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We investigate signatures of electronic correlations in the narrow-gap semiconductor FeGa3 by means of
electrical resistivity and thermodynamic measurements performed on single crystals of FeGa3, Fe1−xMnxGa3,
and FeGa3−yZny , complemented by a study of the 4d analog material RuGa3. We find that the inclusion of
sizable amounts of Mn and Zn dopants into FeGa3 does not induce an insulator-to-metal transition. Our study
indicates that both substitution of Zn onto the Ga site and replacement of Fe by Mn introduces states into the
semiconducting gap that remain localized even at highest doping levels. Most importantly, using neutron powder
diffraction measurements, we establish that FeGa3 orders magnetically above room temperature in a complex
structure, which is almost unaffected by the doping with Mn and Zn. Using realistic many-body calculations
within the framework of dynamical mean field theory (DMFT), we argue that while the iron atoms in FeGa3

are dominantly in an S = 1 state, there are strong charge and spin fluctuations on short-time scales, which
are independent of temperature. Further, the low magnitude of local contributions to the spin susceptibility
advocates an itinerant mechanism for the spin response in FeGa3. Our joint experimental and theoretical
investigations classify FeGa3 as a correlated band insulator with only small dynamical correlation effects, in
which nonlocal exchange interactions are responsible for the spin gap of 0.4 eV and the antiferromagnetic
order. We show that hole doping of FeGa3 leads, within DMFT, to a notable strengthening of many-body
renormalizations.

DOI: 10.1103/PhysRevB.89.195102 PACS number(s): 75.50.Pp, 72.20.−i, 72.80.Ga, 71.20.−b

I. INTRODUCTION

The role of electron-electron correlation effects in
narrow-gap d-electron semiconductors has been a subject of
extensive study for over two decades [1–37]. For archetypal
compounds of this family, FeSi and FeSb2, an intriguing
crossover was observed from a nonmagnetic semiconductor
at low temperatures to a paramagnetic metal with a Curie-
Weiss–type magnetic susceptibility at high temperatures that
are, however, still small relative to the gap energy [1–3].
Furthermore, when passing this crossover, optical spectral
weight that is suppressed upon cooling due to the opening
of the gap is recovered only at energies that are very high with
respect to the charge gap. These distinct similarities of FeSi
and FeSb2 to heavy-fermion Kondo insulators [38] in both
charge and spin degrees of freedom have caused great interest
in this class of materials.

Models that were proposed to explain the unusual be-
haviors of FeSi and FeSb2 include a nearly magnetic semi-
conductor scenario based on a spin fluctuation theory of
itinerant electrons [4–6] and, alternatively, a renormalization
of the electronic structure mediated by a strong electron-
phonon coupling [7]. Recent studies tend to treat FeSi and
FeSb2 as correlated band insulators [8–15]. Unlike conven-
tional semiconductors, the metallization of correlated band
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insulators is believed to be caused by the emergence of
incoherent states in the gap, accompanied by a massive
reorganization of the spin excitation spectrum [10]. For FeSi,
this description led to a coherence-incoherence scenario in
which the temperature-induced metallization is associated
with the unlocking of fluctuating iron moments that are
almost temperature independent on short-time scales [10].
It remains to be seen whether the latter paradigm is appli-
cable to other compounds, motivating these investigations
of FeGa3.

Early reports on FeGa3 classify the compound as a
diamagnetic semiconductor with a narrow gap of 0.4–
0.5 eV [31,32,39–42]. The magnetic susceptibility increases
strongly at temperatures above ∼500 K [39], suggestive of
an approaching crossover to a paramagnetic metallic state.
Electronic band-structure calculations within the local density
approximation (LDA) find a gap of 0.4 eV in the ground
state that is produced by the hybridization of Fe 3d states
with p states of Ga [31,33,36,41], in good agreement with
experimental results [31,32]. However, an angle-resolved
photoemission spectroscopy (ARPES) study disclosed dif-
ferences between the measured electronic dispersions and
those obtained in the LDA calculations [31], suggesting a
band narrowing due to electronic correlations. With these
findings, FeGa3 is an appealing compound for studying the
consequences of electron-electron correlation effects in a
d-electron semiconductor, in which the band gap is about one
order of magnitude larger than in FeSi [17] and FeSb2 [2,3].

Similar to those latter compounds, the presence of narrow
iron 3d states near the Fermi level raises the question of
whether there are local Fe moments and/or magnetic order in
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FeGa3. So far, there is no consensus in either experimental
or theoretical studies as to the overall magnetic character
of FeGa3 [31,33,36,43–45]. LSDA+U electronic-structure
calculations find the existence of local Fe moments in FeGa3,
independent of which double-counting scheme is used, with an
antiferromagnetic order being lowest in energy [33]. Further,
the size of the band gap obtained assuming moderate values
of the onsite Coulomb interaction for the Fe 3d states U ∼
2 eV coincides with experimental results [33]. However, a
nonmagnetic state is stabilized for U � 1.5 eV and even
for larger values of U if screening effects are included in
the LSDA+U formalism via a Yukawa ansatz [36]. On the
experimental side, a recent muon spin rotation study detected
spectroscopic features characteristic of electron confinement
into spin polarons [44]. Formation of spin polarons requires
the existence of Fe moments, whereas a 57Fe Mössbauer study
did not show the presence of an internal magnetic field at the
Fe site, indicating a nonmagnetic state of Fe [45].

In this work, we address the magnetic properties of FeGa3

using neutron powder diffraction experiments. The diffraction
patterns reveal the presence of ordered Fe moments, featuring a
complex room-temperature magnetic structure. We performed
thermodynamic and electrical resistivity measurements on
single crystals of FeGa3 and of its isostructural homolog
RuGa3. A comparative study of the magnetic properties and
the electrical resistivities of these compounds allows us to
separate the contributions originating from strongly correlated
3d electrons. Analysis of the specific heat of FeGa3 gives us
insight into the vibrational properties of Fe and Ga sublattices.
The experimental investigation is complemented by electronic-
structure calculations based on dynamical mean field theory
(DMFT) aimed at exploring the charge and spin states of iron
in FeGa3 and effects of many-body renormalizations.

A characteristic feature of correlated insulators is a strong
suppression of the band gap by doping, accompanied by large
enhancements of the electronic specific-heat coefficient and
magnetization [19,20,23,24]. Furthermore, weak doping often
results in a magnetic instability [19,20,24,25]. For FeGa3,
electron-type doping induces a crossover to a correlated
metallic state at x ≈ 0.05 and y ≈ 0.006 in Fe1−xCoxGa3 [34]
and FeGa3−yGey [35], respectively. Interestingly, further
doping with Ge in FeGa3−yGey leads to a ferromagnetic
quantum critical point at x ≈ 0.016–0.05 [35,37], whereas for
Fe0.5Co0.5Ga3 nuclear spin-lattice relaxation measurements
revealed a very fast relaxation with temperature dependence
1/T1 ∝ T 1/2 being a unique feature of weakly and nearly
antiferromagnetic metals [46]. A recent computational study
suggested the formation of an itinerant ferromagnetic state
with half-metallic properties in FeGa3 in case of doping with
both electrons and holes [43]. Motivated by these results,
we dope FeGa3 with holes on both Fe and Ga sites. We
choose Mn and Zn as dopants because they lie in the periodic
table next to iron and gallium, respectively, and have one
less valence electron, corresponding to hole doping. We
investigate the evolution in the thermodynamic and transport
properties of single crystals of Fe1−xMnxGa3 and FeGa3−yZny

by means of magnetization, specific heat, electrical resistivity,
and neutron powder diffraction measurements. We interpret
the experimental results in the context of electronic-structure
calculations based on DMFT.

II. METHODS

A. Experiment1

Single crystals of FeGa3 and RuGa3, as well as the series
Fe1−xMnxGa3 (0 < x < 0.12) and FeGa3−yZny (0 < y <

0.06), were grown from gallium flux. Mixtures of high-purity
elements in the ratio Fe:Ga = 1:6.7–11.5, Ru:Ga = 1:15.7,
Fe:Mn:Ga = (1 − xnom):xnom:8.7–9.3 (0 � xnom < 70%) or
Fe:Zn:Ga = 0.066:xnom:(1 − xnom) (0 � xnom < 28.3%) were
placed in Al2O3 crucibles and sealed in quartz ampoules
under a low pressure of ∼200 mbar of Ar gas. The ampoules
were heated up to 1050 ◦C and then slowly (∼3 ◦C per hour)
cooled down to 650 ◦C in case of undoped FeGa3, RuGa3,
and Zn-doped FeGa3, and to 550 ◦C for Mn-doped FeGa3, at
which point the molten flux was separated from the crystals by
spinning in a centrifuge. The quartz tubes were cracked only
after cooling down to room temperature to prevent oxidation
of crystals. The remaining flux was removed from crystal faces
mechanically using latex sheets.

The microstructures of crystals were examined optically
and with a scanning electron microscope (LEO/550) equipped
with a Robinson backscatter detector. Chemical composition
was determined by means of energy dispersive x-ray spec-
troscopy (EDXS) studies performed at several points across
a crystal surface, based on integrated intensities of the FeK ,
MnK , RuL, and GaL x-ray lines. The average composition for
crystals of FeGa3 (Fe0.97(1)Ga3.03(1)) was taken as a standard to
calculate the compositions of Mn- and Zn-doped crystals.

The measured concentrations of the dopants (xm) increase
gradually with the nominal doping level, and depend to some
extent on the Fe:Ga ratio (Fig. 1). There is no indication for
a limit of solubility of Mn or Zn in FeGa3, although we were
not able to grow crystals via this approach with x � 0.12 and
y � 0.06. The compositions discussed here always refer to the
measured doping levels.

