10 dye.  

The data presented in Figure 3.5 clearly demonstrates that in our model system, all 

the releasable vesicles are labelled with either 100 µM or 1 mM FM2-10 dye and 

that the drug treatment does not preferentially affect the FM2-10 dye labelling or 

its release during subsequent exocytosis according to initial dye concentration 

employed. Similar results were obtained with HK5C stimulation and Blebb or OA 

treatment (data not shown). Thus it can be concluded that 100 µM FM2-10 dye can 

be used – at least for the model system used in this study – to study SV exocytosis 
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and that the dye is able to label all the releasable vesicles at the given 

concentration.     

 

 

Figure 3.5: Use of 0.1 or 1 mM FM2-10 dye for labelling the SVs does not have 

any effect on its SV loading and subsequent release from them following the 

application of a suitable stimulus, in this case ION5C. The Figure also demonstrates 

that the drug treatment, in this case 160 µM DYN, does not affect these properties 

of the FM2-10 dye. 
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3.6 Mode of SV Exocytosis Is Dependent on the Stimulus Employed 

Figure 3.6A shows the FM2-10 dye release during the initial 2 sec of stimulation 

using all the three stimulation conditions, viz. HK5C, ION5C and 4AP5C. During this 

initial 2 sec of stimulation, RRP should have undergone exocytosis as suggested by 

many of the previous research (Rizzoli & Betz, 2005). Unlike 4AP5C, HK5C and 

ION5C do not cause any significant decrease in the Fluorescence of FM2-10 dye 

indicating that the SVs during the application of latter two stimuli must be 

undergoing KR mode of exocytosis. One might argue that it is possible that no SV 

exocytosis occurs during the initial 2 sec of stimulation by HK5C or ION5C. This 

argument could be dismissed based on the FM2-10 dye release data from the 

synaptosomes pre-treated with 0.8 µM Okadaic acid (OA)– an inhibitor of protein 

phosphatase 1 and 2A – that is known to convert all the RRP SVs to FF (Ashton et 

al., 2011; Figure 3.6 B). Comparison of the data in Figure 3.6 A and B also indicates 

that the amount of 4AP5C evoked FM2-10 dye increases when treated with OA 

suggesting that 4AP5C is able to release RRP by a combination of both, KR and FF 

under control conditions.  

Figure 3.7 shows the contribution of both the exocytosis mode at various time 

points for HK5C and 4AP5C. These graphs were obtained by subtracting the 

control fluorescence value from the OA fluorescence value to obtain the 

contribution of vesicles that were undergoing KR under control conditions. It is 

evident that during HK5C stimulation, all the RRP undergoes KR mode of 

exocytosis (released in <2 sec; Figure 3.7A) and all the RP SVs undergo FF mode of 

exocytosis (released after 2 sec; Figure 3.7B). ION5C showed similar trend to HK5C 

and thus this data are not shown here. 4AP5C, on the other hand, releases RRP 

vesicles by a combination of KR and FF with both the mode contributing almost 
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equally (Figure 3.7C). RP vesicles fail to exocytose when 4AP5C is employed as a 

stimulus, probably because it is unable to achieve sufficiently large change in 

[Ca2+]i to drive the fusion of the RP (see Figure 3.2 and 3.3).  
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Figure 3.6: Inhibition of PP2A and PP1 induces all SVs to release by FF. 

Measurement of FM2-10 dye fluorescence following the application of various 

stimuli show (A) distinct levels of decrease in FM2-10 fluorescence and that (B) 

these levels of fluorescence decreases by same magnitude when synaptosomes are 

pre-treated with 0.8 µM OA, an inhibitor of PP1 and PP2A (independent 

experiments ≥ 3). The data in this Figure represents an average of author’s and A. 

Ashton et al.’s experiments. 

  

(A) 

(B) 
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Figure 3.7: SVs undergo KR exocytosis during initial 2 sec of stimulation and 

FF thereafter. When the FM2-10 dye fluorescence of control was subtracted from 

OA treatment conditions, (A) it was found that all the SVs are released by KR 

during the initial 2 sec of HK5C stimulation and (B) the remaining are released by 

FF after 2 sec of stimulation. However, (C) during 4AP5C stimulation all the SVs are 

(A) 

(B) 

(C) 
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released by a combination of KR and FF for the initial 2 sec (independent 

experiments ≥ 3). The data in this Figure represents an average of author’s and A. 

Ashton et al.’s experiments. Supplementary data is presented in Appendix A.4 that 

helps in better understanding of how these were produced.  
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3.7 RRP undergoes spontaneous release at 37 oC 

In order to be able to compare Glu release and FM2-10 dye release one must 

ensure that one only studies one round of release for both the RRP and RP of SVs. 

We established that this is the case for the stimuli employed in this study (see 

chapter 3.3). However, prior to stimulation, there is a possibility that some SVs 

could undergo spontaneous release and if this is via FF then some FM2-10 dye 

labelled SVs could be lost prior to the stimulation. This would clearly interfere with 

the comparison between Glu release and dye release as spontaneously released 

SVs should be able to re-load and release Glu during the stimulation/measurement 

but such vesicles will be devoid of any FM2-10 dye. Whilst there appeared to be a 

good correlation between Glu release and FM2-10 dye release at 22 oC, we 

investigated the release when terminals were stimulated at 37 oC. During the final 

resuspension of synaptosomes, instead of resuspending it in L0 buffer at 22 oC (see 

chapter 2.3), they were resuspended in 1.5 ml of L0 buffer at 37 oC and were 

subsequently stimulated at 37 oC.  

As previously discussed, FM2-10 dye can only be released maximally if the SVs 

undergo FF mode of exocytosis and KR mode would prevent most of the dye from 

departitioning the SV membrane and thus the fluorescence will not decrease 

during KR mode of exocytosis. The aim of this particular study was to compare the 

total SV exocytosis at 22 and 37 oC and thus it was necessary that the fluorescence 

from all the vesicles undergoing exocytosis is quenched irrespective of its mode of 

exocytosis. Bromophenol blue (BPB) is a small hydrophilic dye quencher that can 

enter the SV lumen even through a transiently open fusion pore (as during KR) and 

can quench the fluorescence of FM2-10 dye even if it is bound to the vesicular 

membrane and hasn’t departitioned (Harata et al., 2006; Hoopman et al., 2013). 
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Thus, when BPB is used during stimulation, a decrease in the fluorescence will be 

observed during SV exocytosis independent of their release mode. For this reason, 

0.08 mM of BPB was added along with the Ca2+ stimulus just before the 

measurement of FM2-10 fluorescence. 

 When the FM2-10 dye was measured at 22 oC, a significant decrease in FM2-10 

dye was observed whist using BPB as compared to control conditions (Figure 3.8A; 

3.9A). This extra decrease in fluorescence is similar to that seen while using OA 

(Appendix A.4) and is a result of RRP that normally undergoes KR, as previously 

shown (see Figure 3.6). Surprisingly, when this release was measured at 37 oC, no 

such differences in the fluorescence were observed indicating that the RRP is 

spontaneously lost under these conditions (Figure 3.8B; 3.9B). Thus, in order to 

study both pools of SVs, all the biochemical measurements in this study were 

performed at 22 oC unless otherwise stated. It is also important to note that the 

RRP vesicles are fully recovered back and are labelled with FM2-10 dye after the 

incubation at 37 oC with the relevant drugs during sample preparations as the dye 

is constantly present in the external buffer during this incubation period (see 

chapter 2; Figure 3.10B). The absence of extracellular FM2-10 dye during this 37 

oC incubation would render the spontaneously released RRP SVs unlabelled. 

Intriguingly, such results indicate that the RRP alone undergo spontaneous release 

(compliments their preferential location at the active zone) and it does so by FF 

mode of exocytosis. It is noteworthy that only one round of spontaneous release 

needs to occur for the RRP SVs to be unlabelled with the dye. Other results from A. 

Ashton and group would also indicate that the RRP would undergo FF, rather than 

KR, at the low [Ca2+]i in resting terminals. This important result could mean that 
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many studies using FM2-10 dye at 37 oC may not actually be labelling up all the 

releasable SV pools (for e.g.: Baldwin et al., 2003; Cousin & Robinson, 2000).      
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Figure 3.8: Some SVs undergo spontaneous exocytosis at 37 oC. Comparison of 

decrease in FM2-10 dye fluorescence, following acute treatment with BPB, at (A) 

22 oC and (B) 37 oC revealed the loss of SVs undergoing KR at 22 oC indicating that 

the RRP is spontaneously released by FF mode at 37 oC but no such spontaneous 

release occurs prior to stimulation at 22 oC (independent experiments ≥ 3). Please 

note that the data in this Figure is a courtesy of A. Ashton et al. and author did not 

directly contribute towards these experiments. 

  

(A) 

(B) 
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Figure 3.9: SVs undergoing spontaneous release at 37 oC belong to RRP. (A) 

Stimulation of synaptosomes by 4AP5C at 22 oC decreased FM2-10 dye 

fluorescence following the acute treatment of BPB. (B) However, No such decrease 

was observed when the synaptosomes were resuspended and stimulated at 37 oC 

thereby providing further evidence of spontaneous release of the RRP at 37 oC 

(independent experiments ≥ 3). Please note that the data in this Figure is a courtesy 

of A. Ashton et al. and author did not directly contribute towards these experiments. 

 

(A) 

(B) 
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The FM2-10 dye fluorescence value at time zero (just prior to stimulation) for 

sample at 37 oC was compared to that of sample at 22 oC. This helps us identify if 

there was an actual loss of dye labelled vesicles at 37 oC when compared to that of 

22 oC. The data shown in Figure 3.10 and were produced by averaging (3-6 

independent experiments) the fluorescence value at time zero before 

normalisation done during the subsequent calculations – and suggest that a pool of 

labelled SV was indeed lost at 37 oC (Figure 3.10A). Figure 3.10B signify that when 

the samples were loaded at 37 oC in the presence of FM2-10 dye and when were 

subsequently measured at 22 oC, no such loss of pool was observed thereby 

indicating that the intoxication of the sample at 37 oC during sample preparation 

does not lead to a loss of pool during subsequent measurement. 

  

 

 

 

 

 

 

 

 

Figure 3.10: Loss of FM dye prior to stimulate confirm spontaneous release of 

RRP vesicles. (A) When the dye is loaded at 22 oC and subsequently measured at 

37 oC, a significant loss of FM2-10 fluorescence is seen prior to stimulation. 

However, (B) when the dye is loaded at 37 oC and subsequently measure at 22 oC, 

no such loss in FM2-10 dye is observed.   
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3.8 Conclusion 

Based on the arguments and data presented in this chapter, it can be concluded 

that the FM2-10 dye can be maximally released only during FF mode of exocytosis 

whereas Glu can be fully released independent of the mode of exocytosis. These 

differences in the release properties of two molecules can be exploited to study the 

two modes of exocytosis. Three stimuli used in this study produce different levels 

of [Ca2+]i – with different kinetics – and thus HK5C and ION5C releases RRP by KR 

and RP by FF. 4AP5C on the other hand can only release RRP by a combination of 

KR and FF with both modes contributing equally. Finally, in order to study both 

pools of SVs, it is important to carry out all the washes, and stimulation 

measurements at 22 oC instead of 37 oC. This is an important finding as other 

studies using FM2-10 dye may not be studying all pools of SVs at 37 oC as they may 

not have labelled RRP of SVs. 
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Chapter 4 

Role of Dynamins and Myosin II
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4.1 Introduction 

After having established all the necessary experimental conditions in chapter 3, 

chapter 4 of this study aims at identifying proteins which are involved in the 

regulation of KR and FF mode of exocytosis. Previously, Dr. A. Ashton and his 

group have established that the SVs of the synaptosomes, obtained from mature 

rat cerebral cortex, can exocytose either via KR or FF when a relevant stimulus is 

applied. They have also established that this mode of exocytosis can be regulated 

by activating and inhibiting various kinases and phosphatases (Ashton et al., 

unpublished work). Thus, it is probable that at least one phospho-protein is 

involved in the regulation of these modes of exocytosis. A lot of work has been 

previously carried out on the FF mode of exocytosis but little is known with 

regards to the regulation of KR mode of exocytosis. This chapter discusses two 

proteins that were identified to be involved in the regulation of KR mode of SV 

exocytosis. 

As discussed in chapter 1, dynamins and myosin-II are able to manipulate or 

regulate the fusion pore in non-neuronal systems and thus they seemed strong 

contenders that may be implicated in the two modes of SV exocytosis (KR and FF) 

in cerebral cortex. Here, the dynamin-I and dynamin-II (dynamin(s)) were blocked 

using 160 µM dynasore (DYN) and myosin-II was blocked using 50 µM blebbistatin 

(Blebb) and their effects on the glutamate and FM2-10 dye release was studied.  
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4.2 Results 

4.2.1 Inhibition of Dynamins 

Dynamins were inhibited by pre-treating synaptosomes with 160 µM DYN. The 

results show that DYN had no significant effect on the glutamate release induced 

by any of the three stimuli (HK5C, ION5C and 4AP5C; Figure 4.1) employed in this 

study, but that it increased the FM2-10 dye release during ION5C and 4AP5C 

evoked release (Figure 4.2). This observation indicates that the dynamins are 

involved in the closure of the fusion pore (thereby causing KR mode of exocytosis) 

during ION5C and 4AP5C stimulations and that the inhibition of dynamins during 

such conditions can cause all the vesicles to fuse by FF that would otherwise 

undergo KR mode of exocytosis. It can be concluded from Figure 4.3 that the use of 

160µM DYN has no effect on the Δ[Ca2+]i produced by the three distinct stimuli. To 

establish if this action of dynamins is independent of clathrin mediated 

endocytosis (CME), CME was blocked using 15 µM Pitstop 2 (PIT 2; von Kleist et al., 

2011). The inhibition of dynamins with or without PIT 2 resulted in the same 

observation for ION5C evoked Glu release or ION5C evoked FM2-10 dye release 

assays (Figure 4.4). This again indicates that this stimulus only induces one round 

of SV exocytosis, and that the perturbation of CME does not prevent the release of 

RRP or RP of SVs. The FM2-10 dye results also indicate that the inhibition of 

dynamins can still switch the KR to FF mode even when the clathrin dependent 

processes are inhibited. This establishes that the dynamin exerts its action of 

closing the fusion pore independently of clathrin. 
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Figure 4.1: Inhibition of dynamins by 160 µM dynasore does not affect the 

total SV turn over for any of the three stimuli employed: (A) HK5C, (B) ION5C and 

(C) 4AP5C. The data points represent amount Glu released, expressed as 

percentage, with error bars representing SEM. Student t test resulted in p>0.05 for 

all three experiments.   

(A) 

(B) 

(C) 
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Figure 4.2: Dynamin(s) is required for KR exocytosis of RRP when ION5C and 

4AP5C stimuli are employed. 160 µM dynasore had no effect on the (A) HK5C 

evoked FM release (p=0.508) where as it increased the dye released during (B) 

ION5C (p=0.014) and (C) 4AP5C (p=0.034) stimulations indicating that the 

(C) 

(B) 

(A) 
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inhibition of dynamins switched the KR mode of the RRP to FF mode for the latter 

two stimulation conditions. The error bars represent SEM.  
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Figure 4.3: Pre-treatment with 160 µM dynasore does not affect the changes 

in [Ca2+]i achieved upon stimulation with (A) HK5C, (B) ION5C and (C) 4AP5C 

when compared to that of control conditions. The data is representative of more 

than 3 experiments with error bars representing SEM and p>0.05 for all 

experiments.   

(A) 

(B) 

(C) 
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Figure 4.4: Role of dynamin(s) in KR exocytosis is independent of clathrin. 

When the synaptosomes were pre-treated with 15 µM Pitstop 2, alone or in 

combination with 160 µM dynasore, it did not affect the (A) overall glutamate 

release (p>0.05), however (B) the combination treatment of DYN+PIT 2 

significantly increases (p=0.0254) the FM2-10 dye released during ION5C 

stimulation. These observations suggest that the action of dynamin(s) in closure of 

the fusion pore is distinct from its role in CME. The data is representative of more 

than 3 experiments with error bars representing SEM. 

(A) 

(B) 

 
78 



4.2.2 Inhibition of specific dynamin isoforms 

In a quest to identify a specific isoform of dynamins involved in the regulation of 

KR mode of SV exocytosis, dynamin-I and II were specifically blocked using drugs 

that inhibit these isoforms in a dose dependent manner. In order to block 

dynamin-I, various concentrations of Dynole-34-2TM (here after referred to as 

dynole) were tested for its effect on the Glu and FM2-10 dye release assays. This 

novel dynamin inhibitor is a potent inhibitor of the GTPase activity of dynamins 

that has 15-fold more specificity for dynamin-I when compared to dynasore. The in 

vitro IC50 value for the inhibition of dynamin-I is 1.3 µM whereas 14.2 µM has been 

reported to be the IC50 for the inhibition of dynamin-II (together with dynamin-I) 

(Hill et al., 2009).  

