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Abstract: 

As the nanocomposite properties dramatically depend on the dispersion state of the filler in 

the matrix, it is essential to develop technical methods to characterise the nanodispersion both 

qualitatively and quantitatively. In this study, complete characterisations of the 

nanodispersion of organomodified clays in polyamide 6, polypropylene and poly(butylene 

terephtalate) are presented and discussed using different analytical tools including X-ray 

diffraction and transmission electron spectroscopy and more original and quantitative 

measurements like rheology and solid state NMR measurements.      

Key words: Nanocomposite, dispersion, X-ray diffraction, TEM, solid state NMR, 

Rheology,  
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1. Introduction  

Polypropylene, polyamide 6 and poly(butylene terephtalate) are three thermoplastics 

of the greatest interest on an industrial point of view and this for different reasons. With 

around 18 % of the world plastic consumption, polypropylene is one of the most used 

commodity polymers representing  a huge market. As engineering polymers, polyamide 6 and 

poly(butylene terephtalate) only represents few percents of the global polymer consumption 

but their high added value constitutes the driving force promoting their industrial 

development.  

With the emergence of the nanotechnology, these polymers have widened their 

respective application fields. Indeed, the use of nanoparticules in polymer is an effective way 

to improve some properties such as mechanical1,2,3,4, barrier5,6, thermal7 and in some cases 

fire8,9 properties.  

Among the different nanoparticules that have proved their efficiency, lamellar 

nanoclays and particularly montmorillonite (MMT) have a leading position. This is probably 

due to the large range of organomodified MMT commercially available as well as their 

moderated cost compared with other still expansive particles such as POSS and carbon 

nanotubes. In our study, we will focus on silicate layered nanocomposites.  

If lamellar clay nanocomposites exhibit good properties, their achievement is closely 

linked to the quality of dispersion of the nanoparticles in the polymer. Two difficulties appear 

at the preparation stage: the control of processing conditions in order to reach nanodispersion 

and how to accurately characterise the dispersion state achieved.  

Different synthesis pathways have been envisaged to synthesize a nanocomposite: 

intercalation of polymer or prepolymer from solution, in situ intercalative polymerisation or 

melt intercalation. Industrially the melt intercalation also named melt blending appears to be 

the more appealing method: it is the more rapid way to produce nanocomposites, it does not 

use solvent, and contrary to the other synthesis routes it enables a continuous processing. This 

pathway is so industrially favoured and has been used in this study. However it is to notice 

that in such processing, the conditions used play a very important role10. The nature of the 

clay, the organic cation selected as surfactant to compatibilize the clay with the matrix11, the 

characteristics of the polymer such as the molecular weight12 strongly affect the dispersion of 

the clay.   



 

4 

Depending on all these factors, three main morphologies of polymer-layered silicate 

composite will be encountered (Figure 1). When the nanofillers have very few affinities with 

the polymer, the platelets remain in their initial organisation creating microparticles into the 

polymeric matrix. Then by increasing the compatibility between the two phases, it is possible 

to obtain nanocomposite morphologies. Intercalated structure will designate structure in 

which some polymer chains are inserted into the platelets but it still remains in general in an 

organisation gathering several platelets. In the ideal case, all the platelets are completely 

separated the ones from the others. This last case describes the delaminated or exfoliated 

morphology. In the majority of the polymer nanocomposites formed, a combination of 

delamination and intercalation is obtained.  

Layered clay

Monomer

PolymerPolymer

(a) Microcomposite (b) Exfoliated nanocomposite (c) Intercalated nanocomposite

 

Figure 1 : Illustration of the microcomposite morphology (a) and of exfoliated (b) and intercalated (c) 
nanocomposites. In this scheme, the nanocomposite is prepared by polymerisation from the monomer and 
the organo-modified layered silicate (the proportion of clay is exaggerated for representation reasons)    

One important issue when a clay polymer composite is formed, is then to characterise 

the dispersion obtained. The literature describes characterisation of the morphology using a 

lot of different techniques. If Transmission Electron Microscopy (TEM) and X-Ray 

Diffraction (XRD) are among the most widely used, methods such as melt Rheology, solid-

state NMR, Fourier Transformed-Infrared (FT-IR), small-angle neutron scattering (SANS), 

ultra-small-angle neutron scattering (USANS), small-angle X-ray scattering (SAXS), and 

high-resolution transmission electron microscopy (HR-TEM), atomic force microscopy 
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(AFM) are also mentioned. Each method possesses its advantages and drawbacks and 

provides a specific piece of information about the dispersion. With such a variety of tools 

available, which of these techniques have to be used to obtain the more complete and accurate 

description of the dispersion?    