1Certain commercial equipment, instruments, or materials are
identified in this document. Such identification does not imply rec-
ommendation or endorsement by the National Institute of Standards
and Technology nor does it imply that the products identified are
necessarily the best available for the purpose.
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FIG. 1. (Color online) The relation between actual (xm) and
nominal xnom doping levels in Fe1−xMnxGa3 (black circles) and
FeGa3−yZny (red diamonds). Error bars indicate one standard
deviation of the measured xm values.
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FIG. 2. (Color online) Lattice parameters a and c as functions
of actual doping level (x) for Fe1−xMnxGa3 (black circles) and
FeGa3−yZny (red diamonds). Dashed lines are guides for the eye.

Structural characterization at room temperature was carried
out on powdered crystals using a Bruker D-8 advance diffrac-
tometer using Cu Kα radiation. Refinements of the recorded
diffraction patterns were performed using the JANA2006
program [47]. The x-ray powder diffraction measurements
confirmed that FeGa3 and RuGa3 form in a tetragonal structure
with space group P 42/mnm (#136) and lattice parameters that
are in agreement with previous reports [32,41,48]. Doping
of FeGa3 with Mn leads to a monotonic increase in lattice
parameter c with increasing x, following Vegard’s law (Fig. 2).
For doping with Zn, lattice parameters vary only slightly, in
line with a recent report on polycrystalline samples [49]. X-ray
powder diffraction patterns of Fe1−xMnxGa3 (0 < x < 0.12)
and FeGa3−yZny (0 < y < 0.06) are all consistent with the
FeGa3-type structure. No evidence for the presence of an
impurity phase or for phase separation in the single crystals
was found, apart from trace inclusions of gallium flux.

The magnetization studies in the temperature range between
1.8 and 400 K were carried out in a Quantum Design Magnetic
Properties Measurement System (MPMS). At temperatures
between 400 and 900 K, the magnetization was studied
using the Vibrating Sample Magnetometer (VSM) option of
a Quantum Design Physical Property Measurement System
(PPMS). The heat capacity was determined by the relaxation
method at temperatures between 0.44 and 300 K using the
PPMS. Both ac and dc electrical resistivity measurements
were performed in the same system with a standard four–probe
setup, where electrical contacts were made using silver-filled
epoxy.

Neutron diffraction was measured on ∼6-g powders of
FeGa3 and Fe0.95Mn0.05Ga3 obtained by triturating single
crystals. The diffraction measurements were carried out at
temperatures ranging from 1.5 to 300 K using the High
Resolution Powder Diffractometer BT–1 of the NIST Center
for Neutron Research, with the Ge(311) monochromator

giving neutrons with wavelength λ = 2.079 Å. The diffraction
patterns were remeasured in a different cryostat to verify that
all the observed diffraction peaks originate with the sample.
The Rietveld refinement of the nuclear structure was done with
the program FULLPROF [50].

B. Computation

The combination of dynamical mean field theory (DMFT)
and density functional theory (DFT) in the local density
approximation (LDA) was used to compute spectral,
magnetic, and transport properties of pure and hole-doped
FeGa3. For the DFT part, we employed WIEN2K [51].
The DMFT [52] impurity problem was solved using a
hybridization expansion continuous time quantum Monte
Carlo (CTQMC) method [53,54]. We use a projection-based
DFT+DMFT setup with full charge self-consistency [55].
For FeGa3, we use a Hubbard interaction U = 5.0 eV and
a Hund’s rule coupling J = 0.7 eV for the 3d states of iron.
These values were found to be appropriate for iron–based
compounds [10,56]. For the 4d-electron compound RuGa3,
we use U = 2.5 eV and J = 0.4 eV [57]. Response functions
are obtained within the Kubo formalism [12]. The doping is
simulated through the virtual crystal approximation (VCA).

III. RESULTS

A. FeGa3

Figure 3 shows the dc magnetic susceptibility χ = M/H

of FeGa3 and of its isostructural and isoelectronic homolog
RuGa3, measured with a magnetic field H=10 kOe applied
parallel to the ab plane, and along the c axis of the crystal.
Overall, χ (T ) for FeGa3 is similar to that reported previously
for a set of randomly oriented crystals over a more limited
temperature range [32,39]. The magnetic anisotropy is mostly
reflected in a temperature-independent offset between values
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FIG. 3. (Color online) Magnetic susceptibility of single crystals
of FeGa3 and RuGa3 measured in a magnetic field of 10 kOe applied
in the tetragonal ab plane (red circles) or along the c axis (black
circles). Thin solid lines indicate linear terms aT in χ (T ) for FeGa3

with a = 1.3 × 10−8 emu/(K mol) and a = 1.9 × 10−8 emu/(K
mol) for H ‖ ab and H ‖ c, respectively, and for RuGa3 with
a = 0.7 × 10−8 emu/(K mol) independent of the field direction.
Dashed lines represent fits to the activated temperature dependence
χ (T )∝ exp[−�S/(kBT )] at T � 500 K.
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obtained when the magnetic field is applied perpendicular or
parallel to the c axis in the tetragonal crystal lattice, whereas the
temperature dependence is almost the same in both directions.
An even larger magnetic anisotropy was found for RuGa3.

For both FeGa3 and RuGa3, χ is negative at low
temperatures and increases nearly linearly with increasing
temperature up to ∼500 K. Slight Curie tails in χ (T ) at
the lowest temperatures (Fig. 3) may be assigned to a
small number ∼0.06% of S = 1

2 paramagnetic impurities.
After correction for these impurities, an extrapolation of
χ (T ) to T = 0 K results in χ0(ab) ≈ −26 × 10−6 emu mol−1

and χ0(c) ≈ −38 × 10−6 emu mol−1 for FeGa3 and χ0(ab) ≈
−70 × 10−6 emu mol−1, χ0(c) ≈ −94 × 10−6 emu mol−1 for
RuGa3. The diamagnetism of the closed-shell ions [58]
gives the values of −37 × 10−6 emu mol−1 and −47 ×
10−6 emu mol−1 for FeGa3 and RuGa3, respectively, which
are comparable with the measured χ0 values. The lattice
diamagnetism resulting from the interband effect of the
magnetic field [59] is likely also responsible for the observed
magnetic anisotropies.

The almost linear increase of the magnetic susceptibilities
with increasing temperature for both FeGa3 and RuGa3 ob-
served in broad temperature ranges (see Fig. 3) can be assigned
to a slight shrinking of their band gaps. In semiconductors,
electron-phonon interactions usually lead to a shrinking of
the gap with increasing temperature due to an increase in the
phonon population [60]. This, in turn, leads to a small and
gradual increase of the magnetic susceptibility [61].

The magnetic susceptibility of RuGa3 remains negative
and only weakly temperature dependent up to the highest
temperatures. In contrast, for FeGa3 the slope of χ (T ) starts
to increase significantly at temperatures above ∼500 K. The
temperature dependencies of the magnetic susceptibilities
can be well described as χ (T )∝ exp[−�S/(kBT )]. Here, kB

denotes the Boltzmann constant. The spin gaps derived from
such fits are �S−ab = 0.33 eV for H ‖ ab and �S−c = 0.41 eV
for H ‖ c.

The most direct information about the magnetic state of
FeGa3 can be gained from neutron diffraction measurements.
Figure 4 shows a neutron powder diffraction pattern collected

at a temperature of 1.5 K. Rietveld refinement of the nuclear
structure confirmed the tetragonal symmetry with space
group P 42/mnm. Structural parameters derived from the
refinements of the neutron diffraction patterns measured at
temperatures of 1.5 and 300 K are presented in Table I.
The results obtained at room temperature are in excellent
agreement with the structural data attained based on our
x-ray powder diffraction patterns (Table I) and with previous
reports [32,41,48].

In addition to nuclear reflections, there are several clearly
discernible extra peaks in the neutron patterns. The strongest
additional peaks are at wave vectors Q = 0.986 Å−1,
1.058 Å−1, 1.478 Å−1, and 1.586 Å−1 and are marked in
the inset of Fig. 4. The absence of diffraction peaks at similar
values of Q in room temperature x-ray powder diffraction
patterns from the same sample, measured before and after
collecting the neutron diffraction data, strongly argues for a
magnetic origin of the additional peaks. The emergence of the
extra peaks only at rather small values of Q provides further
support for their magnetic character because the magnetic
form factor falls off quite rapidly with diffraction angle. The
magnetic peaks are almost identical at temperatures of 1.5 and
300 K and their Q widths are resolution limited, thus indicating
long-range magnetic order. This advocates that FeGa3 is
an antiferromagnet with the ordering temperature TN above
300 K. The presence of distinct magnetic peaks in the collected
neutron patterns implies that the size of the staggered moments
is well above 0.1μB , which is the approximate detection limit
of the neutron powder diffraction method. Simultaneously,
the small size of the magnetic peaks compared to the nuclear
peaks makes magnetic moments larger than 1–1.5 μB per Fe
very unlikely.

The magnetic peaks can be indexed only by a propagation
vector that is incommensurate with the crystal lattice in at least
one direction. The best description of the observed peaks was
achieved assuming k = (0.5, 0.25, 0.44), indicating that the
tetragonal symmetry of the nuclear structure is not shared by
the magnetic structure. A complete solution of this complex
magnetic structure requires further experimental studies, in
particular, neutron diffraction measurements of single crystals.
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FIG. 4. (Color online) Results of neutron powder diffraction experiments for FeGa3. The main panel shows the Rietveld refinement (black)
of the nuclear structure based on the neutron diffraction pattern (red) collected at 1.5 K. The difference curve is shown in green. The inset
shows the low-angle range of the neutron diffraction patterns measured at 1.5 K (red) and at room temperature (blue), together with the x-ray
powder diffraction data measured at 300 K on the same powder. Dashed vertical lines show the positions of nuclear peaks. The main magnetic
peaks are indicated by arrows.
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TABLE I. Structural parameters derived from the Rietveld refinements of the nuclear structure based on our neutron powder diffraction
patterns measured for FeGa3 at temperatures of 1.5 and 300 K. The last columns present results of the Rietveld refinement of the x-ray powder
diffraction (XRD) pattern for FeGa3 collected at room temperature. All these refinements resulted in full occupancies of the three atomic sites.