As demonstrated in section 4.2.1 of this chapter, dynamin is involved in the 

regulation of the KR mode of exocytosis only when ION5C and 4AP5C stimuli are 

employed. However, for the study of the inhibition of specific isoforms of 

dynamins, only ION5C stimulus was employed and it was assumed that similar 

results would be obtained for 4AP5C stimulation. In this study, it was found that 20 

µM dynole caused a decrease in the FM2-10 dye fluorescence as seen previously 

after the treatment with dynasore (Figure 4.5B; 4.2B). Thereafter the effects of 

20µM dynole on the Glu release was assessed to ascertain if this increase in dye 

release was definitely due to the exocytosis mode switch and not due to any 

discrepancies in the Glu release (for. e.g. an increase in the Glu release). Figure 

4.5A reveals that there was no apparent increase in the Glu release followed by the 

treatment with 20µM dynole and thus, it can be suggested that the increase in 

FM2-10 dye release is probably due to a switch in the mode of SV exocytosis (from 

KR to FF). Other concentrations of dynole (10 µM and 50 µM) did not have any 
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significant effect on the FM2-10 dye fluorescence (Figure 4.5B) and thus, these 

concentrations were not tested for their effect on the Glu release. At the 

concentration of 50 µM, dynole may also start to inhibit dynamin-II which then 

could regulate some SVs such that this caused less FM2-10 dye release (see Figure 

4.6; section 4.3.3) there by masking the effect of dynamin-I inhibition during the 

FM2-10 dye release. 
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Figure 4.5: Dynamin-I isoform is required for KR of RRP vesicles when ION5C 

is employed as a stimulus. Inhibition of dynamin-I by pre-treatment with 20 µM 

dynole does not affect the (A) glutamate release (p>0.05) but (B) significantly 

increases the FM2-10 dye released (p<0.0466) from the synaptosomes upon ION5C 

stimulation. The data is representative of more than 3 experiments with error bars 

representing SEM.  

 

  

(A) 

(B) 
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In order to specifically block dynamin-II, another novel compound, Dyngo-4aTM 

(here after referred as dyngo) was used that preferentially blocks dynamin-II (in 

vitro IC50 = 2.6 µM) than dynamin-I (in vitro IC50 = 380µM). After testing various 

concentrations, it was found that whilst 20 µM dyngo had no effect, 50 and 100 µM 

dyngo reduced the FM2-10 dye release (Figure 4.6 B). The effect of 50 µM dyngo 

was then tested on the Glu release and it was found that the synaptosomes 

released the same amount of Glu as compared to the control conditions indicating 

the same number of SV were exocytosing with 50 µM dyngo treatment (Figure 

4.6A). This result needs to be further investigated (currently studied by a different 

researcher under Dr. A. Ashton), but this would imply that dynamin-II is required 

for the FF of the RP vesicles but may not play any role during the exocytosis of the 

RRP (see 4.3.3 for further discussions). These results would also imply that 160 µM 

DYN only inhibits dynamin-I isoform in our model system otherwise one would see 

RP undergoing KR (instead of the usual FF) when dynamin-II is blocked by DYN.  
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Figure 4.6: Dynamin-II isoforms may be required for FF of the RP. Inhibition of 

dynamin-II by 50 µM dyngo did not affect the (A) glutamate released (B) but it 

reduced the amount of FM2-10 dye released upon ION5C stimulation. It should 

also be noted that a higher dose of dyngo (100 µM) was not able to further 

decrease the FM2-10 dye released. The data is representative of more than 3 

experiments with error bars representing SEM and p>0.05 for all experiments.  

(A) 

(B) 
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4.2.3 Inhibition of Myosin-II 

In section 4.2.1 it was established that dynamins may be implicated in the closure 

of the fusion pore during ION5C and 4AP5C stimulations as shown by the increase 

in FM2-10 dye release even when there was same number of SVs undergoing 

exocytosis. However, there was no increase in the FM2-10 dye release during 

HK5C stimulation when the DYN was used indicating that there must be a different 

protein involved in the closure of the fusion pore when HK5C was employed. Some 

of the previous research has indicated that Myosin-II may be able to regulate the 

fusion pore in other model systems (Chan et al., 2010; Berberian et al., 2009; Bhat 

& Thorn, 2009; Neco et al. 2008). Thus, In order to establish if Myosin-II may be 

involved in the closure of the fusion pore during HK5C stimulation conditions, 

myosin-II’s action was blocked using blebbistatin (Blebb; 50 µM). Blebb has a high 

affinity and selectivity for the non-muscle class-II myosin and inhibits them by 

inhibiting the actin-activated ATPase activity (Shu et al., 2005; Kovacs et al., 2004).  

The results show that 50 µM Blebb can produce exactly the opposite results for the 

FM2-10 dye release assay when compared to their DYN counterparts (Figure 4.8; 

4.2) without affecting the Glu release (Figure 4.7). This finding indicates that 

myosin-II may be involved in the closure of the fusion pore during HK5C 

stimulation and dynamins may be required for this closure only during ION5C and 

4AP5C stimulations. This raises an important question: why there would be two 

proteins performing the same function during different stimulation paradigms? 

One of the reasons could be explained by the fact that all the three stimuli 

discussed here produce different kinetics of ∆[Ca2+]i (Figure 3.3) which may then 

have implications on the regulation of activities of the two stated proteins, 

especially at the active zone release sites. Figure 4.9 shows the amount of 
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additional FM2-10 dye released upon the inhibition of these proteins versus the 

change in [Ca2+]i measured after 2 sec, when all the RRP should be released. It is 

clear from the Figure that the inhibition of dynamins causes more FM2-10 dye 

release when the overall ∆[Ca2+]i is ≤ 140 nM at 2 sec of stimulation. In contrast the 

inhibition of myosin-II may contribute to the additional FM2-10 dye release only 

when the overall ∆[Ca2+]i is > 140 nM at 2 sec of stimulation.  

It could be argued that 50 µM blebbistatin may affect the overall change in [Ca2+]i 

upon stimulation which could then possibly explain the differences in FM2-10 dye 

release as seen in this study. To rule out this, Fura-2-AM studies were conducted 

after treating the synaptosomes with 50 µM blebbistatin to determine the ∆[Ca2+]i 

achieved during HK5C stimulation. However, it was found that blebbistatin 

somehow interfered with the Fura-2 fluorescence such that no apparent increase 

in the [Ca2+]i was produced upon the application of a stimulus (HK5C in this case; 

data not shown). However, this cannot be a true reflection as the application of 

HK5C stimulation does produce an increase in the [Ca2+]i and drives the SV 

exocytosis (Figure 3.3, 4.7A). Thus an attempt was made to determine the effect of 

blebbistatin indirectly by measuring Glu release at [Ca2+]e of less than 5 mM. Figure 

4.10 show that inhibition of myosin-II did not affect the amount of Glu released 

even when the external [Ca2+] was lowered to 1.2, 0.3 or 0.15 mM in the presence 

of 30mM K+. Thus, it can be concluded that use of 50 µM Blebb does not affect the 

overall change in [Ca2+]i upon stimulation otherwise a change in Glu release would 

be observed when the [Ca2+]e was lowered than 5 mM due to its direct relation 

with the Glu release (Figure 3.2). 
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Figure 4.7: When non-muscle myosin-II was inhibited by 50 µM blebbistatin, 

no differences in the Glu release was observed for all the three stimulation 

conditions employed in the study: (A) HK5C, (B) ION5C and (C) 4AP5C. The data is 

representative of more than 3 experiments with error bars representing SEM and 

p>0.05 for all experiments.       

(A) 

(B) 

(C) 
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Figure 4.8: Myosin-II is required for KR of RRP when HK5C is employed as a 

stimulus. Inhibition of myosin-II by 50 µM Blebb significantly increased the 

amount of FM2-10 dye released during (A) HK5C stimulation (p<0.0001) but it had 

no effect during (B) ION5C (p=0.716) and (C) 4AP5C (p=0.642) stimulation 

conditions. 

(C) 

(B) 

(A) 
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Figure 4.9: The activity of dynamin-I and myosin-II appears to be dependent 

on the ∆[Ca2+]i achieved upon stimulation. Contribution of (A) dynamin(s) and 

(B) myosin-II to the FM2-10 dye release from RRP of SVs is dependent on ∆[Ca2+]i 

achieved upon stimulation. These graphs were produced by plotting the [Ca2+]i at 

two second of stimulation against the fluorescence of FM2-10 dye (AU) measured 

at two second of stimulation from the pre-treated synaptosomes. The data is 

representative of more than 3 experiments with error bars representing SEM.   

(A) 

(B) 
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Figure 4.10: Pre-treatment with 50 µM blebbistatin does not affect the [Ca2+]i 

achieved upon stimulation. In order to indirectly establish that the pre-

treatment with 50 µM blebbistatin does not interfere with the changes in [Ca2+]i, 

the Glu release was measured in the presence of various [Ca2+]e such as (A) 1.2 mM, 

(B) 0.3 mM or (C) 0.15 mM. It can be observed from the data that the Blebb 

(C) 

(B) 

(A) 
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treatment does not affect the Glu release (p>0.05) irrespective of the [Ca2+]e. The 

data is representative of more than 3 experiments with error bars representing 

SEM.  
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4.3 Discussion 

There is a lot of debate among the scientific community with regards to the 

existence of two distinct modes of neuronal SV exocytosis, viz. classical FF, and 

controversial KR (Saheki & De Camilli, 2012). There is a general consensus among 

the community for the existence of distinct modes of SV endocytosis (such as CME 

and bulk endocytosis) but the idea of multiple modes of SV exocytosis in central 

nervous system remains debatable (Südhof & Rizo, 2012). However, many of the 

recent studies have provided mounting evidence for the existence of KR in central 

nervous system (Ashton et al., unpublished work; Zhang et al., 2007) but nothing 

much is known with regards to its mechanism of regulation. Work done in Dr. A. 

Ashton’s laboratory (unpublished work) clearly demonstrated the evidence of 

existence of two distinct modes of SV exocytosis in synaptosomes obtained from 

cerebral cortex of mature rats (see chapter 3). Building up on the previous work of 

Dr. A. Ashton and group, this study aims at identifying proteins that regulate the 

distinct modes of SV exocytosis, especially KR. 

4.3.1 Inhibition of dynamins 

In order to investigate the role of dynamins in this process, synaptosomes were 

pre-treated with 160 µM DYN and were then studied for its effect on the Glu and 

FM2-10 dye release (Figure 4.1; 4.2). It’s effect on Δ[Ca2+]i was also determined as 

it has been previously shown to play a crucial role in SV exocytosis (Figure 4.3; 

Südhof & Rizo, 2012). The data in Figure 4.1 shows that pre-treatment with 160 

µM DYN had no effect on the stimuli evoked Glu release. Considering quantal 

properties of SVs, this signifies that the inhibition of dynamins does not affect the 

total number of SVs exocytosing upon the application of a particular stimulus 

(Shupliakov & Brodin, 2010). These results indirectly support the argument 
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discussed in section 3.3 that all the three stimuli can induce only single round of SV 

release. This is because it has been confirmed by various studies that the dynamins 

are required for the CME and thus if the stimuli employed induced more than one 

round of release, then a decrease in the glutamate release would be observed upon 

the inhibition of dynamins (Royle & Lagnado, 2010; Hosoi et al., 2009). However, 

the results showed that all the three stimuli only induced a single round of release 

and that the inhibition of dynamins does not affect the total number of SVs 

undergoing exocytosis upon the application of a particular stimulus employed in 

this study. 

On the other hand, inhibition of dynamins significantly increased the FM2-10 dye 

released upon ION5C (p < 0.014) and 4AP5C stimulations (p < 0.034; Figure 4.2). 

This observable fact can be explained by a hypothesis that the dynamins are 

generally required for the closure of the fusion pore – and the subsequent 

membrane fission action – during the application of these stimuli, and their 

inhibition would cause all the SVs undergoing KR to switch to a FF mode of 

exocytosis. It is also evident that the dynamin(s) are selective only to a sub-

population of the SVs (the RRP) in their action of closing the fusion pore and 

thereby causing them to fuse by KR as opposed to the classical FF mode which the 

remaining RP population of the SVs would follow. It has been suggested previously 

that the SVs belonging to different pools – RRP and RP – might have different 

molecular characteristics making it one of the strong explanations for the 

specificity of dynamins observed in this study of FM2-10 dye release (Wu & 

Cooper, 2013; Vanden & Klingauf, 2006). However, the RRP may be released by a 

combination of KR and FF (as seen during 4AP5C, section 3.4) or released by FF 

entirely (as seen during spontaneous release at 37 oC) indicating that dynamin(s) 

may not be able to close the fusion pore at very low [Ca2+]i. Conversely, it also 
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appears that dynamin(s) may not play a role in the KR of RRP vesicles if the 

Δ[Ca2+]i achieved after stimulation is too large (as seen during HK5C; Figure 4.2 & 

3.3). It is also important to note that the use of 160 µM DYN does not affect the 

overall ∆[Ca2+]i for any of the three stimuli used (Figure 4.3) as Δ[Ca2+]i has been 

linked to the activation and deactivation of various phosphatases and kinases 

which may control the mechanism of SV exocytosis and endocytosis (Saheki & De 

Camilli, 2012; Südhof & Rizo. 2011; Lilja et al., 2004). 

It has been well characterised that dynamins play an important role in the SV 

endocytosis, especially during clathrin mediated endocytosis (CME; Liu et al., 

2008; Lu et al., 2008; Saheki & De Camilli, 2012). In order to determine if this role 

of dynamins is distinct from or independent of CME, 15 µM Pitstop 2 was used that 

selectively inhibits clathrin and thus CME (von Kleist et al., 2011). It was found that 

inhibition of clathrin (and therefore CME) does not affect the Glu or FM2-10 dye 

release and that it does not prevent the action of DYN (Figure 4.4). Thus it can be 

suggested that the role of dynamins in the regulation of KR mode of SV exocytosis 

is independent of their role in CME. It should be noted that 15 µM PIT 2 is working 

to inhibit CME in these circumstances as it was shown that pre-treatment of 

synaptosomes with this drug prior to a pre-stimulation with HK5C produced a 

subsequent large reduction in HK5C evoked Glu release due to a failure for the pre-

stimulated SVs to recycle via CDE (A. Ashton unpublished observation). 

4.3.2 Inhibition of dynamin-I 

It is clear from section 4.3.1 of this study that dynamin(s) play a crucial role in 

closure of the fusion pore during SV exocytosis of the RRP SVs thereby causing 

them to fuse by KR as opposed to the classical FF mode. In order to determine if 

this action of dynamins involves only one of the isoforms, specific dynamin 
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inhibitors were used that inhibit a specific isoform of dynamin in a dose dependent 

manner. The two drugs, dynole and dyngo, used for the inhibition of dynamin-I and 

II respectively were first tested for their effects on the FM2-10 dye release using 

various concentrations as no extensive literature was available for their in vivo IC50 

values due to their relatively recent discoveries. It has been claimed that Dynole 

specifically inhibits dynamin-I at lower concentrations (in vitro IC50 1.3 µM; Hill et 

al., 2009) and thus one should see the effects of blockade of dynamin-I when lower 

concentrations of this drug is used. 

The results presented in Figure 4.5 B indicates that while 10 µM dynole had no 

significant effect on the FM2-10 dye release, 20 µM dynole significantly increased 

the amount of dye released when ION5C was employed as a stimulus (p<0.0466). 

20 µM dynole was then tested for its effect on the Glu release to rule out any 

discrepancies – such as an increase in release of the latter – which would then 

explain the increased FM2-10 dye release. However, it was found that it had no 

significant effect on the Glu release when compared to the control condition 

(Figure 4.5 A). This would indicate that during ION5C (and possibly 4AP5C) 

stimulation, dynamin-I may be involved in the closure of the fusion pore of the RRP 

vesicles causing them to release by KR. When the concentration of dynole was 

further increased to 50 µM, the amount of FM2-10 dye release was surprisingly 

reduced when compared to that of 20 µM dynole treatment but was comparable to 

that of control conditions. One could argue that at such a higher concentrations of 

dynole, dynamin-II may be inhibited (in vitro IC50 14.2 µM) which could then have 

implications on the FM2-10 dye release (explained further in 4.3.3). 

Although there would be an obvious overlap of the SV exocytosis and endocytosis 

process, this new role of dynamin-I differ slightly from its role in SV endocytosis. 
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Under normal circumstances of SV exocytosis, dynamin-I may selectively restrict 

the fusion pore of certain vesicles (RRP), thus preventing their collapse into the 

plasma membrane through continuous expansion of the fusion pore. These 

narrow-neck fusion intermediates (“Ω” shape) will exist only for a short duration 

before their closure (and subsequent fission) by dynamin-I using its GTPase 

activity. The kinetics of this fission is very fast and closes the fusion pore before 

FM2-10 dye can departition from the vesicle membrane thus preventing latter’s 

release.  

It has been previously shown by various studies that the GTPase activity of 

dynamin-I is not required for its early self-assembly or interaction with its PRD 

interacting partners (Heymann & Hinshaw, 2009). Since dynole affects the activity 

of dynamin-I simply by inhibiting its GTPase activity (as does DYN), it raises a 

question as to why there is an increased release of FM2-10 dye when dynamin-I 

was inhibited by this drug when compared to the control condition? One would 

expect to see no release of FM2-10 dye from RRP SVs as they would be arrested in 

the “Ω” shape due to its lack of GTPase activity (result of dynole treatment) which 

is required for the membrane fission. Thus dynamin-I lacking its GTPase activity 

could physically prevent the expansion of the fusion pore through its assembly into 

rings around the fusion pore neck (which does not require GTPase activity) 

thereby restricting the FM2-10 dye release in both the cases. 

