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ABSTRACT   

Lavender (Lavandula angustifolia) is a popular treatment for stress and mild anxiety.  

Currently, there are few reliable investigations of its efficacy because cognitive and 

associative effects of odours can confound pharmacological effects. Some of these 

problems can be overcome by testing the effects of odours in animals, and by using 

orally-administered lavender in sealed capsules in human participants. In addition, a 

criticism of current studies is that most employ short-term administration of lavender, 

even though humans most often use lavender over longer time-periods.   

There are two parts to this thesis. The first part addressed two questions; whether 

lavender odour exhibits anxiolytic effects in animal models of anxiety, and whether 

chronically administered lavender is more effective than acutely administered lavender. 

The second part addressed the question of whether, in a randomised double-blind 

placebo-controlled trial, orally-administered lavender exhibits anxiolytic effects in 

humans.   

This thesis makes three significant contributions:  

 First, these studies provided a validation of the gerbil elevated plus-maze model 

of anxiety in both male and female gerbils, a model that has only previously been 

validated in female gerbils (Varty et al., 2002).    

Second, the studies on gerbils have shown that both lavender and rose essential 

oils have anxiolytic effects, which, rather than dissipating following acute odour 

administration (Cooke & Ernst, 2000), potentiate over time. Lavender’s effects were 

particularly apparent in female gerbils on measures related to risk-assessment, a 

behaviour that has been related to the human anxiety trait of worry (Blanchard, 

Blanchard, Griebel, & Nutt, 2008).   

Third, lavender had a clear dose response effect in reducing baseline anxiety in 

humans when tested acutely via oral administration, although there were no effects 

when more severe anxiety was induced. The route of administration and the fact that 
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lavender had dose response effects indicate that lavender’s effects are not caused by 

psychological qualities of the odour, but are more likely to be due to direct 

pharmacological effects. Again, and comparable to results in gerbils, lavender’s 

anxiolytic effects in human females were more noticeable, particularly during the 

anxiety task and in the recovery phase of the study.   

In summary, prolonged exposure to lavender odour relieved anxiety in a validated 

animal model of anxiety, and orally-administered lavender alleviated mild anxiety in 

humans. In both cases, results were more prevalent in females.    
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CHAPTER 1 INTRODUCTION AND 
BACKGROUND   

1.1 OVERVIEW OF CHAPTER   

This thesis is about an investigation into the ameliorative effects of lavender 

(Lavandula angustifolia) on mild anxiety. In order to describe this investigation and 

its implications it is important that the reader understands something about anxiety. 

The first section of the introduction is a description of anxiety, its possible biological 

causes and cures, and why sufferers of stress and mild anxiety might self-medicate by 

turning to complementary and alternative medicines, such as lavender essential oil. 

This section is followed by a discussion of the studies that have been conducted to 

examine lavender’s effects on anxiety. The lavender section includes a discussion of 

possible psychological effects of lavender caused by its odour, and then a review of 

the animal literature and any relevant in-vitro effects of lavender, which might 

provide an explanation for its potential anxiolytic mechanisms. There is also a short 

section on rose oil, as there is a study included in the thesis which examines some of 

the effects of rose essential oil on anxiety. Since the mode of action of these essential 

oils on anxiety might be via the olfactory route, a brief description of the potential 

routes by which lavender and rose can exert their actions is provided. Finally, the 

aims and hypothesis for this thesis are presented.    

1.2 ANXIETY  

Anxiety disorders are the most prevalent form of diagnosed mental illness in Europe 

and the USA. In any 12-month period 15% of the population is estimated to suffer 

from anxiety, while over the average lifespan 11%-20% in Europe and 24.9% in the 

USA will be diagnosed with an anxiety disorder (Bruce et al., 2005; Andlin-Sobocki 

& Wittchen, 2005). These disorders often start early in adult life and last for many 

years. Having one anxiety disorder worsens the prognosis for other types of anxiety 

disorder and other mental health problems, such as major depressive disorder (Gale & 

Davidson, 2007). Anxiety disorders have been described as ‘insidious’, having a 
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chronic course, low rates of recovery, and a relatively high probability of recurrence 

(Bruce et al., 2005).   

Thus, anxiety disorders have important implications in terms of medical costs and 

costs to employers because of time taken off work by employees. At least 35% of all 

sickness absences caused by mental disorders are reported to be due to anxiety 

disorders, for which sufferers are rarely given the correct diagnoses or support 

(Andlin-Sobocki & Wittchen, 2005). It has been reported that anxiety disorders 

represent the largest mental health problem in the USA, and affected men are four 

times more likely than non-sufferers to be chronically unemployed (Rachmann, 2002). 

In the USA, the total cost of anxiety disorders was estimated to be $40 billion 

(Andlin-Sobocki & Wittchen, 2005). In the UK, anxiety and depression were 

estimated to cost £12 billion per year in time off work (BBC, 2007).   

1.2.1 Description of anxiety  

Anxiety is an unpleasant, aversive, state characterised by high levels of negative 

affect and arousal, for example, feeling nervousness, apprehension, worry, a desire to 

escape from current circumstances, and hypervigilance. Somatic symptoms might 

include activation of the autonomic nervous system, characterised by racing heartbeat, 

sweaty palms, dry mouth, increased muscle tension, possibly increased breathing-rate 

(in the case of panic attacks) and increased secretions of hormones, such as 

adrenaline and cortisol.   

Anxiety is unusual in that it represents both a normal state, allowing a person to adapt 

to his or her environment, and a psychopathology, leading to ill health. In normal 

state-anxiety, the systems required to deal with stressful situations are mobilised. For 

example, the fight, flight, or freeze (FFFS) response is mobilised to escape from, or 

deal with and lessen, the impact of an immediate threat to wellbeing (Gray & 

McNaughton, 2003). Alternatively, in situations where the threat is not immediate, 

approach-avoidance behaviour, such as risk-assessment, might be mobilised. A side-

effect of this is an increase in levels of arousal; this sometimes aids performance in 

tasks such as public speaking (Argyropoulos, Sandford & Nutt, 2000). However, 

some people are more anxious than others, even in situations that are only mildly 

threatening. As a consequence of this, a distinction can be made between state and 
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trait anxiety. While state anxiety depends on circumstances at a point in time and 

mood variations, trait anxiety is linked to stable heritable factors and is a personality 

trait. Generally, people with high trait anxiety are more likely to develop pathological 

anxiety (Gray & McNaughton, 2003). Pathological anxiety is at the extreme end of 

the continuum and is a result of an interaction between state and high trait anxiety 

(Sandford, Argyropoulos & Nutt, 2000). It results in feelings of extreme, and often 

prolonged, anxiety without any obvious stimulus, which is very distressing for the 

sufferer, their friends and their relatives. These people are classed as suffering from 

an anxiety disorder (Chambers, Power & Durham, 2004; Carr, 2001).  

Anxiety is not a unitary phenomenon and diagnosing anxiety disorders is not 

straightforward. Pathological anxiety encompasses a number of different conditions 

that present in different forms and respond to different treatments. Symptoms of 

anxiety might include the following: free-floating worry that is unlinked to anything 

in particular and can last for a number of years, panic-attacks that are short-lived and 

very intense, and phobias of specific objects.  For this reason and because different 

types of anxiety respond better to different types of treatment, two systems of 

classification of anxiety disorders, based on symptom patterns, have been developed 

to assist physicians in making diagnoses. These are ‘The International Statistical 

Classification of Diseases and Related Health Problems’ (ICD10) and ‘The 

Diagnostic and Statistical Manual of Mental Disorders Criteria’, Version 4 (DSM IV) 

(American Psychiatric Association (APA) 2000). ICD10 is published by the World 

Health Organization (WHO) and classes anxiety disorders as neurotic, stress and 

somatoform disorders. In DSM IV, which is published by the American Psychiatric 

Association (APA), they are classed as anxiety disorders. Both manuals are virtually 

identical in their classification of anxiety disorders and both use the same diagnostic 

codes to identify the different types of anxiety. Table 1.1 (below) shows a summary 

of anxiety disorders as classed by DSM IV (APA, 2000; Antony, Orsillo & Roemer, 

2001). 
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Table 1.1: Summary Table of Anxiety Disorders According to DSM IV.  

Anxiety Disorders  Key Features 

General anxiety Disorder Excessive anxiety and worry out of proportion to the event over at least six months. 
It is accompanied by fatigue, difficulty concentrating, irritability, muscle tension, and 
disturbed sleep. Could also include headaches, muscle twitching, sweating, nausea, and other 
hypervigilant reactions. 

Panic Disorder without Agoraphobia Recurrent, unexpected panic attacks, associated with persistent concern about the attacks. 
Panic Disorder with Agoraphobia Panic Disorder associated with agoraphobia (i.e. fear and avoidance of situations in which 

escape might be difficult or embarrassing, or in which help might not be available in the 
event of a panic attack or panic like sensations). 

Agoraphobia without history of Panic Disorder The presence of agoraphobia in an individual who has never met full criteria for panic 
disorder. 

Specific Phobia Clinically significant anxiety, fear and avoidance related to a specific object or situation. 
For example, heights, animals, blood, injections, flying, enclosed places. 

Social Phobia Clinically significant anxiety, fear and avoidance related to social and performance 
situations, associated with a fear of embarrassment or humiliation. 

Obsessive Compulsive Disorder The presence of obsessions (thoughts, urges, or images that are distressing and intrusive) and 
compulsions (repetitive behaviours meant to reduce anxiety or prevent perceived danger). 

Post Traumatic Stress Disorder and Acute stress 
Disorder 

Re-experiencing a traumatic event, accompanied by symptoms of increased arousal and 
avoidance of situations and thoughts that remind the individual of the event. 

Anxiety Disorder Caused bya General Medical 
Condition 

Anxiety symptoms that are the direct consequence of a general medical condition 
(e.g. panic attacks caused by hyperthyroidism). 

Substance Induced Anxiety Disorder Anxiety symptoms that are the direct consequence of a substance (E.g. cocaine). 
Anxiety Disorder not Otherwise Specified Disorder with prominent anxiety or phobic avoidance not meeting criteria for a specific 

anxiety disorder or for which there is inadequate or contradictory information. 
(APA, 2000; Antony et al., 2001).
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Epidemiological studies reported by DSM IV show that the lifetime prevalence of 

anxiety disorders, such as panic disorder (PD) is between 1.5%- 3.5%, simple phobia 

between 10%-11.3%, social phobia between 3%-13%, obsessive-compulsive disorder 

(OCD) 2.5%, post-traumatic-stress disorder (PTSD) 1%-14%,  and general anxiety 

disorder (GAD) 5% (Souetre et al., 1994; Andlin-Sobcoki & Wittchen, 2005). As 

mentioned previously, the chances of recurrence are high once diagnosed and often 

sufferers go on to develop other mental illnesses such as major depression. According 

to DSM IV about 55-65% of those presenting with the disorder are female and about 

two thirds of diagnoses are in females (APA, 2000; Kinrys & Wigant, 2005). This 

does not necessarily mean that fewer men than women suffer from anxiety. In many 

cases, anxiety goes undiagnosed and sufferers self medicate, for example with 

alcohol, which ultimately exacerbates the problem, or they are wrongly diagnosed by 

the GP and the somatic symptoms are treated rather than the psychological ones. For 

example, the patient might be sent to see a cardiologist for symptoms of raised blood 

pressure and heart-rate, rather than being treated for anxiety (Lydiard, 2000). In 

addition, patients often suffer from more than one of the disorders at once. 

Consequently, there is a lack of homogeneity in the types of disorders suffered. 

Added to this some sufferers do not have severe enough symptoms to be classified in 

one of the current categories, while clearly suffering from anxiety.   

1.2.2 Current understanding of the aetiology of anxiety   

Anxiety is not a clear phenomenon and there is confusion about whether it is a 

feeling, behaviour, or an expression of underlying processes. However, there is 

general agreement that it is expressed via somatic, cognitive, affective, and 

behavioural components (Lang 1968). Extremely complex in its aetiology, it is a 

transitory and unpleasant emotional state, involving both tension and apprehensive 

thought.   It is also a relatively stable personality trait (Edelmann 1992; Rachman, 

2004; Spielberger, 1984; Bolmont and Abraini, 2001).  

Clinicians, psychologists, biologists and other workers have produced theoretical 

models as frameworks in which to understand and better treat anxiety. As a result 

there are many models of anxiety, some categorical (e.g. DSM IV and ICD 10), and 

some dimensional. The categorical models, such as DMS IV, are popular because 
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they enable clinicians to make simple yes/no diagnoses of anxiety in sufferers. 

However, these types of models of anxiety often are less than satisfactory, as they fail 

to distinguish between different types of illness. For example, GAD and major 

depression both contain insomnia, fatigue, irritability, restlessness, and difficulty 

concentrating as criteria for diagnosis (Brown, Chorpita, Barlow, 1998). Additionally, 

the categorical approach tends to assume that the disorders are as a result of abnormal 

psychopathology, rather than being at the far end of a continuum. This often results in 

failure to diagnose and treat someone with an anxiety disorder or leads to 

misdiagnosis. Dimensional theories overcome some of these problems and provide 

more information, making diagnosis more complex but better informing researchers 

about anxiety.   

As already mentioned, at a very basic level anxiety can be described as a state or a 

trait condition. More often than not, it is brought on by an interaction of the two 

(Sandford, Argyropoulos and Nutt, 2000). Spielberger (1966) based his model of 

anxiety on these constructs and argued that the scales of state and trait anxiety that he 

created are bi-polar, each containing state or trait absent and state or trait present 

items, and that the two constructs are unidimensional (Spielberger, 1984; Endler & 

Kocovski, 2001). A person who is high in trait anxiety might be more likely to see a 

potentially threatening situation as more aversive than a person low in trait anxiety. 

More recently, it has been reported that Spielberger’s model might also incorporate 

aspects of depression (Grös, Antony, Simms & McCabe, 2007). Nevertheless, 

Spielberger’s model has been used extensively in anxiety research and the State/Trait 

Anxiety Inventory (STAI) provides a broad measure of changes in state anxiety in a 

research/clinical setting (Endler and Kocovski, 2001). Development of these models 

has led to the more recent suggestion that both trait and state anxiety are 

multidimensional constructs.   

Eysenck’s theories plot personality types on a grid consisting of two perpendicular 

axes: neuroticism and stability, and extraversion and introversion. These factors are 

orthogonal, that is, completely independent of one another. He argues that neurotic 

introverts are more likely to be open to conditioning than are extroverts. 