The purpose of this paper is to give some keys to choose the most appropriate 

technique of characterisation. That is the reason why, the first part of this paper is devoted to 

a critical overview of the different characterisation methods based on the published literature. 

Then XRD, TEM, melt rheology and NMR measurements will be applied concomitantly to 

evaluate the dispersion achieved in PA6, PBT and PP organo-clay composites prepared by 

direct melt blending.  A discussion about the results obtained from each techniques will 

follow this complete characterisation to finally lead to some recommendations on how to 

accurately characterise nanocomposite.  

2. Methods for characterising nanodispersion  

This first part is dedicated to a critical overview of the existing characterising methods 

described in the nanocomposite literature. The aim of this part is not to give an exhaustive list 

of all available methods, but only to describe some of them and to expose their limitations.   

Imaging method 

TEM is classically used to analyse qualitatively the dispersion of polymer layered silicate 

nanocomposites (PLSN). However image analysis procedure can be used to quantify the 

dispersion from TEM pictures. Vermogen et al13 deduce different parameters which give 

detailed information and allow a very fine description of the microstructure (Figure 2). The 

average thicknesses, lengths, and aspect ratios of each class of tactoids could be measured as 

well as their relative proportions and the average distances between two adjacent tactoids.  
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Figure 2. TEM picture of PP-PPgMA-MMT. The image shows the collected data processing 
image analysis: the particle curved length (L), thickness (t), and the interparticular distance in 
the direction parallel to that of the lengths of the tactoids ( //) and perpendicular to the latter 
orientation ( )(from [13])  

A main disadvantage of the imaging methods is that a large number of pictures are necessary 

to obtain a statistical representative view of the whole sample. Moreover the procedure used 

to quantify the dispersion constitutes a heavy image analysis.  

X-Ray techniques  

X-Ray diffraction allows the measure of the interplatelets distance (d) in intercalated 

structures using the Bragg’s law:  

d

n

2
)sin(

 

where 

 

is the incident angle, n the integer and 

 

the wavelength of the incident X-Ray beam. 

The observation of the changes in the diffraction angle corresponding to the plan d001 of the 

clay enables to characterise the dispersion.  The more polymer chains are intercalated between 

the platelets, the more the layer distance d increases and so the more the diffraction angle 

 

decreases. For exfoliated samples, there is no more layer structure what causes no more 

observation of diffraction for the d001 (Table 1).   
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Table 1 : Evolution of the interlayer distance (d) according the composite morphology 

d = dclay d > dclay
No more layered 

structure

Microcomposite Intercalated 
Nanocomposite 

Exfoliated 
Nanocomposite

d = dclay d > dclay
No more layered 

structure

Microcomposite Intercalated 
Nanocomposite 

Exfoliated 
Nanocomposite

  

Misinterpretation of XRD data can be easily done. Some studies have demonstrated the 

limitation of this technique highlighting discrepancies between TEM and XRD results14, 15, 16, 

17, 18. Clay dilution, preferred orientation, peak broadening, and mixed-layered morphology 

are factors that complicate the interpretation of the XRD patterns. When mixed structures of 

composite are obtained, the basal reflexions observed does not conform the Bragg law and so 

there are uncertainties about the interlayer distance measured. Clay dilution as well as 

parameters that can induced peak broadening can lead to the disappearance of diffraction peak 

resulting in the false conclusion that exfoliation has occurred. On contrary, preferred 

orientation effects can make think that exfoliation has not occurred.  In conclusion when no 

peak is detected it can not be directly attributed to a complete exfoliation of the clay platelets 

into the polymer matrix. A disorganisation of the clay structure will also results in the 

disappearance of the peak even if the delamination is not achieved. That is the reason why in 

general, XRD analysis is not used alone in studies to deduce the nanocomposite morphology. 