It has been recently shown that dynamins exhibit two distinct levels of GTPase 

activity in the presence of GTP nucleotides (Liu et al., 2013). The assembly-assisted 

GTPase activity (AAGA) of dynamin-I has been reported to play an important role 

in the membrane fission during SV endocytosis whereas its basal GTPase activity 

(BGA) is thought to play additional roles in the early stages of vesicle endocytosis 
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but is yet poorly understood (Liu et al., 2013). These distinct GTPase activity could 

help answer the question raised against the differences in FM2-10 dye release 

observed after inhibiting the GTPase activity of dynamin-I. Under control 

conditions, the BGA of dynamin-I would trigger its assembly around the neck of the 

exocytosing SVs which in turn could trigger AAGA of dynamin-I thereby causing 

membrane scission and closure of the fusion pore. On the other hand, dynole 

would block both, BGA and AAGA of dynamin-I but may not be able to prevent its 

assembly into rings around the fusion pore. These rings would thus be able to 

physically restrict the fusion pore for a prolonged period and the fusion pore size 

in this case may be larger when compared to the control conditions (due to 

absence of BGA activity) thereby facilitating the efflux of the FM2-10 dye out of the 

fusion pore. This model can be supported by the recent studies conducted by Liu et 

al., (2013) where they used different dynamin-I mutants impaired with different 

GTPase activities. Their results suggests that the dynamin-I mutants lacking both 

the GTPase activities were able to arrest the endocytosis at an early stage and the 

mutants exhibiting only the BGA stabilised these intermediates at a later stage with 

many of them displaying long neck intermediates (Liu at al., 2013). Thus, the lack 

of AAGA would delay the decision of fission and the assembled dynamin-I – along 

with other assembly partners – would restrict the fusion pore at the narrow-neck 

intermediate stage such that the fusion pore will remain open for a long duration 

(Liu et al., 2011) so that the FM2-10 dye can now be released. The pore sizes and 

the structure of these intermediates would be dependent on the BGA where its lack 

may cause a wider pore size when compared to the long neck structures with 

relatively narrow pore size which would otherwise be observed in a much higher 

proportion. 
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The pore sizes of the releasing SVs were not measured as part of this study but 

many of the previous studies have reported the diameter of the fusion pore of SVs 

undergoing KR to be from 1 to 2.3 nm in various model systems (Wu et al. 2011; 

Jackson & Chapman, 2006). Recently, Wu et al. (2011) estimated the axial cross 

sectional area of FM2-10 dye to be around 1.03 nm and found that the efflux (from 

the fusion pore) time constant of the dye varied from 8.1±0.4 sec to 20.5±2.8 sec 

depending on the fusion pore diameter. Thus, during KR, the fusion pore diameter 

and the axial cross sectional area of the FM2-10 dye highly affects the efflux rate 

and thus associated decrease in its fluorescence kinetics. Along with the diameter 

of the fusion pore, the morphology of the fusion pore may also have possible 

implications on the efflux rate of the dye. Under control conditions, the BGA of 

dynamin-I would keep the fusion pore restricted with a relatively smaller fusion 

pore diameter and relatively long neck thereby decreasing the FM2-10 dye efflux 

rate and possibly restricting the FM2-10 dye release all together. It should be 

noted that the fusion pore at this stage will be closed quickly by the GTPase activity 

of dynamin resulting in “fast endocytosis” of the releasing vesicles which can still 

be termed as KR mode of exocytosis. However, when the dynole or dyansore is 

used, the lack of GTPase activity all together will restrict the fusion pore with a 

relatively large diameter and short neck there by increasing the FM2-10 dye efflux 

rate facilitating the early decrease in its fluorescence. The slower efflux rate of 

FM2-10 dye coupled with the long neck intermediates could also help explain why 

there is a continuous decrease in the FM2-10 dye fluorescence during 4AP5C even 

after 2 sec of stimulation even though the stimulus can only release RRP which 

should be exhausted in about 2 sec according to previous reports (Denker &, 

Rizzoli, 2010; Richards et al., 2003). The fact that 4AP5C stimulation involves 

release of Ca2+ from intracellular Ca2+ store by elevating inositol trisphosphate 
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levels could mean that the increase in [Ca2+]i may be much slower when compared 

to rest of the two stimuli (Grimaldi et al., 2001; Figure 3.3). This could add to the 

delay in FM2-10 dye release as the RPP SVs may take longer than 2 sec to release. 

This decrease in FM2-10 fluorescence after 2 sec of stimulation cannot be 

attributed to its de-partitioning or leakage from rest of the external plasma 

membrane as this would be compensated when subtracting the L0 evoked FM2-10 

dye fluorescence from the stimulation evoked fluorescence (section 2.2.3). 

These discussions in which dynamin regulates the size of the pore during 

exocytosis (but not necessary scission) would mean that the RRP of SVs did not 

actually switch to FF as the SVs did not fully insert into the membrane. However, 

the results clearly indicate that KR does exist in nerve terminals and that it can be 

regulated by dynamins. FM2-10 dye release can occur if (i) the pore is sufficiently 

large to allow FM2-10 dye efflux (ii) the pore remains open for longer than 0.5 sec; 

(iii) the SV fully inserts into the membrane (FF). As dynamins are known to cause 

scission of the neck of clathrin coated vesicles then it is clear that dynamins could 

actually cause the closure of the fusion pore after their opening for less than 0.5 

sec. In fact, the FM2-10 dye release measurements may actually be a combination 

of the three alternative ways that FM fluorescence can decrease. In very recent 

experiments, it would appear that a proportion of what has been described as FF of 

the RP, may actually represent the pore not closing (A. Ashton, unpublished 

observation: results due to differences in the biochemical properties, see section 

5.3.1).  
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4.3.3 Inhibition of dynamin-II 

It is clear from section 4.3.1 that dynamin-I play a significant role in determining 

the exocytosis fusion mode of certain RRP vesicles during the application of certain 

stimuli. In order to investigate the role of dynamin-II, dyngo was employed in this 

study whose in vitro IC50 have been determined to be 380 µM and 2.6 µM for 

dynamin I and II respectively and it’s in vivo IC50 have been reported to be around 

30 µM for specific inhibition of dynamin-II (Howes et al., 2010 & Harper et al., 

2011). Similar to dynole studies, different concentrations of dyngo were first 

tested for their effects on FM2-10 dye release and only a particular concentration 

was selected for assessing its effect on Glu release.  

The data presented in Figure 4.6 B shows that 20 µM dyngo had no significant 

effect on the amount of FM2-10 dye released when compared to that of control 

during ION5C stimulation. Surprisingly, however, 50 and 100 µM dyngo reduced 

the amount of FM2-10 dye released during ION5C stimulation but these 

differences appeared not to be statistically significant, herein, (p > 0.05; n = 22, 24 

& 19 for con, 50 &100 µM dyngo respectively; 3-4 independent experiments) but 

more experiments by A. Ashton and colleagues have indicated that this is a real 

statistically significant result. It is also important to note that 50 µM dyngo does 

not affect the amount of Glu released when compared to that of control (Figure 4.6 

A; p > 0.05, n = 7, 2 independent experiments). 

This would suggest that when dynamin-II is inhibited by dynole, the RP vesicles 

undergo KR mode of exocytosis (instead of FF) thereby decreasing the amount of 

FM2-10 dye released. This switch in the mode can only be attributed to the RP as 

all the RRP vesicles already undergo KR during ION5C stimulation. It has been 

suggested in non-neuronal cells (especially chromaffin cells) that dynamin(s) can 
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regulate both, closure of the fusion pore as well as its expansion by poorly 

understood mechanisms (Gonzalez-Jamett et al., 2013). The current knowledge 

suggests that in these non-neuronal cells, GTPse activity of dynamin-II coupled 

with actin polymerisation may drive the expansion of the fusion pore (Gonzalez-

Jamett et al., 2013). It has been suggested that this process also involves Synadapin 

(Samasilp et al., 2012), GTPase Cdc42 (Gasman et al., 2004) and N-WASp (a 

nucleation promoting factor; Shin et al., 2008 & Hartig et al., 2009). It is likely that 

in cerebral cortical neurons, dynamin-II may function in the same way in order to 

drive the expansion of the fusion pore. It can be suggested that dynamin-II may be 

required for the expansion of the fusion pore of RP vesicles causing them to release 

by FF and may not play any role during the release of the RRP vesicles as they 

usually undergo KR during HK or ION5C stimulations. However, it would be 

interesting to see the effects of 50 µM dyngo on the HK5C and 4AP5C evoked 

release as it will ascertain if the action of dynamin-II is restricted to a specific pool 

of vesicles or is it indispensible for the expansion of the fusion pore. In fact, further 

experiments in A. Ashton’s laboratory has shown that dyngo also reduces the 

amount of FM2-10 dye release evoked by HK5C, but that as expected dyngo does 

not perturb the release evoked by 4AP5C. This finding also suggests that 160 µM 

DYN may only be able to inhibit the action of Dynamin-I in the model system 

employed in this study otherwise one would expect a switch in the exocytosis 

mode to KR for the RP vesicles during HK5C or ION5C stimulations (and therefore 

no dye release).  

In this study, role of dynamin-III was not studied as a small population of 

dynamins constitute this particular isoform and is mainly believed to have similar 

functions to that of dynamin-I (Heymann & Hinshaw, 2009). 
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4.3.4 Inhibition of non-muscle myosin-II 

From previous discussions it is clear that dynamin-I play a direct role in the 

involvement of KR mode of the RRP of SV exocytosis during ION5C and 4AP5C 

stimulations. However, the amount of FM2-10 dye released was not affected by the 

inhibition of dynamins by 160 µM DYN during HK5C stimulation. However, it is 

evident that some of the SVs (those belonging to RRP) undergoes KR mode of 

exocytosis during HK5C stimulation as the amount of FM2-10 and Glu released 

during HK5C stimulation is comparable to those during ION5C stimulation (see 

Figure 3.2, 3.5 and 3.6). Thus it is imperative that there would be at least one 

protein – but not dynamins – involved in the regulation of KR mode of exocytosis 

during HK5C stimulation. As discussed in introduction, non-muscle myosin-II was 

another strong contender for this role and their action was inhibited by using 50 

µM blebbistatin (Blebb) in this study (Kovács et al., 2004).  

Data presented in Figure 4.7 clearly show that 50 µM blebbistatin does not affect 

the amount of Glu released during the application of any of the three stimuli 

indicating that the inhibition of myosin-II does not affect the total number of SVs 

exocytosing in these conditions. The FM2-10 dye release data, on the other hand, 

show exactly opposite trends to those seen during the inhibition of dynamins by 

dynasore (Figure 4.8 & 4.2). There was a significant decrease in the FM2-10 dye 

fluorescence when myosin-II was inhibited during HK5C stimulation (p=0.001) but 

it did not affect the fluorescence when ION5C or 4AP5C were employed. This 

indicates that myosin-II may be involved in the closure of the fusion pore of certain 

vesicles (RRP pool) causing them to release by KR during HK5C stimulation and 

when they are inhibited, all the releasable vesicles would undergo FF mode of 

exocytosis. 
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4.3.5 Why two proteins for the same process? 

From the data presented so far it is clear that there are two distinct proteins 

involved in the regulation of KR during SV exocytosis. This involvement seems to 

be dependent on the [Ca2+]i achieved at the active zone during the employment of a 

particular stimulation paradigm. As shown in Figure 3.3, all the three stimuli 

produce different changes in [Ca2+]i with each having distinct kinetics associated 

with them. HK5C stimulation achieves the maximum [Ca2+]i at an early stage (~6 

sec) of the stimulation period after which it plateaus and maintains that high level 

of [Ca2+]i throughout the stimulation period. Comparatively, ION5C produces an 

increase in the [Ca2+]i with a much slower kinetic even though it eventually 

achieves the same magnitude of [Ca2+]i as that achieved during HK5C stimulation. 

Finally, 4AP5C achieves relatively lower increase (~50%) in the [Ca2+]i with a 

much slower kinetic when compared to that of HK5C and ION5C. 

All the data obtained from Fura-2-AM measurement represents the change in total 

free [Ca2+]i as opposed to the changes in [Ca2+]i at the active zone alone. Since all 

the SV exocytosis occur at the active zone, the free [Ca2+]i at or near the active zone 

would play an important role in regulating SV exocytosis. HK5C works by 

depolarising the nerve terminal which then activates various VGCCs there by 

facilitating the entry of free Ca2+ into the synaptosomes. Since all the VGCCs are 

located at or near the active zone, it could be argued that the initial increase in 

[Ca2+]i would only be seen at or near the active zone before the Ca2+ finally diffuses 

away from the active zone due to the concentration gradient (Meir iet al., 1999). 

4AP, on the other hand, increases free [Ca2+]i partly by potentiating capacitative 

calcium entry and partly by elevating inositol trisphosphate levels and therefore 

causing Ca2+ release from intracellular calcium stores (Grimaldi et al., 2001). 
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However, others have suggested that 4AP works by blocking delayed rectifier type 

K+ channels (Choquet & Korn, 1992) but this may not be the case in non-

depolarised synaptosomes. Thus the kinetic and magnitude of increase in [Ca2+]i is 

very slow during 4AP5C stimulation especially at or near the active zone. Lastly, 

ION is a selective Ca2+ ionophore that inserts itself in the plasma membrane 

thereby allowing the entry of free Ca2+ into the cytosol independent of the VGCCs 

(Müller at al., 2013). Since this Ca2+ influx is not restricted to the active zone, the 

free [Ca2+]i at or near the active zone will be much lower than that induced by 

HK5C.  

Thus it can be argued that all the three stimuli produces different levels of ∆[Ca2+]i 

at the active zone with HK5C producing the maximum increased, followed by 

ION5C and then by 4AP5C. These different levels of free [Ca2+]i may then activate 

only a particular protein – either dynamin-I or myosin-II – which can then regulate 

the fusion pore of the RRP SVs. From Figure 4.9, it can be suggested that the 

dynamin-I would only be able to close the fusion pore of RRP SVs when the overall 

∆[Ca2+]i is ≤ 140: nM whereas myosin-II would be able to perform this function 

during high levels of  ∆[Ca2+]i (> 140: nM) during the release of RRP vesicles. 
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4.4 Conclusions 

In summary, the data and arguments presented in this chapter of the thesis 

establish that dynamins and myosin-II are involved in the regulation of KR mode of 

exocytosis. This study also establishes for the first time that dynamin-I and 

myosin-II play a crucial role in the closure of the transiently open fusion pore 

during the SV exocytosis of RRP vesicles depending on the type of stimulus used. It 

should be noted that the action of dynamin-I is independent of clathrin and 

therefore it is different from its role in CME. The involvement of these proteins 

seems to be dependent on the amount of [Ca2+]i achieved upon stimulation at the 

active zone. From the arguments provided it can also be assumed that this role of 

dynamin-I and myosin-II is independent of the role of each other. The data with 50 

µM dyngo also suggests that dynamin-II may be required for the expansion of the 

fusion pore during FF mode of exocytosis. However further studies are required to 

ascertain this part of the research.  
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Chapter 5 

Role of Calcium 
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5.1 Introduction 

Chapter 4 of this thesis extensively discussed about the involvement of two 

proteins – dynamin-I and myosin-II – in the regulation of KR mode of exocytosis in 

pre-synaptic neurons of mature rat cerebral cortex. Although both the proteins 

essentially perform the same function of closing the fusion pore during SV 

exocytosis, only one of them could be actively participating in this function 

depending on the [Ca2+]i achieved at the active zone upon stimulation. It has also 

been shown by Dr. A. Ashton’s previous work (unpublished work) that the 

inhibition of particular VGCCs – L-type for non-diabetic and N-type for diabetic – 

can switch the mode of SV exocytosis without affecting the amount of Glu being 

released. They have also previously shown that inhibition or activation of certain 

phosphatases and kinases can switch the mode of SV exocytosis in the given model 

system (Ashton et al., unpublished work). Thus it seems reasonable to suggest that 

the two proteins – dynamin-I and myosin-II – may be targets of certain Ca2+ 

sensitive phosphatases and kinases which would then determine their role in the 

closure of the fusion pore during SV exocytosis. The role of two such enzymes, 

calcineurin and protein kinase C (PKC) was assessed in this study to determine if 

they played any role in the regulation of the activity of dynamin-I and myosin-II. 
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5.2 Results 

5.2.1 Inhibition of calcineurin 

Calcineurin is a well-studied Ca2+ sensitive phosphatase that has a wide range of 

target proteins that are involved in various processes (Cheung & Cousin, 2013; 

Kumashiro et al., 2005). In this study, calcineurin was inhibited by using 1 µM 

cyclosporin A (Cys A) and its effect on Glu and FM2-10 dye release was assessed. It 

was found that 1 µM Cys A did not affect the amount of Glu released but it 

significantly decreased the amount of FM2-10 dye released during the employment 

of HK5C (p < 0.025) and ION5C stimulation (p < 0.023; Figure 5.1 & 5.2). When the 

effect of Cys A on the amount of [Ca2+]i achieved during stimulation was assessed, it 

was found that the treatment significantly increased the [Ca2+]i when compared to 

control for all the three stimuli (Figure 5.3). Together, these data would indicate 

that the inhibition of calcineurin causes more SVs to undergo KR mode of 

exocytosis and this could possibly be due to the increased [Ca2+]i achieved during 

their inhibition. It should be noted that 1 µM Cys A does not affect the 4AP5C 

evoked Glu or FM2-10 dye release (Figure 5.1C, 5.2C) even when there is an 

increase in the [Ca2+]i upon stimulation. This suggests that Cys A only acts on the 

RP of SVs and that since 4AP5C does not releases the RP SVs, Cys A treatment has 

no effect on the mode of exocytosis. 
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Figure 5.1: Blockade of calcineurin by1 µM Cyclosporin A does not affect the 

total amount of glutamate released upon the application of (A) HK5C, (B) ION5C 

and (C) 4AP5C stimulations. The data is representative of more than 3 experiments 

with error bars representing SEM and p>0.05 for all experiments. The data points 

(C) 

(B) 

(A) 

 
108 



represent amount Glu released, expressed as percentage, with error bars 

representing SEM. Student t test resulted in p>0.05 for all three experiments.      
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Figure 5.2: Inhibition of calcineurin causes some RP vesicles to undergo KR. 