Consequently, those with neurotic introverted personality traits are more likely to 

develop anxiety disorders. From experiments with twins he also suggested that at 

least three quarters of the total variance for differences between individuals with 
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respect to neuroticism and extraversion is caused by heredity factors (Eysenck 1957). 

Eysenck also attributed the persistence of anxiety behaviours to the fact that, in order 

to avoid anxiety, people attempt to escape or avoid the stimulus thus relieving the 

symptoms of the anxiety and, consequently strengthening the behaviour pattern 

(Rachman 2004).   

Watson and colleagues (1995) tripartite model is also multidimensional. This model 

provides a dimensional explanation for anxiety and depression. It is a psychological 

model based on affect or mood (Watson, Weber, Assenheimer, Clark, Strauss, & 

McCormick 1995). Moods are more permanent versions of emotions, which tend to 

be fleeting and short in time. This model has shown some use in separating constructs 

belonging to both anxiety and depression (Watson, et al., 1995). It also provides a 

way of distinguishing between anxiety and depression psychometrically. The model 

proposes two factors specific to anxiety and depression, and a general distress factor. 

It is based on Watson and Tellegan’s (1985) work, dissecting mood into two 

components: negative affect and positive affect (Watson et al., 1995). Negative affect 

measures aversive and distressed mood states, such as those experienced in anxiety 

and depression, for example feeling upset, guilty, afraid, sad, scornful, and disgusted. 

Watson and Clark (1992) linked it to the neuroticism of Eysenck’s theory; hence, 

anxiety would score highly on these factors. Positive affect consists of feeling active, 

delighted, interested, and enthusiastic, thus depression would be the opposite of these 

resulting in low positive affect. These two mood states are largely independent of one 

another, and show an interesting and differential pattern in response to depression and 

anxiety both centre on negative mood states and show high negative affect. By 

comparison, anxiety and depression show very different associations with positive 

affect; low positive affect is consistently associated with depression, whereas anxious 

mood is largely unrelated to positive affect (Watson, Weber, Assenheimer, Clark, 

Strauss, McCormick, 1984). The third dimension, which was later added to the model 

(Watson et al., 1995), somatic arousal, is characterised by tension, shortness of breath, 

dizziness, light-headedness, trembling and shaking.  Hence, anxiety is characterised 

by high negative affect and high somatic arousal, and depression is characterised by 

low positive affect. This model has gained wide clinical acceptance in work with both 

adults and children (de Beurs, den Hollander-Gijsman, Helmich, Zitman, 2007).   
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In contrast with the dimensional theories, the cognitive theories place emphasis on 

faulty thought patterns and the subjective interpretation of events by the individual, 

resulting in a somatic response to the stimulus and an emotion, in the form of anxiety. 

Individuals interpret events differently depending on their mood, trait personality, 

circumstances and experiences. Also, thought processes differ from one individual to 

the next, consequently, some individuals will cope, while others will suffer from 

anxiety (Edelmann 1992). Hence, cognitive theories suggest that individuals who are 

more prone to anxiety add more negative valence to novel situations and interpret 

them as threatening. These individuals are also more selectively attentive to threat 

cues than other individuals and add greater weight to the likelihood of the occurrence 

of negative events (Mathews, Mackintosh, and Fulcher, 1997). These theories also 

make room for the acquisition of fears by the process of learning, including 

conditioning, but place emphasis on the affected person’s interpretation of the events 

(Rachmann 2002). For example, one cognitive theory suggests that panic is the result 

of catastrophic misinterpretations of bodily sensations (Salkovskis, Clark, & Gelder 

1996). A more recent cognitive model of anxiety is one that consists of three stages: 

registration of the threat, activation of the threat and evoked secondary elaborative 

checking (Beck & Clark 1997). This theory also states that the only way to overcome 

the anxiety is to deactivate the threat registration mode.  

Gray’s theories, which are the most comprehensive of all the models of anxiety, are 

based on dimensional theories, cognitive learning theories, and biological research. 

Gray has built on Eysenck’s theory of anxiety, which is set in a learning framework. 

Gray’s theory initially added to Eysenck’s theory by adding another axis, this axis 

was at 30-degrees to the two axes in Eysenck’s theory (Gray 1970; Matthews & 

Gilliland 1999). It was an axis of impulsivity and neuroticism. Within his theories, 

high trait anxiety is characterised by a combination of introversion and neuroticism. 

Gray’s theory also takes into account both the biological and behavioural models of 

anxiety and so is mainly psycho-physiological (Gray & McNaughton, 2003). Gray 

has carried out a vast number of studies on learning in animals to provide evidence 

for his theory, which is about personality and places an emphasis on the interaction of 

emotions and physiology. He hypothesised that emotions, impulsivity, and 

neuroticism, which includes anxiety, are a result of three interacting systems; the 

behavioural inhibition system (BIS), the behavioural approach system (BAS), and the 

fight, flight and freezing system (FFFS). The BIS has been linked to the negative 
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affect in Watson’s model (1985) and to neuroticism in Eysenck’s model of anxiety 

(1957). Positive affect and extroversion have been associated with the BAS (Jorm, 

Christensen, Henderson, Jacomb, Korten, & Rodgers 1998). However, this model 

differs from Watson and Tellegan’s (1988) model in which positive and negative 

affect are orthogonal (unrelated) constructs, in that the BIS, the BAS, and the FFFS 

are all assumed to interact with one another.  

The BIS is involved in conflict resolution and all stimuli which activate the BIS 

should generate a conflict between competing goals. In fact, Gray argues that anxiety 

is a disorder based on conflicts between goals. For example, an approach-avoidance 

conflict might be observed when an organism wishes to approach an area previously 

occupied by a predator (Gray & McNaughton, 2003). The BIS enables screening of 

the situation for potential threat and then, depending on information gathered, either 

inhibits ongoing behaviour or increases arousal and vigilance ready for a FFFS 

response. Alternatively, if the situation is not assessed as threatening by the BIS, 

approach behaviour can continue. The BIS represents a neurophysiologic system, 

which is based in the hippocampus, the septum, parts of the limbic system and the 

frontal lobes of the cerebral cortex, in a pathway that Gray refers to as the 

septohippocampal loop, but which also involves the amygdalae, in forming a stop-

look-listen, system. This system prepares the organism for action should it be 

necessary (Clark, Watson, Mineka, 1994; Gray and McNaughton, 2003). It is the BIS 

which Gray has proposed is involved in trait anxiety. The BAS is sensitive to stimuli 

associated with reward and comprises dopaminergic pathways.  

The FFFS is hypothesised to mediate responses to all aversive stimuli, whether innate 

or conditioned. It is based in lower brain regions, such as the periaqueductal grey, the 

hypothalamus, and the amygdalae. Further additions to this hypothesis state, that 

these systems do not work alone, and that it is an interaction between the BIS, the 

BAS and the FFFS in an approach or avoidance conflict, which cause anxiety. Gray 

also takes the view, suggested by the Blanchards following extensive work on rodents, 

that fear is a response to actual threat and anxiety is a response to potential threat 

(Blanchard, Blanchard, Griebel & Nutt, 2008). In Gray’s system, the FFFS mediates 

fear and the BIS mediates anxiety.   
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Gray’s theory also goes some way to encompassing cognitive theories of anxiety. For 

example, when the BIS is screening for potential threat via parts of the brain that are 

involved in memory, such as the hippocampus and amygdala, it can recall and add 

negative valence to memories and provide more negative bias to them, resulting in an 

anxiety response (Gray & McNaughton, 2003).   

However, anxiety in humans is complex and these theories, although going someway 

to aiding the understanding and therefore the treatment of anxiety, do not explain 

everything. Cognitive causes of anxiety might be more important than the biological 

basis suggested by Gray and Eysenck. A problem with the learning theory is that 

quite often individuals develop phobias to things that have never been presented to 

them as a threat. For example workers have shown that fear of monkeys, rats, spiders 

and snakes can be induced very quickly and can be triggered by observational 

learning, suggesting that certain phobias might be hardwired (Ohman & Mineka 

2001). Further experiments have shown that the amygdala is the source of such fears. 

From an evolutionary survival point of view, having hard-wired fears to danger 

makes sense (Ohman & Mineka 2001). Cognitive theories tend to focus on phobias; 

they do not take into account general anxiety disorder, in which anxiety might not be 

linked to any particular event but is unspecific and future oriented (Edelmann 1992).  

The biological models look to biological causes for the many different anxiety 

disorders, such as alterations in neuroanatomy, up- or down-regulation of receptors 

involved in the neurotransmitter systems that mediate anxiety, or alterations in the 

neurotransmitter systems/neurochemistry of sufferers. For example, some researchers 

attribute the cause of some types of anxiety to faulty GABA receptor regulation, 

whereas others look to the serotonergic, noradrenergic, and other chemical systems as 

the biological substrates of anxiety. This type of model looks for biological 

dysfunctions that are often treatable with drugs (Rachmann 2002). Eysenck and 

Gray’s theories are unusual in that the psychology and biology overlap.   

In reality all of these models are probably valid, in that anxiety works on a continuum 

and at a number of different levels and is the result of an interaction between 

environmental stressors, heritable traits, cognitions, behaviour, physiology, and each 

individual’s neuroanatomy and neurochemistry. Normal anxiety is a stress response 

that allows the organism to adapt to its environment.  Thus, in situations of normal 
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anxiety those who are affected often take actions to reduce the anxiety: this helps 

them to adapt more readily to the situation that they are experiencing. However, such 

action might include turning to alcohol or perhaps seeking help from alternative 

therapies, such as aromatherapy, herbalism or yoga.  These therapies are popularly 

considered more holistic and healthier than prescribed medications. In contrast, at the 

extreme end of the continuum pathological anxiety occurs when there is a failure to 

adapt, either because of extremes of circumstance, or because of abnormal 

physiology or neurochemistry.   

Anxiety is expressed via somatic, cognitive, affective and behavioural components 

(Lang, 1968). Whether the cognition first becomes aware of the stimulus, or whether 

the somatic symptoms make one aware of the stimulus, depends on the stimulus 

(Edelmann, 1992). Generally, in normal anxiety there is a real threat to wellbeing. 

Causes of normal anxiety can be things like having tests for a potentially life-

threatening illness, serious illness in a close friend or relative, or the threat of losing 

one’s house or job.  In the case of pathological anxiety there might be an imagined 

stressor, a failure to recover from the original stressor, or the anxiety response is 

disproportionate to the threat. In all cases, recognition of the threat is followed by 

some form of appraisal and affective integration, which involves a neurological 

triggering mechanism involving the brain structures discussed in the next section. In 

addition, there is usually a physiological mediation of the stress response, such as 

increased heart-rate, sweating, increased circulation to the parts of the body that 

might be involved in the FFFS response e.g. leg muscles to enable flight.   

1.2.3 The biological basis of anxiety  

1.2.3.1 The neuroanatomy of anxiety  

In order to understand the mechanisms involved in anxiety, and hence its treatment, 

the underlying neuronal circuitry must first be understood. Three important concepts 

underlie the functional anatomy of anxiety: a defence system, which makes 

immediate responses to a situation by using fight, flight or freezing behaviour; a 

behavioural inhibition system, which is involved in information gathering and 

suppressing behaviours that might endanger the individual; and, an avoidance system, 
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to escape or avoid situations that an individual recognises as dangerous prior to the 

event. These three systems work together as one, causing fight or flight, so preventing 

any behaviour that might lead to danger (Sandford et al. 2000). Evidence for these 

concepts is from years of animal and human studies (Gray & McNaughton, 2003; 

Blanchard, Blanchard, Griebel & Nutt, 2008).  

The brain structures and pathways underlying these three systems are complex and 

involve many neural circuits at different levels depending on the type of anxiety and, 

in the case of pathological anxiety, the type of disorder (Kim & Gorman, 2005). What 

is known of the neuroanatomy of anxiety from animal, immnuocytochemistry and 

imaging studies can be simplified to three different levels (Carrasco & Van de Kar 

2003). The brainstem is responsible for autonomic responses.  The limbic system is 

responsible for the affective states of anxiety, emotions, mood changes and 

neuroendocrine changes in stress hormones, such as cortisol and other 

glucocorticoids. Finally, the higher limbic system and neocortex are responsible for 

conscious or cognitive responses to anxiogenic stimuli. There is bi-directional 

feedback between these pathways causing an enhanced response, leading to anxiety 

or a damping down of the response in normal individuals who do not suffer from 

anxiety (Carrasco & Van de Kar 2003). In sufferers of anxiety disorders, the control 

of these neural circuits might be impaired (Kim & Gorman, 2005). The next sections 

describe the involvement of these regions of the brain in the aetiology of anxiety in 

more detail.  

Brainstem  

In the brain stem, noradrenaline (NA) -releasing neurons in the locus coeruleus (LC) 

are involved in producing the immediate FFFS response to anxiogenic stimuli in co-

ordination with the periaqueductal grey (PAG), the grey matter located around the 

cerebral aqueduct located in the midbrain (Singewald, Salchner & Sharp, 2003). In 

extreme danger when an organism is under immediate threat, the PAG is the region 

of the brain that is most likely to be activated, causing undirected escape, attack or 

catastrophic panic. In panic disorder, it is this region that is likely to be at fault (Grey 

& McNaughton, 2003; Blanchard, et al., 2008). The release of NA from the LC is 

responsible for arousal, drive and appetite (Smith & Nutt, 1996; Sullivan, Coplan, 

Kent & Gorman, 1999). Normally, during stress responses projections from the LC to 
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the amygdala, the hippocampus, the hypothalamus, the nucleus tractus solitarius, the 

periaqueductal grey, the prefrontal cortex and the thalamus are activated. The 

projections to these cortical and subcortical regions are responsible for mediating fear 

and anxiety. Most of these regions also innervate the LC. Thus, the NA neurons in the 

LC are in a position to integrate both external and internal data and activate structures 

that have roles in stress and anxiety responses (Kent, Mathew & Gorman, 2002). This 

neuronal activity focuses attention and promotes scanning behaviour (Jenck, Moreau 

& Martin, 1995; Singewald et al., 2003; Mansour et al., 2003). Additionally, 

noradrenergic projections from the LC activate the autonomic nervous system, 

including the cardiovascular and pulmonary systems, readying them for a FFFS 

response while suppressing systems which are not needed at this stage, such as the 

digestive and urinogenital systems.   