TEM and XRD are often coupled to ensure the conclusion done from the separated analysis.    

Small-angle X-ray scattering (SAXS) can be used to characterize changes in the gallery height 

of the clay and monitor the morphology formation in the polymer layered silicate 

nanocomposites. SAXS data are can be presented in terms of intensity, I, as a function of q, 

the magnitude of the scattering vector. q is given by the relation:  

)sin(
4

q 

where the scattering angle is 2

 

and 

 

is the wavelength of the radiation.  

The length scale, d, corresponding to a given value of q is given by the following equation: 

q
d

2
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and the associated gallery height, h, is given by: 

h = (d - 10) Å.  

In this characterising method, two different phenomena can be observed: a reduction of the 

scattering intensity and a shift of the scattering maxima. They can be interpreted as follows: 

the reduction of the scattering intensity indicates that the clay structure becomes quite 

exfoliated by the polymer chains and the shift of the scattering maxima to lower q values 

suggests that intercalation occurs. SAXS presents the same drawbacks than XRD, that is to 

say when no peak is observed no conclusion can be made and other technique need to be 

used.  

Melt rheology: 

Melt rheology has been discussed at length as a method to characterise polymer-clay 

nanocomposites19, 20, 21. Pronounced shear thinning has been found to be a characteristic 

feature of truly nanodispersed composites. Incarnato et al22 studied rheological behaviour of 

polyamide-based nanocomposites and related their results to TEM observations. Their results 

showed evidence that the flow curve shape of the nanocomposites is associated with the 

exfoliation and intercalation level of the silicate platelets in the polymer matrix. Samples 

whose complex viscosity curve shows marked shear thinning, show more uniform dispersion 

of clay particles on micron as well as nanoscale. Hybrids showing complex viscosity curves 

with moderate deviations from pseudo-Newtonian trend show micron-scale morphology 

comprised of intercalated aggregates.  

Wagener and Reisinger23 have developed a method to quantify shear thinning of 

polymer-clay nanocomposites and used the shear thinning exponent n to compare the extent 

of delamination of platelets. This parameter is obtained from the flow curves by fitting to the 

power law expression: 

= A n 

where A is a sample specific pre-exponential factor, 

 

the apparent viscosity,  the shear rate 

and n the shear thinning coefficient. They concluded that the shear thinning exponent n is a 

semi-quantitative measure of the degree of exfoliation and delamination. However, there is no 

obvious relation between the shear thinning exponent n and the degree of delamination. The 

average number of nanoplatelets per tactoid for a given nanocomposite cannot be calculated 

from n.   
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Solid state NMR: 

The NMR methodology to assess the nanodispersion degree has been developed at the 

National Institute of Standards and Technology by VanderHart et al.24,25. It is based on proton 

longitudinal relaxation time (T1
H) measurements. The T1

H value is affected by the presence of 

clay. The structure of a clay platelet is based one octahedral alumina layer surrounded by two 

tetrahedral silicate layers. Some substitutions of octahedral Al3+ can occur in favour of Mg2+  

(non stoechiometric substitutions) or Fe3+ (stoechiometric substitutions) which is 

paramagnetic (S=5/2). The paramagnetism of this cation induced the formation of relaxation 

sinks at the surface of the clay platelets. This causes a modification of the relaxation of the 

polymer protons directly located at the interface polymer/platelets. Then the phenomenon of 

spin diffusion propagates the increase of spin relaxation to the distant protons. According to 

the level of dispersion, the number of relaxation sinks differs. The more the platelets are 

exfoliated the more relaxation sinks are created consequently the more the T1
H decreases. The 

NMR method presents the advantage to directly correlate the dispersion degree with the T1
H 

values measured. The calculation method is based on the resolution of the differential 

equations describing the phenomenon of spin diffusion. The method has been developed by 

Bourbigot et al. on polystyrene nanocomposites26. The model of calculation enables to 

quantify both the degree of separation of the platelets (factor f) and the homogeneity of the 

dispersion (factor e). Both factors are relative values, a perfectly well exfoliated samples is 

taken as reference. The relation between the factor values and the morphology of 

nanocomposite can be summarized as presented in Figure 3.   