When calcineurin was inhibited by pre-treatment with 1 µM Cyclosporin A, it 

significantly decreased the amount of FM2-10 dye released during (A) HK5C 

(p<0.025) and (B) ION5C (p<0.025) stimulations but had no effect when the 

(C) 

(B) 

(A) 
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synaptosomes were stimulated with (C) 4AP5C. The data is representative of more 

than 3 experiments with error bars representing SEM.     

 
111 



 

 

 
Figure 5.3: Cys A produces larger Δ[Ca2+]i for all three stimuli. Pre-treatment 

of synaptosomes with 1 µM Cyclosporin A produced a higher change in [Ca2+]i 

upon the application of various stimuli, (A) HK5C (p<0.001) (B) ION5C (p<0.044) 

and (C) 4AP5C (p<0.049), when compared to their control counterparts. The data is 

representative of more than 3 experiments with error bars representing SEM.  

(C) 

(B) 

(A) 
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In order to establish if Cys A treatment causes this increase in KR mode of 

exocytosis due to its action on any of the two proteins discussed earlier, Cys A was 

used in combination with either Blebb or DYN and their effects on FM2-10 and Glu 

release was studied. Data presented in Figure 5.4 suggests that the combination 

treatments do not affect the amount of Glu released during the employment of any 

of the three stimuli. On the other hand, the combination treatments evoked FM2-

10 dye release with a distinct kinetics and amount during HK5C and ION5C 

stimulations (Figure 5.5A; 5.5B; section 5.3.1). However, during 4AP5C 

stimulation, the combination treatment increased the FM2-10 dye release similar 

to that observed during the use of DYN alone (Figure 5.5C). These data, along with 

the previous arguments, could suggest that the inhibition of calcineurin may 

inhibit the action of dynamin-II in the expansion of the fusion pore thereby causing 

the RP SVs to release by KR (see 5.3.1 for discussion). 
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Figure 5.4: A combination treatment of CysA+Blebb or Cys A+DYN does not 

affect the Glu released during (A) HK5C, (B) ION5C or (C) 4AP5C stimulation 

conditions. The data is representative of more than 3 experiments with error bars 

representing SEM and p>0.05 for all data sets.    

(A) 

(B) 

(C) 
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Figure 5.5: Distinct effects of DYN+Cys A and Blebb+Cys A treatment on FM2-10 dye 

release. Pre-treatment of synaptosomes with a combination of either (A) CysA+Blebb or 

(B) Cys A+DYN altered the kinetics of FM2-10 dye released during (A) HK5C and (B) 

ION5C stimulations when compared to that of control conditions. On the other hand, the 

combination treatment of Cys A+DYN released the same amount of dye as during DYN 

(A) 

(B) 

(C) 
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treatment alone (p>0.05) when (C) 4AP5C stimulation condition was employed. (A) For 

Blebb+Cys A vs control p≤0.029 for data points from 60 to 90 sec, and (B) for DYN+Cys A 

vs contril p≤0.0259 for data points from 0.26 to 12.4 sec, and (C) for DYN+Cys A vs control 

p≤0.038 from 16 to 90 sec  
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5.2.2 Inhibition of Protein Kinase C 

It has been suggested by many research groups that dynamin-I and myosin-II are 

targets for phosphorylation by protein kinase C (PKC) – a Ca2+ sensitive kinase – 

for a variety of cellular functions (Chu et al., 2012; Lipp & Reither, 2011). Thus, 

PKC was one of the strong kinase contenders for the regulation of dynamin-I and 

myosin-II and its potential role was assessed in this study by inhibiting it using 1 

µM Go6983. Go6983 is a broad spectrum, cell permeable inhibitor of various PKC 

isoforms including PKCα, PKCβ, PKCγ, PKCδ and PKCζ but it does not inhibit PKCµ 

at the concentration used in this study (Gschwendt et al., 1996). 

Upon the inhibition of PKC by 1 µM Go6983 it was found that it did not affect the 

Glu or FM2-10 dye released upon stimulation with HK5C (Figure 5.6A & 5.7A). 

However, when Go6983 was used in combination with 160 µM DYN, it increased 

the amount of FM2-10 dye released during HK5C stimulation indicating that in the 

absence of active PKC, dynamin-I was playing a role in regulating the KR instead of 

myosin-II (Figure 5.7B). Interestingly, when 50 µM Blebb was used in combination 

with 1 µM Go6983, it did not affect the amount of FM2-10 dye released when 

compared to that of control condition indicating that myosin-II in this case may not 

be playing any role in the KR mode of exocytosis (Figure 5.7C). In both the cases, 

the various combinations of drugs did not affect the total number of SVs 

undergoing exocytosis during the application of a stimulus (Figure 5.6B & 5.6C). 

Thus, it could be concluded that dynamin-I and myosin-II are both targets of PKC 

and when PKC is activated by increased [Ca2+]i, it may phosphorylate dynamin-I 

and myosin-II rendering the former inactive and the latter in an active state.       
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Figure 5.6: Inhibition of PKC, dynamins or myosin-II does not affect the total 

Glu released. Pre-treatment of synaptosomes with (A) 1 µM Go6983 alone or in 

combination with (B) 160 µM DYN or (C) 50 µM Blebb does not affect the amount 

of Glu released during HK5C stimulation. The data points represent amount Glu 

(C) 

(B) 

(A) 
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released, expressed as percentage, with error bars representing SEM. Student t test 

resulted in p>0.05 for all three data sets. 
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Figure 5.7: Inhibition of PKCs by 1 µM Go6983 switched the protein 

dependence for KR during HK5C stimulation. (A) Inhibition of PKC by Go6983 

did not affect the FM2-10 dye released but it increased the dye release when used 

in combination with (B) DYN (p≤0.0387) but did not cause any such increase (C) 

(C) 

(B) 

(A) 
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with Blebb (p=0.7008). The data is representative of more than 3 experiments with 

error bars representing SEM.    

 

 

 

 

5.2.3 Activation of Protein Kinase C 

Data presented in section 5.2.2 suggested that inhibition of PKCs during HK5C 

stimulation changed the protein dependency for the KR – i.e., instead of myosin-II, 

dynamin-I played a role while PKCs were inhibited during HK5C stimulation. This 

indicates that – under control conditions – at a higher [Ca2+]i, PKC would be 

activated which would then inactivate dynamin-I and activate myosin-II by 

phosphorylating them. It would, thus, be interesting to see if this protein 

dependency could be switched at a relatively lower [Ca2+]i (as achieved during 

ION5C stimulation) by activating PKCs.  

One of the commonly used PKC activators is Phorbol 12-myristate 13-acetate 

(PMA) and similar to dynole and dyngo experiments (see 4.2.2), different 

concentrations of PMA was first tested for their effect on FM2-10 dye release and 

then – based on FM2-10 dye data – a particular concentration of interest was 

selected for its effect on Glu release. It can be noted from Figure 5.8 that use of 300, 

200 & 100 nM of PMA caused an increase in the FM2-10 dye release in the 

presence or absence of 160 µM DYN during ION5C stimulation. This indicates that 

these concentrations of PMA were unable to reduce the dependency on dynamin-I 

for closure of the fusion pore of the RRP SVs during ION5C stimulation. Indeed, 300 

and 200 nM PMA were able to switch the RRP SVs to a FF like mode of release 

(Figure 5.8 A, B). This had been sown previously by A. Ashton (unpublished) when 

1 µM PMA was employed with HK5C stimulation. This result indicates that when 
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there is a large stimulation of possibly several PKCs using high PMA concentrations 

then RRP SVs release all their FM2-10 dye. The concentration of PMA was further 

reduced to 40 nM and this did not affect the FM2-10 dye released (Figure 5.9B 

&5.9C). This concentration was then used in combination with 160 µM DYN and 

such treatment resulted in FM2-10 dye release similar to that of control conditions 

(Figure 5.9B). On the other hand, when 40 nM PMA was used along with 50 µM 

Blebb, it significantly increased the amount of FM2-10 dye released (Figure 5.9C; p 

= 0.0072). Use of 40 nM PMA alone or with combination of DYN or Blebb did not 

affect the overall Glu released when compared to control (Figure 5.9A). Together, 

these results indicate that activation of PKC by submaximal concentration of PMA 

(40 nM) was able to switch the protein dependency for regulating the fusion mode 

during ION5C stimulation. These, along with results in section 5.2.2, provide strong 

evidence that dynamin-I and myosin-II are targets of PKC phosphorylation during 

SV exocytosis at a high [Ca2+]i. 
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Figure 5.8: Various sub-maximal concentrations PMA failed to switch the 

protein dependency for KR mode of exocytosis. When PKCs were activated by 

various concentrations of PMA, such as (A) 300 nM, (B) 200 nM and (C) 100 nM, it 

failed to completely switch the protein dependency for KR during ION5C 

stimulation and this is demonstrated by an increase in the FM2-10 dye when the 

(C) 

(A) 

(B) 
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synaptosomes were pre-treated with a combination of PMA and DYN. The data is 

representative of more than 3 experiments with error bars representing SEM and 

p>0.05 for all data sets.       
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Figure 5.9: 40 nM PMA was able to switch the protein dependency for KR 

during ION5C stimulation. When the PMA concentration was further lowered to 

40 nM, it completely switched the protein dependency during ION5C stimulation 

as demonstrated by (B) no change in the FM2-10 dye release following 40 nM 

PMA+DYN treatment (p=0.7209) and (C) increase in its release following 40 nM 

(C) 

(B) 

(A) 
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PMA+Blebb treatment (p≤0.0072). (A) It should also be noted that none of the drug 

treatment significantly affected the total amount of Glu released (p>0.05). The data 

is representative of more than 3 experiments with error bars representing SEM.  
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5.3 Discussions 

This chapter of the study discusses potential kinase and phosphatase enzymes that 

may be involved in the regulation of the two proteins (dynamins and myosin-II) for 

their functions in regulating the fusion pore of the exocytosing vesicles. The study 

revealed two such enzymes, calcineurin and protein kinase C (PKC) that may 

phospho-regulate the two proteins being discussed. 

5.3.1 Role of Calcineurin 

Calcineurin is a Ca2+ sensitive phosphatase enzyme that has been shown to 

regulate many cellular processes when they are activated by elevated [Ca2+]i. When 

calcineurin was inhibited by using 1 µM Cys A, it had no effect on the amount of Glu 

released when compared to control conditions indicating that the same number of 

SVs were undergoing exocytosis upon stimulation (Figure 5.1). On the other hand, 

the Cys A treatment significantly reduced the amount of FM2-10 dye released 

during HK5C (p < 0.025) and ION5C stimulations (p < 0.023; Figure 5.2A; 5.2 B). 

This data suggests that when calcineurin is inhibited, there are more SVs 

undergoing KR when compared to that of control. Conversely, the inhibition of 

calcineurin did not switch the part of the RRP vesicles that undergo FF mode to KR 

during 4AP5C stimulation (p = 0.985; Figure 5.2C). Thus, the inhibition of 

calcineurin is able to switch the mode of exocytosis from FF to KR for the vesicles 

belonging exclusively to the RP. Section 4.3.3 of this thesis discussed possible 

requirement of dynamin-II in the expansion of the fusion pore of the RP vesicles 

thereby causing them to release by FF. Since, the inhibition of calcineurin switches 

these vesicles from FF to KR mode, it is possible that dynamin-II may require 

dephosphorylation by calcineurin in order for it to drive the expansion of the 

fusion pore of the RP vesicles. 
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As Cys A failed to prevent some FM dye being released from the RP SVs, this data 

might suggest that not all the RP SVs are switched to KR by this drug. However, 

this data does indicate that at least some of RP can switch to a KR mode. 

Alternatively, whilst there is a continuous decrease in the FM2-10 dye fluorescence 

from synaptosomes treated with Cys A during HK5C and ION5C stimulation 

(Figure 5.2A; 5.2B), all the exocytosing vesicles may be undergoing KR mode of 

exocytosis under these conditions but some SVs may remain open longer than 0.5 

sec so that the dye will be released. Some supporting evidence for this comes from 

the previous research in Dr. A. Ashton’s laboratory where they established that the 

treatment with Phenylarsine Oxide (PAO) prevents the exocytosis of all the 

vesicles that would normally undergoing FF mode but that the treatment does not 

prevent the release of vesicles exocytosing by KR (unpublished observation). Thus 

when the synaptosomes were treated with PAO, it significantly reduced the 

amount of Glu released during HK5C and ION5C stimulations due to blockade of 

the RP vesicle exocytosis. However, when PAO was used in combination with 1 µM 

Cys A, no decrease in the Glu release was observed indicating that all the RRP and 

RP vesicles must be exocytosing by KR mode due to Cys A treatment (unpublished 

observation). Thus, it can be concluded that following Cys A treatment, the 

decrease in the FM2-10 dye fluorescence observed during HK5C and ION5C 

stimulation cannot be attributed to the FF mode of vesicular release and that all 

the SVs must be undergoing KR mode of exocytosis under these conditions. 

Surprisingly, inhibition of calcineurin by Cys A produced a significant increase 

(~30.9±4.7%) in the [Ca2+]i achieved upon stimulation by all the three stimuli, 

when compared to that of control conditions (Figure 5.3). However, this excess 

increase in [Ca2+]i may not be responsible for the increase in the KR mode of 

exocytosis as the Cys A treatment failed to increase the proportion of the KR mode 
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of exocytosis even though it achieved a higher [Ca2+]i upon stimulation by 4AP5C 

(Figure 5.2C; 5.3C). Moreover, Dr. A. Ashton’s previous research has established 

that the L-type VGCCs exclusively play an important role in regulating the modes of 

exocytosis without affecting the overall Glu released from control synaptosomes 

(Ashton et al., 2011). When they employed 1 µM nifedipine (a L-type VGCC 

blocker) in combination with 1 µM Cys A, they found that the treatment was unable 

to prevent the excess increase in the [Ca2+]i caused by Cys A treatment 

(unpublished observation; data not shown). Thus, it can be concluded that the 

excess increase in [Ca2+]i produced by Cys A treatment may be contributed by a 

VGCC sub-type different from L-type VGCC and this excess Ca2+ may not be 

responsible for the increase in the KR mode of exocytosis. It may be beneficial to 

inhibit the activity of calcineurin by a different inhibitor (e.g. FK506) as it may help 

to shed more light on the questions raised by the excess [Ca2+]i achieved by Cys A 

treatment.  

In order to further study the effects of Cys A treatment, it was used in combination 

with either 50 µM Blebb or 160 µM DYN during HK5C or ION5C and 4AP5C 

stimulations respectively. Neither of the combination treatments affected the 

amount of Glu released upon stimulation (Figure 5.4) but it changed the kinetics of 

decrease in the FM2-10 dye fluorescence during HK5C and ION5C stimulations 

(Figure 5.5A; 5.5B). During HK5C stimulation, the combination treatments of Cys A 

and Blebb produced a sharp decrease in the FM2-10 fluorescence during the initial 

measurement period which then plateaued after a very short period (~3 sec) 

leaving a significantly higher fluorescence after ~66 sec when compared to that of 

control (p = 0.029 at 66.6 sec). This observation can be explained based on our 

previous results that the inhibition of myosin-II (by Blebb) would cause the RRP 

vesicles to fuse by FF mode of exocytosis there by producing a decrease in the 
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fluorescence during the initial stimulation period. After the RRP vesicles have been 

exhausted, the RP vesicles would undergo KR mode of exocytosis due to the 

inhibition of calcineurin by Cys A which would then prevent the action of dynamin-

II in the expansion of the fusion pore. This KR mode of exocytosis of the RP vesicles 

would then prevent or reduce the amount of FM2-10 dye being released from 

these vesicles thereby preventing further decrease in the dye fluorescence. Similar 

to HK5C, the combination treatment of DYN and Cys A resulted in a sharp decrease 

in FM2-10 dye fluorescence during the initial stimulation period by ION5C which 

then plateaued after ~7 sec of stimulation (Figure 5.5B). In this case, the initial 

decrease in the dye fluorescence can be attributed to the inhibition of dynamin-I 

by DYN resulting in the FF mode of exocytosis of the RRP vesicles. Following the 

exhaustion of RRP, the RP would undergo KR mode of exocytosis due to the 

inhibition of calcineurin by Cys A. Interestingly, the combination treatment of DYN 

plus Cys A decreased the FM2-10 dye fluorescence comparable to that produced 

following the treatment with DYN alone during 4AP5C stimulation (Figure 5.5C). 

This would suggest that during 4AP5C stimulation, the RRP undergoes FF when 

dynamin-I is inhibited by DYN and that calcineurin (and therefore dynamin-II) 

may not play any role during the exocytosis of the RRP vesicles. 