Alongside the NA system, the raphé nuclei in the brain stem, which consist of many 

different subsets of serotonergic neurons including the median (MRN) and dorsal 

(DRN) raphé nuclei, are involved in the control of these anxiety responses (Abrams et 

al., 2005; Kim & Gorman, 2005). These neurons are thought to mediate a complex of 

differential responses to anxiogenesis, projecting to forebrain circuits involved in the 

regulation of anxiety responses and to the LC where they regulate NA release 

(Abrams et al., 2005). All of these regions communicate widely with the limbic 

system including the hypothalamus.   

Additionally, the brainstem and limbic system send signals to the prefrontal lobes and 

paralimbic cortex, which include the orbitofrontal cortex, the bed nucleus of the stria-

terminalis (BNST), the insula, the anterior-temporal and the anterior cingulate. This 

information is processed and a response co-ordinated (Liotti et al., 2000). Thus, all of 

these systems in the brain stem coordinate with other CNS structures and the external 

and internal environment to elicit a response.   

Limbic system  

The limbic system consists of many brain structures and pathways, the main ones 

being: the amygdala, the anterior thalamic nucleus, the fornix, the hippocampus, the 

septal nuclei, the hypothalamus, the mammillary bodies, the BNST, the medial 

forebrain bundle, and the prefrontal lobes. Phylogenetically the limbic system is the 
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oldest part of the brain and has a key role in the creation and processing of emotions 

(Chorpita & Barlow 1998; Phan, Wager, Taylor, & Liberzon, 2002).   

The PAG is connected to the dorsal hypothalamus, which mediates the more 

sophisticated escape mechanisms that are likely to be employed when the threat is not 

as immediate and so panic does not ensue. In Gray and McNaughton’s model (2003) 

the hypothalamus is responsible for simple active avoidance, for example, phobia. 

The hypothalamus also has a key role in coordinating neuroendocrine responses to 

anxiety via the Hypothalamic-Pituitary-Adrenal (HPA) axis, the slow stress response 

(see Figure 1.1), and the symapthoadrenomedullary system (SAM). The SAM is the 

immediate response to environmental stressors, mediated by cells in the adrenal 

medulla and different areas of the brain depending on the type of stress causing an 

increase in adrenaline and NA. Examples of the SAM include activity by nuclei in the 

brainstem in response to low oxygen, or the frontal lobes in response to a cognitive or 

psychological stressor (Mravec, 2005). The LC and the hypothalamus detect these 

hormone rises and activate the CNS (Mravec, 2005). The HPA axis causes the release 

of glucocorticoids, such as cortisol, which are involved in stress and the FFFS 

response (Carrasco & Van de Kar, 2003; Sandford et al., 2000). Interestingly, most of 

the hypothalamic nuclei are larger in males than females (Swaab, 1997). The 

hypothalamus is, in turn, connected to the amygdala.  
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Figure 1-1The HPA axis.  

The amygdala, is made up of many nuclei and is generally divided into the central, 

lateral and basolateral nuclei. The amygdala has been likened to a switchboard, 

controlling, co-ordinating and directing anxiety responses (Kim & Gorman, 2005). 

The central nuclei send projections to the hypothalamus, LC, and PAG, to activate the 

HPA axis and thus, cortisol secretion from the adrenals and NA release from the LC, 

to increase sympathetic arousal. Additionally, the lateral nucleus processes signals 

from the higher brain regions involved in the anxiety response, such as the prefrontal 

cortex, the cingulate gyrus, the hippocampus and the thalamus.   

More specifically, studies have shown that the amygdalae co-ordinate simple 

avoidance and so co-ordinate with the hypothalamus in mediating avoidance during 

phobic states, as well as having a role in mediating the arousal components of GAD 

(Gray & McNaughton, 2003). Studies on animals and humans with damaged or 

removed amygdala, provide evidence for this role of the amygdala in the expression, 

memory conditioning of, and release, of fear and anxiety (Davies, 1992). Thus, the 

amygdalae are where memories of fearful events are created, which explains their 
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role in causing avoidance/aversion to situations (Singewald, Salchner, & Sharp 2003; 

Davis 1998).  

There are hemispheric differences between the size and function of the amygdalae 

(Kim & Gorman, 2005). The size of the left amygdala is often diminished in anxiety 

sufferers and is thought to be linked to the control of anxiety responses. The right 

amygdala is thought to be more active in pathological states (Kim & Gorman, 2005).   

In summary, the amygdala communicates with the neocortex where conscious 

thoughts are generated and processed. They also communicate with the thalamus, 

which co-ordinates sensory signals prior to sending them to the cortex (Davidson, 

2002). The amygdala finally communicate back with the brain stem.   

The bed nucleus of the stria-terminalis (BNST), a part of the extended amygdala, 

receives input from all three of the amygdaloid nuclei and has multiple connections to 

all of the limbic and cortical regions involved in the fear and anxiety response. It is 

involved in mediating anxiety responses, rather than the fear responses for which the 

amygdaloid nuclei are responsible, and for the longer-term regulation of the anxiety 

response (Bangasser, Santollo, & Shors, 2005). It is also thought to modulate the 

cortisol releasing factor (CRF)-cortisol pathway, rather than the immediate 

sympathetic pathways, which are co-ordinated by the hypothalamus (Carrasco & Van 

de Kar, 2003). Interestingly, the BNST is highly sexually dimorphic and densely 

expresses gonadal steroid receptors, and differs in size between males and females 

(Toufexis, Myers & Davis, 2006).  

The septo-hippocampal formation, consisting of the hippocampus, the dentate gyrus, 

the entorhinal cortex, the subicular area, and the posterior cingulate cortex, acts as a 

comparator, comparing known information about a situation with the actual situation 

(Gray & McNaughton, 2003). One of its roles is in approach-avoidance conflicts 

(Degroot & Treit, 2003; Graeff, 1994). According to Gray and Mc Naughton (2003) 

the septo-hippocampal loop responds to threat by interrupting ongoing behaviour 

(behavioural inhibition) via the psychological BIS. This allows information gathering, 

known as risk-assessment behaviour (Blanchard et al., 2008). The BIS is active in 

situations where there is a conflict, for example, where information held is 

incongruous with information about the current situation, or proceeding with one goal 
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might involve entering a threatening situation thus creating an approach-avoidance 

conflict. The LC in the brain stem stimulates this hypervigilant, information-

gathering, attentional output.  Information gathering also involves the recall of 

memories stored elsewhere, for example in the temporal lobes (Rokers, Mercardo, 

Allen, Myers & Gluck, 2002; McNaughton & Corr, 2004). In recalling memories 

relevant to a potentially threatening situation, the septo-hippocampal system has the 

capacity to increase the valence of affectively negative stimuli. Gray and 

McNaughton (2003) suggest that this increasing of perceived threat and subsequent 

storage of these increasingly negative memories are what lead to the rumination and 

excessive anxiety seen in general anxiety disorder. Interestingly, lesions to the septo-

hippocampal system closely resemble the effects of anxiolytic drugs (Gray & 

McNaughton, 2003); also, anxiolytic drugs and lesions to the hippocampus have very 

mild effects on mnemonic memory function (Gray & McNaughton, 2003). Finally, if 

the septohippocampal system determines that there is a threat, it sends information to 

the lateral nucleus of the amygdala, which mediates the appropriate avoidance 

reaction and the arousal components of GAD. Additionally, the BIS is able to 

interrupt ongoing motor behaviour and increase attention to the perceptual world 

(sensory vigilance) via connections from the subiculum, which is part of the septo-

hippocampal loop system, to the nucleus accumbens (Gray & McNaughton, 2003). 

This is because the nucleus accumbens sends signals via the substantia nigra to the 

motor control areas of the basal ganglia and the entire thalamocortical sensory 

processing system. In extreme stress, there is often a degeneration of hippocampal 

volume, which might lead to extreme anxiety (Douglas Bremner et al., 1995).   

Paralimbic system and prefrontal cortex  

The orbitofrontal cortex, the insular, the anterior temporal and the anterior cingulate 

receive information from the limbic system and the brainstem (Liotti, Mayberg, 

Brannan, McGinnis, Jerabek, & Fox 2000). The cingulate cortex is a bridge in 

communication between the prefrontal lobes, the limbic system and the brainstem 

(Milad et al., 2007). Lesions to this region lead to a disinhibition of emotion and an 

inability to modify behaviour according to environmental circumstances (Milad et al., 

2007). Damage to the orbitofrontal cortex and the cingulate gyrus cause decreased 

anxiety. Surgery in these regions has been used as a way of relieving suffering from 

extreme anxiety that is resistant to treatment by standard pharmacotherapy; often this 
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includes people who suffer from OCD (Ballantine, Bouckoms, Thomas, & Giriunas 

1987). In PET studies, the orbitofrontal cortex is also implicated in worry (Wu, 

Buchsbaum, Hershey, Hazlett, Sicotte, & Chad Johnson 1991).    

Anxiety can begin at any one of the levels discussed above, brainstem, limbic regions, 

paralimbic and prefrontal cortices (see Figure 1.2 below). These systems respond to 

stimuli and feed back to the other levels in order to co-ordinate a response, or create 

anxiety in the individual (Gray & McNaughton, 2003). The neurotransmitter systems 

involved in co-ordinating these responses at different structural levels are very 

complex. The following section continues the discussion looking at the 

neurotransmitters known to have a role in the aetiology of anxiety.  

  

Figure 1-2 Summary of the areas of the brain affected by anxiety (CNS Forum 2008). 
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1.2.3.2 Neurotransmitter systems implicated in anxiety  

In the CNS there are two opposing systems at work by which, all neurotransmitter 

systems are influenced: the excitatory and the inhibitory systems. These two systems 

influence and interact with all other neurotransmitter systems. Glutamate is the major 

neurotransmitter responsible for the excitatory system and Gamma Amino Butyric 

Acid (GABA) is responsible for the inhibitory system (Whiting, 2003). Both of these 

systems are found throughout every brain region and their receptors are evident in 

most neurons. They both occupy some 40% of all synapses and both are implicated in 

the pathophysiology of many diseases (Leonard, 1994).   

Glutamate  

Glutamate is the major excitatory amino acid in the CNS. There are many different 

types of glutamate receptor, and they have overlapping but different functions 

depending on their distribution (Pralong, Magistretti, & Stoop, 2002; Tapiero, Mathe, 

Couvreur, & Tew, 2002). The glutamatergic system has a role in synaptic plasticity 

associated with memory and learning (Cryan & Dev, 2008). Its fast actions are 

mediated by ionotropic receptors, N-methyl-D-aspartic acid (NMDA), alpha-amino-

3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate; these are 

mainly active in calcium and sodium ion transport (Cryan & Dev, 2008). While, its 

slower actions on neurotransmitter release and cell excitability are mediated by 

metabotropic G-coupled glutamate receptors (Cryan & Dev, 2008). There are three 

families of metabotropic receptor: Group 1 utilizes the phospho-lipase C and inositol-

phosphate second messenger systems; whereas, groups 2 and 3 inhibit adenyl-cyclase, 

thereby decreasing cAMP production in the cell. Glutamate receptors have a role in 

memory and synaptic plasticity in the areas of the brain related to emotion, such as 

the hippocampus, amygdala and cortex, but some of these receptors, NMDA types, 

also require the binding of glycine to function correctly.   

Experiments have shown a decrease in glutamatergic transmission when the HPA 

axis is deactivated (Makatsori et al., 2003; Moghaddam, 2002). In addition, activation 
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of  the NMDA class of receptors is thought to lead to the release of CRF (Cryan & 

Dev, 2008). It has been demonstrated that serotonin reuptake inhibitors (SSRIs) have 

a significant impact on NMDA receptor function and therefore might exert their 

therapeutic effects via the glutamatergic system (Wegener, Volke, Harvey, & 

Rosenberg, 2003). In recent years, a growing number of studies have been conducted 

to investigate the anxiolytic effects of glutamate antagonists with promising results. 

Methyl, phenyl-ethynyl pyridine (MPEP) , a metabotropic glutamate receptor 

antagonist, has been shown to display anxiolytic effects in a number of unconditioned 

animal models of anxiety, with results similar to those exhibited by the drugs 

diazepam and buspirone (Brodkin, Busse, Sukoff, & Varney, 2002). It has also been 

shown to block startle responses in the potentiated fear model of anxiety (Kent et al. 

2002). Additionally, although not directly proven to be an antagonist, a preclinical 

study looking at riluzole, which inhibits glutamate release from presynaptic terminals, 

has shown that it blunts the anxiogenic properties of the beta carboline, FG7142, in 

rats (Kent et al., 2002). Furthermore, it has shown some success in treating GAD and 

OCD patients (Cryan & Dev, 2008). Other investigations have shown glutamate 

antagonists to have some efficacy when used to treat PSTD patients (Hertzberg et al., 

1999). More recently, drugs that activate the glycine site of the NMDA receptor, such 

as D-cycloserine, can promote the extinction of phobias in a clinical population and 

the extinction of learning in mice (Davis, Ressler, Rothbaum & Richardson, 2006; 

Davis, Myers, Chhatwal, & Ressler, 2006). Many drugs that work on both types of 

receptor have been tested in many animal models with mainly anxiolytic effects. 

Thus, the glutamatergic system is predicted to be one of the most promising areas for 

the development of new and novel anxiolytic drugs in the future (Cryan & Dev, 

2008).   

GABA   

It is one of the most widely distributed neurotransmitters in the brain. The GABA 

system is thought to be integral in the pathophysiology of anxiety, mainly because of 

the effectiveness of benzodiazepines (BDZs), which act primarily on GABAA 

receptors, in managing anxiety. Many studies provide evidence of the mechanism of 

action of the GABAA receptor. These include neuroimaging studies of the receptors’ 

locations in the CNS, and behavioural studies looking at their effects when specific 

agonists and antagonists are injected into specific brain regions (Nemeroff, 2003).  
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GABA is synthesised from glutamate by the enzyme L-glutamic acid decarboxylase. 

One explanation for the role of GABA in anxiety disorders has suggested that there is 

a role for the over or under expression of the enzyme that synthesizes GABA, L-

glutamic acid decarboxylase, in the psychopathology of anxiety disorders, (Korpi, 

Grunder & Luddens, 2002).  However, the main area of research involving GABA in 

anxiety treatments has focused at the level of the GABA receptor.  