Exfoliated Exfoliated 
NanocompositeNanocomposite

f 0

0%

1

100%

Microcomposite  
or big tactoids

Intercalated 
Nanocomposite 
or small tactoids 
(3 to 10 platelets)

50%

0,5

 

Figure 3 : relation morphology / NMR factors   
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Other methods: 

Sophisticated combination of techniques can be used to characterize the nanodispersion state. 

In a recent work27, the dispersed microstructure of the clays in the nanocomposites was 

characterized by small-angle neutron scattering (SANS), ultra-small-angle neutron scattering 

(USANS), small-angle X-ray scattering (SAXS), and high-resolution transmission electron 

microscopy (HR-TEM). The mean number of individual clay platelets per tactoid was 

predicted by fitting SANS data to the stacked-disk model and measured directly from HR-

TEM images of a large number of tactoids in each sample. SAXS peaks were not present for 

most of the synthesized nanocomposites, suggesting a high degree of clay delamination was 

achieved. The HR-TEM measured distributions of clay platelet d-spacings in tactoids 

dispersed within the nanocomposites (Figure 4).  

 

Figure 4. HR-TEM picture of highly delaminated clay/poly(dicyclopentadiene) 

nanocomposites (from 24)  

This overview has highlighted the specificity of the techniques and their limitations. TEM and 

XRD have to be used carefully. TEM which enables to have a visual appreciation of the 

dispersion has to be performed on numerous samples to ensure the representativeness of the 

observation. Imaging analyses can be done on the pictures to quantify the dispersion but the 

method is time consuming. XRD and SAXS are very useful when intercalated structures are 

obtained but the interpretation of the absence of peak can be ambiguous. Melt rheology has 

the advantage to be a semi-quantitative method enabling to compare the dispersion of 

different samples. Solid state NMR has the advantage of being a quantitative method. The 

measurements are easy and quite rapid.   
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3. Experimental 

3.1. Materials 

Table 2 summarizes the materials used in this work as well as the suppliers of the products 

and the chemical formula.   

Table 2 : materials 

Product Abbreviation

 

Supplier

 

Reference

 

Formula 

Polyamide 6 PA6 Rhodia 
Technyl 

S27 *

O

N
*n 

H

 

Polypropylene PP Basell Molpen 
HO500N 

*
*

n 

 

Polypropylene 

grafted maleic 

anhydride  

Polybond Crompton

 

Polybond 
3200  

Poly(butylene 

terephtalate) 
PBT Ticona 

Celanex 
2000-2 
natural O

O

*
*

O

n 

 

Cloisite 30B 

(organomodified

 

montmorillonite)

 

C30B 

Southern 

Clay 

Products 

Cloisite 

30B 

Organomodifier 

N
+

CH2CH2OH

CH3 T

CH2CH2OH

 

Montmorillonite  

Organomodifier 

N
+

CH3

HT

HTCH3

 

Cloisite 20A 

(organomodified

 

montmorillonite)

 

C20A 

Southern 

Clay 

Products 

Cloisite 

20A 
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3.2. Sample preparation  

The materials (Table 3) were prepared by melt blending using an American Leistritz Extruder 

Model ZSE 27. This extruder has a 27 mm co-rotating intermeshing twin screw with 10 zones 

and a length/diameter ratio of 40. The extruder design and the temperature profile are given in 

Figure 5 and Table 4 . The polymer pellets were introduced in the first zone and the nanofiller 

in the third zones with a side gravimetric feeder (screw speed 180 rpm). For all the 

formulations, both the polymer and the nanocomposite materials were prepared using this 

device with a screw speed of 200 rpm and a feed rate of 10 kg/h. The material obtained is then 

pelletized.   