Lattice parameters T = 1.5 K T = 300 K XRD; T = 295 K

a (Å) 6.2528(2) 6.2645(9) 6.2652(1)
c (Å) 6.5462(8) 6.5590(15) 6.5586(1)

Atom Wyckoff site x y z x y z x y z Biso

Fe 4f 0.1566(3) 0.1566(3) 0 0.1552(8) 0.1552(8) 0 0.15739(6) 0.15739(6) 0 0.054(1)
Ga1 8j 0.3448(2) 0.3448(2) 0.2635(2) 0.3445(9) 0.3445(9) 0.2626(10) 0.34462(5) 0.34462(5) 0.26193(7) 0.045(2)
Ga2 4c 0 0.5 0 0 0.5 0 0 0.5 0 0.046(1)

The overall temperature dependence of the specific heat
Cp for FeGa3 is depicted in Fig. 5(a) and is similar to
that reported by Hadano et al. [32]. At ambient tempera-
ture, the specific heat nearly reaches 100 J/(mol K), which
is the result expected from the Dulong-Petit law. At T < 3 K,
the experimental data follow the dependence anticipated for the
contribution of phonons Cp(T )=βT 3 [see inset in Fig. 5(b)]
with β ≈ 0.139 mJ/(mol K4). The Debye model gives β =
(12/5)Rnπ4θ−3

D , where n is the number of atoms per formula
unit and R is the gas constant. Thus, we estimate a Debye
temperature θD ≈ 382 K.

For FeGa3, the magnetic contribution to the specific heat
is expected to be negligible at temperatures below ∼300 K
since the magnetic susceptibility is diamagnetic and only
weakly temperature dependent in this regime. Consequently,
at temperatures above ∼3 K, Cp(T ) is strongly dominated
by the vibrational properties of the Fe and Ga sublattices of
FeGa3. Attempts to fit the overall temperature dependence of
the specific heat as the lattice specific heat Clattice(T ) given
by a Debye model are not satisfactory [Fig. 5(a)]. In order to
get an acceptable description of the experimental Cp(T ), the
lattice specific heat of FeGa3 has been modeled by the sum of
contributions from Debye-type (CD) and Einstein-type (CE)
modes, using the following expressions:

CD(T ) = RnD

∫ 	D/T

0

x4ex

(ex − 1)2
dx (1)

and

CE(T ) = RnE

(
	E

T

)2
e

	E
T(

e
	E
T − 1

)2
, (2)

where nD and nE denote the number of Debye and Einstein
modes per formula unit of FeGa3.

The best match with the experimental data is achieved
by assuming nD = 9 Debye-type modes with θD = 400 K,
one Einstein-type mode with a characteristic temperature
θE = 94 K and two Einstein-type modes with θE = 140 K,
resulting in a total of 12 phonon modes, as expected for
FeGa3. In Fig. 5(b), we plot Cp/T 3 versus T . The clear
maximum indicates that Einstein modes must be introduced
for a reasonable fit.

The presence of the Einstein modes in FeGa3 is rather
unexpected. Generally, low-energy optical modes are
associated with specific structure types. For compounds
with cagelike crystal structures, for instance, the Einstein
term in the specific heat reflects local vibrations of loosely
bound atoms inside the cages. Yet, in FeGa3 each atom
has several neighbors at distances shorter than the sum of
adjacent nominal atomic radii [48]. Single-crystal x-ray
diffraction measurements do not show an enhancement of any
displacement parameters in FeGa3 [41] that could otherwise
indicate the presence of loosely bound atoms in the crystal
lattice. Therefore, the evidence in the specific heat of FeGa3

for local vibrations calls for further investigations, such as
thermal expansion measurements.
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FIG. 5. (Color online) Specific heat Cp of FeGa3 (black circles) modeled with a series of Einstein-type (solid line) and Debye-type (dotted
line) lattice terms (see text). The blue dashed line represents the best fit of the assumed model to the experimental data. Dashed-dotted thin
lines in panel (a) represent the “total” specific heat calculated based on the Debye model, assuming Debye temperatures of 300 K (red) and
400 K (black). A maximum in C/T 3(T ) dependence shown in panel (b) is the hallmark of the presence of Einstein modes. The inset in panel
(b) shows Cp/T at lowest temperatures plotted versus T 2. The red dashed line represents the fit to the experimental data using Cp/T (T 2)=βT 2.
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M. B. GAMŻA et al. PHYSICAL REVIEW B 89, 195102 (2014)

0 100 200 300 400
T (K)

10
-2

10
-1

10
0

10
1

10
2

10
3

ρ 
(Ω

 c
m

)

FeGa3
RuGa3

2.5 3 3.5
1000/T (K

-1
)

0.2

0.3

0.4

ρ 
(Ω

 c
m

)

I II

III
IV

IV

0 20 40 60
1000/T (K

-1
)

10
-1

10
0

10
1

10
2

ρ 
(Ω

 c
m

) II

0.2 0.4 0.6 0.8
T

 -1/4
 (K

-1/4
)

10
-1

10
0

10
1

10
2

10
3

ρ 
(Ω

 c
m

) I

FIG. 6. (Color online) Electrical resistivity ρ for FeGa3 (black
circles) and RuGa3 (red circles). Roman numbers I–IV denote four
temperature regimes as described in the text. The inset shows the
resistivity for FeGa3 in the temperature range 260–400 K (IV) on
a logarithmic scale as a function of inverse temperature. The solid
line represents the fit of the experimental data with Arrhenius law
ρ(T )= ρ0(T )exp[Eg/(2kBT )], giving the activation gap Eg = 0.4 eV.
The left small panel displays Arrhenius plots for the range II with solid
lines indicating the best fits of the resistivity data to the Arrhenius
expression ρ(T )= ρ0(T )exp[Ed/(2kBT )] at 24 K < T < 44 K and
31 K < T < 83 K, resulting in activation energies of Ed ≈ 40 and
20 meV for FeGa3 and RuGa3, respectively. The right small panel
shows the resistivities at the lowest temperatures (I) plotted versus
T −1/4 to display the 3D VRH conduction among in-gap states. Solid
lines indicate the best linear regression fits.

The electrical resistivity ρ was measured on single crystals
of FeGa3 and RuGa3 (Fig. 6). The obtained ρ(T ) for FeGa3 is
very similar to that found in previous reports based on single
crystals [32,41], and differs notably from some results for
polycrystalline specimens [42,62]. In turn, for RuGa3, there
are substantial differences between our resistivity data and the
ρ(T ) curves reported previously for both single crystals [41]
and polycrystalline specimens [37,42]. Such a sensitivity of
physical properties to structure, morphology, and chemical
composition is typical for correlated insulators.

The absolute values of the resistivity are similar for crystals
of FeGa3 and RuGa3 grown from Ga flux. The resistivity
of FeGa3 displays four distinct temperature regimes, which
we indicate by roman numbers (see Fig. 6): At T > 350 K
(regime IV), the resistivity of FeGa3 follows the Arrhenius law
ρ(T )/ρ0(T )= exp[Eg/(2kBT )], with an activation energy gap
Eg ≈ 0.4 eV [Fig. 6(b)], in line with the size of the band gap

derived from a spectroscopic study and electronic-structure
calculations [31,33,41]. Below T ∼ 300 K (III), the resistivity
of FeGa3 decreases with decreasing temperature. For RuGa3,
a similar behavior in resistivity is found to extend over an
even broader temperature range. Since in RuGa3 the orbitals
responsible for low-energy excitations are of 4d character that
are much more delocalized than their 3d counterparts in FeGa3,
the emergence of the metallic-type range (III) in the resistivity
of FeGa3 is likely not associated directly with correlation
effects. At lower temperatures, the resistivities of both FeGa3

and RuGa3 increase again. The temperature dependencies of
the resistivity from 20 to 45 K for FeGa3 and from 30 to
80 K for RuGa3 [II, Fig. 6(c)] can be again well described
by the Arrhenius law ρ(T )/ρ0(T )= exp[Ed/(2kBT )], with
activation energies Ed ≈ 40 and 20 meV for FeGa3 and
RuGa3, respectively. These activation gaps are more than
one order of magnitude smaller than the band gaps for both
compounds [31,40,41]. Finally, at the lowest temperatures (I),
the resistivities of both FeGa3 and RuGa3 vary as ρ(T )∝
exp[(TM/T )1/4)] [Fig. 6(d)]. Such a temperature dependence
is predicted for the conduction due to variable range hopping
(VRH) among localized in-gap states in a three-dimensional
(3D) system, a dominant conduction mechanism in various
classes of lightly doped semiconductors at low temperatures.
Although the character of the temperature dependence of the
resistivity in this temperature range was similar for several
studied crystals of both FeGa3 and RuGa3, considerable
variations in values of TM were observed.

The temperature dependencies of the resistivities for FeGa3

and RuGa3 observed in regimes I–III can be ascribed to the
presence of numerous localized donor-type states in their band
gaps. Indeed, a recent nuclear spin-lattice relaxation study for
FeGa3 unambiguously proved the existence of in-gap states
located just below the bottom of the conduction band [46]. The
number of these states estimated from the Hall constant [32] is
∼1.6×1016 cm−3, which is much larger than typical impurity
levels observed in intrinsic band semiconductors (e.g., Si, Ge)
and even in correlated band insulators (e.g., FeSi, FeSb2) [46].
Measurements of the Hall effect performed by Hadano et

al. [32] indicated that in region III mobility of carriers
decreases strongly with increasing temperature (μ ∼ T −5/2),
whereas the number of carriers remains nearly unchanged.
Consequently, the emergence of the metallic behavior of the
resistivity can be explained as due to this strong decrease in
carrier mobility in the saturation range, where electrons from
all the donor levels are thermally excited to the conduction
band. In turn, a gradual freezing of these donors leads to the
activated ρ(T ) at temperatures below ∼45 K and ∼80 K for
FeGa3 and RuGa3, respectively. Further study is needed to
elucidate the origin and character of these numerous in-gap
states.