There are three types of GABA receptor, GABAA, GABAB and GABAC. The GABAB 

receptor is a G-coupled receptor and is involved in both post- and pre-synaptic 

feedback control of GABA release and synthesis. GABAC receptors are the most 

recently discovered of the GABA receptor family and although expressed throughout 

the mammalian CNS, they are predominantly expressed in the vertebrate retina (Pan, 

Khalili, Ripps, & Qian, 2005). They are ligand-gated ion-channels made up mainly of 

rho sub-units (Johnston, 1996). They might have a role to play in anxiety, but 

relatively little is known about them (Johnston, 1996). GABAA is a transmembrane, 

ligand-gated, chloride, ion-channel (see Figure 1.3). It is a heteropentamer, made up 

of ten subunits, from a pool of 19 subunits, divided into subfamilies according to 

amino acid sequence homology: Alpha (1-6) Beta (1-3) Gamma (1-3) Delta, Epsilon, 

Theta, Pi and Rho (1-3) (Herd, Belelli, & Lambert, 2007). This allows for a diversity 

of different GABAA receptors with differing properties and affinities for the receptor, 

which are distributed in varying brain regions including those implicated in anxiety 

(Whiting 2003; Nemeroff, 2003). Binding of GABA to the receptor opens the 

chloride channel, allowing chloride to flow into the neuron, thus depolarizing it and 

making it more difficult for other neurotransmitters to depolarize it; therefore it can 

be considered as inhibiting.  



 

22

  

Figure 1-3 GABAA receptor and its binding sites (Dubuc, 2002).  

The GABAA receptor is the one most implicated in the pathophysiology of anxiety 

and as the brain’s main inhibitory receptor regulates the activity of the other 

neurotransmitter systems (Kalueff & Nutt, 2007; Nutt, 2006). The GABAA receptor is 

bi-directional in its activity, and has many different binding sites on its subunits for 

drugs that act as allosteric modulators of its activity (see Table1.2 below). For 

example, the GABAA receptor houses the BDZ binding site, and the allosteric 

binding of a BDZ to this site enhances the inhibitory actions of GABA by acting as a 

positive modulator of its action.  GABAA receptors are also the binding site for many 

anxiogenic drugs, known as inverse agonists, which also allosterically modulate the 

action of the receptor to lessen the effects of GABA (See Table 1.2 for examples). 

Another group of drugs acts to prevent the action of agonists and inverse agonists at 

the GABAA receptor; these are known as antagonists (see Table 1.2 below) (Whiting, 

2003; Kent, et al. 2002).           
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Table 1.2 Examples of chemicals which bind at the GABA receptor and their 
binding sites.  

(Leonard, 1994; Sanford et al., 2000).  

The existence of inverse agonists and antagonists has led researchers to look for 

endogenous agonists and inverse agonists of the GABAA receptor. This in turn has 

led to the discovery of diazepam binding inhibitor (DBI), tribulin and neurosteroids. 

DBI inhibits the binding of diazepam and other agonists, inverse agonists, and 

antagonists, to the receptor (Sandford et al., 2000). Tribulin has been isolated from 

urine following stress in humans; it has a structure similar to the beta carbolines and 

has been shown to prevent BDZ binding, thus causing anxiety (Sandford et al., 2000). 

Neurosteroids have also been shown to act as modulators of the GABA receptor 

complex and gonadal steroids almost certainly regulate anxiety (Mitchell, Herd, Gunn, 

Lambert & Belelli, 2008). For example, pregnan-3a-ol-20-one and 5a-pregnan-3a, 

21-diol-20-one, metabolites of progesterone, potently enhance the function of GABA 

(Herd et al., 2007).   

Research suggests that the BDZ receptor structure might be altered in patients 

suffering from anxiety (Kosel et al., 2004). Further evidence is the fact that panic 

disorder patients exhibit abnormal GABA reactivity. Flumazenil, a BDZ antagonist, 

has little effect on normal controls, but causes panic in panic disorder patients. These 

patients are less responsive to BDZs and therefore need more potent ones to treat 

their condition  (Sandford et al., 2000).   

Chemical/Drug Type Receptor binding site Inc/Dec Anxiety 
GABA Neurotransmitter GABA Decrease 
BDZs Agonist,  BDZ  Decrease 

-Carbolines e.g. 
RO 19 4603 

Inverse agonist,  BDZ Increase 

Pentelynenetetrazol Inverse agonist Picrotoxin Increase 
Ethanol,  
Chloral hydrate, 
Chlormethiazole 

Agonist Alcohol site Decrease 

Neurosteroids Agonists Neurosteroid site Decrease 
Barbiturates Agonists Barbiturate site Decrease 
Bicuculline Antagonists GABA site Increase 
Ro 16-6028 Partial agonist BDZ Decrease 
Ro 15-4513 Partial Inverse agonist BDZ Increase 
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As GABAA receptors are widespread throughout the CNS they have a role in 

regulating other neurotransmitter systems, such as the serotonergic and noradrenergic 

systems, which are also involved in the psychopathology of anxiety (Korpi et al., 

2002).   

Serotonin (5HT)  

The major 5HT systems in the brain are the raphé nuclei, situated in the brain stem, 

the two main groups of nuclei being the rostral and the caudal groups. The rostral 

group consists of 85% of all 5HT neurons in the brain and contains three sets of 

nuclei, two of which are implicated in the mediation and control of anxiety: the 

median raphé nuclei (MRN) and the dorsal raphé nuclei (DRN) (Hornung, 2003). The 

MRN is thought to modulate fear and anticipatory anxiety. Whereas, the DRN might 

modulate cognitive processes associated with anxiety (Graeff, Guimares, De Andrade, 

& Deakin, 1996) (Figure 1.4 below). Although these systems function in parallel, 

they are morphologically distinct, sending and receiving input from different regions 

of the brain (Sandford et al., 2000). Neurons from the MRN innervate the 

hypothalamus and neurons from both the DRN and MRN innervate the amygdala and 

other limbic forebrain regions (Carrasco & Van de Kar, 2003).  
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Figure 1-4 Anatomical distribution of serotonergic pathways in the human brain 
(CNS Forum, 2008).  

Serotonin (5 HT), an indolamine, is widely implicated in the aetiology of anxiety and 

its involvement is complex (Carrasco & Van de Kar, 2003; Zhuang et al., 1999; Tye, 

Iversen & Green, 1979). Increases in 5HT in the amygdala are anxiogenic, whereas, 

in the PAG it inhibits panic (Graeff et al., 1996). It is thought to be the 

neurotransmitter that mediates the behavioural inhibition system (BIS) (Cools, 

Robinson & Sahakian, 2007). During the stress response, levels of 5HT decline. 

However, over time and possibly because of autoreceptor down-regulation, the levels 

of amines, such as 5HT and NA, increase (Tannenbaum & Anisman, 2003). It has 

been suggested that 5HT modulates homeostasis between other neurotransmitters, 

such as GABA, NA and dopamine, and this balance is upset in illnesses such as 
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anxiety (Vaswani, Linda & Ramesh, 2003). Dysfunction of 5HT is associated with 

anxiety and other mood disorders (Zhuang et al., 1999) and might be the result of 

deficient or excessive innervations to key structures, and/or cellular mechanisms 

resulting in aberrant neurotransmission (Kent, et al. 2002). 5HT was first implicated 

in anxiety when it was shown that inhibiting the release of 5HT had anxiolytic effects 

and that 5HT might mediate some of the BDZ anti-anxiety effects (Tye et al., 1979). 

Recent work has indicated that genetic abnormalities in one of the genes encoding 

tryptophan hydroxylase, the rate-limiting enzyme in the synthesis of 5HT, might have 

a role to play in emotional regulation, leading to potentially abnormal anxiety 

responses (Gutknecht et al., 2007). Additionally, 5HT knockout mice, with the 

receptor 5HT-1A deletion, exhibit increased fear behaviours (Lesch, Zeng, Reif, & 

Gutknecht, 2003). Other studies demonstrated that a 5HT receptor agonist, mCPP, 

causes anxiety and panic in normal and psychiatric patients (Murphy, Mueller, Hill, 

Tolliver, & Jacobsen, 1989). Conversely, selective serotonin reuptake inhibitors 

(SSRIs) alleviate anxiety in some patients with anxiety disorders (Lucki, 1996). 

SSRIs enhance 5HT transmission by preventing its reuptake. Other evidence for 

5HT’s role in anxiety comes from the successful treatment of general anxiety disorder 

with buspirone, a 5HT-1A receptor partial agonist (Peroutka, 1985).   

5HT works in conjunction with other neurotransmitter systems (e.g. NA GABA) and 

neuropeptide systems such as cholecystokinin and substance P (which are co-released 

with 5HT). Its neurochemistry is complicated by the fact that on the presynaptic 

membrane there are auto-receptors (5HT 1A/1B/1D) and serotonin reuptake 

transporter sites (SERTs) involved in release, regulation of synthesis, reuptake, and 

modulation of 5HT by other neurotransmitter systems. On the postsynaptic 

membrane there are at least fourteen different receptor subtypes, of which several are 

believed to be potentially important in mood and anxiety (5HT-1A, 5HT-2A, 5HT2C, 

and 5HT3) (Raymond et al., 2001). In addition, the presence of 5HT heteroreceptors 

on neurons of other neurochemical systems implies that 5HT also modulates/interacts 

with other non-serotonergic systems (Kent, et al. 2002). Clinical and preclinical 

studies have shown that abnormalities in 5HT receptors have a role in anxiety (Hoyer, 

Hannon, & Martin, 2002; Kroeze & Roth, 1998; Roth, Willins, Kristiansen, & Kroeze, 

1998).   
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5HT presynaptic-autoreceptor-antagonists, and SERT-inhibitors prevent reuptake of 

5HT, resulting in an increase in the intercellular 5HT concentration. This initially has 

an anxiogenic effect, in acute studies. However, when administered chronically they 

cause a down-regulation of the postsynaptic receptors responsible for provocation of 

the anxiety response via other brain structures and neurotransmitter systems, and have 

an anxiolytic effect (Bonasera & Tecott 2000). This can be seen in treatment with 

serotonin reuptake inhibitors (SSRIs), which have been designed to work specifically 

by blocking SERT. However, their resultant action on the up or down-regulation of 

the 5HT receptor varies according to which SSRI is used (Vaswani et al., 2003). 

Tricyclic antidepressants have also been used to treat anxiety; these inhibit reuptake 

of NA and 5HT (Leonard, 1994). Likewise, Venlafaxine, which is a NA and 5HT 

reuptake inhibitor, is very effective in the treatment of anxiety, especially GAD 

(Salinas & Hackett, 2001).   

5HT-1A receptors are found on both pre- and post-synaptic membranes and are 

metabotropic adenyl-cyclase inhibitors. The presynaptic receptors are found mainly 

in the raphé nuclei and are responsible for feedback inhibition of 5HT synthesis and 

release. The postsynaptic receptors exert the stress-modulating effects of 5HT, mainly 

in the hippocampus, septum, amygdala and limbic system regions (Toth, 2003). 

Partial and full agonists of 5HT-1A have been shown to have anxiolytic effects in 

studies using animal models of anxiety (Griebel, Rodgers, Perrault, & Sanger, 1997; 

Bell & Hobson, 1994). Buspirone, a partial 5HT-1A agonist, is thought to exert its 

anxiolytic effects via these receptors (Yocca & Altar, 2006; Lim et al., 2008).  

.  

5HT-2A receptors have a low affinity for 5HT, they are found on the postsynaptic 

membranes. They are also metabotrophic receptors, but their second messenger 

system is the inositol phosphate/diacyl glycerol system. They are prevelent in high 

levels in the cerebral cortex and low levels in the basal ganglia and thalamus. 

Antagonists at these receptors reduce the stress response. 5HT-2A receptors activate 

the HPA by facilitating the release of stress hormones, such as adrenocorticotrophic 

hormone (ACTH), prolactin, oxytocin, and cortisol or corticosterone (Leonard, 2005). 

Antagonists at 5HT-2A receptors block their release, thus dampening the stress 

response (Bonasera & Tecott, 2000). Recently the personality dimension, neuroticism, 

has been found to have a high positive correlation with the occurrence of these 

receptors in the frontal limbic cortex (entorhinal cortex, superior frontal cortex, 
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posterior cingulate, inferior frontal cortex and the insula) (Frokjaer et al., 2008). 

Animal models have also added weight to the argument that the 5HT-2A receptors 

are involved in anxiety (Toth, Sibille, Gyulai, & Gal, 1996).  

5HT-1B receptors are metabotropic adenylate-cyclase inhibitors. They are auto-

receptors found on the presynaptic membranes. Genetic mutant knockout mice for 

5HT-1B receptors have been shown to exhibit less anxiety than wild type mice, 

(Zhuang, et al. 1999).  

Studies on 5HT-2C receptors, which are metabotropic, diacylglycerol/inositol 

phosphate-type receptors, have shown these receptors to be involved in weight-gain 

and the cognitive elements of anxiety, such as worry (Bonasera & Tecott, 2000). The 

anxiogenic effects of mCPP (Hoyer, Hannon & Martin, 2002) and the attenuation of 

SSRI induced anxiety with chronic treatment have been hypothesised to be mediated 

via this receptor (Bristow, O'Connor, Watts, Duxon, & Hutson, 2000). Additionally, 

recent research looking at neuro-active steroids and knockout mice has implicated 

antagonists at 5HT-3A receptor sites as potential treatments for anxiety (Kelley, Bratt, 

& Hodge, 2003; Rupprecht, 2003). Unlike the other receptors, these are ligand-gated 

cation-channels.   

Noradrenaline (NA)  

NA, a catecholamine synthesised from the amino acid tyrosine, is an excitatory 

neurotransmitter involved in modulating awareness of the outside world (Nutt, 2007). 

The NA system in the brain originates mainly from the LC, which is responsible for 

arousal, drive and appetite (Smith & Nutt, 1996; Sullivan et al., 1999). NA is the 

neurotransmitter that is most associated with the stress response, exerting its effects 

mainly via the sympathetic nervous system, increasing heart-rate and blood pressure, 

and causing the circulation to flow away from the digestive and urogenital systems to 

the areas where energy is likely to be needed rapidly in a fight or flight reaction (Kent 

et al., 2002). Furthermore, there are alterations in noradrenergic receptor activity in 

anxiety sufferers (Hollander et al., 1991; Sullivan et al., 1999). Enhanced turnover of 

NA has been reported in various animal models of anxiety, where the animals have 

been exposed to a stressor (Hayley, Borowski, Merali, & Anisman, 2001; Pardon, Ma, 

& Morilak, 2003). Like 5HT, NA also has receptor systems which might become 
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dysfunctional and cause anxiety. Studies have reported heightened NA levels and 

prolonged autonomic responding to stress in anxiety disorder patients (Kent, et al. 