The kinetics of release for HK5C plus Blebb plus Cys A or ION5C plus DYN plus Cys 

A would seem to represent simply the FF of the RRP and under these 

circumstances no dye is being released by the RP due to Cys A dependent switch to 

KR. However, this seems to be in-consistent with the idea that some dye can still 

efflux out of some RP SVs that may be undergoing KR but whose pore opening is 

extended beyond 0.5 sec. Clearly, more studies need to be undertaken to ascertain 

this component of release but recent research (A. Ashton, unpublished 

observations) may suggest that the possibility that the RP SVs which release all 
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their dye may actually release most by the FF mode, but a small portion may 

actually represent extended pore opening time. This is important as there was 

always the possibility that all the supposed FF release could simply represent 

extended fusion pore opening times. This would verify that KR does exist but not 

indicate switching between the modes. The fact that there are some biochemical 

distinctions between the releases of dye in the RP does suggest that both FF and 

extended pore opening may co-exist. 

5.3.2 Inhibition of Protein Kinase C (PKC) 

Many studies have previously demonstrated that the activation or inhibition of 

PKC can regulate the phosphorylation on dynamin(s) and myosin-II (Carey et al., 

2005; Powell et al., 2000). The results presented in this study indicate the 

involvement of two distinct proteins in the closure of the fusion pore depending on 

the [Ca2+]i that the exocytosing vesicles are exposed to (see chapter 4).Thus a 

possible role of a Ca2+ sensitive kinase – PKC – was assessed in this study by either 

inhibiting them or activating them using Go6983 or PMA respectively. 

Inhibition of PKCs by 1 µM Go6983 did not affect the Glu or FM2-10 dye released 

upon stimulation by HK5C (Figure 5.6A, 5.7A). This would suggest that the 

inhibition of PKCs – by Go6983 – has no effect on the exocytosis mode of the 

releasable vesicles. However, when Go6983 was used in combination with 160 µM 

DYN, it increased the amount of FM2-10 dye released upon stimulation with HK5C 

(Figure 5.7B; p<0.0387) indicating that when the PKCs were inhibited, dynamin-I 

continues to play a role in the closure of the fusion pore even when a relatively 

higher [Ca2+]i should be achieved during the application of this stimulus. 

Conversely, when Go6983 was used in combination with 50 µM Blebb, it did not 

affect the amount of FM2-10 dye released during HK5C stimulation (Figure 5.7C) 
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indicating that Myosin-II may require active PKCs for their activation during high 

[Ca2+]i as achieved during the application of this stimulus. Indeed, none of the drug 

treatments affect the total number of synaptic vesicle exocytosis (Figure 5.6) or the 

total FM2-10 dye loading (data not shown) thereby confirming that the changes in 

FM2-10 dye release is due to a switch in the mode of exocytosis. 

Thus from these results it can be concluded that during a relatively higher [Ca2+]i – 

as achieved by HK5C at the active zone – PKCs would be stimulated by increased 

Ca2+ which will then phosphorylate dynamin-I thereby preventing it from 

participating in the KR mode of exocytosis. However, at the same time, the 

activated PKCs would phosphorylate myosin-II rendering them active which would 

then be able to close the fusion pore causing the RRP to release by KR. Due to their 

action on both the proteins, the RRP vesicles would continue to undergo KR mode 

of exocytosis but this time under the regulation of a different protein (myosin-II 

instead of dynamin-I). This argument compliments the FM2-10 dye release data in 

the presence or absence of 1 µM Go6983 alone where there was no change in this 

dye’s release as the RRP would continue to exocytose by KR under the effect of 

dynamin-I when the activation of PKCs is prevented by this drug treatment (Figure 

5.7A). 
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5.3.3 Activation of Protein Kinase C (PKC) 

The data and arguments presented in section 5.3.2 suggests that at a relatively 

higher [Ca2+]i at the active zone, PKCs would act as a “Ca2+ sensor” which would 

then switch the protein dependency of the RRP pool for the KR mode of exocytosis. 

Thus, one could argue that if PKCs can be activated externally (by using a drug, 

such as PMA) during lower [Ca2+]i– as achieved during ION5C stimulation – 

Myosin-II would regulate the KR mode of the RRP pool instead of dynamin-I. This 

hypothesis was tested here by using various concentrations of PMA during the 

employment of ION5C stimulation. Previous studies by Dr. A Ashton and group 

using 1 µM PMA during HK5C stimulation raised possibilities of an off-target 

effects of PMA or an action on various PKC isoforms activated by this drug 

(unpublished observation). These activated PKCs isoforms may affect diverse 

cellular mechanisms due to their wide variety of substrates. One could argue that 

various isoforms of PKC may be localised at specific regions of a pre-synaptic 

neurons (Mackay et al., 2001) and these different PKC isoforms may be activated 

by PMA with different IC50 values. Thus an attempt was made in this study to 

establish if lower concentrations of PMA (< 1 µM) would be able to switch the 

protein dependency without affecting the overall amount of Glu or FM2-10 dye 

released during ION5C stimulation.  

When the PMA concentration was lowered to 100 nM, it did not appear to change 

the protein dependencies as their combination with 160 µM DYN was still able to 

increase the amount of FM2-10 dye released during ION5C stimulation indicating 

that dynamin-I is still required for the KR mode of exocytosis of the RRP SVs 

(Figure 5.8). Note that 300 or 200 nM PMA could switch the mode of exocytosis 

independent of dynasore (Figure 5.8 A, B; section 5.2.3). As the aim was to 
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establish a concentration of PMA that alone did not affect the FM2-10 dye release, 

the effects of 300, 200 or 100 nM PMA was only tested in a few experiments. Such 

that the error bars were relatively large and data was not really amenable to 

statistical testing. This was because these concentrations did exert an effect alone, 

and so a lower concentration of PMA was tested in a subsequent experiment. When 

the PMA concentration was reduced to 40 nM, such drug treatment was unable to 

produce any excess decrease in the FM2-10 dye fluorescence with ION5C – either 

alone (p=0.7209) or more intriguingly when in combination with DYN (p=0.8271) 

– when compared to the control conditions (Figure 5.9B). Furthermore, when 40 

nM PMA was used in combination with 50 µM Blebb, it produced a significant 

decrease in the FM2-10 dye fluorescence when compared to that of control 

(p=0.0072), Blebb or 40nM PMA alone (Figure 5.9C). Indeed, none of the drug 

treatments – in combination or alone – affect the amount of Glu released from the 

synaptosomes confirming that the increase in the FM2-10 dye released is due to a 

mode switch (Figure 5.9A). It can also be assumed that these drug treatments does 

not affect the [Ca2+]i achieved upon stimulation as 1 µM PMA did not affect this 

during previous studies undertaken by Dr. A Ashton and group (unpublished 

observations). 

Thus, it can be concluded that when certain PKCs are activated by submaximal 

concentrations of PMA (40 nM) during mild stimulations (such as ION5C in this 

study), it can switch the protein dependency of the RRP vesicles for their KR mode 

of exocytosis. Hence it appears that dynamin-I and myosin-II both are regulated by 

certain classes of PKC for their role in the closure of the fusion pore of RRP vesicles 

causing them to release by KR mode of exocytosis. At relatively lower [Ca2+]i (as 

achieved by ION5C and 4AP5C), these specific PKCs would remain inactive and 

thus dynamin-I would be able to regulate the fusion pore of the RRP vesicles. 
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However, when a relatively higher [Ca2+]i is achieved upon stimulation, such as 

during the employment of HK5C, certain PKCs would be stimulated by these 

increased [Ca2+]i which can then phosphorylate dynamin-I rendering it inactive 

such that it can no longer regulate the fusion pore of the RRP vesicles. However, at 

the same time, the stimulated PKCs would phosphorylate non-muscle myosin-II 

thereby activating this which would then be able regulate the fusion pore of the 

RRP vesicles. It is possible that the two proteins under discussion may be 

regulated by different PKC isoforms and this was not determined, herein. It would 

be interesting to identify the involvement of a specific PKC isoform(s) that may be 

involved in regulating these proteins for their role in the KR mode of exocytosis. 

The exact reason behind the involvement of two different proteins for the same 

function still remains to be determined and/or explained; however there are 

various known cellular functions where multiple proteins may be involved in 

performing similar functions.  
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5.4 Conclusions 

This chapter of the thesis demonstrates, for the first time, that dynamin-II may 

require dephosphorylation by calcineurin for their role in the expansion of the 

fusion pore of the RP vesicles as the inhibition of the latter causes the RP vesicles 

to exocytose by KR mode. On the other hand, protein kinase C acts as a “Ca2+ 

sensor” for the RRP vesicles where elevated [Ca2+]i can activate certain PKC 

isoforms. These stimulated PKCs can then inactivate dynamin-I and activate non-

muscle myosin-II, probably by phosphorylating them, at the same time such that 

myosin-II can replace the function of dynamin-I in the closure of the fusion pore 

during the release of the RRP vesicles. The involvement of a particular PKC isoform 

still remains to be elucidated in this switch in the protein dependency of the RRP 

vesicles for closure of their fusion pore. 
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Chapter 6 

Dynamin-I Phosphorylation Studies
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6.1 Introduction 

Chapter 4 of this thesis demonstrated the involvement of dynamin-I, II and non-

muscle myosin-II in the regulation of fusion pore during SV exocytosis. The role 

that calcineurin and PKC play in regulation of these proteins was discussed in 

chapter 5. It is thus imperative that these proteins are under phosphoregulations 

for this particular role and it would be beneficial to identify the phosphorylation 

site(s) involved in this process. In this project, only dynamin-I was selected for the 

phosphorylation studies due to previous in-depth identification of its in vivo 

phosphorylation sites (Graham et al., 2007) and commercially availability of 

antibodies against certain phosphorylation sites of dynamin-I. Three 

phosphorylation sites – viz. 774, 778 and 795 – of dynamin-I were assessed in this 

study. 

6.2 Results 

A substantial amount of time was invested behind optimising the western blot 

technique in order to study the phosphorylation sites of dynamin-I. As a result it 

was not possible to reproduce the western blot experiments in multiples of 

independent experiments – unless stated otherwise – due to lack of time for this 

aspect of the project. Thus, all the results presented in this chapter of the thesis 

should be treated as preliminary results and no statistical analysis could be 

performed for majority of the results presented herein. It should also be noted that 

much of the results obtained during and after optimisation process are not 

presented in order to keep this thesis as relevant and concise as possible. This 

aspect of the project is currently being further investigated by a different 

researcher in the group and so far all the results presented herein have been found 

to be reproducible. 
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Following the relevant drug treatment, the synaptosomes were stimulated with 

desired stimuli for various time periods and the samples were lysed using SDS 

sample buffer. The proteins from the whole synaptosomal lysate were then 

separated by SDS-PAGE using 4-12% gradient gel and probed with antibodies to 

phospho-Ser 774, phospho-Ser 778, phospho-Ser 795 or to pan-dynamin-I (see 

section 2.2.5 for more details). The western blot images thus obtained are 

presented in this chapter and are representative of all the independent 

experiments, wherever applicable, and are cropped to show only the band of 

interest for ease of presentation. For all full sized blot images, please see note 

given in appendix A.3. All the western blot images obtained from this study were 

subjected to densitometry analysis by using the volume analysis tool of the Image 

LabTM software (BIO-RAD; version 3.0). The average of densitometry data are 

presented here as histograms showing S.E.M., wherever applicable, after 

compensating for total amount of dynamin-I measured on the same blots. All the 

statistical analyses in this chapter were performed using unpaired t-test and the 

“n” represents the number of independent experiments. If no “n” is mentioned then 

it should be assumed that the data is representative of only one independent 

experiment and thus no statistical test could be performed for such data sets. 

6.2.1 Phosphorylation of dynamin-I on Ser-774 

Representative blots obtained after immuno detection with p-774 are presented in 

Figure 6.1. The presence of prominent bands at 2 sec of stimulation period 

suggests the presence of a large pool of dynamin-I phosphorylated at this site and 

signify that dynamin-I must be constitutively phosphorylated at Ser 774.  This 

observation is consistent with previous reports by Graham et al., 2007. The 

intensity of these bands decreases from 15 sec of depolarisation such that the band 
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obtained for 120 sec time period is either too faint (HK5C) or disappears 

completely (ION5C) when compared to that of L0 samples. This observed decrease 

in the band intensities reflect actual decreases in phosphorylation at this site upon 

stimulation as re-probing of the same blot with anti-dynamin-I antibody revealed 

no such decrease in the protein band intensities (Figure 6.1 F; section 2.2.5). The 

blot presented in Figure 6.1 F is a representative blot obtained after such re-

probing procedure and similar blots were obtained for all the phospho-antibody 

probed blots that are displayed in Figure 6.1 and thereafter. No difference in the 

amount of total dynamin-I, loaded or otherwise, was obtained irrespective of the 

stimulation, time period or drug treatment employed (only representative data 

shown).   

Inhibition of PP1 and PP2A, by 0.8 µM OA, also showed time dependent stimulation 

decrease in phosphorylation at this site similar to those observed during control 

conditions indicating that neither of the two phosphatases can be an in vivo 

phosphatase for phospho-Ser 795 (Figure 6.1 B). Inhibition of calcineurin by Cys A, 

on the other hand, showed no such decrease in the band intensities when the blot 

was probed with phosphoserine 774 antibodies (Figure F C). This implies that 

calcineurin is a phosphatase for phospho-Ser 774 of dyn-I and that its inhibition 

prevents time-dependent stimulation induced dephosphorylation of this site. 

Although it was expected that the inhibition of myosin-II by 50 µM Blebb is 

unlikely to interfere with the phosphorylation of dynamin-I, it was included in this 

study to ensure this was the case. Indeed, 50 µM Blebb treatment (and also 

inhibition of myosin-II) did not interfere with the post stimulation changes in the 

phosphorylation at Ser 774. 
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The optimal switch in the protein dependency was achieved with 40 nM PMA 

during ION5C stimulation (discussed in 5.3.3) and this concentration was used to 

investigate the phosphorylation state of dynamin-I in this study. Along with 40 nM, 

other concentrations like 80, 120 and 400 nM were used to examine their effects 

on phosphorylation of dynamin-I. It was found that 40, 80 and 120 nM PMA had 

essentially identical effects on all the phosphorylation sites tested in this study, 

thus an average of their densitometric values were taken to increase the sample 

size during statistical test. All the histograms and western blot images thus 

presented here are denoted by 80 nM PMA concentration (average of the three) 

but are also valid for samples pre-treated with 40 and 120 nM PMA. Blots 

presented in Figure 6.1 E reveal activation of PKCs does not interfere with the 

differences in the phosphorylation at this site seen at different stimulation time 

points for either HK5C or ION5C. 

Histograms presented in Figures 6.2 complement the observations made in the 

earlier paragraphs and is consistent with the visual trends seen on the western 

blots presented in Figure 6.1. These histograms provide a mean to semi quantify 

the changes in phosphorylation seen on immuno blots. The decrease in the 

phosphorylated population of dynamin-I only becomes statistically significant 

when this population decreases by 40±7% at 15 sec of stimulation by ION5C 

(Figure 6.2). The decrease in HK5C stimulated samples become statistically 

significant only when they are stimulated for at least 30 sec (Figure 6.2). These 

observations suggest that the decrease in phosphorylation at Ser 774 only occurs 

when the synaptosomes are continuously stimulated for a substantial amount of 

time – at least 15 sec and may represent cellular processes preparing dynamin-I 

for endocytic processes, especially CME.     
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Figure 6.1: Western blot images showing dynamin-I phosphorylated at Ser 774 site. 

(A) The amount of phosphorylation decreased with increasing stimulation times and that 

this decrease was greater for samples stimulated with ION5C when compared to that of 

HK5C. The drug treatments (B) OA, (D) Blebb & (E) 80 nM PMA failed to change any of 

these patterns of time dependent dephosphorylation whilst samples treated with (C) Cys 

A exhibited no dephosphorylation of Ser 774 irrespective of the stimulus and period used. 

(F) Re-probing of all the blots by anti-dynamin 4E67 revealed the same amount of 

dynamin-I protein in each lanes and this image is just a representative blot.  
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Figure 6.2: Inhibition of calcineurin prevents stimulation dependent 

dephosphorylation of dynamin-I at Ser 774 site. After image acquisition, the 

blots were subjected to semi-quantitative analysis using Densitometry technique. 

The arbitrary values obtained after densitometry were expressed as a percentage 

relative to their respective L0 values for a given stimulation time period. These 

values were then compensated for the amount total dynamin-I, averaged (n=4) 

and presented as histograms with S.E.M. The histogram confirms the stimulation 

time period dependent decrease in the p-774 phosphorylation of dynamin-I for (A) 

Control condition, (B) OA treatment, (D) Blebb and (E) PMA treatment. (C) Cys A 

treatment, on the other hand, prevented this dephosphorylation of dynamin-I. ‘n’ 

value represents the number of independent experiments performed and an * 

(E) 

(D) 
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mark represents significance level less than 0.05 when compared to L0. † indicates 

significant decrease (p<0.05) in phosphorylation compared to HK5C counterparts. 