B. Fe1−xMnxGa3 and FeGa3− yZn y

Doping FeGa3 with both Mn and Zn results in drastic
changes in ρ(T ), compared to undoped FeGa3. Figure 7
presents the electrical resistivity of crystals doped with Zn
[Fig. 7(a)] and with Mn [Fig. 7(b)]. Already for the lowest
doping levels, the metallic range in ρ(T ) that was observed for
undoped crystals of FeGa3 from ∼60 to ∼300 K gives way
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FIG. 7. (Color online) Electrical resistivity for FeGa3−yZny (y = 0.02; 0.04; 0.06) (a) and Fe1−xMnxGa3 (x = 0.014; 0.034; 0.084; 0.087)
(b) plotted together with the data for FeGa3 (brown solid lines). Panel (c) presents the resistivity of FeGa2.94Zn0.06 (black circles) together
with fits using Arrhenius law ρ(T )∝ exp[Ed/(2kBT )] for T � 100 K (dashed violet line), 3D VRH conduction ρ(T )∝ exp[(TM/T )1/4] at
10 K� T � 50 K (dashed blue line), and based on the formula ρ(T )∝ exp[(TM/T )1/2] (dashed red line) describing 3D VRH conduction of
the Efros-Shklovskii type [63] associated with the opening of a small gap within the doping induced density of states at T � 10 K. The
temperature ranges in which the resistivities of FeGa3−yZny and Fe1−xMnxGa3 follow the described temperature dependencies are indicated in
panel (d). The points denote crossover temperatures estimated as the midpoints between the corresponding temperature ranges. The resistivities
of FeGa3−yZny and Fe1−xMnxGa3 for different x and y are plotted versus T −1/4 in panels (e) and (g), respectively, and as functions of T −1/2

in panels (f) and (h), respectively. Solid lines in panels (e), (f), (g), and (h) indicate the best regression fits. The inset in panel (c) shows values
of the average activation gap obtained from the fits to the Arrhenius expression at highest temperatures as a function of the actual doping
level x.

to an activated temperature dependence followed by broad
maxima at temperatures of 30–150 K. Although qualitatively
similar behaviors of the resistivities were observed for different
crystals, the details of the shape and position of the maxima
in ρ(T ) were found to be sample dependent, even for crystals
within a given batch, where EDX microanalysis indicated the
same chemical composition and a homogeneous distribution
of the dopant atoms across the crystals.

Since the shape of the ρ(T ) for FeGa3 was assigned
to the presence of impurity donor-type states inside the
band gap [32,46], the drastic change in ρ(T ) upon doping
likely results from a compensation mechanism. Our results
suggest that the number of holes introduced by doping almost

immediately exceeds the number of impurity donor states
present in the nominally undoped FeGa3. Consequently, the
presence of localized acceptor–type states in the band gap may
determine ρ(T ) for both Fe1−xMnxGa3 and FeGa3−yZny , at
least at temperatures up to ∼400 K. This is in line with p-type
conduction found by means of thermopower measurements
for polycrystals of FeGa2.97Zn0.03 and FeGa2.94Zn0.06 at
temperatures until 400 and 500 K, respectively [49].

We notice that there are three distinct temperature ranges in
the resistivities of both series of compounds Fe1−xMnxGa3 and
FeGa3−yZny , as indicated in Fig. 7(c). At high temperatures,
the resistivity is activated. Application of the Arrhenius law to
fit the resistivity data of the doped crystals leads to values of the
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FIG. 8. (Color online) (a) Specific heat Cp/T of Fe0.92Mn0.08Ga3 (black circles) together with the data of FeGa3 (red squares). The inset
displays the low-temperature magnetic specific heat, with a fit of data based on the two-level Schottky model as described in the text. (b) Low
temperature Cp/T (T ) for the series of Mn-doped FeGa3 together with the data for undoped FeGa3 (black empty circles). (c) �Cp/T (T ) for the
series of Fe1−xMnxGa3 (x = 0; 1.8%; 6.6%; 8.4%; 10%) estimated as described in the text. The thin dashed vertical line indicates the position
of the maxima in �Cp/T (T ). The inset shows the values of the energy gap � derived from the fits based on the two-level Schottky model.
(d) Values of the magnetic entropy at a temperature of 14 K for various doping levels of Mn (black circles) and Zn (red square). The dashed
line corresponds to the entropy of 0.4Rln2 per dopant. The dashed lines are guides for the eye.

activation gap EA presented in the inset of Fig. 7(c). For both
dopants, the average energy for these excitations decreases
slightly with increasing doping level.

At lower temperatures, the resistivity is dominated by
VRH among the localized in-gap states. The temperature
dependence of the resistivity can be well described as

ρ(T ) ∝ exp[(TM/T )p]. (3)

The value of the exponent p in Eq. (3) distinguishes different
conduction mechanisms. For temperatures down to ∼10–15 K,
p ≈ 0.25 [see Figs. 7(e) and 7(g)] as expected for the Mott’s
type VRH in a 3D semiconductor and also seen in nominally
undoped FeGa3. At the lowest temperatures, the resistivity
of all the doped crystals becomes larger than predicted by
Mott’s expression [see Fig. 7(c)]. Such an increase in the
resistivity hints at the opening of a small gap within the
doping-induced density of states at the Fermi level. Indeed,
a good description of the experimental data for FeGa3−yZny

at temperatures below ∼10 K was achieved assuming p = 0.5
[see Fig. 7(f)], as predicted for the 3D VRH conduction of the
Efros-Shklovskii type [63]. For Fe1−xMnxGa3, the values of
the exponent p for the resistivity at lowest temperatures are
somewhat ambiguous. Attempts to describe the experimental
data assuming p = 0.5 are shown in Fig. 7(h). The temperature
ranges on which the electrical resistivities of FeGa3−yZny and

Fe1−xMnxGa3 follow the three distinct temperature dependen-
cies are indicated in Fig. 7(d).

Figure 8(a) compares Cp/T as a function of temperature
for Fe0.92Mn0.08Ga3 to the data for undoped FeGa3. The
specific heat does not give any indication for a phase
transition in either compound. Overall, the specific heat for
the doped crystal is very similar to that of FeGa3, indicating
that their phonon densities of states are very much alike.
However, there is an additional contribution to Cp, that
is present in the doped sample for T < 20 K. In order
to isolate it, we subtracted from the total specific heat of
Fe0.92Mn0.08Ga3 the corresponding data for undoped FeGa3,
taking advantage of their similar lattice specific heats and the
negligible electronic contribution for insulating FeGa3. The
resulting �Cp(T )= Cp − Cp(FeGa3) is presented in the inset
of Fig. 8(a) in a standard �Cp/T (T ) representation. It shows
a broad feature with a maximum at about 5 K that resembles
a two-level Schottky anomaly. A reasonable description of
the experimental data is achieved assuming that the anomaly
in �Cp/T originates from thermally activated transitions
between two discrete levels having the same degeneracy,
separated by an energy gap �/kB ≈ 16 K [see the inset of
Fig. 8(a)]. An additional small constant term of 2 mJ mol−1K−2

has also been included to improve the quality of the fit.
Although this small contribution to the Cp superimposed
on the Schottky anomaly mimics a Fermi-liquid-like specific
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heat, the insulating temperature dependence of the resistivity
overrules the presence of a finite density of states at the
Fermi level in Fe0.92Mn0.08Ga3. Therefore, we suppose that this
additional specific heat overlapping with the gap anomaly has
a more complex temperature dependence and originates from
low-energy magnetic excitations and/or localized in-gap states.

Similar Schottky-type anomalies in the specific heat are
visible for all the compounds in the Fe1−xMnxGa3 series [see
Fig. 8(b)] as well as for FeGa3−yZny (not shown). They occur
at the same temperature for both dopants, regardless of the
doping level x. In order to estimate the entropy associated
with this excess specific heat in the doped crystals, we
calculated �Cp(T ) for each crystal by subtracting from the
total Cp(T ) the lattice contribution approximated by the
specific heat of FeGa3. We extrapolated �Cp/T to T = 0
and then integrated �Cp(T )/T up to T ∗ = 15 K, at which
temperature the specific heat of the doped crystals becomes
very similar to that of FeGa3:

Sm =
∫ T ∗

0

�Cp

T
dT . (4)

The values of the entropy Sm recovered at 15 K increase
nearly linearly with increasing doping level, starting from
x ≈ 1.5%, and follow the same straight line for both Mn- and
Zn-doped FeGa3, as indicated in the inset of Fig. 8(c). The
slope of this line corresponds to an entropy of about 0.4Rln2
per Mn/Zn atom introduced by the doping.

Although this entropy is strongly dominated by transitions
between two states, it contains also additional contributions
originating presumably from low-energy magnetic excitations
and localized in-gap states in the vicinity of the Fermi
level. The insulating behavior of the resistivity with a VRH
conduction at low temperatures in Mn- and Zn-doped FeGa3

excludes the presence of delocalized holes in the whole
investigated doping ranges. The broad features in �Cp/T with
maxima at the temperature of 0.7 K grow with doping in both
FeGa3−yZny and Fe1−xMnxGa3, which may be suggestive of
an approaching quantum critical point.