2002; Sullivan, et al.1999). It is known that the NA system works closely with the 

CRF system and has a role to play in the release of hormones involved in the stress 

response (Carrasco & van de Kerr, 2003). Pharmacological studies examining the 

effects of agents which act at adrenergic receptors have provided evidence for an 

altered NA activity in anxiety disorder patients. Studies have reported heightened NA 

levels and prolonged autonomic responding to stress in anxiety disorder patients 

(Kent, et al. 2002; Sullivan, et al.1999).   

There are two main classes of NA receptor in the CNS, 

 

and ß. Among the 

 

receptors there are 1 and 2. The 1 receptors are excitatory, whereas the 2 are 

inhibitory in their action (Leonard, 1994). Among the  receptors there are 1, 2 and 

3 (Carrasco & Van de Kar, 2003).  

 Receptors  

 

Receptors have direct effects on the pathways immediately involved in the 

precipitation of anxiety. When NA binds to 1-receptors, glutamate is released. 

Antagonists such as urapidil and prazosin improve concentration and performance on 

cognitive tasks under stressful conditions (Birnbaum, Gobeske, Auerbach, Taylor, & 

Arnsten, 1999).  

2-Receptor antagonist, yohimbine, has been shown to cause anxiety in normal 

subjects (Bourin, 1998). It acts by blocking the presynaptic autoreceptors in the LC, 

preventing NA reuptake and increasing its availability. In panic disorder patients, 

yohimbine increased serum levels of the NA metabolite, 3-methoxy, 4-

hydroxyphenylglycol, (MHPG) (Charney, Heninger, & Redmond, 1983). Also in 

depressed and anxious patients, yohimbine causes a blunted release of growth 

hormone, which would normally be released to allow for damaged cells to be repaired 

after the stressor has ceased (Charney et al., 1983).   

Clonidine, an 2-receptor agonist, has anxiolytic properties (Sawynok & Reid, 1986). 

Panic disorder patients have been shown experimentally to have a hypersensitivity to 
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agonists and antagonists of the 2 receptors. This hypersensitivity might be either 

inherited or precipitated by a more stressful life in these patients, causing up-

regulation of these receptors, (Marsland, Salmon, Terry, & Stanford, 1990). It should 

be noted that other 2 receptor antagonists, for example ethoxy-idazoxan, do not 

have the same effects as yohimbine except at high doses, indicating other possible 

routes of anxiogenic action (Sandford, et al. 2000).  

 Receptors  

 

Receptors, although involved in the mediation of the somatic effects of anxiety, 

have not been shown to directly affect the CNS pathways involved in anxiety. 

However they down regulate in patients who are undergoing chronic antidepressant 

treatment in a manner which corresponds to the time taken for the drug to have its 

therapeutic effect (Leonard, 1994). Propranolol, a 

 

receptors antagonist, is used to 

treat Post Traumatic Stress Disorder (PTSD) patients, and has some success if used 

within a few hours of the traumatic event (Pitman et al., 2002). It is postulated that 

when it is administered soon after a traumatic event it might reduce the somatic 

symptoms associated with the stressful event, hence reducing the resultant fear 

conditioning which would ultimately cause the disorder. This lends weight to the 

learning theories of anxiety (Kent et al., 2002).   

Acetylcholine   

The ascending cholinergic system has efferents to the limbic system in a similar way 

to the 5HT system, and both are involved in the control of hippocampal theta rhythms. 

Studies in rats have shown that the two systems are very closely linked and that the 

cholinergic system modulates the release of 5HT in the parts of the brain related to 

memory and anxiety such as the dorsal hippocampus (File, Kenny & Cheeta, 2000). 

The cholinergic system tends to be linked more with short-term memory and synaptic 

plasticity. There are two main classes of cholinergic receptor in the CNS, the 

muscarinic (metabotropic) and the nicotinic (ionotropic). The hippocampus in 

particular is extensively innervated with these types of neurons, which is not 

surprising given its role in memory formation. Likewise nicotine can modulate 

anxiety. Nicotinic receptor agonists can reduce anxiety when applied to the raphé and 
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have anxiogenic effects in the septum and hippocampus. In contrast, physostigmine, a 

general cholinergic agonist, also produced anxiolytic-like effects when applied to the 

hippocampus (Engin & Treit, 2008). Furthermore, recent studies have also suggested 

a role for interaction of the cholinergic system with the dopaminergic system in the 

modulation of approach and avoidance behaviours linked to anxiety (Hoebel, Avena, 

& Rada, 2007). Generally, though, anti-cholinergic drugs are used to treat 

Alzheimer’s disease (Gray & McNaughton, 2003).  

There is a growing body of experimental evidence that that other chemicals such as 

neuropeptides, co-released with neurotransmitters are also involved in the 

psychopathology of anxiety and might be useful targets in the treatment of anxiety 

disorders.    

Neuropeptides and other neurochemicals implicated in anxiety  

Corticotropin Releasing Factor (CRF)  

CRF, a 41-residue peptide is produced and secreted mainly by the paraventricular 

nucleus of the hypothalamus and is the main pituitary regulator of basal and stress 

induced release of ACTH, beta-endorphin and other pro-opiomalanocortin-derived 

peptides from the anterior pituitary gland (Carrasco, et al. 2003; Korte, 2001). It is 

responsible for eliciting stress effects such as activation of the autonomic nervous 

system, in order to facilitate the fight or flight response via the HPA axis (see Figure 

1.1) and as a neurotransmitter (Carrasco & van de Karr, 2003). Its neurotransmitter 

effects are mediated via two transmembrane receptors, CRF R1 and CRF R2, which 

exert their second messenger effects via G-proteins (Takahashi, 2001). CRF R1 is 

most abundant in the neocortical, cerebellar and limbic structures. CRF R2 is usually 

found in subcortical structures such as the lateral septum and the hypothalamus. 

Stimulation of these receptors has been shown to increase anxiety-like behaviours in 

a variety of animal models (Griebel, 1999). CRF interacts with other neural substrates 

of anxiety for example NA, 5HT and neurosteroids; these interactions are thought to 

be responsible for some of its effects (Lukkes, Forster, Renner, & Summers, 2008; 

Millan 2003).  
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Cholecystokinin (CCK)  

This is the most widely distributed neuropeptide in the brain. Additionally, it coexists 

with a wide variety of neurotransmitters such as dopamine, vasoactive intestinal 

peptide (VIP), neuropeptide Y (NPY), GABA, substance P (SP), and 5HT (Griebel, 

1999). There are multiple active forms of CCK of different length, some sulphonated 

and others not. The most predominant form in the CNS is the octapentapeptide 

(CCK8) which has a sulphonated tyrosine and the tetrapeptide (CCK4) which is 

found in smaller concentrations in the brain (Sandford et al., 2000). There are two 

receptor families for CCK. The CCKa receptors, which are the least numerous in the 

brain and show high affinity for CCK8, and the CCKb receptors, which are the main 

ones found in the brain and which show high affinity for both CCK4 and CCK8 

(Sandford, et al. 2000). Interest in CCK-4 has arisen because it has been shown to 

induce panic attacks in healthy volunteers and, in lower doses, in panic patients when 

infused intravenously. Pre-treatment with BDZs or tricyclic-antidepressants, such as 

imipramine, can reduce this effect (Bradwejn & Koszycki, 1996). 

The Peptide Tachykinins (Substance P and Neurokinin receptors, Neuropetide Y and 
Galanin).  

These peptides are widely distributed throughout the CNS and peripheral nervous 

systems. Receptors for these peptides in the CNS are located in the limbic region and 

areas associated with mood and anxiety (Kent et al., 2002). In particular, Substance P 

(SP), which is held to be one of the most important neurotransmitters and 

neuromodulators present in the brain and which might have an important role to play 

in the modulation of anxiety, is released in response to aversive stimuli (Alvaro & Di 

Fabio, 2007; File, 1997). It is frequently co-localised with other neurotransmitters 

such as 5HT, GABA, glutamate, acetylcholine and dopamine, and influences their 

synaptic release. Depending on dose, its location within the brain, and the cause of 

the anxiety, SP can have anxiogenic or anxiolytic effects (Cheeta et al., 2001; De 

Ara-újo, Huston, & Brandão, 2001).   

SP binds predominantly to neurokinin 1 (NK-1) receptors. Interestingly NK-1 

antagonists have also been shown to be anxiolytic (Cheeta et al., 2001). Thus, there 

has been an intense search for antagonists to the NK1 receptor which can be 

converted to anxiolytic drugs (Alvaro & Di Fabio, 2007). This has led to studies in 

gerbil models of anxiety, since gerbils have a more similar NK-1 receptor to humans 
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than rats and mice (See Chapter 3; Varty, Morgan, Cohen-Williams, Coffin, & Carey, 

2002; Varty et al., 2002). Further evidence for NK1 receptor ligands having a role in 

anxiety is provided by experiments using knockout mice, which have shown SP to 

modulate 5HT transmission and opioid transmission via glutamatergic neurons 

(Griebel, Mondroit, Aliaga, Simiand, & Soubrie, 2001; Lin, & Parson, 2002). 

Additionally, NK-2 receptor antagonists have also shown some anxiolytic activity but 

they are not sensitive to measures which traditionally detect BDZ activity (Luo & 

Wiesenfeld-Hallin, 1993). NK-3 agonists have been shown to have some anxiolytic 

effects (Haddjeri & Blier, 2001    

Neuropetide Y (NPY) belongs to the pancreatic polypeptide family, but receptors are 

located in a number of brain regions, including the regions associated with fear and 

anxiety, such as the amygdala, hypothalamus, brainstem nuclei and cortex (Kent, et 

al., 2002). Studies injecting NPY into the para-ventricular regions of the brain have 

shown NPY to have anxiolytic effects, which can be reversed by alpha2-adrenergic 

receptor antagonists but not by GABA/BDZ receptor ligands (Kent et al., 2002). NPY 

is also known to be co-localised with NA in numerous brain regions (Kent, et al. 

2002). Studies have shown that soldiers undergoing interrogation stress have 

increased levels of NPY. It has been suggested that this helps the soldiers cope with 

the stressor (MorganIII et al., 2000).   

Galanin is co localised with NA in the LC, hippocampus and cortex (Kent, et al. 

2002). It potentiates the local effect of alpha 2 adrenoceptors, where it acts to dampen 

firing rates (Khoshbouei, Cecchi, Dove, Javors, & Morilak, 2002). During stress, its 

levels decrease, returning to normal within a few days (Morilak, Cecchi, & 

Khoshbouei, 2003). However, if the stressor persists its level increases, which might 

explain the onset of depression with certain types of anxiety disorder (Yoshitake, 

Yoshitake, Yamaguchi, Ogren, & Kehr, 2003).  

Neurosteroids  

Anxiety is reportedly twice as prevalent in females as males and estrogens and 

progestrins have been linked to the increased vulnerability of women to anxiety 

(Toufexis, Myers & Davis, 2006). Neurosteroids can be synthesised denovo in the 

brain from cholesterol or by the adrenals and then cross the blood-brain barrier where 

they are modified once in the brain (Strous, Maayan & Weizman, 2006). 
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Neurosteroids have a role in non-genomic moderation of neuronal excitation, 

although progesterone might regulate gene expression by binding to receptors in the 

nuclei of neurons (Strous et al., 2006). It has already been mentioned that 

neurosteroids interact with the GABAA receptor and CRF; interestingly they might 

also interact with NMDA, AMPA, Kainate, 5HT and nicotinic acetylcholine 

receptors (Strous et al., 2006). Studies in rodents indicate that females are less 

anxious during periods of high oestrogen, such as proestrous, than when oestrogen 

concentrations are rising or falling, for example during oestrous and di-oestrous 

(Toufexis et al., 2006; Pandaranandaka, Poonyachoti, & Kalandakanond-Thongsong, 

in press). Likewise, testosterone injected into castrated male rats or female rats also 

caused decreased anxiety in the rats. Furthermore progesterone metabolite 3a-5a tetra 

hyroprogesterone (THP) obliterates anxiety caused by injections of CRF into the 

BNST, probably via its activity at the GABAA receptor (Toufexis, et al., 2006). It is 

interesting that neurosteroids have much more potent effects at the GABAA receptor 

than do the benzodiazepines or barbiturates (Strous, et al., 2006). Furthermore, SSRIs 

up regulate the enzyme responsible for the metabolism of dihydroprogesterone to 

THP (Texeira et al., 2003). Estrogens have been shown to cause an increase in 

synthesis of tryptophan hydroxylase, the rate-limiting enzyme in the formation of 

5HT, in the mid brain of rodents during pro-oestrous, while not effecting SERT 

synthesis (Pandaranandaka, et al., in press).  

Added to this complex neuroanatomy and neurochemistry of anxiety is the 

involvement of second messengers and cellular machinery such as the mitochondria, 

which are implicated in the pathophysiology of anxiety at a cellular level 

(Papadopoulos, Lecanu, Brown, Han, & Yao, 2006). This, as will be discussed in 

section 1.4.4, might also be a potential route for essential oils such as lavender to 

exert any potential anxiolytic effects.  

Current Biological treatments of anxiety involve drugs that act specifically on some 

of the neurotransmitter systems described above and can have differing effects in 

reducing components of the anxiety symptoms without reducing all of them. For 

example, propranolol, a drug that acts on the beta-adrenergic receptors, reduces heart-

rate but is not perceived to reduce anxiety in the sufferer because it has no effect on 

the cognitive symptoms of anxiety such as worry (Pitman et al., 2002; Tyrer & Lader, 

1974). In contrast, drugs that act on serotonin receptor systems reduce the worry 
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component of anxiety but might not affect somatic symptoms (Leonard, 2003; Gray 

& McNaughton, 2003; Sinclair & Nutt, 2007).  

1.2.4 Current treatments of anxiety  

In diagnosing anxiety there are two lines of treatment, the psychological and the 

biological/pharmacological. The psychological usually involves some form of 

counselling and or behavioural therapy, such as cognitive behavioural therapy. The 

pharmacological usually involves treatment with serotonin reuptake inhibitors 

(SSRIs). According to the UK National Institute of Health and Clinical Excellence 

(NICE) guidelines, the recommended first line of treatment for anxiety (panic 

disorder, with or without agoraphobia, and generalized anxiety disorder) in adults is 

cognitive behavioural therapy, followed by pharmacological treatment with an SSRI 

(National Institute for Clinical Health and Excellence, 2007). CBT has the longest 

duration of effect, when compared with pharmacological treatments, but CBT is 

expensive and often anxiety disorders co-present with depression. Therefore, first line 

treatments are usually antidepressants, such as the SSRIs (Sinclair & Nutt, 2007). 