 

 

 

6.2.2 Phosphorylation of dynamin-I on Ser-778 

Another important phosphorylation site for dynamin-I is Ser 778 and this was 

investigated herein using the same approach as used for phospho-Ser 774. Similar 

to phospho-Ser 774, dynamin-I showed time dependent stimulation evoked 

dephosphorylation at phospho-Ser 778 for control, OA, Blebb and PMA (Figure 6.3 

A, B, D, and E). However, there was blockade of dephosphorylation at phospho-Ser 

778 when calcineurin was blocked by 1 µM Cys A (Figure 6.3 C). These 

observations indicate that PP1, PP2A, and PKC do not regulate this 

phosphorylation site of dynamin-I but calcineurin can dephosphorylate Ser 778 in 

a Ca2+ dependent manner. 

The histograms presented in Figure 6.4 complement the trends in 

dephosphorylation seen on the blots in Figure 6.3. Surprisingly, the decrease in 

phosphorylation only becomes statistically significant from 30 sec for ION5C (15 

sec for phospho-Ser 774) and from 120 sec for HK5C (30 sec for phospho-Ser 774; 

Figure 6.4). This may suggest that the initiation of dephosphorylation process at 

phospho-Ser 778 may occur at a later stage than that of phospho-Ser 774 of 

dynamin-I.  

 
145 



 
Figure 6.3: Western blot images showing dynamin-I phosphorylated at Ser 778 site 

following various treatments. (A) The amount of phosphorylation at Ser 778 decreased 

with increasing stimulation times and that this decrease was greater for samples 

stimulated with ION5C when compared to that of HK5C. The drug treatments (B) OA, (D) 

Blebb & (E) 80 nM PMA failed to change any of these patterns of time dependent 

dephosphorylation whilst samples treated with (C) Cys A exhibited no dephosphorylation 

of Ser 778 irrespective of the stimulus and period used. (F) Re-probing of all the blots by 

anti-dynamin 4E67 revealed the same amount of dynamin-I protein in each lanes and this 

image is just a representative blot.   
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Figure 6.4: Densitometric analysis of blots presented in Figure 6.3 confirmed the 

stimulation time dependent decrease in the Ser 778 phosphorylation of dynamin-I. 

(A) Control condition, (B) OA treatment, (D) Blebb and (E) PMA treatment, all caused a 

stimulation dependent dephosphorylation at Ser 778 but (C) Cys A treatment prevented 

this dephosphorylation of dynamin-I. ‘n’ value represents the number of independent 

experiments performed. Nomenclature is as in Figure 6.2. 

(D) 

(E) 
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6.2.3 Phosphorylation of dynamin-I on Ser-795 

Unlike phospho-Ser 778 and phospho-Ser 774 of dynamin-I, no phosphorylated 

Ser 795 of dynamin-I were observed in control or those treated with Cys A or 

Blebb indicating that dynamin-I may remain dephosphorylated at this site (Figure 

6.5 A,C,D). The absence of phospho-Ser 795 is not related to the absence of protein 

or inability of the antibody to detect the phospho-Ser 795 as all the immuno blots 

obtained showed prominent presence of dynamin-I (Figure 6.5 F) and the antibody 

could recognise phospho-Ser 795 on the same blot (Figure 6.6 A and C). However, 

OA (Figure 6.5B) and PMA treatment (Figure 6.5 E), on the other hand, showed 

prominent phosphorylation of Ser 795 signifying that PP2A is a phosphatase and 

PKCs is a kinase of dynamin at the phospho-Ser 795 site. The presence of these 

bands proves, for the first time, the existence of in vivo phosphorylation at Ser 795 

of dynamin-I.  

OA treatment shows decrease in this phosphorylation only after 120 sec of 

stimulation indication that another phosphatase may be involved in the 

dephosphorylation of this site Figure 6.6A). However, this data is representative of 

only one independent experiment and more experimental evidence will be needed 

in order to ascertain such claims. The histogram in Figure 6.6B show that there 

also a decrease in phosphorylation at this site even when PKCs are activated 

suggesting that the concerned Ca2+ sensitive phosphatase may have faster kinetics 

when compared to that of phosphorylation by PKC. This phosphatase may be PP2A 

but this needs to be further examined by different experiments, such as a 

combination treatment with PMA and OA followed by phosphoserine 795 

detection. The data presented in Figure 6.6 show that the phosphorylation at 795 

increases with a corresponding increase in PMA concentration thus providing 
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further evidence that the phosphorylation at this site is a direct result of PKC 

activation.   
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Figure 6.5: Phosphorylation at Ser 795 of dynamin-I seems to be under 

regulation of PP2A and PMA. Phosphorylation at Ser 795 was not detected in (A) 

control, (C) Cys A treated, or (D) Blebb treated terminals. However, (B) OA 

treatment revealed phospho-Ser 795 and this demonstrated some time dependent 

changes following the application of a stimulus. PMA treatment also showed some 

phospho-Ser 795 in dynamin-I and there were some changes upon the addition of 

the two stimuli. (F) is a representative blot for total dynamin-I content present in 

each track.   
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Figure 6.6: Densitometric analysis of blots presented in Figure 6.5 confirmed the 

stimulation time dependent decrease in the Ser 795 phosphorylation of dynamin-I. 

(A) OA, and (B) PMA pre-treatment revealed the presence of Ser 795 phosphorylation 

irrespective of the stimulation conditions but this phosphorylation decreased after 120 

sec of stimulation with HK5C or ION5C stimulation. ‘n’ value represents the number of 

independent experiments performed and no statistical analysis could be performed for (A) 

due to lack of multiple independent experiments. Nomenclature is as in Figure 6.2. 

 

 

(A) 

(B) 

 
152 



 

Figure 6.7: PMA exhibited a dose dependent phosphorylation of Ser 795 in 

intact synaptosomes and this was still apparent in samples stimulated for 15 sec 

with (A) HK5C or (C) ION5C although the total phospho-Ser 795 was less than in 

basal non-stimulated (L0) terminals. (B) and (D) represent the reprobing of the 

blots with a pan-dynamin antibody indicating that each track had similar amounts 

of total dynamin-I protein. 
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6.3 Discussions 

Three major phosphorylation sites of dynamin-I – viz., Ser 774, Ser 778 and Ser 

795 – were investigated as part of this study in order to ascertain their role in the 

regulation of KR mode of exocytosis for RRP of SVs. Graham et al., (2007) 

quantified the phosphorylation of dynamin-I from rat cerebrocortical 

synaptosomes and reported seven in vivo phosphorylation sites. All the sites 

reported were restricted to serine residues and no phosphorylated threonine or 

tyrosine residues were detected within their detection limits (>98% detection of 

total phosphorylated dynamin-I). Their study established that Dynamin-I is 

phosphorylated at Ser 774 (≤47%), Ser 778 (≤22%), Ser 822 (5%), Ser 851 & Ser 

857 (12%, both combined; only present on dyn-Ixa), Ser 512 (≤8%) and Ser 347 

(1%). Among these seven sites, dynamin-I exhibited stimulation dependent 

dephosphorylation at Ser 774 (by 30%), Ser 778 (by 47%), Ser 851 & Ser 857 (by 

34%, both combined) and Ser 822 (by 56%) (Graham et al., 2007).  

There are well established commercial phospho-specific antibodies against 

phospho-Ser 774, phospho-778 and phospho-795 and these were used for 

investigating the role of these phosphorylated sites in the KR mode of exocytosis. 

Intriguingly, phospho-Ser 795 was not reported as an in vivo phosphorylation site 

of dynamin-I by Graham et al., (2007), but this site was investigated in this study. 

In studies by Graham et al., (2007), 1.2 mM [Ca2+]e was used for stimulating the 

synaptosomes prior to synaptosomal lysis. Data presented in section 3.3 clearly 

demonstrates that 1.2 mM [Ca2+]e (in the presence of a secretagogue) induces sub 

maximal neurotransmitter release and that 5 mM [Ca2+]e is required for maximal 

Glu release for all the three secretagogues studied, here in. Moreover, some of the 

evidence presented here strongly suggests a role of PKC in regulating the mode of 
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exocytosis (section 5.2.2; 5.2.3) and many previous reports have suggested that 

phospho-Ser 795 is a substrate site for this kinase (Zhang et al., 2005; Tan et al., 

2003; Powell et al., 2000). Thus it is possible that, due to methodology differences, 

Graham et al., (2007) did not detect any in vivo phosphorylation at Ser 795, as they 

did not employ phosphatase inhibitors or kinase activators. 

6.3.1 Phosphorylation of dynamin-I at Ser 774 

Western blot images presented in Figure 6.1 represent detection of phospho-Ser 

774 on dynamin-I and such blots reveal a time-dependent stimulation induced 

decrease in phosphorylation at this site. The blots show that the amount of 

phosphorylated Ser 774 of dynamin-I reduces with prolonged stimulation 

implicating a calcium dependent dephosphorylation process. Compared to HK5C, 

this decrease in phosphorylation appears to be greater in samples stimulated with 

ION5C and could be related to their distinct mechanism of action. Unlike HK5C, the 

Ca2+ influx induced by ION5C is not restricted to the active zone (section 4.3.5) and 

thus it could be argued that, compared to HK5C, a large amount of dynamin-I may 

be dephosphorylated at Ser 774 by ION5C because this can also act on dynamin-I 

localised away from the active zone. Note: an equal amount of Ca2+ influx will occur 

all over the never terminal with ION5C whilst HK5C causes a large Ca2+ influx at 

the active zone but no initial influx at other regions of the presynaptic terminal. If 

this possibility is true then the differences in dephosphorylation rates observed 

between HK5C and ION5C stimulation may not be that relevant as the excess 

decrease in phosphorylation of Ser 774 by ION5C may not have any implications 

on the regulation of the exocytosis mode. However, the data presented in Figure 

6.2 show that the difference in dephosphorylation between the two stimuli 

becomes statistically significant only after 120 sec stimulation and so these 
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differences may not be relevant for the role of dynamin-I in KR mode of exocytosis 

of the RRP of SVs which occur by 2 sec stimulation. All the differences in Ser 774 

phosphorylation seen in Figure 6.1 are true representative of changes in 

phosphorylation as the total amount of dynamin-I in each of the lanes was identical 

as demonstrated by Figure 6.1F. All the blots that were previously probed with a 

phosphoserine antibody were subsequently probed with anti-dynamin (4E67) and 

only a representative blot is presented in Figure 6.1F. 

As mentioned, the RRP of SVs exocytose within two second of stimulation and thus 

any changes in phosphorylation of Ser 774 of dynmain-I related to the RRP must 

occur in this time period. It is important to note that the decrease in 

phosphorylation at Ser 774 only occurs at later time points (no change after 2 sec 

stimulation; Figure 6.2) and thus these later changes cannot be attributed to 

dynamin-I’s role in regulating the KR mode of RRP SVs. However, the decrease in 

phosphorylation at later time points of stimulation can be attributed to its role in 

CME. In fact, the prolonged depolarisation (>30 sec) probably indicates 

dephosphorylation changes that lead to the biochemical interactions which are 

preparing dynamin-I to contribute to CME.   

In order to determine if phospho-Ser 774 is dephosphorylated by PP1 or PP2A, the 

activity of these phosphatases was inhibited by pre-treatment of synaptosomes 

with 0.8 µM OA prior to stimulation (section 2.2.5). Figure 6.1 B shows that there is 

time dependent stimulus induced decrease in the phosphorylation of dynamin-I at 

Ser 774 site similar to those observed during control conditions (Figure 6.1A) 

suggesting that this site is not under regulation by PP1 or PP2A. On the other hand, 

inhibition of Calcineurin (PP2B) by pre-treatment with 1 µM Cys A prevented the 

decrease in amount of phospho-Ser 774 (Figure 6.1C; 6.4). This evidence suggests 
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that calcineurin is a phosphatase that dephosphorylates dynamin-I at phospho-Ser 

774 during elevated Ca2+ levels as achieved upon stimulation and that when this 

phosphatase is inhibited, the stimulation dependent dephosphorylation does not 

occur. This is consistent with previous report where calcineurin was shown to 

dephosphorylate dynamin-I at Ser 774 and Ser 778 sites (Samasilp et al., 2012; 

Graham et al., 2007). However, dephosphorylation at Ser 774 of dynamin-I by 

calcineurin is probably not responsible for the increase in KR of the RP of SVs 

observed following pre-treatment with Cys A as dynamin-II, and not dynamin-I, is 

implicated in this process (section 5.3.1). Moreover, many studies have previously 

linked the stimulation dependent dephosphorylation of Ser 774 of dynamin-I by 

calcineurin to post-stimulation endocytosis, especially CME (Graham et al., 2007).  

The FM2-10 dye experiments demonstrated that 50 µM Blebb can switch the mode 

of SV exocytosis for RRP to FF during HK5C, but not during ION5C, stimulation 

(section 4.2.3; 4.3.4). It was, however, relevant to demonstrate that Blebb 

treatment itself does not regulate the phosphorylation of dynamin-I. Data 

presented in Figure 6.1D and 6.5 clearly demonstrate that pre-treatment with 50 

µM Blebb does not interfere with the phosphorylation state of dynamin-I at Ser 

774 site irrespective of the stimulation used.  

Finally, it would be important to identify the phosphorylation site – under PKC 

regulation – that is responsible for inactivating dynamin-I during HK5C 

stimulations such that it can no longer play a role during the exocytosis of RRP SVs 

(section 5.3.3). The switch in the protein dependency was achieved with 40 nM 

PMA during ION5C stimulation (discussed in 5.3.3) and this concentration was 

used to investigate the phosphorylation state of dynamin-I in this study. It should 

be noted that all the results in this chapter denoted by 80 nM PMA are actually 
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representative or average of data obtained for 40, 80 and 120 nM PMA (section 

6.2.1). The activation of PKCs sensitive to these concentrations of PMA did not 

affect the changes in phosphorylation of dynamin-I at Ser 774 irrespective of the 

stimulation used (Figure 6.1E; 6.6). These data also is an indication that such PKCs 

may not be a kinase that regulates dynamin-I phosphorylation at Ser 774 and 

support previous work by Clayton et al (2010) in which they demonstrated that 

GSK3 is the kinase responsible for phosphorylation of dynamin-I at Ser 774 site. 

However, in order to completely rule out PKC as a kinase for Ser 774 of dynamin-I, 

it needs to be demonstrated that their inhibition (such as by 1 µM Go6983) prior to 

stimulation does not interfere with the phosphorylation levels. The preliminary 

data with Go6983 treated samples indeed support this hypothesis (data not 

shown). i.e. Go6983 treatment did not perturb Ser 774 phosphorylation and did 

not change any stimulus induced dephosphorylation of this site. 

Thus, from all the arguments presented in this section, it can be concluded that Ser 

774 is under Ca2+ dependent phosphoregulation. However, this phosphoregulation 

is not associated with the role of Dynamin-I in KR mode of exocytosis of the RRP of 

SVs and instead is probably associated with endocytosis, especially CME. 

6.3.2 Phosphorylation of dynamin-I at Ser 778 

The data presented in Figures 6.7 to 6.12 indicate that the changes in 

phosphorylation seen at Ser 778 is almost identical to those seen for phospho-Ser 

774 for given treatment and stimulation conditions. Thus it can be said that 

phospho-Ser 778 is not dephosphorylated by PP1 and PP2A but that calcineurin 

can induce such stimulation evoked dephosphorylation (PP2B; Figure 6.7B, C). 

Similarly, it can also be said that PKC does not appear to be the kinase for the 

phosphorylation of Ser 778 of dynamin-I and Blebb treatment does not interfere 
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with the phosphorylation/dephosphorylation of this site (Figure 6.7 D, E). All these 

results are consistent with previous report that attributes calcineurin and Cdk5 as 

the phosphatase and kinase for Ser 778 site respectively (Xue et al., 2011; Graham 

et al., 2007). Close examination of histograms (Figure 6.2 and 6.8) reveal that the 

phospho-Ser 774 may be dephosphorylated earlier than phospho-Ser 778 as the 

decrease in phosphorylation becomes statistically significant at 15 sec for 

phospho-Ser 774 but only at 30 sec for phospho-Ser 778. However, more studies 

need to be performed in order to ascertain this hierarchy between the 

dephosphorylation of the two sites by calcineurin. It has been shown earlier that 

there may be a hierarchy in phosphorylation of these sites such that Ser 778 is 

phosphorylated by Cdk5 first, following which Ser 774 can be phosphorylated by 

GSK3 (Clayton et al., 2010). From these arguments it can be concluded that, like Ser 

774, Ser 778 may not play any role in regulating the activity of dynamin-I in the KR 

mode of exocytosis. 

6.3.3 Phosphorylation of dynamin-I at Ser 795 

It has been well established that PKCα can phosphorylate dynamin-I at Ser 795 

during in vitro conditions (protein isolation; Powell et al., 2000). However a 

functional role for this phosphorylation site still remains to be identified, subject to 

its in vivo existance. In the studies reported here in, it is demonstrated that 

activation or inhibition of certain PKCs can switch the protein requirement for 

closure of the fusion pore for KR exocytosis of the RRP SVs depending on the type 

of stimulation used (section 5.3.2 and 5.3.2). Thus it may be possible that the 

phosphoregulation of Ser 795 on dynamin-I may regulate this protein requirement 

and this could also regulate the mode of SV exocytosis under certain stimulation 

conditions and so this was consequently selected for study.  
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Some representative blots, probed for phosphoserine 795 are presented in Figure 

6.13 and reveal that this site may not be phosphorylated under control conditions 

(Figure 6.13A). The absence of phosphoserine 795 band in Figure 6.13A, C and D is 

not due to inability of the antibody to recognise phosphorylated dynamin-I or 

related to the immunoblotting technique as p-795 bands were detected for PMA 

treated samples but were absent in control samples on the same immuno blot 

(Figure 6.16A, C). Thus it can be concluded that dynamin-I is either never 

phosphorylated at Ser 795 site or it can be phosphorylated but under normal 

circumastances phosphatases remove PO4 (independent of Ca2+) from Ser 795 such 

that it remains dephosphorylated under control conditions (Figure 6.13A). There 

may be a small amount of dynamin-I that is phosphorylated at Ser 795 site during 

control conditions but this may be out of experimental detection range of the 

western blot technique employed here. Recent blotting experiments by other 

researchers in the group indicate that one can detect a very small amount of 

pospho-Ser 795 even in control conditions (A. Ashton et al., unpublished 

observation). 