Table 3 : Formulations prepared 

Formulations Polymer (wt.-%) 
Nanocomposite (wt.-%) 

(OM-MMT amounts) 

PA6 100 95 

C30B  5 

PBT 100 95 

C30B  5 

PP 93.3 88.3 

Polybond 6.7 6.7 

C20A  5 

  

Figure 5: Screw design    
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Table 4 : temperature profile for the three types of formulations  
Zone 10 

36-40D 

Zone 9 

32-36D 

Zone 8 

28-32D 

Zone 7 

24-28D 

Zone 6 

20-24D 

Zone 5 

16-20D 

Zone 4 

12-16D 

Zone 3 

8-12D 

Zone 2 

4-8D 

Zone 1 

0-4D 

PA6 250 250 250 245 245 245 240 240 240 250 

PBT 255 255 255 245 245 245 240 240 240 250 

PP 230 230 230 220 220 220 210 210 210 220 

  

3.3. Characterisation 

3.3.1. Transmission Electron spectroscopy 

All samples were ultra microtomed with a diamond knife on a Leica ultracut UCT microtome, 

at room temperature for PP, PBT samples and at cryo temperature (-120°C) for PA6 samples, 

to give sections with a nominal thickness of 70 nm. Sections were transferred to Cu grids of 

400 meshes. Bright-field TEM images of nanocomposites were obtained at 300 kV under low 

dose conditions with a Philips CM30 electron microscope, using a Gatan CCD camera. Low 

magnification images were taken at 17 000x and high-magnification images were taken at 100 

000x. 

The materials were sampled by taking several images of various magnifications over 2-3 

sections per grid to ensure that analysis was based on a representative region of the sample. 

EDX microanalysis were performed with a FEI Tecnai G2 20 transmission electron 

microscope  at 200kV.  

3.3.2. X-ray diffraction (XRD) 

XRD analyses were conducted at ambient temperature using a Philips X'Pert X-ray 

diffractometer (( (CuK ) = 1.540562 Å) in configuration 2-theta/ theta on slabs of materials. 

XRD spectra were recorded in the 1.5° - 10° 2

 

range with a step of 0.02°, a step time of 2.5s. 

The interlayer spacing d was deduced from the recorded data. 

3.3.3. Rheology  

Rheological measurements were carried out at Dynamic Analyser Rheometer RDA II from 

Rheometrics. Parallel plate geometry with a plate diameter of 25 mm was used. Thin films of 

materials of 1mm thickness were used to perform the tests. To ensure the viscoelastic region, 

linear rheological measurements were performed at a frequency range of 0.1 to 100 %. Elastic 
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complex viscosities ( *) was obtained at 240oC. The temperature control was accurate to 

within ± 1oC. Experiments were conducted under a nitrogen atmosphere in order to avoid 

oxidative degradation of the specimen. 

A schematic diagram of the rheometer in the parallel plate configuration is shown in Figure 6.   

 

Figure 6 : Schematic of rheometer in the parallel plate configuration   

3.3.4. Solid state nuclear magnetic resonance  

Deoxygenated granular samples were prepared by pumping at high vacuum for 2h at 60°C in 

5-mm o.d. glass tubes and sealing the tubes. Measurements were conducted using a Bruker 

Avance 400 spectrometer (at Larmor frequency of proton of 400MHz). T1
H recovery curves 

were then measured with the saturation-recovery sequence with direct proton observation. 

Three closely spaced 90° pulses accomplished the saturation.   

As a semi empirical approach to analysis, these saturation-recovery curves were fit to a 

two-exponential equation according to:  

M(t)=M0S (1-e(-t/T1s
H)) + M0l (1-e(-t/T1l

H)) 

where M(t) is the magnetization at time t; M0s and M0l are the magnetization of the short 

and long components, respectively, and; T1s
H and T1l

H are the proton longitudinal relaxation 

times of the short and long components, respectively. 

The equation was fitted with the commercial program TableCurve2D of Jandel Scientific 

with a standard least-squares minimization (Gaussian elimination). The accuracy of the fit 
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was evaluated by an analysis of residuals in a 95 % confidence domain. All fitted values of 

T1l
H and T1s

H had 3 and 5% standard uncertainties, respectively. Corresponding standard 

uncertainties for the two M0’s were typically less than 5 %.  