Doping of FeGa3 with Mn and Zn has also very similar
effects on the overall magnetic properties. For both dopants,
the magnetic susceptibility in the temperature range of ∼100–
400 K can be described by a modified Curie law

χ (T ) = χ0 + C

T
, (5)

where χ0 denotes the temperature-independent part of the
magnetic susceptibility and C is the Curie constant defined
as C = Nmp2

eff/(3kB) with Nm being the number of magnetic
atoms per formula unit and peff denoting their effective
magnetic moment. The least-squares fits to the experimental
data [see Figs. 9(a) and 9(b)] yield values of χ0 ranging
from −5 × 10−5 emu/mol to −2 × 10−5 emu/mol, which are
similar to the diamagnetic signals observed for crystals of
undoped FeGa3. Values of the effective magnetic moment per
formula unit peff derived from the Curie constant are plotted
as a function of the measured doping level in Fig. 9(c).

For both Fe1−xMnxGa3 and FeGa3−yZny , the effective
moment increases gradually with increasing doping level.
The effective moment calculated per dopant is close to the
theoretical value of 1.73 μB/dopant expected for spin S = 1

2

[see Fig. 9(d)]. Inclusion of a paramagnetic Weiss temperature
θ did not lead to any significant improvement of the fits.
Thus, the magnetic susceptibility measurements indicate that
doping with both Zn and Mn introduces moments of S = 1

2
per dopant atom, which are freely fluctuating at temperatures
above ∼100 K. The magnetic anisotropy in this temperature
range is reflected only by smaller absolute values of χ0 for H

applied in the ab plane than in case of H ‖ c, imitating the
magnetic anisotropy found for the undoped FeGa3.

At lower temperatures, the magnetic susceptibilities of the
doped crystals deviate from the Curie-Weiss law in a manner
that may indicate an increasing role for antiferromagnetic
interactions. To follow the variation of the effective moments
with temperature, we plot the temperature dependence of
the product (χ − χ0)T measured in a magnetic field of
70 kOe [insets, Figs. 9(a) and 9(b)]. For Fe1−xMnxGa3

and FeGa3−yZny , at temperatures above ∼80 K the product
(χ − χ0)T is nearly temperature independent, defining the
Curie law regime. At lower temperatures, (χ − χ0)T decreases
strongly with decreasing temperature, implying a decrease in
the effective fluctuating moment.

Below ∼30 K, the magnetic susceptibilities of both
Fe1−xMnxGa3 and FeGa3−yZny develop substantial magnetic
anisotropies and become field dependent in magnetic fields H

applied along the c axis (See Fig. S2 in the Supplemental
Material [64]). Figure 10(a) presents the low-temperature
magnetic susceptibility data for Fe0.92Mn0.08Ga3. The χ (T )
measured in weak magnetic fields applied along the c

axis continues to increase with decreasing temperature. Its
temperature dependence at T � 5 K can be approximated
by χ (T ) ∼ T −α with α ≈ 0.5, as indicated in the inset of
Fig. 10(a). Application of H � 1 kOe leads to a gradual
suppression of the upturn in χ (T ) at temperatures below ∼10
K. In contrast, the magnetic susceptibility for H ‖[110] is
almost field independent from 1 to 70 kOe even at lowest
temperatures. It shows a broad and very weak maximum at
T ≈ 5 K.

To check for the presence of a spontaneous magnetization,
we measured the magnetization as a function of magnetic field
at constant temperatures [Fig. 10(b)]. In the inset of Fig. 10(b),
we replotted the isothermal M(H ) curves obtained in fields
applied along the c axis as M2 against H/M . The absence
of a positive M2 intercept in this Arrott plot indicates that
there is no spontaneous magnetization in Fe0.92Mn0.08Ga3.
Importantly, the M(H ) curves at T = 1.8 K do not saturate in
magnetic fields up to 70 kOe, as expected for a system with
noninteracting moments. They increase nearly linearly with
increasing field strength in the high-field range, independent
of the field direction, and the maximum measured moment for
Fe0.92Mn0.08Ga3 in the field of 70 kOe is only ∼0.028 μB/f.u.
and ∼0.023 μB/f.u. for H ‖ [001] and H ‖ [110], respectively.
Implications of these field dependencies of the magnetization
will be discussed in Sec. IV.

Similar results were obtained for crystals of Fe1−xMnxGa3

and FeGa3−yZny regardless of the dopant type and level,
with nonsaturating M(H ) at T = 1.8 K, χ (T ) showing broad
maxima at T � 5 K for H ‖ [110] and χ (T )∼ T −α at T � 5 K
in the case of an applied field along the c axis with α between
0.2 and 0.6. Although the exact values of the exponent α may
be affected by slight crystal misalignment and the presence of
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FIG. 9. (Color online) Inverse magnetic susceptibilities for FeGa3−yZny (y = 0.006; 0.01; 0.02; 0.04; 0.046; 0.06) (a) and Fe1−xMnxGa3

(x = 0.032; 0.043; 0.044; 0.061; 0.065; 0.066; 0.085; 0.087) (b) after subtracting a constant term χ0 as obtained from fits using a modified
Curie law (see details in text). The insets in panels (a) and (b) show the values of the product χT as functions of temperature for the field of
H = 70 kOe obtained after subtracting the temperature-independent terms χ0. Arrows indicate the direction of the increase in measured doping
level. Panel (c) depicts the values of the effective magnetic moment per formula unit obtained from the fits as a function of the doping level x

for FeGa3−yZny (red diamonds) and Fe1−xMnxGa3 (black circles). The values of the effective moment recalculated per dopant are shown in
panel (d), together with a dashed line indicating an effective moment of 1.73 μB, as expected for S = 1

2 .

a small amount of paramagnetic impurities, they are always
below 1. Such weak power laws in χ (T ) at T � 5 K may
hint at the emergence of critical fluctuations associated with
a proximity to a quantum critical point in the presence of
disorder introduced by doping [65]. Further, no hysteresis was

observed in field-cooled (FC) and zero-field-cooled (ZFC)
χ (T ) data for Fe1−xMnxGa3 and FeGa3−yZny , that could
indicate a spin-glass behavior at low temperatures. The values
of the magnetic susceptibility, measured at a temperature of
2 K, increase systematically with increasing doping level
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FIG. 10. (Color online) (a) Magnetic susceptibility of Fe0.92Mn0.08Ga3 measured in various magnetic fields applied either along the c axis
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axis. For H ‖ [110], χ (T ) is only weakly field dependent. The inset shows χ (T ) measured in H = 1 kOe applied along the c axis in a log-log
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magnetic field applied either along the [110] direction (circles) or
along the c axis for H = 1 kOe (triangles). Dashed lines are guides
for the eye.

for both investigated directions of magnetic field, following
the same straight lines for crystals of Mn- and Zn-doped
FeGa3 (Fig. 11). These results need to be contrasted with
previous studies on polycrystals of Fe1−xMnxGa3 which
revealed that already in samples with x = 0.05 there are
either two magnetic phase transitions at temperatures of ∼10
and ∼30 K according to Ref. [66] or there is an onset of
ferromagnetism with TC ≈ 160 K superimposed on a Curie-
Weiss–type paramagnetic behavior with the effective magnetic
moment of 4.9 μB/Mn [67].

Finally, neutron powder diffraction experiments have been
performed to inspect the magnetic and structural properties
of hole-doped FeGa3 at low temperatures. The diffraction
patterns for Fe0.95Mn0.05Ga3 measured at temperatures of
1.5 and 15 K are basically identical (Fig. 12). There are no
differences in the sizes and positions of either magnetic or
nuclear peaks that could indicate a change in the long-range
magnetic order or a structural transition in the doped FeGa3 at
low temperatures. Furthermore, the magnetic peaks observed
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FIG. 12. (Color online) Neutron powder diffraction patterns for
Fe0.95Mn0.05Ga3, obtained at temperatures of 1.5 K (black) and 15 K
(red), together with the data for undoped FeGa3 collected at 1.5 K.
The main magnetic peaks are indicated by arrows.
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FIG. 13. (Color online) Magnetic susceptibility of
Fe0.91Mn0.09Ga3 (red circles) measured at temperatures above
∼300 K in a magnetic field of 10 kOe on a set of randomly oriented
crystals, together with the data for FeGa3 (black circles) calculated
as explained in the text. Dashed line represents the fit to a model
described in the text.

in the neutron powder diffraction patterns for Fe0.95Mn0.05Ga3

persist at temperatures up to 300 K and, most importantly, are
similar to those found for undoped FeGa3 (Fig. 12), indicating
that their magnetic structures are closely related.

A magnetization study carried out at high temperatures
shows that for hole-doped FeGa3, the fluctuating moment
behavior observed at T � 100 K gives way to a notable
increase in χ (T ) at temperatures above ∼600 K. Figure 13
presents the temperature dependence of the magnetic suscep-
tibility for Fe0.91Mn0.09Ga3, measured on a set of randomly
oriented single crystals in a magnetic field of 10 kOe, together
with the inferred polycrystalline magnetic susceptibility for
undoped FeGa3 estimated as χ (T ) = 1

3 [2χab(T ) + χc(T )],
where χab(T ) and χc(T ) denote the magnetic susceptibilities
measured in magnetic fields applied in the ab plane and along
the c axis, respectively. The χ (T ) for Fe0.91Mn0.09Ga3 can
be well described by an activation-type behavior, extended
by an additional term C/T that is introduced to account
for the presence of fluctuating moments (Fig. 13). The
value of the Curie constant C derived from this fit is very
similar to that obtained from the analysis of the magnetic
susceptibility at temperatures between 100 and 300 K, and
χ0 = −5.4 × 10−5 emu mol−1. Most importantly, the obtained
spin gap �S = 0.31 eV is only slightly smaller than that
estimated for the parent compound FeGa3, implying that the
doping with Mn in Fe1−xMnxGa3 falls short of closing the spin
gap.

IV. DISCUSSION

There is an experimental consensus that FeGa3 is an
insulator with a narrow gap of 0.4 eV [31,32,41]. The band
gap can be well reproduced in first-principles electronic-
structure calculations based on DFT in its standard LDA
and GGA implementations [33,40,43]. These calculations,
however, result in a nonmagnetic state, whereas our neutron
diffraction measurements revealed a complex type of magnetic
order in FeGa3, even at room temperature. The existence of
staggered moments ultimately questions the LDA description
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of FeGa3 as a nonmagnetic band insulator and calls for more
sophisticated computational techniques.