Examples of SSRIs are escitalopram, paroxetine, fluoxetine, citalopram and sertraline 

(Nutt, 2005). Since the subject of this thesis is to examine any pharmacological 

actions of lavender EO, the discussion here will focus on pharmacological treatments 

and minor mention of psychological treatments will be made.  

1.2.4.1 Biological treatments  

1.2.4.1.1 The Serotonin reuptake inhibitors (SSRIs)   

The SSRIs have been designed to work specifically by preventing 5HT reuptake, 

thus enhancing its transmission. However, their resultant action on the up- or down-

regulation of the 5HT receptor varies according to which SSRI is used (Vaswani et al., 

2003). Thus, initially, they prevent reuptake of 5HT, making it more available for 

postsynaptic receptors and presynaptic autoreceptors. This has the effect of down-

regulating the number of receptors and thus increasing the amount of 5HT available 

to the postsynaptic receptors. Generally, SSRIs modify the 5HT/5HT-postsynaptic 
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receptor ratio, restoring and enhancing 5HT transmission; because of this they take a 

number of weeks to work. Thus, SSRIs often initially increase anxiety and take 4-6 

weeks to become effective in providing relief (Sinclair & Nutt, 2007).   

In addition to the SSRIs, there are the 5HT and NA reuptake inhibitors (SNRIs) such 

as Venlafaxine, which block both 5HT and NA reuptake; these are similar in efficacy 

and side-effects to the SSRIs.  

Efficacy of SSRIs and SNRIs   

The beneficial effects of both the SNRIs and SSRIs are unlikely to felt for up to four 

weeks following administration, and the symptoms of anxiety are often a lot worse in 

the first two weeks of administration (Sinclair & Nutt, 2007). Furthermore, in the 

longer-term, they can have inconvenient side-effects such as weight loss, movement 

disorders, insomnia, tachycardia, dry mouth, nausea, tremor, and sexual dysfunction 

(Mauri et al., 2002; Baldwin et al., 2005; Nutt, 1995; Vaswani et al., 2003; Linda & 

Ramesh 2003). Side-effects can sometimes be more serious, such as thoughts of 

suicide (Baldwin, et al, 2005). In addition, although not causing dependence and 

tolerance, SSRIs and SNRIs can cause unpleasant flu-like side-effects when stopped 

abruptly (Baldwin, et al. 2005). Also, even though SSRIs and SNRIs have very good 

short-term efficacy in the longer-term (18 months to 2 years), meta-analytical studies 

indicate that, at least 50% of patients seek further help; this is particularly the case in 

GAD sufferers (Westen & Morrison, 2001).  

1.2.4.1.2 Buspirone    

In addition to the SSRIs, buspirone (commercial name Buspar) is often prescribed 

for GAD. Buspirone is a 5HT-1a partial agonist at postsynaptic 5HT-1A receptors in 

the limbic system and a full agonist at presynaptic 5HT-1A receptors in the raphé 

nuclei.  The presynaptic receptors, found mainly in the raphé nucleus, are responsible 

for feedback inhibition of 5HT synthesis and release. The 5HT postsynaptic receptors 

mainly exert their stress-modulating effects in the hippocampus, septum, amygdala 

and limbic system regions (Toth, 2003). Buspirone reduces turnover of 5HT in the 
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hippocampus more than in any other brain region (Leonard, 2003). Like SSRIs this 

drug regulates the release of 5HT; initially, acute administration inhibits the release 

of 5HT. Buspirone also has effects at dopamine D2 receptor sites, and buspirone’s 

major metabolite, 1-pyrimidylpiperazine (1-PP), has a high affinity for alpha2 

adrenoceptors where it acts as an antagonist. Thus its activity might be an interaction 

between all three neurotransmitter systems (Leonard, 2003).   

Like the SSRIs, buspirone’s onset of anxiolytic action is slow, 4-6 weeks, and might 

not be effective in relieving anxiety if BDZs have previously been prescribed.   

However, buspirone is well tolerated and patients taking it do not develop 

dependence or withdrawal symptoms (Argyropoulos et al., 2000). Furthermore, 

buspirone does not interact with alcohol, and so is more patient friendly; it is safe and 

effective for long term use, as normally required in the treatment of GAD (Nutt, 

2007). Buspirone can be used safely with many other drugs, and it exhibits none of 

the sexual dysfunction side-effects or the effects associated with abrupt cessation of 

administration of the drug, as exhibited with the SSRIs (Lydiard, 2000). However, its 

side-effects include appetite disturbances, dizziness and abdominal complaints 

(Lydiard, 2000; Struzik, Vermani, Coonerty-Femiano, & Katzman, 2004).  

1.2.4.1.3 Benzodiazepines (BDZs)  

In spite of their many side-effects BDZs are still the treatment of choice, especially 

for short-term treatment of general anxiety disorder and during initial treatment with 

other drugs such as the SSRIs.  

BDZs act allosterically on the GABAA receptor to enhance the action of GABA. 

Until the advent of SSRIs and novel anxiolytics such as buspirone, the BDZs were 

the drugs of choice for all of the anxiety disorders. They are still used as an adjunct 

treatment in the intervening time between start of treatment with SSRIs to prevent the 

increase in anxiety often associated with the first few weeks of administration, or 

when other types of treatment have failed to work (Nutt, 2007). They are very 

popular because of their rapid onset of action; they are well tolerated and thought to 

be of benefit in preventing recurrence of symptoms in long-term use (Lader, 1995; 

Nutt, 2005). The side-effects of the BDZs are many and vary according to each 



 

38

 
individual. Some of the common side-effects include vertigo, weight gain, menstrual 

irregularities, drowsiness and psychomotor impairments (Vgontzas, Kales, & Bixler, 

1995). A potentially serious consequence of BDZ treatment is their cognitive effects. 

They might cause forgetfulness and memory impairments, an increase in 

assertiveness and aggressive behaviour leading to violence and abusive behaviour in 

some patients, or shaking, worry, insomnia, depression and thoughts of suicide in 

others (Longo & Johnson, 2000; Saias & Gallarda, 2007).  

To explain some of these unwanted behaviours it has been suggested that the anxiety, 

which is being treated by the BDZs, has masked other symptoms and once the 

anxiety is treated the underlying symptoms become apparent (Nutt, 1990). Hence, it 

is not the BDZs causing the negative behaviours. However, these side-effects can be 

very debilitating and even life threatening (Bramness, Skurtveit, & Morland, 2002).  

In addition to this, BDZs interact with alcohol and other CNS depressants, causing 

serious over sedation and lack of coordination (Longo & Johnson, 2000) and, 

depending on the type of BDZ used, dependence and tolerance effects can develop 

(Salzman, 1993). The Royal College of Psychiatrists UK (1997), recommend treating 

patients with BDZs for only 2-4 weeks to cover the worsening of symptoms caused 

by administration of antidepressants such as the SSRIs or as an occasional treatment 

for acute situations. They are not recommended for prolonged use unless the case has 

proved resistant to treatment with antidepressants.    

Recently, in an attempt to find drugs that have all the benefits of the traditional BDZs, 

but none of the side-effects, there have been a number of new drug treatments (Millan, 

2003). Some of these treatments work on the GABA-ergic system, in a similar 

manner to the SSRIs, by increasing the concentration of GABA and preventing its 

breakdown (Millan, 2003; Sinclair & Nutt, 2007). For example Vigabatrin, which 

inhibits the rate-limiting step in the breakdown pathway of GABA to glutamate, has 

efficacy in panic disorder (Millan, 2003; Ettinger & Argoff, 2007).  Other drugs such 

as Tiagabine, which increase the concentration of GABA by inhibiting the uptake of 

GABA into neurons and glial cells, also decrease anxiety and might be of use in 

treatment of GAD (Pollack et al., 2005; Nemeroff, 2003). It is important to note 

though, that the GABA-ergic actions of these drugs might not be the only way in 

which the latter have an effect on anxiety. Drugs that increase the synthesis of GABA 

by inhibiting some enzymes and activating others, for example Valproate, also have 
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an anxiolytic effect and are being used clinically to treat anxiety (Ettinger & Argoff, 

2006).  GABA analogues, such as Pregabalin and Gabapentin do not bind to the 

GABAA receptor, but instead work by binding to calcium channels. Calcium channels 

play important roles in neurotransmitter release in the CNS and are also being used 

with some success to treat anxiety (Bateson, 2006).  However, even these drugs are 

not without adverse side-effects. In a recent review of trials using Pregabalin to treat 

GAD more than 20% of patients withdrew from the trial because of adverse effects 

such as somnolence, dizziness, and headache (Tassone, Boyce, Guyer, & Nuzum, 

2007). 

   

1.2.4.1.4 Tricyclics anti-depressants (TCAs)   

TCAs, such as imipramine and chlormipramine, have traditionally been used to treat 

anxiety and might still be used as second line treatments when other forms of 

treatment fail. The onset of action of TCAs is not as rapid as that of the BDZs but 

they are more effective than BDZs when taken over a number of weeks (Struzik et al., 

2004). However, while TCAs are very effective in the treatment of GAD and panic 

disorder, the SSRIs are at least as good and have fewer side-effects (Horst & 

Preskorn, 1998). The TCAs have multiple sites of action, including the 5HT reuptake 

transporter sites where they inhibit the reuptake of NA and 5HT. Although their 

actions at these transporters are responsible for their efficacy, these actions are also 

responsible for their toxicity. The use of TCAs is limited by the fact that they produce 

all of the side-effects that are associated with the SSRIs and also additional side-

effects, such as such as postural hypotension, weight gain, drowsiness and 

constipation. Furthermore, the fact that TCA overdoses are associated with death 

caused by seizures, cardiac arrhythmias and metabolic acidosis has resulted in their 

replacement in most cases by the SSRIs which have a much safer side-effect profile 

(Nutt, 2003).      
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1.2.4.1.5 Monoamine oxidase inhibitors (MAOIs)  

MAOIs have been used less frequently since the advent of the SSRIs. MAOIs act by 

inhibiting the action of monoamine oxidase, an enzyme which is important in the 

deactivation of monoamines, catecholamines (including NA and dopamine), 

indolamines (including 5HT) and other trace amines (Leonard, 1994). MAOIs are not 

often used to treat GAD but they are used more frequently to treat panic disorder and 

social phobia, when other drugs have been tried and failed to work. Advantages to 

these drugs are that symptoms do not usually worsen at the start of administration, 

and they elicit less dependence (Nutt, 1990). They do have some undesirable side-

effects; some, although not all, MAOIs are toxic when foods containing tyramine, 

such as cheese, are eaten. Eating these types of foods can lead to a hypertensive crisis 

(Sinclair & Nutt, 2007). Modern reversible MAOIs overcome this problem. However, 

they are slow to act compared with the BDZs (Nutt 1990) and have side-effects, 

which include dry mouth, blurred vision, undue sedation, postural hypotension and 

weight gain (Tyrer, 1989).  

As discussed, none of these drug treatments is ideal, nor is any without side-effect. 

Additionally, the complicated aetiology of the disease and the fact that different 

individuals respond to, and tolerate, drugs differently mean that it can take time to 

find the right drug for each patient.  Even the best treatments are only effective 50% 

of the time (Rachman, 2004; Westen et al., 2001). Further developments in 

understanding the neurochemical causes of anxiety might help to develop more 

effective remedies tailored to the needs of each individual sufferer, (Lydiard, 2000; 

Nash & Nutt, 2007).  

1.2.4.2 Psychological treatments   

The preferred treatment for many anxiety disorders, particularly the ones involving 

phobia and panic, is psychological intervention. There is widespread opinion among 

psychologists and other workers that cognition and faulty thinking is of primary 

importance in these disorders. It is thought that this faulty thinking leads to alterations 

in brain structure and neurotransmitter regulation in the aetiology of the disease and 

not the other way round. Faulty thought patterns are thought to predominate in both 
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trait anxiety, as well as state anxiety (Mathews, Mackintosh, & Fulcher, 1997; 

McLean, 2001; Nutt, 2005).   

These psychological therapies include cognitive therapy, exposure therapy and 

cognitive behavioural therapy (CBT). Cognitive therapy is based on the cognitive 

theories of anxiety that place emphasis on the proposal that faulty thought patterns 

and the subjective interpretation of events by the individual result in a somatic 

response to the stimulus (see section 1.2.2). Cognitive therapy aims to help the patient 

understand his or her current thought patterns with the aim of modifying these 

unhelpful ways of thinking.  

 Exposure therapy is a behaviour therapy designed to help people overcome their fear of 

situations and objects, as it is this fear which leads to avoidance behaviours. Exposure 

therapy involves desensitization to the object or situation causing the anxiety by exposure 

to that object or situation. CBT is a combination of cognitive therpapy and a behaviour 

therapy such as exposure therapy. It is of interest that CBT has been shown to alter brain 

function in a similar way to that of drug treatment (Nutt, 2005).   

All of these therapies include cognitive reframing, conscious alterations in behaviour 

patterns, and challenging negative thought patterns with a view to altering them 

(Rachman, 2004). Often, therapies are combined with relaxation therapies to help 

with the somatic symptoms of tension and arousal, which are associated with anxiety 

(Struzik et al., 2004).    

However, similar to pharmacological therapies, these therapies are not without problems, 

for example good short-term results do not predict a good long-term outcome (Baldwin et 

al., 2005; Westen & Morrison, 2001). Meta-analyses have indicated that CBT over the 

long-term is effective only 50% of the time (Westen & Morrison, 2001; Struzik et al., 

2004; Vaswani et al., 2003; Ressler & Mayberg, 2007). One reason for this is that the 

financial and temporal costs of CBT could prevent patients undergoing longer-term 

courses of therapy and the duration and number of therapy sessions that the NHS can 

provide, might not be sufficient to effect a cure. In addition, CBT has better long-term 

treatment results when patients are suffering from pure disorders rather than the more 

complex co-morbid disorders, such as GAD and major depressive disorder (Westen & 

Morrison, 2001).   
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More recently, combination therapy has achieved some promising results; cognitive 

enhancers, for example D-cycloserine, are administered to accelerate learning. New 

learning processes have been shown to be involved in the process of extinction, 

which is used to remove conditioned fears. In both rat and human trials, this process 

has worked effectively (Davis et al., 2006). It is thought that the effect of this drug is 

to enhance CBT in the unlearning of old negative memories and replace them with 

new positive memories (Davis et al., 2006). D-cycloserine is a partial NMDA agonist; 

NMDA receptors, as well as being a type of glutamate receptor, also, have a function 

in the action of SSRIs (Nutt, 2005).   