4. Results  

4.1.1. TEM analysis  

TEM pictures of the PA6 nanocomposite are presented on Error! Reference source not 

found.. These pictures show that clay platelets are individually and evenly dispersed in the 

polymeric matrix.   

  

Figure 7 : TEM pictures of the PA6 nanocomposite  

The dispersion achieved in the PBT is illustrated by the TEM pictures shown on Error! 

Reference source not found.. Tactoids of 8/10 layers in size can be observed. The distance 

between the platelets (estimated at 30 Å) confirms the intercalation suggested by XRD. 

Objects gathering a limited number of platelets are present in the material with a distance 

between the platelets which suggests that intercalation occurs.   
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Figure 8 : TEM picture of the PBT nanocomposite  

The PP material exhibits a complex structure with a few exfoliated platelets and big tactoids. 

The platelets in the tactoids only present a slight degree of intercalation.   

  

Figure 9 : TEM picture of the PP nanocomposite   

4.1.2. XRD  
Figure 10 presents XRD spectra recorded for the Cloisite 30B and the PA6 nanocomposite. 

Cloisite 30B exhibits a peak at 4.7° of 2

 

values what corresponds to a d-spacing of 18.8 Å 

(neat Cloisite 30B exhibits a d-spacing of 18.5 Å). For the prepared nanocomposite no peak is 

observed. This result suggests exfoliation of the platelets what is confirmed by the TEM 

picture where delaminated platelets are observed.  
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Figure 10: XRD spectra of C30B and PA6/C30B nanocomposite   

XRD analyses have been performed on C30B and a slab of PBT nanocomposite (Figure 11). 

The signal at 4.7° 2theta, which corresponds to the d-spacing of Cloisite 30B, is shifted to 

2.2° 2theta in the case of the nanocomposite, corresponding to an interlayer distance of 40Å. 

The increase of 21.8Å in the distance between the platelets could be attributed to the 

intercalation of polymer chains into the clay galleries. This conclusion is in agreement with 

the TEM observations.   
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Figure 11 : XRD spectra of C30B and PBT/C30B nanocomposite   

Figure 12 presents the XRD analyses of the C20A and the PP nanocomposite. C20A exhibits 

a peak at 3.6° of 2-theta values what means interplatelets distance of 24.5Å (d001=24.2Å 

according to the data sheet of the supplier). For the PP nanocomposite, a shift from 3.6° to 

3.4° 2theta of the peak corresponding to the d-spacing of C20A is observed, which means an 

increase of the d-spacing from 24.5 to 25.9 Å. According to this result, there is probably not 

much intercalation of polymer into the galleries This corroborates the poor dispersion shown 

on the TEM images where big tactoids where observed with only slight intercalation. 

2

 
= 4.7° 

d= 18.8 Å 

2

 

= 2.2° 
d=40Å 
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Figure 12: XRD spectra of C20A and PP nanocomposite    

4.1.3. Rheology  

Figure 13 presents the complex viscosity curve of PA6 materials. The steady state viscosity 

behaviour of neat PA6 shows perfect Newtonian behaviour whereas the absolute value of the 

melt viscosity of the PA6 nanocomposite sample is significantly higher than that of neat PA6, 

particularly at low shear rate. This significant increase in zero shear rate viscosity of PA6 

nanocomposite indicates that the nanostructure of the nanocomposite consists of percolated 

network superstructure of exfoliated platelets. The complex viscosity of PA6 nanocomposite 

sample however, sharply decreases with increasing frequency exhibiting pronounced shear 

thinning with a shear thinning component 

 

= -0.42. This marked shear thinning behaviour 

over whole frequency range investigated suggests higher extent of aluminosilicate exfoliation 

on nanoscale with a macroscopic preferential orientation of clay layers.   
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Figure 13 : Complex viscosity curves of PA6 and the nanocomposite versus frequency     

Figure 14 shows complex viscosity curves for PBT and the nanocomposite. Neat PBT shows 

perfect Newtonian behaviour over all the frequency range measured, giving shear thinning 

exponent 

 

= -0.02. The nanocomposite sample containing Cloisite 30B shows a non-

Newtonian behaviour in the low frequency region and pronounced shear thinning at higher 

frequencies. The shear thinning component for the nanocomposite is 

 

= -0.67. Significant 

increase in zero shear viscosity and pronounced shear thinning at low loading levels of 5 % is 

a characteristic feature of nanocomposite structure. This has been verified with XRD results 

which show significant change in d spacing of 21.2 Å and by TEM.   
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Figure 14: Complex viscosity curves for pure PBT and PBT nanocomposite  

Complex viscosity curves obtained from dynamic frequency sweep experiments for PP and 

the composite are given in Figure 15. 