Both the LDA calculations and the ARPES study show
a narrow Fe 3d-derived state located near the top of the
valence band [31,33,41], indicating the relevance of electronic
correlation effects. Following this observation, Yin and Pick-
ett [33] applied a static mean-field-like LSDA+U method
and found a magnetic insulating ground state for FeGa3,
independent of which double-counting scheme was used,
with an antiferromagnetic order being lowest in energy [33].
Further, the size of the band gap obtained assuming moderate
values of the onsite Coulomb interaction for the Fe 3d states,
U ∼ 2 eV, coincides with experimental results [33]. However,
a nonmagnetic state is stabilized for U � 1.5 eV and even
for larger values of U if screening effects are included in
the LSDA+U formalism via a Yukawa ansatz [36]. These
findings indicate that the 3d electrons in FeGa3 are not close
to the well-understood limits of being either localized or
itinerant. Consequently, neither LDA nor L(S)DA+U methods
are able to provide a satisfying description of its electronic
band structure. Therefore, we employed DMFT to interpolate
between the strongly localized and delocalized limits pertinent
to our analysis of FeGa3. We applied the combination of the
DFT in its LDA approximation with DMFT to investigate the
charge and spin states of the iron atoms as well as temperature-
dependent many-body renormalizations in FeGa3. In order
to separate effects originating from correlated 3d states of
iron, we performed calculations also for the isostructural and
isoelectronic compound RuGa3.

The left panel of Fig. 14 shows the LDA+DMFT spectral
functions for both FeGa3 and RuGa3, together with the band-
theory (LDA) results. Overall, our calculations reproduce
insulating states for FeGa3 and RuGa3 with a narrow gap
produced by a strong hybridization between d states of Fe
or Ru and p states of Ga. The size of the band gap obtained
from band theory for FeGa3 of 0.35 eV is close to results
of the combined PES and inverse PES study [31], and also
previous works [31,41,43]. Further, the shape of the DOSs
calculated within the LDA approximation for both FeGa3

and RuGa3 is in a very good agreement with antecedent
reports [31,33,41,43,68].

Inclusion of many-body effects via LDA+DMFT leads to
a slight decrease in the size of the charge gap in FeGa3, as

compared to the LDA results [Fig. 14(a)]. To further inspect the
strength of dynamical correlations, we calculate the effective
masses from the energy derivative of the DMFT self-energy at
the Fermi level. The formal evaluation based on the first linear
regime in the DMFT self-energy shows that the effective
masses are rather low and nearly temperature independent
mDMFT/mLDA ≈ 1.3–1.4 (see Fig. 15). This indicates a large
degree of delocalization of the states at the bottom of the
valence band and only weak dynamical correlations.

To address the charge and spin states of Fe in FeGa3,
we analyze the probability distribution of the many-body
wave function with respect to the eigenstates of the effective
iron atom, decomposed into the number of particles N

and the spin state S. The histogram of the CTQMC (the
right panel of Fig. 14) shows the largest probability for the
spin state S = 1, with a variance δS = 〈(S − 〈S〉)2〉 ≈ 0.34
that reflects strong fluctuations at short time scales. The
dominance of the S = 1 configuration implies that FeGa3

is not a nonmagnetic insulator with Fe2+ in a low-spin
state, as previously suggested [32,34–37,39–43]. Further, the
number of Fe 3d electrons Nd ≈ 6.3 has a large variance
δN = 〈(N − 〈N〉)2〉 ≈ 0.88, implying a strong mixed valent
character. Although the variances in S and N are large, they
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and undoped FeGa3 as obtained from the energy derivative of the self-
energy. Orbital components that account for the majority of spectral
weight for the valence (conduction) states are denoted “t2g” in black
(“eg” in red).

195102-12



ELECTRONIC CORRELATIONS IN FeGa3 AND THE . . . PHYSICAL REVIEW B 89, 195102 (2014)

0 200 400 600 800 1000
T (K)

3

4

5

6

χ lo
c(1

0-5
em

u/
m

ol
)

FeGa3

FeGa2.925Zn0.075FeGa2.955Zn0.045

-0.9 -0.6 -0.3 0 0.3 0.6
E (eV)

0

5

10

15

20

A
 (

st
. e

V
-1

f.u
.-1

)

72 K
290 K
504 K
692 K

77 K

EF FeGa2.955Zn0.045

FeGa3

FIG. 16. (Color online) (a) LDA+DMFT local spin susceptibility as functions of temperature (solid lines) for FeGa2.955Zn0.045 (blue),
FeGa2.925Zn0.075 (green), and FeGa3 (black) together with fits (dashed lines) to either the modified Curie law or to the activation law χ (T )=
χ0 + exp[−�S/(kBT )] with a spin gap �S = 0.21 eV. The inset displays Pauli susceptibilities computed from the spectral function for the two
simulated Zn-doping levels in the same units. (b) LDA+DMFT spectral functions (solid lines) for FeGa2.925Zn0.075 at different temperatures
compared to those for FeGa3 at 77 K (dashed line). An offset (multiples of 2 st. eV−1 f.u.−1) was added to each curve so that all the presented
curves can be easily viewed and compared. The A(E) curve for FeGa3 was shifted on the energy scale by −0.365 eV to facilitate visual
comparison of its shape with the calculated A(E) for FeGa2.955Zn0.045.

do not evolve with temperature. Thus, the charge and spin
states of Fe are temperature independent in FeGa3.

The experimental magnetic susceptibility of FeGa3 is only
weakly temperature dependent below ∼500 K and increases
strongly at higher temperatures, indicative of a gap in the
spin excitation spectrum (Fig. 3). Early attempts to explain
this behavior were based on thermal excitations of electrons
across the band gap [39]. These models, however, require
unreasonably large values of the density of states near the
band-gap edges to account for the size of the experimental
χ (T ) [39]. This, together with the absence of similar spin
excitations in the magnetic susceptibility of RuGa3 [an
insulator with a slightly larger band gap of ∼0.5 eV (Fig. 14)],
makes these density of states models implausible. In turn, the
lack of temperature dependence of the spin state of Fe in
FeGa3, together with magnetic order revealed by our neutron
diffraction measurements, overrules the so-called localized
moment model proposed by Tsujii et al. [39], in which
thermally induced transitions from the nonmagnetic ground
state to the first excited state with S = 1 determine the shape
of χ (T ) for FeGa3 at high temperatures.

To get insight into the energy scales for spin excitations in
FeGa3 based on our LDA+DMFT study, we calculated local
spin susceptibilities for both FeGa3 and RuGa3, χloc(ω = 0) ∼∫

dτ 〈Sz(τ )Sz(0)〉. For FeGa3, the χloc(T ) can be approximated
by the sum of a small constant term of 3.4 × 10−5 emu/mol
and a contribution with an activation-type temperature depen-
dence due to a gap of 0.21 eV [Fig. 16(a)]. This spin gap results
from quenching of spin fluctuations at finite time scales due
to the formation of a coherent insulating state at low temper-
atures [10]. It is smaller than the spin gap of 0.33–0.41 eV
that was estimated from the activation expression applied to
the experimental χ (T ). The larger size of the experimental
spin gap as compared to that obtained from the local spin
susceptibility suggests the relevance of nonlocal exchange
interactions that are not treated in our single-site DMFT setup.
We suppose that these intersite exchange interactions are
also responsible for the antiferromagnetic order revealed by

our neutron diffraction measurements since the LDA+DMFT
calculations do not give any hint for this antiferromagnetism in
FeGa3. Importantly, the temperature dependence of the local
susceptibility, derived from the LDA+DMFT study, is more
than one order of magnitude smaller than the experimental
values for the uniform susceptibility (Fig. 3). Hence, the
temperature-induced fluctuating moment of the underlying
spin state is presumably not local [43], and a considerable
momentum dependence in χ is expected. A similar disparity
in size between the measured uniform magnetic suscepti-
bility and the calculated χloc(T ) was recently reported for
FeSi, an archetypal correlated band insulator [10]. Neutron
experiments for FeSi found a significant magnetic scattering
at ferromagnetic reciprocal lattice vectors [69], confirming
the nonlocal charater of the temperature-induced magnetic
moment. In contrast, for RuGa3 the local susceptibility is
very small (∼1.15 × 10−5 emu/mol), as expected for its more
delocalized 4d electrons, and it increases only very weakly
with increasing temperature, in line with the experimental
results (see Fig. 3).

Although our neutron powder diffraction study for FeGa3

revealed a complex magnetic ordering with an onset above
room temperature, there is no signature of a magnetic phase
transition in χ (T ) measured up to 900 K. For numerous
low-dimensional spin systems, however, features in χ (T )
associated with magnetic ordering are not pronounced, es-
pecially in case of magnetic transitions at high temperatures.
The shape of the temperature dependence of the magnetic
susceptibility of such systems is determined mostly by the
strongest exchange interaction. Consequently, signatures of
magnetic transitions in χ (T ) can be only barely detected even
for compounds with staggered moments as large as 2–3 μB

per magnetic ion [70,71]. For FeGa3 the expected ordered
moments are much smaller, the ordering temperature is above
300 K, and the temperature dependence of the magnetic
susceptibility is determined by the presence of the large gap in
the spin excitation spectrum. Further, LSDA+U calculations
suggest that there is a very strong antiferromagnetic coupling
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(J ≈ 3000 K) between Fe atoms within structural dimers, that
leads to the formation of spin singlets [33]. Nevertheless, we
can not exclude that the Néel temperature for FeGa3 is higher
than 900 K and therefore no signature of the magnetic ordering
was found in χ (T ) in the investigated temperature range.