Similarly, propranolol, a beta-adrenergic antagonist, has been used successfully to 

block PTSD by blocking the amygdaloid-cortical pathways involved in adding 

emotional salience to memories. This has been tested both immediately after the 

trauma, before the memories have been formed (Pitman et al., 2002), and later after 

the memories have been formed by using recall therapies and propranolol to prevent 

reconsolidation of recalled memories while, at the same time, enhancing the learning 

of new positive memories which have been produced with the help of CBT (Brunet et 

al., 2007).   

Likewise, administering cortisol or glucocorticoids, such as hydrocortisone, after a 

stressful event might also reduce the likelihood of PTSD occurring. One reason for 

this is because sufferers of PTSD suffer from corticosteroid insufficiency during the 

time of, and immediately after, the trauma resulting in a decreased secretion of 

glucocorticoids. Administering glucocorticoids makes up for this deficiency 

(Schelling et al., 2006; Schelling, 2007).   

1.2.5 Complementary therapies in the treatment of stress, anxiety 

and mental health disorders  

Alongside these medically prescribed treatments sufferers of anxiety, who might be 

disillusioned with the failures of formal treatments or who do not wish to take 

prescribed medication, sometimes turn to alternatives in an attempt to relieve their 
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symptoms (Baldwin et al., 2005). Likewise, many undiagnosed anxiety sufferers or 

sufferers of other illnesses of which anxiety is a side-effect, such as cancer,  AIDs, or 

anxiety resulting from major life changes, like divorce or bereavement, often turn to 

alternative therapies to relieve their anxiety-symptoms rather than taking medically 

prescribed drugs. This might be because they perceive alternative and complementary 

treatments to be more natural with fewer side-effects than prescribed drugs.   

The use of complementary and alternative therapies (CAMs) to relieve conditions 

such as anxiety and stress is a very profitable in the developed world (Ernst & White, 

2000), where CAM usage is increasing annually (Wootton & Sparber, 2003; Ernst, 

2003; Xue, Zhang, Lin, Da Costa, & Story, 2007). It is widely reported that patients 

often use alternative therapies as palliatives because they are widely perceived to help 

them to better manage disease or treatment side-effects (Kessler et al., 2001 in 

Wootton & Spaber, 2003). This is a problem because some people, particularly those 

with chronic mental illnesses such as anxiety, self medicate with CAMs because they 

believe that these therapies are natural and therefore safe, but do not tell their medical 

practitioner that they are using CAMs. Studies have shown that people with chronic 

illnesses often try to avoid consulting with their current medical practitioner in favour 

of alternative therapists (Badger & Nolan, 2007; Badger, 2007).  

A survey of complementary medicine providers found aromatherapy to be the most 

popular recommended treatment for stress and anxiety sufferers (Long, Huntley, & 

Ernst, 2001; Perry & Perry, 2006). Just some examples of where aromatherapy is 

popularly used to relieve anxiety are in child birth (Maddocks-Jennings & Wilkinson, 

2004), as a palliative to relieve anxiety in cancer care (Graham, Browne, Cox, & 

Graham, 2003), in diagnosed (and undiagnosed) anxiety and depression (Wilkinson et 

al., 2007), to help anxious children to learn better in primary school (Kerl, 1997) and 

in the dentist’s waiting room (Lehrner, Marwinski, Lehr, Johren, & Deecke, 2005). 

Use of aromatherapy has significantly increased in the last few years by both lay 

people and the medically qualified (Buckle, 2001; Emslie, Campbell, & Walker, 2002; 

Keegan, 2003; Buckle, 2001; Wilkinson, et al., 2007; van der Watt, Laugharne, & 

Janca, 2008). Also, it is being used increasingly by UK NHS nurses (Rawlings & 

Meerabeau, 2003) and nurses around the world to complement traditional medicine 

(Blunt, 2003; Perez, 2003).   
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In spite of its widespread use there is still little scientific evidence to substantiate the 

reported subjective effects of aromatherapy on anxiety (Cooke & Ernst, 2000; 

Wilkinson et al., 2007).   

1.3 AROMATHERAPY  

The broad definition of aromatherapy, as its name would suggest, is the treatment of 

illness using odours.  In fact, aromatherapy is generally the use of essential oils (EOs) 

via inhalation and massage,  some systems of aromatherapy even include ingestion 

and administration of EOs in pessaries, to treat a range of conditions and to improve 

health and wellbeing (Schnaubelt, 2005). It has been suggested that a better name 

would be ‘EO therapy’ or the use of plant extracts to treat ill health and improve 

wellbeing (Perry & Perry, 2006). It is essentially a branch of herbal medicine and is 

included in Western herbal medicine as well as Ayurvedic and Traditional Chinese 

Medicine.   

1.3.1 Essential oils (EOs)  

Essential oils, (EOs) are the volatile organic constituents of aromatic (fragrant) plants 

and volatiles are chemicals that easily evaporate at room temperature. EOs give 

plants their characteristic odours and flavours. They are especially used in perfumes 

and flavourings (Webster, 2003). However, EOs are not present in all plants 

(Tisserand & Balacs, 1995). Although they are called ‘essential’ oils, it is not 

because they are essential to the plant for its survival. The term ‘essential oil’ comes 

from the medieval-latin term ‘quinta-essentia’ a name invented by Paracelsus, the 

founder of modern pharmacy, to describe those oils that he had distilled from 

medicinal plants believing the oils to be  the quintessence of the plant (Worwood, 

1997).   

EOs are found in small, highly concentrated, scented droplets of liquid in the plant’s 

flowers, leaves, roots, stem or bark (Dye, 1992; Crozier, Clifford & Ashihara, 2006). 

They are obtained for commercial use by one of three methods: steam distillation of 

various parts of the plant, extraction by squeezing the oil from the skin of citrus fruit, 
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or by dry distillation of woods, barks or roots (ISO 9235, 1997). The yield of oil 

obtained from plant material varies according to the plant species and although the 

yield of lavender EO from flowers depends on the variety of lavender and its 

environmental growth conditions, steam distillation of 250kg of flowers could 

produce approximately 500ml of lavender oil (Lis-Balchin & Head, in Lis-Balchin, 

2004).  

EOs have many roles in the plant, for example, their aroma and flavour attract insects 

to pollinate the plant (Dobson, Danielson, & Wesep, 1999; Quiroga, Sampietro, & 

Vattuone, 2001; Sampietro, & Vattuone 2001; Verpoorte & Memelink, 2002). In 

contrast, some EOs have potent insecticidal, anti-bacterial and anti-fungal properties 

and are thought to protect the plant from predators and therefore enhance survival: 

tannins and phenolic secondary metabolites, present in some EOs, taste bitter to 

predators (Baraza, Villalba, & Provenza, 2005; Barnea, Harborne, & Pannell 1993; 

Villalba, Provenza, 2005; Grassmann, Hippeli, & Elstner 2002). Furthermore, when 

EOs are present in  extremely high concentrations they can have catastrophic effects 

on cells: their lipophilic properties enable them to pass through cell walls and 

cytoplasmic membranes and once EOs are in the cell they can disrupt the different 

cellular layers, leading to a cascade of events that eventually cause cell death 

(Bakkali, Averbeck, Averbeck, Idaomar, 2008; Basim & Basim, 2003; Jirovetz, 

Buchbauer, Ngassoum, Essia-Ngang, Tatsadjieu, & Adjoudji 2002; Kim, Roh, Kim, 

Lee, & Ahn, 2003; Opalchenova & Obreshkova, 2003; Quiroga et al., 2001; 

Tatsadjieu, Essia Ngang, Ngassoum, & Etoa, 2003; Sampietro, & Vattuone 2001).    

The composition of any one EO is complex, sometimes consisting of hundreds of 

different chemicals, including terpenes, terpenoids, aliphatic and aromatic 

constituents (Humphrey & Beale, 2006 in Bakkali, Averbeck et al., 2008). The 

precise combination of these chemicals gives each type of oil its own unique and 

characteristic odour.    

The terpene components of EOs are mainly synthesized in leucoplasts, a non-

pigmented plastid, in the cells of the plant’s oil glands (Clifford & Ashihara, 2006). 

The main terpenes are the 10 carbon compounds, the monoterpenes, made up of 5 

carbon isoprene units. These are derived from the isomers isopentylpyrophosphate 

and dimethylallyl pyrophosphate. Terpenes are lipophilic and volatile. In addition, 
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there are C15 sesquiterpenes, in which the longer chain allows for more diversity of 

structure. These aromatic compounds are derived from phenylpropane and occur less 

frequently than the terpenes (Bakkali, et al, 2007). Within these groups there are 

alcohols, esters, aldehydes and ketones all of which contribute to their properties 

(Bruneton, 1999).   

It is claimed by aromatherapists that it is the mixture of these components acting in 

synergy that cause the oils to have their therapeutic properties (Harris, 2002; Price & 

Price, 1999; Worwood, 1997). Alongside their anti-microbial properties, it is claimed 

that some EOs have mood enhancing properties and can alleviate the symptoms of 

anxiety and depression (Lawless, 1994; Price & Price, 1999; Tisserand, 1977). There 

are many EOs with reputations for relieving stress and anxiety (see appendix 1, Table 

1.1 for the reputed properties of some EOs reported on internet web sites in 2007).  

Lavender, in particular Lavendula angustifolia ‘Miller’, has been reported in 

aromatherapy texts as being one of the most useful in this regard, and it is thought to 

have a wide range of therapeutic properties (Bowles, Cheras, Stevens, & Myers, 2005; 

Worwood, 1997; Lemon, 2004; Tisserand 1988).  Bastard & Tiran (2000) cite 

lavender as being the most frequently used of all the essential oils for the relief of 

anxiety and depression. Indeed, lavender essential oil has been used anecdotally for 

many years to alleviate stress and anxiety and improve wellbeing, even though there 

is little scientific evidence to substantiate this.     

1.4 LAVENDER (LAVANDULA ANGUSTIFOLIA) 

ESSENTIAL OIL  

1.4.1 Lavender EOs anecdotal and traditional uses  

Lavender has been used since ancient times as a sedative and tranquilliser (Buchbauer, 

Jäger, Jirovetz, Ilmberger, Dietrich, 1993). It was recommended by Dioscorides (c. 

40-90 A.D.) for “griefs in the thorax” probably referring to the heart, which was 

thought to be responsible for maintaining mental-emotional equilibrium. Hildegard 

von Bingen in c. 1100 AD recommended it for relief from “malign spirits” (Throop, 
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1998); Culpepper recommended lavender for “the tremblings of the heart and the 

faintings and swoonings” (Culpepper, in (Castle & Lis-Balchin, 2002)). It is the EO 

most frequently recommended to relieve anxiety (Gattefossé, 1937; Price, 1998; 

Tisserand, 1977; Tisserand, 1988; Valnet, 1980; Worwood, 1997); one reason for this 

is that, as well as being used anecdotally for its calming propertieies for many 

centuries, it is one of the safest EOs and can be used with children, the elderly and the 

terminally ill alike (Wildwood, 2003; Tisserand et al., 1995).  

1.4.1.1 Species of lavender and properties of lavender oil  

Lavenders (Lavandula spp.) belong to the family Labiatae (Lamiaceae). French 

botanist Joseph Pitton de Tourneforte (1656-1708) recognized the genus Lavandula, 

as two separate genera: Lavandula, consisting of L. spica and L. multifidia, and the 

genus Stoechas, consisting of L. stoechas and L. pedunculata. Linnaeus (1707-1758) 

united the two genera and provided binomial names for 5 of the species (Lis-Balchin, 

2004). Also important, was Philip Miller (1758) who named L. angustifolia, as a 

consequence of which it is often referred to as L. angustifolia ‘Miller’ (Upson & 

Andrews, 2004). Although there are more than 32 species, lavenders fall into four 

main categories, listed in Table 1.3 (Epson, 2004 in Lis Balchin, 2004). All four of 

the groups have similar ethno-botanical properties, and major chemical constituents, 

but there are differences in the reported therapeutic uses for the different species                     
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Table 1.3 The four main categories of lavender  

Category of lavender  Description 

Lavandula latifolia, a grass like lavender, grown mainly  

in the Mediterranean regions  

Lavandula stoechas has butterfly-like bracts on top  

of the flowers and is sometimes  

known as French lavender and 

 was the species used medicinally  

by the ancient Greeks 

 (Upson, Andrews, Harris,  

King, & Langhorne, 2004) 

Lavandula x intermedia a sterile cross between  

L.latifolia and L.angustifolia  

(Cavanagh & Wilkinson, 2002) 

Lavandula angustifolia  a stocky plant and a fuller flower,  

commonly known as  

English lavender, 

 formerly known as L. vera or  

L. officinalis 

 

1.4.1.2 The composition of lavender essential oil  

Lavender essential oil is produced by steam distillation, either of the flower heads, or 

for commercial use, it is sometimes distilled from both the flower heads and the 

foliage. The chemical compositions of the two types of extract differ; hence, their 

odours differ. The oil of the flower is sweeter and more aromatic than that of the 

foliage and flower oil combined.   

The composition of the EO is usually determined by gas chromatography with mass 

spectrometry; hence, the commercially used oil composition is well known and 

international standard specifications have been published for some of the species. For 

example, in France, the Appellation d’Origine Contrôlée (AOC) established in 1981 



 

49

 
protects French lavender EOs against competition from lavender EOs from other 

countries and from adulteration,  preventing synthetic components being added to oils 

to enhance their quality and hence their price (Upson & Andrews, Tisserand & Balacs, 

2005).   

The main constituents of lavender are linalool (25-38%), linalyl-acetate (25-45%) 

(see Figure 1.5 below), 1, 8 cineole (<1.8%), ß- ocimene, usually both cis and trans 

isomers (6-16% total for both isomers), terpin-en-4-ol (2-6%), and camphor (0.5%). 

Precise oil composition varies between lavender species.  For example, oil derived 

from L. stoechas is higher in camphor levels than oil derived from L. angustifolia 

which is low in camphor (<2%). Low camphor varieties tend to have higher terpene 

content (e.g. ß- phellandrene) and sesquiterpenes (e.g. caryophyllene). Thus, L. 

angustifolia is used in the perfume industry; whereas, L. stoechas tends to be used as 

an insect repellant. Additionally, L. latifolia and L. x intermedia also have high 

camphor contents and because of this all three species are considered harmful as 

camphor can cause epileptiform convulsions. Therefore use of the high camphor 

content oils is commonly avoided in aromatherapy treatments; whereas, L 

angustifolia is considered, by aromatherapists, to be one of the safest and most useful 

EOs (Tisserand et al., 1995; Castle et al., 2002; Upson & Andrews, 2004). Because of 

its reputed safety lavender is widely used both at home, by aromatherapists, and by 

nurses trained in aromatherapy.    