Complex viscosity curve for the PP nanocomposite shows slight increase in viscosity as 

compared to neat PP over all frequencies measured. However, the complex viscosity curve of 

the nanocomposite sample does not show any shear thinning. This suggests that the nanoclay 

forms tactoids with some intercalation of polymeric chains between the platelets. The 

rheological data for the nanocomposite sample certainly does not show exfoliation or 

nanodispersion of the nanoclay. This is in agreement with the XRD results with change in d 

spacing of 1.4 Å which indicates minor separation of clay platelets but certainly not 

significant intercalation or exfoliation as expected in nanodispersed polymer-clay hybrid.  
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Figure 15: Complex viscosity curves of pure PP and the nanocomposite   

4.1.4. Solid state NMR  
T1

H values have been measured fitting the experimental data according to the protocol described in the 
described in the experimental. As an example, Figure 16 presents the saturation recovery curves of both 
PA6 and PA6/C30B materials. The values are gathered in      

Table 5. As expected, the presence of clay shortens the relaxation time in the case of PA6 and 

PBT nanocomposites because of the paramagnetically induced relaxation at the polymer–clay 

interface (from 1.67 s for pure PA6 to 0.77 s for PA6/C30B and from 2.49 s for pure PBT to 

1.32 s for PBT/C30B) what indicates that some extent of clay dispersion is achieved. The PP 

nanocomposite does not present a real decrease of the T1
H in comparison with the pure PP.   
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Figure 16: saturation-recovery curves of PA6 and PA6/C30B materials and the two-exponential fit  

The spin diffusion model has been applied to obtain a quantitative description of the 

dispersion. 

The first part (at the very earliest times) of the total spin magnetization curve is related to the 

polymer–clay interfacial area available in the matrix, or in other words, the initial slope of the 

curve is proportional to the polymer–clay interface concentration. Curves of Figure 17 show 

that the experimental magnetizations exhibit a reasonably linear dependence vs. the square 

root of the time (5 ms<t<50 ms) for the three nanocomposites   

PA6 

PA6/C30B 

Experimental data 
Two-exponential fit  
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Figure 17 : Magnetization from saturation-recovery experiment vs. the square root of the time of 
deoxygenated PP/C20A, PA6/C30B and PBT/C30B nanocomposites   

To calculate the fraction of the effective polymer–clay interfacial area, f, from the initial slopes, we need to 
slopes, we need to choose a reference sample which exhibits a fully exfoliated structure. A PS/MMT 
PS/MMT nanocomposite has been used as reference where the organo-modifier of MMT was N,N-
N,N-dimethyl-n-hexadecyl-(4-vinylbenzyl) ammonium chloride (VB16) and hereafter called PS/VB1628. 
PS/VB1628. The important parameter obtained from the reference sample is (T1

H)S, which was determined 
determined to be 2.5 ms at 400 MHz. We also stated that T1l

H is a relative indicator of the homogeneity of 
homogeneity of the distribution of the actual polymer–clay interfaces in the nanocomposite. We can 
We can compute, using our model calculation, an apparent spacing, app that matches the T1l

H obtained 
obtained from the experimental curves. We can then compare app with f, the spacing in an ideally 
ideally layered structure that has a surface area f times the amount expected from full exfoliation. Thus, 
exfoliation. Thus, we define a parameter, e= f/ app, to be a qualitative monitor of the inhomogeneity of the 
inhomogeneity of the distribution of clay where poor homogeneity would correspond to e 1 and good 
and good homogeneity would yield e=1. The values of f and e