Given the rather small staggered moments and an incom-
mensurate ordering wave vector, we considered the possibility
that the additional peaks in neutron diffraction patterns
originate from extrinsic sources, such as the artifacts of
the measurement process or a small amount of an impurity
phase. The former can be excluded because neutron diffraction
measurements performed in two different cryostats gave the
same results. Furthermore, the diffraction patterns collected
for samples of FeGa3 and Fe0.95Mn0.05Ga3 show very similar
peaks at small values of the wave vector Q. Following, we
discuss the possibility of secondary phases as extrinsic sources
of these additional diffraction peaks.

Both the neutron and x-ray powder diffraction patterns
collected on the same sample of FeGa3 did not show any
unexpected peaks or extra intensities that could be assigned
to the nuclear structure of an impurity phase. We found only
a few small reflections that can be unambiguously assigned
to the presence of ∼2 vol.% of α-Ga, which is nonmagnetic.
Moreover, magnetization measurements performed on several
random crystals gave only a weakly temperature-dependent
diamagnetic signal, further ruling out the presence of magnetic
impurity phases, including iron oxides. Such measurements
are much more sensitive to magnetic impurities than the
neutron powder diffraction experiments. Microstructures of
several crystals were also studied using a scanning electron
microscope with resolutions down to ∼10 nm. Examples
of high-resolution images of as-grown crystalline surfaces
taken in the backscattered electrons mode are presented in
Fig. S1 in the Supplemental Material [64]. They show no
trace of a secondary phase or compositional inhomogeneities,
apart from small and single inclusions of gallium flux. Since
backscattered electrons are sensitive to local variations in the
atomic number, the presence of an impurity phase would
have been visible as either brighter or lighter fields in the
surface images. Finally, the sample of FeGa3 was prepared
only from crystals grown in batches with nominal ratio Fe:Ga
= 1:12.5. As expected based on the Fe-Ga phase diagram [48],
the only binary phase found in these batches was FeGa3.
The next binary phase Fe3Ga4 was observed only in growths
with nominally less than 85 at. % Ga. The presence of this
compound in the sample investigated by neutron diffraction
was ruled out based on x-ray powder diffraction, where
the detection limit is of the order of 1 vol.%. Furthermore,
magnetic peaks expected for Fe3Ga4 [72] do not match the
extra peaks observed in the neutron patterns of FeGa3. Taken
together, our results argue strongly against extrinsic sources of
the additional peaks in the neutron powder diffraction patterns
of FeGa3 and Fe0.95Mn0.05Ga3.

We note that room-temperature 57Fe Mössbauer spectra
for FeGa3 did not show a distinct magnetic splitting, thus
ruling out the presence of a sizable hyperfine field on Fe site.
For an incommensurate system with small ordered moments,
however, the presence of a finite internal magnetic field
may manifest itself only in a broadening of spectral lines
due to a distribution of hyperfine fields arising from the

incommensurately modulated magnetic structure [73]. This
effect superposed on a quadrupole splitting �E = 0.33 mm/s
in FeGa3 [39,45] may be too weak to be detected on top of
broadening originating from lifetime effects and experimental
resolution.

The antiferromagnetic order in FeGa3 with the ordering
wave vector incommensurate with the nuclear structure and
only small staggered moments suggests a close similarity of
FeGa3 to Slater insulators. In the case of Slater insulators,
however, an opening of a band gap is induced by the formation
of a spin-density wave, whereas our computational study
shows that the magnetic order is not needed to cause the
insulating behavior in FeGa3. Moreover, electronic-structure
calculations based on local density methods give a similar gap
of 0.4 eV for both a nonmagnetic and a magnetically ordered
state in FeGa3 [33], thus making a spin-density-wave–type
order resulting from a Fermi surface instability in FeGa3

highly unlikely. Therefore, we conclude that the modulated
magnetic structure in FeGa3 results rather from competing
exchange interactions.

It is of interest to compare FeGa3 with the prototypal
correlated band insulator FeSi. Both compounds are band
insulators with hybridization gaps of 0.4 eV for FeGa3 and
0.05 eV for FeSi [10,17,31]. Electronic-structure calculations
based on LDA+DMFT indicate a strong mixed valence of Fe
with a similar average occupancy for the Fe 3d shell of 6.3 and
6.2 in FeGa3 and FeSi [10], respectively. Furthermore, the spin
state with S = 1 dominates in both FeGa3 and FeSi, with strong
fluctuations on short-time scales. Even the remarkably uniform
distribution of states is very similar in the two compounds
(see Fig. 14 and Fig. S5 of Ref. [10]). For both systems,
the spin excitations are gapped, and the temperature-induced
fluctuating moment is, to a large extent, not local. The large
degree of delocalization and strong momentum dependence is
typical for correlated band insulators and differentiates them
from f -electron-based Kondo insulators such as Ce3Bi4Pt3,
SmB6, YbB12, or CeNiSn [20]. Also, the ratio between the size
of the band gap Eg and the width of the bands around the gap
Eg/W 
 1 for FeGa3 and FeSi, whereas for Kondo insulators
Eg/W � 1 [20]. Further, values of the U/W ratio estimated
for both FeGa3 and FeSi are of the order of 1, much smaller
than those found in strongly correlated electron systems [10].
The latter require strong electron-electron interactions to
open a band gap at the Fermi level. The effective mass
renormalization resulting from many-body effects in FeGa3

is rather low, mDMFT/mLDA ≈ 1.3–1.4, but it is comparable
to that in FeSi mDMFT/mLDA ≈ 1.5 [8,10,17]. For FeGa3,
however, the effective masses are nearly independent of
temperature (Fig. 15). This has to be contrasted with FeSi,
for which the same local interaction vertex gives rise to a
temperature dependence in the self-energy that is pertinent
for experimental observables [10]. Consequently, calculations
based on DMFT indicate that FeSi metallizes with increasing
temperature through correlation-induced incoherence [10].
The primary difference between FeGa3 and FeSi lies in the size
of the band gap, which is about eight times larger for FeGa3

than for FeSi. Therefore, for FeSi all the relevant energy scales
are of similar magnitude resulting in low-energy properties
being dominated by correlation effects [10], whereas for FeGa3

the effects of local physics are rather small on a relative energy
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scale. Furthermore, in FeGa3, nonlocal exchange interactions
are presumably responsible for the antiferromagnetic order
revealed by our neutron diffraction study. In contrast, for
FeSi the influence of nonlocal exchange is reflected mostly
in an increase in size of the band gap [74]. Neutron diffraction
measurements did not give any sign of a spin ordering in FeSi
even at lowest temperatures [75].

We were successful in incorporating sizable amounts of
Zn and Mn into FeGa3. This p-type doping on both Fe
and Ga sites did not lead either to a notable change in the
long-range magnetic order or to a metal-insulator transition.
Remarkably, the effect of doping is very similar for both
Mn and Zn. Electrical resistivity measurements show that the
doping creates localized states in the semiconducting gap.
Our magnetization study indicates that both a substitution
of Zn onto the Ga site and a replacement of Fe by Mn
lead to formation of an essentially noninteracting magnetic
moment of S = 1

2 that fluctuates freely at temperatures above
∼80 K (Fig. 9). At lower temperatures, the effective moment
decreases strongly with decreasing temperature, regardless of
the dopant type and level.

Similar effects of doping were observed for simple semi-
conductors such as silicon and germanium. The thermody-
namic properties of these systems in the insulating regime can
be well described by the phenomenological model introduced
by Bhatt and Lee [76]. The Bhatt-Lee model [77] considers
local moments of S = 1

2 associated with dopant atoms, which
lead to the Curie-type behavior in χ (T ) at high tempera-
tures and a weaker temperature dependence of the magnetic
susceptibility at lower temperatures due to antiferromagnetic
exchange interactions between these randomly distributed
spins. Bhatt and Lee iteratively divided the system into a
hierarchy of antiferromagnetically coupled spin pairs and
showed that at low temperatures χ (T )∝ T −α and Cp(T )∝
T 1−α with α < 1 [77]. For Fe1−xMnxGa3 and FeGa3−yZny ,
however, at temperatures below ∼30 K, the magnetic suscep-
tibilities develop notable magnetic anisotropies. Additionally,
the magnetic susceptibilities measured in H ‖ ab are nearly
field independent and saturate at T � 6 K. Furthermore,
estimates of the magnetic specific heat from the experimental
χ (T ) based on the Bhatt-Lee model [Eqs. (2) and (3) of
Ref. [77]] give values that are at least about one order of
magnitude smaller than the experimentally obtained magnetic
specific heat even at the lowest temperatures (not shown).
Finally, there is an important difference between FeGa3 and
the simple semiconductors regarding doping levels required to
drive the system through an insulator-to-metal transition: For
Si doped with phosphorus (boron), the critical concentration
of dopant atoms Nc = 3.52 × 1018 cm−3 (4.06 × 1018 cm−3)
corresponds to about 0.007 at. % (0.009 at. %), whereas
even the introduction of about 2.5 at. % of acceptors in
Fe0.9Mn0.1Ga3 does not lead to a metallic state. Also, for
the archetypal correlated band insulators, FeSi and FeSb2,
similar or smaller concentrations of dopants were found to
induce a metallic conduction in FeSi1−xAlx , Fe1−xCoxSi,
Fe1−xMnxSi, Fe1−xCoxSb2, FeSb2−xSnx , Fe1−xNixSb2, and
FeSb2−xTex [20,21,23,24,78–82].