When PP1 and PP2A were inhibited by pre-treatment with 0.8 µM OA, 

phosphorylation of Ser 795 was detected thereby indicating that either of these 

phosphatases may be responsible for dephosphorylation at Ser 795 site of 

dynamin-I (Figure 6.13, 6.14). Previous work by A. Ashton and group with 

Fostriecin (a more specific PP2A inhibitor) indicate that the action of OA is likely 

on PP2A rather than PP1 (data not shown). Thus it can be argued that Ser 795 of 

dynamin-I may be under constant dephosphorylation by PP2A and when this 

phosphatase is inhibited the amount of dynamin-I that is phosphorylated at Ser 

795 increases significantly such that it can be detected in the system employed 

here. These results are exciting as it has been established by A. Ashton and 
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colleagues (Ashton et al., 2011) that OA can switch the RRP of SVs to a FF mode of 

exocytosis (Figure 3.5). This applies for all three stimuli used in this study and 

although – as shown herein – under some conditions (HK5C) dynamin-I may not 

play a role, phosphorylation at Ser 795 will occur for all the three stimuli (as 

shown here for HK5C and ION5C). So for ION5C and 4AP5C it can be suggested that 

dynamin-I is unable to play its role in regulating the fusion pore if it is 

phosphorylated on Ser 795, in the presence of OA. Ser 795 of dynamin-I will also 

be phosphorylated even when HK5C is employed in the presence of OA. However, 

as OA pre-treatment also causes all the RRP of SVs to release by FF when 

stimulated with HK5C this must indicate that myosin-II activity must be regulated 

by phosphorylation and that this is also under phosphoregulation by PP2A (or 

PP1). It is clear that future experiments need to establish a correlation between OA 

induced phosphorylation of specific serines on the myosin-II and regulation of the 

fusion mode following HK5C stimulation (Figure 3.5; A. Ashton et al., unpublished). 

This argument can also apply for the 40 nM PMA induced phosphorylation of 

dynamin-I on Ser 795 which needs to be compared to the PMA induced 

phosphorylation of non-muscle myosin-II. Such PKC phosphorylation sites on 

myosin-II are present on heavy chain, regulatory light chain and essential light 

chain of myosin-II and phosphorylation at these various sites can activate or 

inhibit this enzyme (Obara et al., 2010; Ludowyke et al., 2006; Somlyo & Somlyo, 

2003). 

Experiments involving inhibition of calcineurin (by Cys A) indicate that it may not 

be the phosphatase responsible for dephosphorylating phospo-Ser 795 on 

dynamin-I site as blockade of this enzyme does not result in the appearance of 

phospho-Ser 795 on dynamin-I as detected by western blotting (Figure 6.13C). 

Similarly, Blebb treatment does not exert any action via regulation of phospho-Ser 
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795 on dynamin I as there was no detectable phosphorylation at this site (Figure 

6.13D). 

The fact that phosphorylation at Ser 795 can be dramatically increased by 

inhibiting a phosphatase (PP2A in this case) also suggests that there should be a 

kinase responsible for phosphorylating this site of dynamin-I under normal 

conditions. The data with various concentrations of PMA strongly suggests that 

this kinase may belong to the PKC family and may phosphorylate dynamin-I at 795 

site only under very specific conditions including when these enzymes are 

activated externally, for e.g. by the action of PMA in this study (Figure 6.13E and 

6.15). Figure 6.13E and 6.15 provide evidence that dynamin-I is phosphorylated in 

vivo following treatment with PMA. The term in vivo refers in this case to the use of 

synaptosomes which represent ‘intact’ prepraration such that PMA would activate 

intra-terminal PKCs which would then work on their intracellular substrates. This 

mode does not represent a broken lysed preparation and there is not exogenous 

PKCs being added to the system. Similar to arguments presented for OA conditions, 

it can be argued that PMA treatment will induce phosphorylation at Ser 795 

irrespective of the stimuli used such that this phosphorylation will render 

dynamin-I inactive and thus preventing it from participating in regulation of KR 

mode of exocytosis. However, as discussed earlier, PMA treatment will also 

phosphorylate myosin-II making it active under certain conditions even during 

mild stimulation (ION5C) and thus future experiments must investigate this 

correlation between dynamin-I and myosin-II phosphorylations in order to verify 

these conclusions. 

Various concentrations of PMA were also employed in this study to examine if 

phosphorylation of Ser 795 showed any concentration dependent patterns. Figure 
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6.16 demonstrates that the amount of dynamin-I phosphorylated at Ser 795 

increased with the use of increasing PMA concentrations. This suggests a direct 

correlation between the extent of PKC activation and the population of dynamin-I 

phosphorylated at Ser 795. This is consistent with previous arguments where it 

was suggested that the higher concentration of PMA (>100 µM) switched all the 

RRP vesicles to FF mode of exocytosis (section 5.3.3). But clearly with HK5C such 

high PMA concentrations can phosphorylate various substrates to override any 

contribution of myosin-II to closing the fusion pore and this could involve different 

phosphorylation sites on myosin-II itself. When a large population of dynamin-I is 

phosphorylated, it may then interact with other exocytosis regulatory pathways 

such that it can switch all the RRP to FF mode of exocytosis or at least keep the 

fusion pore open for longer than 0.5 sec such that maximal FM2-10 dye can be 

released from these vesicles. This also suggests that only a fraction of the total 

amount of dynamin-I (and probably only a single isoform/splice variant) may be 

responsible for the regulation of exocytosis mode for the RRP of SVs.  

Thus, from arguments presented in this section, it can be suggested that 

dephosphorylation of Ser 795 residue is important for the role of dynamin-I in the 

KR of RRP of SVs and that dynamin-I cannot regulate this mode of exocytosis when 

this residue is phosphorylated. However, it should be noted that HK5C stimulated 

samples during control conditions (Figure 6.13A) do not appear to contain 

phospho-ser 795 and, yet, our data suggests that dynamin-I is rendered inactive by 

PKC activation during HK5C stimulation without the external application of PMA 

(chapter 4 and 5) and therefore, one would expect Ser 795 phosphorylation on 

dynamin-I during HK5C stimulation of control synaptosomes. It is possible that 

only a small population of dynamin-I may be phosphorylated at Ser 795 due to a 

specific localisation and partial activation of a particular PKCs by elevated Δ[Ca2+]i 
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induced by HK5C and this may not be detected by the techniques employed. 

Conversely, when a phosphatase is inhibited by OA or a kinase is activated by PMA, 

this may affect a larger population of dynamin-I and therefore facilitating their 

easy detection using the techniques employed here. We have already  

6.4 Conclusions 

This chapter of the thesis provides further insight into the regulation of KR mode 

of exocytosis by dynamin-I. Phosphoregulation of Ser 774 and Ser 778 of dynamin-

I is unlikely to be associated with this particular role of this protein and instead, as 

suggested by previous studies, this is probably associated with post stimulation 

endocytosis, especially CME. On the other hand, phosphoregulation of Ser 795 

residue seems important for the role of dynamin-I in regulating the fusion mode of 

RRP of SVs such that dephosphorylation at this site causes KR and its 

phosphorylation prevents dynamin-I from closing the fusion pore eventually 

leading to FF of the RRP vesicles. This has never been reported previously and 

identifies a potential and important physiological role for phosphorylation of Ser 

795 site of dynamin-I. The study also established that PP2A and PKC are the 

phosphatase and kinase responsible for the regulation of Ser 795 of dynmain-I. 

Similar studies with dynamin-II and myosin-II needs to be carried out in order to 

better understand the regulation of this process. 
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Chapter 7 

General Discussion and Conclusion
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7.1 General conclusions 

Previous studies by A. Ashton and colleague had demonstrated the existence of KR 

mode of SV exocytosis in rat cerebral cortical synaptosomes. The aim of this study 

was to identify proteins involved in this regulation of exocytosis and their 

potential phosphorylation sites for the function under discussion. The results 

presented in this study strongly support the existence of KR mode of exocytosis in 

the central nervous system and also identified various proteins, enzymes and 

phosphorylation sites implicated in this physiological process. 

It has been well established that the SV exocytosis is a Ca2+ dependent process and 

that an increase in [Ca2+]i at the active zone is required in order to drive SV 

exocytosis. The work presented in this thesis strengthens the link between Ca2+ 

and SV exocytosis by demonstrating that Δ[Ca2+]i at the active zone is not only 

required for exocytosis but can also dictate the mode of exocytosis. If an action 

potential arriving at the nerve terminal produces a Δ[Ca2+]i – at the active zone – 

that is relatively low, the RRP vesicles are likely to undergo KR fusion under the 

regulation of dynamin-I (see Figure 7.1). Dynamin-I, in this case, is likely to 

assemble in to rings around the exocytosing vesicles and can then quickly close the 

fusion pore by utilising its GTPase activity. If this Δ[Ca2+]i is also sufficient to drive 

the exocytosis of the RP, the vesicles belonging to this pool is likely to be 

exocytosed by FF as the Ca2+ would have diffused away, due to concentration 

gradient, from the active zone by the time RP starts undergoing exocytosis. There 

is general consensus that in order for the RP to release, the RRP of SVs has to have 

exocytosed. Further, there is also consensus that the RP has distinct Ca2+ 

requirements for release and those levels will occur after the initial high [Ca2+]i at 

the active zone. Therefore, the RP will release after the RRP has been exhausted. 
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More sophisticated techniques, than employed herein, would be needed to reveal if 

some RP SVs could start to exocytose before all the RRP SVs have fused. 

 
Figure 7.1: A schematic representation of exocytosis of a RRP vesicle during a 

mild stimulation (Δ[Ca2+]i less than 140 nM). (A) A RRP of SV is shown docked to 

the pre-synaptic membrane. If the changes in the average terminal [Ca2+]i  <140 

nM then (B) the SV will release the neurotransmitter through a transiently open 

fusion pore which will be closed rapidly (<0.5 sec) by dynamin-I rings assembled 

around the neck of the fusion pore. Once the pore is closed, (C) the vesicle may 

remain docked to the active zone where it can re-release following reuptake of the 

transmitter. (D) It can also move to the interior of the nerve terminal where it can 

be re-loaded, ready for next round of release. Please note that only one vesicle is 

shown for ease of presentation. The Representation is also over simplified, not true 

to scale and many other proteins involved in these processes are not 

shown/known. 
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In case where the arriving action potential produces a relatively higher Δ[Ca2+]i, 

the RRP is likely to undergo KR under the regulation of non-muscle myosin-II (see 

Figure 7.2). This is because, the higher Δ[Ca2+]i is likely to activate PKC (by yet 

unknown mechanism) which will then phosphorylate dynamin-I at Ser 795 site 

making it inactive (see chapter 5 and 6). Thus phosphorylated dynamin-I will not 

be able to close the fusion pore of exocytosing vesicles. At the same time, however, 

PKC can also phosphorylate non-muscle myosin-II making it active such that 

myosin-II – instead of dynamin-I – can now close the fusion pore of RRP vesicles 

ensuring that they undergo KR. Once the RRP has been exhausted, the RP will be 

exocytosed by FF mode as the [Ca2+]i levels at this time point will be less than the 

initial [Ca2+]i but will be sufficient to drive exocytosis by FF. It should be noted that 

even though it is argued here that the RP will undergo FF irrespective of the 

magnitude of initial Δ[Ca2+]i at the active zone, nerve terminals obtained from a 

streptozotocin treated rat cerebral cortex showed that ~50% of the RP undergoes 

KR. This is because they naturally produced a larger Δ[Ca2+]i when compared to 

that of control samples even under identical stimulation/experimental conditions 

(A. Ashton et al.’s unpublished observations). This demonstrates that RP can 

indeed undergo KR but this is likely to be restricted to a diseased condition such as 

diabetes or other neurodegenerative disorders. 

  

 
168 



 

  

Figure 7.2: A schematic representation of exocytosis of a RRP vesicle during a 

strong stimulation ([Ca2+]i more than 140 nM). (A) A RRP of SV is shown docked 

to the pre-synaptic membrane. If the depolarisation of the terminal achieves 

average Δ[Ca2+]i  >140 nM then certain PKCs are activated which will then (B1) 

phosphorylate dynamin-I at Ser 795 such that it becomes inactive and also (B2) 

phosphorylate myosin-II – at a yet unknown site – such that it is activated and it 

can now close the fusion pore independent of dynamin-I thereby causing the RRP 

to release by KR. Following the closure of the fusion pore, the recycled vesicle can 

(C) remain docked to the plasma membrane or (D) internalised thus preparing it 

for next round of release. Please note that only one vesicle is shown for ease of 

presentation. The Representation is also over simplified, not true to scale and 

many other proteins involved in these processes are not shown/known 
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The exact threshold of changes in [Ca2+]i at which the PKC will be activated is 

difficult to determine using the techniques used in this study. Ca2+ measurement 

studies suggest that if a particular stimulation event causes a change in overall 

[Ca2+]i – as opposed at the active zone alone – that is less than ~140 nM, the 

relevant PKCs will not be activated thereby allowing dynamin-I to close the fusion 

pore and causing RRP vesicles to release by KR (Figure 7.3). On the other hand, if 

this overall change is more than ~140 nM, the relevant PKCs will be activated 

which will phorphorylate dynamin-I on Ser 795 making it inactive. At the same 

time, an activated PKC isoform will phosphorylate myosin-II, at a yet unknown site, 

making it active such that it can now cause the RRP to exocytose by KR. The RRP 

can also undergo FF in cases when the changes in [Ca2+]i is very low as 

demonstrated by experiments with 4AP5C stimulation (see figure 3.6 and 3.7). The 

reported threshold value (140 nM) of Δ[Ca2+]i where the switch in protein 

dependency for KR would occur should be considered with caution as the value 

reported here represents the overall calcium concentration and the exact value can 

change depending on the working temperature and dissociation constant used 

during calculations.  

Since dynamin-I belongs to the family of dephosphins, they must be 

dephosphorylated (at Ser 795) in order for it to regulate the KR mode of 

exocytosis. Results presented in chapter 6 of this study help conclude that protein 

phosphatise 2A (PP2A) is a phophatase that keeps dynamin-I dephosphorylated at 

Ser 795 such that a pool of active dynamin-I is available for use during exocytosis 

thereby causing certain SVs to release by KR. At a higher [Ca2+]i protein kinase C 

will be activated which can now phosphorylate dynamiin-I at Ser 795 residue 

making it inactive and unable to participate in exocytosis. Thus this study, for the 

first time, identifies PP2A and PKC as phophatase and kinase of dynamin-I 
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respectively that can phospho-regulate Ser 795 residue thereby regulating 

function of dynamin-I in KR mode of exocytosis. 

 

 

Figure 7.3: A schematic representation of mechanism responsible for 

switching the protein dependency for KR. If the depolarisation of the terminal 

achieves average Δ[Ca2+]i  < 140 nM then dynamin-I continues to be active and 

participates in causing the KR of the RRP vesicles. However, if the terminal 

achieves average Δ[Ca2+]i  > 140 nM then certain PKCs are activated which will 

then phosphorylate dynamin-I at Ser 795 thereby inhibiting it. The activated PKC 

will also cause phosphorylation of myosin-II making active which can now close 

the fusion pore of the exocytosing vesicles causing them to release by KR.  
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7.2 Future directions 

The present study has contributed to our knowledge about SV exocytosis in the 

central nervous system. However, a substantial amount of work still needs to be 

undertaken in order to fully elucidate the regulation of SV exocytosis in nerve 

terminals. Some of the experiments/directions are suggested in this section that 

can be undertaken in order to add to the current knowledge and answer some of 

the questions raised by this study. 

Chapter 4 of this study demonstrated that dynamin-II is required for the expansion 

of the fusion pore of the RP vesicles and therefore causing them to release by FF. 

However, these experiments (involving dyngo) were only performed using ION5C 

stimulation (Figure 4.6). In order to ascertain that this effect is exclusively on the 

RP vesicles, the experiment needs to be repeated with 4AP5C in which case one 

would expect to see no effect of dyngo treatment on the FM2-10 dye release as 

4AP5C does not induce the release of RP vesicles. Moreover, it will also be 

important to replicate the same result, as with ION5C, with HK5C as both the 

stimuli induces the release of RP by FF mode. Moreover, experiments involving 

inhibition of calcineurin showed an increase KR of the RP (section 5.3.1). In order 

to determine if dynamin-II and calcineurin work via the same pathway it may be 

useful to perform the experiments where dyngo and Cys A are used in 

combination.  It will also be helpful to determine if the inhibition of calcineurin (by 

Cys A) affects the phosphorylation of dynamin-II at a particular residue such that 

these effects can be linked to their role in FF of the RP vesicles.  