 

are presented in      

Table 5.   
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Table 5 : NMR parameters for the characterization of the dispersion  

Materials T1
H

 
f e (%)

 

PA6 1.67   

PA6 + NC 0.77 0.81 98 

PBT 2.49   

PBT + C30B 1.32 0.50 67 

PP 0.97   

PP + C20A 0.94 0.10 44 

 

According to these results, three kinds of morphologies are obtained depending on the 

polymer used. C30B is well dispersed into the PA6 matrix: the platelets are well separated 

and the dispersion of the platelets is clearly achieved. A nanocomposite has been obtained and 

the morphology is exfoliated. The material prepared by incorporation of C30B in a PBT 

matrix presents an intermediate dispersion. The f value of 0.50 indicates the presence of 

intercalation and/or small tactoids in the material. These tactoids are quite well 

homogeneously dispersed in the matrix according to the e

 

of 67%. The nanodispersion of the 

clay in PP matrix is not achieved. The low f value suggests that big tactoids are included in 

the materials and the value of e

 

near 50 % shows that the homogeneity of the dispersion of the 

tactoids is medium.  

5. Discussion 
Three composites based on polymers and nanoclays have been prepared by melt blending and 

then analysed by XRD, melt rheology and NMR measurements and TEM. Different levels of 

dispersion have been achieved and confirm unambiguously by the four techniques.  

The dispersion of Cloisite 30B in the nanocomposite based on PA6 has been fully 

investigated. The X-Ray diffraction analysis has highlighted the disappearance of the lamellar 

structure of the clay leading to the assumption that an exfoliated morphology was probably 

achieved. Then the use of melt rheology has confirmed this result. Shear thinning, especially 

at low frequencies is observed revealing a pronounced intercalation of the clay. NMR 

measurements are in agreement with the two previous analyses but as a bonus quantified the 
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nanodispersion via its two parameters f and . A shortened spin lattice relaxation time is 

measured in presence of clay. The quantification indicates homogeneity of the repartition of 

the clay of 98 % and a very high level of platelets separation. The TEM pictures taken for this 

sample show the exfoliation of the clay. 

Concerning the nanocomposite based on PBT and C30B, the three analyses are consistent 

with the conclusion that an intercalated morphology is obtained. The d-spacing is increased of 

21.2Å, shear thinning is observed. This is confirmed by the NMR results and TEM pictures. 

Eventually, for the materials based on polypropylene, the three techniques show that the 

nanodispersion of the clay is not achieved even if a compatibilizer (polybond) was used. A 

slight increase of d-spacing is recorded (only 1.4°). The melt rheology properties of the 

materials are not those expected for a nanocomposite (no shear thinning). Finally the NMR 

measurements and TEM clearly confirm the poor dispersion.  

Moreover this study expands the application field of the NMR method to define the 

morphology of nanocomposites to two other polymeric matrices (PP and PBT) and the 

confrontation with the other tests validates unambiguously the results.   

6. Conclusion 
Overview of the literature and investigation of the methods to characterize the 

dispersion in polymer nanocomposites done in this work permit us to make recommendations 

to completely investigate the nanodispersion. . Their advantages and weaknesses have been 

reminded and experimentally tested on three nanocomposites. TEM has been used to 

qualitatively characterise the dispersion. It is a very effective method for such analysis and it 

can even be quantitative thanks to image analyses but its major drawback lies in the scale of 

the analysis. A picture is not representative of the whole sample and many pictures have to be 

analysed to mirror the global repartition of the clay. So it remains a very time consuming 

method. XRD is particularly adapted to the study of intercalated morphology of 

nanocomposite since the distance between two platelets can be calculated. The limitation of 

this technique appears when no peak is detected. In this case no direct conclusion can be done 

and the result has to be confirmed using a second characterising method. Melt rheology and 

solid state NMR are bulk analyses. During the measurement the sample is representative of 

the material. Rheology appears to be simple to realize and the results are rapidly obtained. 

Moreover a classification of the sample according to the dispersion state can be established. 

NMR is also a quite rapid and easy method and overall it is quantitative measurements.  
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