The development of a broad Schottky-type anomaly in
specific heat of both Fe1−xMnxGa3 and FeGa3−yZny indicates
the formation of a gap (Fig. 8). The magnitude of this gap

�/kB ≈ 16 K is very similar for Mn- and Zn-doped FeGa3

and does not change appreciably with increasing doping level.
Since the gap anomalies in specific heat are accompanied by
the broad features in magnetic susceptibility, we considered
their common origin as due to thermally induced changes
in spin state of dopant atoms from S = 0 to 1

2 . Attempts to
describe the χ (T ) based on this model, however, do not lead to
satisfactory fits (not shown). Instead, the magnetic susceptibil-
ities revealed notable magnetic anisotropies in this temperature
range, very similar for both Fe1−xMnxGa3 and FeGa3−yZny .
We propose that holes introduced to FeGa3 by doping with Mn
and Zn localize at low temperatures into magnetic “droplets”
on the scale of the lattice spacing due to strong exchange
interactions between spins of these carriers and spins of Fe
in the antiferromagnetic lattice. Such localized charge carriers
accompanied by reorientations of surrounding lattice spins are
usually referred to as small spin polarons. Thus, we interpret
the gap found in specific-heat measurements as the binding
energy of these states forming at low temperatures.

The linear increase of the excess entropy associated with
the Schottky anomalies with increasing doping levels observed
for Mn- and Zn-doped FeGa3 [Fig. 8(c)] is consistent with a
growing number of doping-induced polarons. Also, the mag-
netic susceptibilities at the lowest temperatures increase nearly
linearly with the dopant levels for both Fe1−xMnxGa3 and
FeGa3−yZny (Fig. 11), in line with the scenario of magnetic
polarons. Further, the field-dependent magnetization M(H )
curves measured at 1.85 K do not saturate up to the highest field
of 70 kOe, and the maximum measured moments correspond
to only ∼0.3 μB per dopant atom [Fig. 10(b)]. Since the
doping with Mn and Zn falls short of closing the spin gap of
0.4 eV and essentially does not influence the antiferromagnetic
ordering as revealed by our neutron diffraction measurements,
the shape of the M(H ) curves reflects the magnetization
associated with the dopant atoms. The lack of saturation and
only small values of the field-induced magnetic moment per
dopant atom that are independent of the doping level suggest
the presence of strong exchange interactions between spins
of carriers introduced by the doping and spins of Fe atoms
in the antiferromagnetic material. This exchange coupling
is presumably responsible for the formation of the spin
polarons. Recent muon spin rotation study gave an evidence
for the presence of anisotropic spin polarons in FeGa3 at
temperatures below ∼10 K [44]. However, we caution that
spectroscopic measurements on Mn- and Zn-doped FeGa3 are
needed to place our proposal on firmer footing.

Our experimental study for Mn- and Zn-doped FeGa3 is
in strong contradiction with predictions based on electronic-
structure calculations within DFT, which indicated the for-
mation of an itinerant ferromagnetic state with half-metallic
properties in hole-doped FeGa3 over an extended composition
range, independent of the presence of preformed Fe moments
in the undoped semiconducting phase [43]. To test this theoret-
ical prediction and to further study the influence of hole doping
on magnetic properties and many-body renormalizations, we
employed DMFT. We simulated doping of FeGa3 with holes
on both Fe and Ga sites in LDA+DMFT calculations using
the VCA approximation.

Our calculations indicate that hole doping on either
Fe or Ga sites has very similar effects on the electronic

195102-15
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structure and magnetic properties of FeGa3. Figure 16(a)
shows χloc(T ) calculated for a few selected doping levels.
At high temperatures, the local susceptibilities can be well
described using a modified Curie law. With decreasing
temperature, a notable deviation from χloc(T )∼ T −1 develops.
The values of χloc(T ) become smaller than expected from the
Curie law, capturing the behavior observed in the experiments.
For both Fe1−xMnxGa3 and FeGa3−yZny , however, modified
Curie fits to χloc(T ) at temperatures above ∼300 K result in
small values of the effective moment per dopant, much smaller
than the moment of 1.73 μB expected for S = 1

2 . For example,
for FeGa2.925Zn0.075, we obtained only peff = 0.55 ± 0.02 μB

per Zn.
As seen in Fig. 15, the deviation of χloc(T ) from the

modified Curie law is accompanied by a notable increase
in the effective mass for the orbital character that accounts
for the majority of spectral weight at the Fermi level, near
the top of the valence band. Although the overall values of
mDMFT/mLDA for the simulated doping levels are not very big,
they are comparable with those found for FeSi [10]. Most
importantly, the temperature-induced changes are as large as
15% an increase in the shown range for FeGa2.925Zn0.075.
Conceptually, growing effective masses can be expected to
increase the validity of a local picture of fluctuating spin
moments. Therefore, the experimentally observed decrease
of the effective moment when lowering temperature points
towards a predominantly itinerant mechanism for the spin
response at all temperatures.

Moreover, the changes in χloc coincide with the temperature
dependence of the spectral weight at the Fermi level displayed
in Fig. 16(b). The Pauli susceptibility [see the inset in
Fig. 16(a)] calculated from

χPauli(T ) = μ2
BNA

∫
dE

(
−∂f (E)

∂E

)
A(E) (6)

provides an even better match to the experimental uniform
susceptibility than the LDA+DMFT local spin susceptibility.
Here, NA is Avogadro’s number, μB is the Bohr magneton,
f (E) denotes the Fermi function, A(E) is the spectral function.
These calculations imply that the physics of local moments is
not predominant in the Mn- and Zn-doped FeGa3.

To further address the strength of magnetic correlations in
the hole-doped FeGa3 based on DMFT, we calculate also the
Sommerfeld-Wilson ratio

RSW = 4π2k2
B

3(gμB)2

χp

γ
. (7)

Here, g = 2 is the electron Lande factor, γ is the Sommerfeld
coefficient obtained based on the calculated spectrum at
the Fermi level and χp is approximated by the local spin
susceptibility χloc. A tentative T → 0 extrapolation gives
values of the RSW in the range of 1–3 for both FeGa2.955Zn0.045

and FeGa2.925Zn0.075, thus indicating the absence of strong
electronic spin-spin interactions which could lead to Stoner-
type magnetic instability, in line with our experimental results.

Our experimental and computational study puts forward
the complex magnetic properties of the Fe1−xMnxGa3 and
FeGa3−yZny solid solutions. Even though the inclusion of
dopant atoms basically does not influence the long-range
antiferromagnetic order and falls short of closing the spin

(and charge) gap, it triggers an intriguing magnetic behavior.
Both the experimental χ (T ) and the calculated χloc exhibit a
Curie-type behavior at high temperatures and become smaller
than expected based on the Curie law at lower temperatures.
However, the experimental magnetic susceptibility suggests
the formation of local moments of S = 1

2 associated with
the dopant atoms that fluctuate freely at temperatures above
∼100 K (Fig. 9), whereas the LDA+DMFT calculations
point to the itinerant character of the spin response, that
however mimic a Curie-type fluctuating moment behavior at
high temperatures. These findings, together with the presence
of an incommensurate magnetic order with rather small
staggered moments as well as the formation of anisotropic
spin polaroniclike states at low temperatures, indicate that
Fe1−xMnxGa3 and FeGa3−yZny combine features of both
itinerant and localized magnetism.

We notice that our LDA+DMFT calculations as well as
a previous computational study based on DFT [43] indicate
that p-type doping shifts the Fermi level to the valence band,
whereas transport measurements for all Fe1−xMnxGa3 and
FeGa3−yZny revealed only insulating behavior with electrical
conductivities determined by the presence of localized in-gap
states even for the highest doping levels. It is known, however,
that computational methods based on the local density and the
VCA approximation can not address this type of conduction in
doped semiconductors [83,84]. In addition, intersite exchange
interactions between spins of carriers introduced by the doping
and spins of magnetic ions need to be accounted for in case
of the formation of small magnetic polarons. Inclusion of
these interactions in the DMFT calculations would at least
necessitate a cluster extension [85].

V. CONCLUSIONS

Our neutron powder diffraction, thermodynamic, and elec-
trical resistivity measurements show that FeGa3 is an insulator
in which iron moments order above room temperature in a
complex antiferromagnetic structure that is incommensurate
with the nuclear lattice and spin excitations are gapped. Based
on many-body calculations within the framework of DMFT,
we claim that, while the iron atoms in FeGa3 are dominantly in
an S = 1 state, there are strong and temperature-independent
charge and spin fluctuations at short-time scales, indicating
a strongly delocalized character of 3d electrons. Further, the
low magnitude of local contributions to the spin susceptibility
advocates a predominantly itinerant mechanism for the spin
response. Our combined experimental and computational
investigations indicate that FeGa3 is a correlated band insulator
with only small effects of many-body renormalizations, in
which nonlocal exchange interactions are presumably respon-
sible for the spin gap of 0.4 eV and the antiferromagnetic
order.

Calculations based on DMFT indicate that dynamical
correlation effects in FeGa3 become stronger as a result of
hole doping. Using electrical resistivity and thermodynamic
measurements as well as neutron powder diffraction, we
establish that doping of FeGa3 with Mn and Zn neither affects
the long-range antiferromagnetic ordering nor leads to an
insulator-to-metal transition. The effect of doping is very
similar for both Mn and Zn. The temperature dependence
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of the electrical resistivity indicates that localized states
are formed in the semiconducting gap. Magnetization study
shows that the introduction of each hole is accompanied by
the formation of a spin moment of S = 1

2 , that fluctuates
freely at temperatures above ∼100 K and decreases gradually
with lowering temperature. While these experimental findings
suggest the existence of local moments associated with the
dopant atoms, the LDA+DMFT calculations argue for an
itinerant character of spin excitations that, however, mimic
a Curie-type behavior of the χ (T ) at high temperatures.
At low temperatures, it is tempting to interpret the ther-
modynamic and transport properties of the Mn- and Zn-
doped FeGa3 in terms of small spin polarons formed by
holes that localize into magnetic “droplets” due to strong
exchange couplings between spins of these free carriers and
Fe moments in the antiferromagnetic lattice. Consequently, our

study indicates that Fe1−xMnxGa3 and FeGa3−yZny combine
features of both itinerant and localized magnetism due to a
complex interplay between nonlocal exchange and correlation
effects.
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