The inhibition of calcineurin by 1 µM Cys A induced a large Δ[Ca2+]i when 

compared to that of control conditions (Figure 5.3). It has been shown, herein, that 

the mode of exocytosis depends on the [Ca2+]i achieved at the active zone and thus 
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one might argue that the increase in KR seen following Cys A treatment may be 

because of this excess [Ca2+]i and not necessarily represent a switch in the mode of 

the RP vesicles due to a change in phosphorylation of a protein directly involved in 

the mode of exocytosis (chapter 5). Although, arguments and evidence has been 

provided to rule out the relation to excess [Ca2+]i, it may be beneficial to inhibit 

calcineurin using a different inhibitor (like FK506) that may not induce this excess 

increase in [Ca2+]i. It should be note that increasing the [Ca2+]i by employing 

ION10C (i.e. 10 mM Ca2+ not 5 mM) does actually cause a switch of mode of the RP 

so that some undergoes KR (Ashton et al., 2011). Clearly, more work needs to be 

done to investigate the role of high [Ca2+]i on the RP mode of exocytosis and its 

relationship to changes in the properties of dynamin(s) (both I and II). 

The two proteins, dynamin-I and myosin-II, are regulated by activation of PKCs 

during elevated [Ca2+]i. However, it is likely that these proteins are regulated by a 

specific PKC isoform and this may be same or different for the two proteins. Thus it 

will be of great advantage to identify the specific PKC isoform involved in this 

process. This can be achieved by employing various PKC isoform specific inhibitors 

available in the market. Lastly, similar to dynamin-I, phosphorylation studies 

needs to be undertaken to determine the phosphorylation sites of dynamin-II and 

myosin-II for their functions discussed in this thesis. 

Majority of the experiments suggested here have been recently performed in A. 

Ashton’s laboratory and the results obtained strongly support the conclusions and 

interpretations drawn in this thesis.  
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A.1 List of Materials 

Chemicals used in this study are listed below in the format: general name (short 

form used in this study, if any); chemical name/formula; name of the company; 

product/catalogue number. 

• (S)-(-)-Blebbistatin (Blebb); C18H16N2O2; Tocris Bioscience, UK; 1852 

• 4-Aminopyridine (4AP); C5H6N2; Sigma-Aldrich, UK; A0152 

• Advasep-7; C42H70-nO35(C4H6SO3Na)n, avg. n = 6.5; Biotium Inc., USA; 70029 

or Sigma-Aldrich, UK; A3723 

• β-Nicotinamide adenine dinucleotide phosphate hydrate (NADP+); 

C21H28N7O17P3 • xH2O; Sigma-Aldrich, UK; N5755 

• Bafilomycin A1 (BAF); C35H58O9; Tocris Bioscience, UK; 1334 

• Bromophenol Blue (BPB); Sigma-Aldrich, UK; B0126 

• Cyclosporin A (Cys A); C62H111N11O12; Tocris Bioscience, UK; 1101 

• Dynasore (DYN); C18H14N2O4 • xH2O; Sigma-Aldrich, UK; D7693 

• Dyngo-4aTM; C18H14N2O5; AbcamBiochemicals, UK; Asc-689 

• Dynole-34-2TM; C25H36N4O; AbcamBiochemicals, UK; Asc-463 

• FM2-10 dye; C26H41Br2N3; Life technologies, UK; T7508 

• Fura-2, AM; C44H47N3O24; Life technologies, UK; F1221 

• Go 6983; C26H26N4O3; Tocris Bioscience, UK; 2285 

• Ionomycin (ION); C41H70O9•Ca; Tocris Bioscience, UK; 1704 

• L-Glutamic acid; C5H9NO4; Sigma-Aldrich, UK; G1251 

• L-Glutamic Dehydrogenase, Type II (GLDH2); EC number: 1.4.1.3; Sigma-

Aldrich, UK; G2626 

• Okadaic acid (OA); C44H68O13; Tocris Bioscience, UK; 1136 
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• Phorbol 12-myristate 13-acetate (PMA); C36H56O8; Tocris Bioscience, UK; 

1201 

• Pitstop 2TM (PIT 2); C20H13BrN2O3S2; AbcamBiochemicals, UK; Asc-687 

Important materials and chemicals used for the western blot technique were 

sourced from Life technologies, UK unless otherwise stated and are listed below in 

the format: name; name of the company (if different from life technologies); 

product/catalogue number. 

• Bradford reagent; Sigma-Aldrich, UK; B6916 

• iBlot® Transfer Stack, PVDF, regular size; IB4010-01 

• MagicMark™ XP Western Protein Standard; LC5602 

• Novex® Sharp Unstained Protein Standard; LC5801 

• NuPAGE® antioxidant; NP0005 

• NuPAGE® LDS Sample Buffer; NP0008 

• NuPAGE® MES SDS Running Buffer (20X); NP0002 

• NuPAGE®Novex® 4-12% Bis-Tris Midi Protein Gels, 12+2 well; WG1401BOX 

• NuPAGE® sample reducing agent (dithiothreitol); NP0009 

• Restore™ Plus Western Blot Stripping Buffer; Thermo scientific, USA; 46430 

• SimplyBlue™ SafeStain; LC6060 

• StartingBlock Blocking Buffer; Thermo scientific, USA; 37543 

• SuperSignal™ West Dura Chemiluminescent Substrate; Thermo scientific, 

USA; 34076 

Additionally, following antibodies were used and are presented in the format: 

name of the antibody; source and type; product/catalogue number. Please note 

that all the antibodies were sourced from Santa Cruz biotechnology, Inc., USA. 
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• Anti-goat IgG-HRP; donkey; sc-2020 

• Anti-mouse IgG-HRP; goat; sc-2005 

• Anti-sheep IgG-HRP; donkey; sc-2473 

• Dynamin I Antibody (4E67); mouse monoclonal IgG; sc-58260 

• p-Dynamin I Antibody (Ser 774); sheep polyclonal IgG; sc-135689 

• p-Dynamin I Antibody (Ser 778); sheep polyclonal IgG; sc-135690 

• p-Dynamin I Antibody (Ser 795); goat polyclonal IgG; sc-12937 

Certain buffers and stimulation solutions were prepared in the laboratory using 

common reagents (sourced from Sigma-Aldrich, USA) and are listed below: 

• Homogenization buffer: 320 mM Sucrose, 10 mM Hepes 

• Physiological buffer (L0): 125 mM NaCl, 5 mM KCl, 1 mM MgCl2, 20 mM 

Hepes and 10 mM glucose; pH 7.4 

• Stock HK5C: 130 mM KCl, 1 mM MgCl2, 20 mM Hepes, 10 mM glucose and 

25 mM CaCl2; pH 7.4. This was diluted fivefold when added to 

synaptosomes so the final concentration of K+ was 30 mM and for [Ca2+]e it 

was 5 mM. 

• 4AP5C: L0, 5 mM 4-Aminopyridine and 25 mM CaCl2; pH 7.4. Final 4AP 

concentration that the synaptosomes were exposed to was 1 mM (plus 5 

mM [Ca2+]e). 

• ION5C: L0, 25 µM Ionomycin and 25 mM CaCl2; pH 7.4. Please note that 25 

µM Ionomycin is never added to the remaining buffer and is instead added 

to the samples simultaneously with the remaining buffer. This was 

necessary as it was found that Ionomycin lost its activity in the buffer 

solution (aqueous) after few minutes of buffer preparation. Final ION 
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concentration that the synaptosomes were exposed to was 5 µM (plus 5 mM 

[Ca2+]e). 

• Wash buffer (TBST): 25 mM 2-Amino-2-(hydroxymethyl)-1,3-propanediol 

(Trizma® base), 0.15 M NaCl, pH 7.2. This buffer is called Tris-buffered 

saline (TBS). To this TBS, 0.05% of Tween-20 (final concentration) was 

freshly added to make it TBST and was used as a washing buffer for all the 

immuno blots. 
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A.2 Calculations for Biochemical Assays 

All the data obtained from Glu, FM2-10 and Fura 2-am measurement assays 

required multiple calculation steps before it can presented, as herein of chapters 3 

to 5. The step by step guide for these calculations is outlined in appendix 6C 

(p121), appendix 6D (p129) and appendix 6E (p155) of MSc thesis authored by 

Pooja M Babar (2010). This information is very extensive and represents 46 pages 

of text. Thus it was deemed reasonable to omit this information and instead cite 

the work by Barbar (2010).  

Please note that this information can also be obtained by e-mailing the author 

(Bhuva, DA) on address: bhuvadilip@gmail.com 
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A.3 Sample size and p values 

Table A.3.1: A table of information showing sample size and p values for data presented in chapter 4 of this thesis. 

Figure 
Number 

Condition- 

#1 

 Condition-
#2 

p value n (sample size) Assay type Stimulus 
used 

n (#1) n (#2) 

4.1A DYN vs Con Not req 11 12 Glu release HK5C 

4.1B DYN vs Con p>0.05 10 12 Glu release ION5C 

4.1C DYN vs Con p>0.05 12 11 Glu release 4AP5C 

4.2A DYN vs Con p=0.508 40 32 FM release HK5C 

4.2B DYN vs Con p=0.014 36 32 FM release ION5C 

4.2C DYN vs Con p=0.034 30 30 FM release 4AP5C 

4.3A DYN vs Con p>0.05 11 9 [Ca2+]i achieved HK5C 

4.3B DYN vs Con p>0.05 6 9 [Ca2+]i achieved ION5C 

4.3C DYN vs Con p>0.05 12 12 [Ca2+]i achieved 4AP5C 

4.4A PIT 2 vs Con p>0.05 22 17 Glu release ION5C 
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DYN+PIT 2 vs PIT 2 p>0.05 14 22 Glu release ION5C 

4.4B PIT 2 vs Con p=0.6806 38 59 FM release ION5C 

DYN+PIT 2 vs Con p=0.0254 40 59 FM release ION5C 

4.5A 20µM dynole vs Con p>0.05 7 8 Glu release ION5C 

4.5B 10µM dynole vs Con p<0.0466 (at 29 s) 13 20 FM release ION5C 

20µM dynole vs Con p>0.05 19 20 FM release ION5C 

50µM dynole vs Con p>0.05 15 20 FM release ION5C 

4.6A 50µM dyngo vs Con p>0.05 7 7 Glu release ION5C 

4.6B 20µM dyngo vs Con p>0.05 16 22 FM release ION5C 

50µM dyngo vs Con p=0.0798 (at 33.3 s); 
p=0.1183 (at 120 s) 

24 22 FM release ION5C 

100µM dyngo vs Con p=0.0717(at 33.3 s); 
p=0.2364 (at 120 s) 

19 22 FM release ION5C 

4.7A Blebb vs Con p>0.05 17 16 Glu release HK5C 

4.7B Blebb vs Con p>0.05 11 24 Glu release ION5C 
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4.7C Blebb vs Con p>0.05 20 22 Glu release 4AP5C 

4.8A Blebb vs Con p=0.0001 37 32 FM release HK5C 

4.8B Blebb vs Con p=0.716 (at 20 s) 32 32 FM release ION5C 

4.8C Blebb vs Con p=0.642 (at 40 s) 48 48 FM release 4AP5C 

4.10A Blebb vs Con p>0.05 18 19 Glu release HK1.2C 

4.10B Blebb vs Con p>0.05 15 17 Glu release HK0.3C 

4.10C Blebb vs Con p>0.05 11 15 Glu release HK0.15C 
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Table A.3.2: A table of information showing sample size and p values for data presented in chapter 5 of this thesis. 

Figure 

# 

Condition- 

#1 

 Condition- 

#2 

p value n (total) Assay Stim 

n (#1) n (#2) 

5.1A Cys A vs Con p>0.05 18 18 Glu release HK5C 

5.1B Cys A vs Con p>0.05 18 17 Glu release ION5C 

5.1C Cys A vs Con p>0.05 23 24 Glu release 4AP5C 

5.2A Cys A vs Con p=0.025 (at 20s) 15 17 FM release HK5C 

5.2B Cys A vs Con p=0.023 (at 20s) 16 24 FM release ION5C 

5.2C Cys A vs Con p=0.985 (at 30s) 20 13 FM release 4AP5C 

5.3A Cys A vs Con p<0.001 16 16 [Ca2+]i achieved HK5C 

5.3B Cys A vs Con p=0.044 (at 20s) 10 13 [Ca2+]i achieved ION5C 

5.3C Cys A vs Con p=0.0490 18 9 [Ca2+]i achieved 4AP5C 

5.4A CysA+Blebb vs Con p>0.05 23 22 Glu release HK5C 
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5.4B Cys A+DYN vs Con p>0.05 13 37 Glu release ION5C 

5.4C Cys A+DYN vs Con p>0.05 12 26 Glu release 4AP5C 

5.5A Blebb+Cys A vs Blebb p<0.05 25 37 FM release HK5C 

Blebb+Cys A vs Con p=0.029 (at 66 s) - 32 FM release HK5C 

5.5B DYN+Cys A vs DYN p<0.05 29 36 FM release ION5C 

DYN+Cys A vs Con p=0.0259 (at 12.4 s) - 32 FM release ION5C 

5.5C DYN+Cys A vs DYN p>0.05 21 45 FM release 4AP5C 

DYN+Cys A vs Con p<0.038 (at 16 s) - 30 FM release 4AP5C 

5.6A Go6983 vs Con p>0.05 15 20 Glu release HK5C 

5.6B Go6983+DYN vs Con p>0.05 19 22 Glu release HK5C 

5.6C Go6983+Blebb vs Con p>0.05 24 22 Glu release HK5C 

5.7A Go6983 vs Con  p=0.6263 22 44 FM release HK5C 

5.7B Go6983+DYN vs DYN p=0.1329 13 16 FM release HK5C 
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Go6983+DYN vs Con p<0.0387 (at 16 s) 13 31 FM release HK5C 

DYN vs Con p=0.4479 16 31 FM release HK5C 

5.7C Go6983+Blebb vs Blebb p=0.0090 22 17 FM release HK5C 

Go6983+Blebb vs Con p=0.7008 22 18 FM release HK5C 

Blebb vs Con p=0.0130 17 18 FM release HK5C 

5.8A 300 nM PMA+DYN vs DYN p=0.2594 6 18 FM release ION5C 

300 nM PMA vs Con  p=0.2182 12 24 FM release ION5C 

DYN vs Con p=0.1059 18 24 FM release ION5C 

5.8B 200 nM PMA vs Con p=0.1684 12 24 FM release ION5C 

200 nM PMA+DYN vs DYN p= 0.4072 7 18 FM release ION5C 

DYN vs Con p=0.1059 18 24 FM release ION5C 

5.8C 100 nM PMA+DYN vs DYN p=0.2738 6 18 FM release ION5C 

100nM PMA vs Con p=0.9292  12 24 FM release ION5C 
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DYN vs Con p=0.1059 18 24 FM release ION5C 

5.9A  40nM PMA vs Con p>0.05 11 13 Glu release ION5C 

40nM PMA+Blebb vs Con p>0.05 14 13 Glu release ION5C 

40nM PMA+DYN vs Con p>0.05 13 13 Glu release ION5C 

5.9B 40nM PMA vs Con p=0.7209 24 26 FM release ION5C 

40nM PMA+DYN vs DYN  p=0.8271 24 32 FM release ION5C 

DYN vs Con p=0.0263 32 26 FM release ION5C 

5.9C 40nM PMA+Blebb vs Blebb p=0.0072 24 32 FM release ION5C 

Con vs Blebb p=0.2899 26 32 FM release ION5C 

 
202 



A.4 Okadaic acid (OA) experiments 

  

Figure A.4: OA treatment causes FF of all the releasable SVs. A, B and C 

represent glutamate data indicating the the OA treatment, inhibition of PP2A and 

PP1, does not interfere with the total amount of Glu released. However, it increases 

the FM2-10 dye released during (D) HK5C, (E), ION5C and (F) 4AP5C stimulations. 

The data in the insent represent the total FM2-10 dye content at the start of the 

experiment indicating that OA treatment does not interfere with the FM2-10 dye 

loading. For FM2-10 de data, when the control values are subtracted from the OA 

value, the difference represents the SVs that were previously undergoing KR but 

are now undergoing FF due to treatment with OA. When this was done for data 

points until 2 sec (Figure 3.7A and C), it reveals the RRP pool that was undergoing 

KR under control conditions. When the same procedure is repeated for data after 2 

sec (once the values at 2 sec are mormalised to zero), it reveals that no vesicles 

were undergoing KR during control condition (Figure 3.7B).   
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A.5 FM2-10 dye content at the start of measurement. 

For the interpretations drawn in this thesis to be true, it is necessary to establish 

that any of the drug treatments themselves do not cause any discripancies in the 

FM2-10 dye loading otherwise one cannot compare the FM and Glu release data. 

For this reason, the FM2-10 dye fluorescence value at time zero (just prior to 

stimulation) of a drug treated sample was compared to control. For all the drugs 

used in this study, none of the drugs interfered with the FM2-10 dye loading and 

few representative data are shown below. They were produced by averaging the 

fluorescence value at time zero before normalisation done during the subsequent 

calculations. The error bars represent standard error of means. 
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A.6 Full-sized immuno blots 

For ease of presentation, Instead of full immuno blots, only the region of the blot 

that contained the band of interest (dynamin-I) is shown throughout this thesis. 

However, the full sized blots can be obtained by e-mailing the author on e-mail 

address: bhuvadilip@gmail.com  
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A.7 List of publications arising from this work 

Conference proceedings 

• Ashton AC, Bhuva DA, Singh DS, & Sihra TS (2013). The role of dynamin 
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