                   

  

Figure 1-5 The main components of lavender, left: Linalool (3, 7-dimethylocta-1, 
6-dien-3-ol) and right: linalyl-acetate (3, 7-dimethyl-1, 6-octadien-3-yl acetate).  
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1.4.2 Human research  

1.4.2.1. Hospital and clinical studies  

There is a great deal of interest in aromatherapy as part of nursing care when treating 

patients in hospital,  in particular the use of lavender EO to improve mood and 

alleviate anxiety (for reviews see: Bowles, Griffiths, Quirk, Brownrigg, & Croot, 

2002; Bowles, Cheras, Stevens, & Myers, 2005;  Fowler, 2006;  Graham, Browne, 

Cox, & Graham, 2003;  Lee, 2003; Maddocks-Jennings & Wilkinson, 2004; Walsh & 

Wilson, 1999; Weier & Beal, 2004; Wilkinson et al., 2007). However, in a clinical 

setting the main aim is not one of research but, understandably, of doing everything 

possible to improve the patient experience. Hence, there are usually limitations to 

these studies (Wilkinson, et al., 2007). Limitations such as lack of standardized 

treatment (Dunn, Sleep, & Collett, 1995; Itai et al., 2000), lack of a control group 

(King, 1988), small sample size and lack of reported statistical data (King, 1988, Itai 

et al., 2000; Brownfield, 1998; Hardy, Kirk-Smith, & Stretch, 1995; Snow, Hovanec, 

& Brandt, 2004). Therefore, these types of studies will not be discussed further.   

1.4.2.2 Lavender- pleasant odour effects or pharmacological effects on measures 

related to anxiety?  

There are a number of unresolved issues when trying to ascertain the anxiolytic 

effects of a pleasant-smelling odour. First, the anecdotal effects of lavender odour on 

stress are widely known and thus, any stress/anxiety relief experienced could be 

caused by expectation effects. Second, its effects might be because of its pleasant 

odour, rather than to specific pharmacological properties of the whole oil and/or its 

component parts. Third, its effects might depend on the type of anxiety task used to 

elicit anxiety. As already discussed (see section 1.2), anxiety is not a homogeneous 

condition and different types of anxiety affect different parts of the brain; often each 

type responds differently to different forms of treatment. Fourthly, the route of 

administration might make a difference to its anxiolytic effects. Many different routes 

of administration have been used to deliver lavender and there is a lack of 

standardisation of delivery route. For example, lavender is often administered by 

inhalation (Ceballos, Matthews, Catledge, & Geisler, 2000) or dermal absorption 

(Burnett, Solterbeck & Strapp, 2004) and even within these two administration routes 
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there are further differences. In the odour studies lavender is often inhaled neat 

(Diego et al., 1998), in water (Saeki & Shiohara, 2001; Shiina et al., 2007) or via 

some other medium, for example propylene glycol (Atsumi & Tonosaki, 2007), or oil. 

As a result, participants are exposed to differing components of lavender depending 

on the diluent used. In the dermally administered studies diluted lavender might be 

massaged, or placed in a bath, to treat all or only part of the body such as the feet 

(Saeki, 2000), or a few drops might be placed on, for example, the wrist (Burnett et 

al., 2004).   

The following sections attempt to address these points: the first section will examine 

whether lavender has pharmacologically anxiolytic properties or whether its effects 

are because of expectations; the second section asks whether lavender’s supposed 

anxiolytic effects are due to non-specific odour properties; the third section will 

address whether the different type of anxiety-tests make a difference to the anxiolytic 

properties of lavender. Finally, since anxiety and stress are not likely to be 

experienced once only and are often prolonged conditions, there will be a short 

discussion on the acute versus chronic effects of lavender EO. The differing routes of 

administration, and whether lavender can exert its effects only by dermal 

administration or by volatilisation of the oil, will be covered in the section that 

follows, which considers the effects of lavender on anxiety in animal tests. 

1.4.2.2.1 Expectation effects versus pharmacological effects  

To determine whether lavender has any anxiolytic properties that are specifically due 

to pharmacologcal properties, rather than to any non-specific odour-expectation 

effects, exposure to the odour needs to be controlled (effectively removing it from the 

study) so that participants are blind to whether they are receiving lavender treatment 

or not. There are difficulties in blinding when working with such a universally 

recognizable odour as lavender. In almost all studies reported, participants were not 

masked from the odour; as a consequence there is no blinding of participants or 

experimenter to which condition the participant belongs. This lack of blinding makes 

it difficult to determine if any anxiolytic effects are because of its pleasant odour, 

odour-expectations and associative effects, or indeed due to some pharmacological 

property of the oil, or whether all, or a combination of these factors are involved.   
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One solution to the problem of blinding would be to treat the nasal passages with zinc 

sulphate, to render participants anosmic, in order to measure any anxiolytic effects 

attributable to lavender besides its odour properties. However, this intervention is 

extreme and as well as causing possible permanent harm, might actually alter the 

behaviour of participants and so confound the study. Another approach might be to 

use anosmic patients. However, when anosmic participants inhaled 1,8 cineol (a 

component of some EOs) for twenty minutes the volatilised oil still acted directly on 

the brain in the same way as in normosmic controls (Nasel, Nasel, Samec, Schindler, 

& Buchbauer, 1994). In addition, results of MRI scans suggest that even at a 

concentration of volatalised odour lower than the detection threshold the brain is still 

activated, even though the odour is not consciously detected (Nasel et al. 1994; Sobel 

et al., 1999). Therefore, it would be difficult to interpret if any alteration in behaviour 

was due to a subliminal awareness of the odour or to direct pharmacological action.   

In contrast, an alternative approach to blinding of participants to the odour, and thus 

the experimental condition to which they belong, is to block the capacity of 

participants to detect the odour. Heuberger, Redhammer and Buchbauer (2004) 

adopted this approach, by placing an oxygen mask over the nose and mouth of 

participants while concurrently administering linalool, a component of lavender 

essential oil, via massage. Linalool has been shown in animal research to have 

sedative properties reflecting those of the whole oil (Buchabauer, Jirovetz, Jager, 

Planck & Dietrich, 1991 & 1993). Furthermore, it has been shown that EO 

components can enter the circulatory system by using massage (Jager, Buchbauer, 

Jirovetz & Fritzer, 1992). The design of Heuberger et al.’s study was between 

subjects and laboratory based. Participants’ abdomens (n=14 in each group) were 

massaged with 1ml of a 10% linalool solution in peanut oil. When compared with 

massage with a peanut oil control, linalool caused decreases in systolic blood 

pressure and skin temperature but had no effects on subjective wellbeing (Heuberger, 

Redhammer, & Buchbauer, 2004). This study indicates that in humans, linalool has 

an effect on physiological measures in an anxiolytic direction without the odour being 

present; indicating pharmacological rather than expectation effects. However, the fact 

that there was no effect on wellbeing might be because there was no odour present or 

because some other chemical (s) is (are) required from the oil to affect psychological 

measures.   
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1.4.2.2.2 Odour Hedonic Effects versus pharmacological effects  

Effects of EOs might be because of emotional effects of smell pleasantness rather 

than inherent pharmacological properties. Hedonic processing of odours has been 

shown to be an emotional rather than an analytical task (Vernet-Maury, Alaoui-

Ismaili, Dittmar, Delhomme, & Chanel, 1999), which is affected by sex and the 

handedness of the individual, (Dijksterhuis, Moller, Bredie, Rasmussen, & Martens, 

2002), the time of day and year, mental state (Goel & Grasso, 2004), ethnic origins 

(Schiffman, Suggs, & Sattely-Miller, 1995) and age (Fitzgerald et al., 2007). For 

example, in women and men at mid-life, pleasant odours (perfumes) significantly 

improved mood (Schiffman, Sattely-Miller, Suggs, & Graham, 1995). In general, 

pleasant odours have been shown to positively affect the emotions, and unpleasant 

odours negatively affect emotion (Knasko, 1992). For example, smelling lavender, 

which was viewed as a pleasant odour, increased happiness; while, camphor, which 

was neither pleasant nor unpleasant, produced less specific emotions, inducing both 

happiness, surprise or sadness; whereas, butyric acid, an unpleasant odour, elicited 

anger and disgust (Vernet-Maury, et al., 1999).   

Even though the hedonic processing of odours is mainly emotional, the effects of 

odours are not limited only to emotion and odours can also play a large part in 

association and conditioned behaviours. Furthermore, odours can have direct effects 

on cognition and behaviour, even when not consciously perceived. For example, the 

smell of cleaning fluid caused participants to keep their direct environment cleaner 

than usual during an eating task (Holland, Hendriks, & Aarts, 2005).   

In addition to the influence of odour hedonics on psychological and behavioural 

factors, odour pleasantness can influence physiological parameters too. Pleasant, 

versus unpleasant, odours have been shown to influence physiological measures in 

opposite directions. The inhalation of odours, which participants had identified as 

having an unpleasant smell, were found to increase heart-rate (Bensafi et al., 2002). 

However, smells that were pleasing to participants increased alpha EEG waves, 

which are related to relaxation (Yagyu, 1994).   

Furthermore, although lavender is pleasant smelling at low concentrations it is often 

reported to be an unpleasant odour at higher concentrations. Low concentrations of 
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inhaled lavender (1/1000 in propylene glycol) decreased serum cortisol and increased 

FRSA, an index of stress that decreases in response to physical fatigue and increases 

when mood is positive (Atsumi & Tonosaki, 2007). However, very high 

concentrations of lavender, which participants found unpleasant, failed to have any 

effect.   

Differences in the physiological response to odours are not limited to effects of 

pleasant versus unpleasant odours. Different pleasant smelling odours have been 

shown to elicit different effects on brain waves. Torii et al., (1988) found that 

lavender odour reduced a pattern of brain waves called contingent negative variation 

(CNV). Increased CNV is thought to be related to cortical arousal and increased 

stress (Nagai et al., 2004). In comparison, jasmine, regarded as a pleasant but 

stimulating odour, increased CNV in a similar manner to the stimulant caffeine in the 

same study. Congruent with these findings, electronically diffused lavender odour 

(for ten minutes in four sessions over two weeks) increased alpha and mean EEG 

activity (Ceballos, Matthews, Catledge, & Geisler, 2000). In another study, inhaled 

lavender (6 drops of lavender in 10ml of warm water for 10 minutes) decreased 

sympathetic arousal in young female adults (Saeki & Shiohara, 2001). Systolic blood 

pressure, galvanic skin conductance, and the low frequency component of heart-rate 

variation were reduced; while parasympathetic activity increased, as indicated by an 

increase in the high frequency component of heart-rate variation. In contrast, 

citronella and rosemary odours increased sympathetic nervous system activity. 

However, none of the participants or experimenters was blinded to the odours and 

these effects are just as likely to be due to odour hedonics as they are to 

pharmacological properties of the oils, and so they do not provide unequivocal 

evidence for specific pharmacologically anxiolytic effects caused by lavender EO.   

In one study where odour pleasantness was taken into account, lavender was 

compared with rosemary (either oil was applied to the wrist, 3 drops in water, or a 

water only control) and participants were subjected to a timed crossword study 

(Burnett et al., 2004). When odour pleasantness was controlled, lavender and 

rosemary had differing effects and lavender did not affect physiological measures 

(heart-rate and body temperature). However, lavender did have positive effects on 

psychological self-report measures producing higher positive affect, increased vigour, 

activity and less fatigue and inertia, than the no-odour control. However, lack of 
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blinding to the odour in this study means that expectation effects were not controlled. 

This result is in contrast with Heuberger’s study where the odour, albeit only linalool 

and not the whole oil, was removed and only physiological, and not psychological, 

measures were affected. There are other differences which make the two studies 

difficult to compare directly; in one study peanut oil was used as the carrier and in the 

other water, also the part of the body where the oil was administered differed. Thus, 

the bio-availability and absorption rates of the diluted oils might have differed.   

Contrary to the Heuberger (2004) study, however, are the results of a study conducted 

in 5-day-old neonates of depressed mothers where there was found to be no 

difference between rosemary and lavender oil odour on measures related to wellbeing 

and negative affect. Both odours (3 drops of 10% in grape seed oil on a dental swab 

suspended above each baby’s head) shifted brain activity (frontal EEG activity) to the 

left, particularly in babies who had predominant right frontal activity (Fernandez et 

al., 2004; Sanders, et al. 2002). Increased left frontal EEG activity is an indication of 

increased positive affect. It was not possible to ascertain whether the babies had any 

preference for either of the odours because they were too young to be asked! In 

addition, no information was given on whether the depressed mothers routinely used 

EOs to help lift their depressed mood state or which odour the mother preferred if any. 

Therefore, because there was no difference in response between the two odours, one 

could argue for non-specific effects rather than specific pharmacological effects.  

1.4.2.2.3 Does the type of anxiogenic stimuli have an effect on lavenders effects to relieve 
anxiety?  

As previously discussed, a number of studies have examined lavender’s effects in 

anxious or stressed participants. However, its ability to produce anxiolysis might be 

dependent on the type of anxiety that the test elicits. There is often no standardisation 

or validation of the conditions used to elicit anxiety. For example, lavender odour 

reduced self-reported mental stress and increased arousal when participants were left 

to wait in a small sound-proofed room (Motomura, Sakurai, & Yotsuya, 2001). 

However, being left in a peaceful and pleasant smelling situation for twenty minutes 

might be relaxing rather than stressful and there is no indication in this study of 

whether participants liked the odour or not. There have been a number of studies 

involving tasks in mathematics to elicit anxiety in participants. However, not all 
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participants find maths tasks anxiety-provoking and some, particularly from the 

student population, might even enjoy the challenge. Again, as with the studies 

mentioned earlier, none of these types of studies controlled for the odour. However, 

in determining whether lavender has specific pharmacological effects these studies do 

provide some evidence that either lavender odour or pleasant smells have the 

potential to reduce anxiety, but, they do not provide evidence for any direct 

pharmacological action caused by lavender EO, and so will be briefly mentioned.  

In studies using mathematics tasks as the anxiogenic stimuli, exposure to lavender 

odour (3 drops of 10% on cotton wool inhaled for 3 minutes) (Diego et al., 1998) or 

lavender scented cleansing gel odour (Field et al., 2005) caused a decrease in anxiety 

and depression (STAI and profile of mood states (POMS)). They both also increased 

physiological relaxation (alpha and beta EEG increased) and shifted or maintained 

relative left frontal EEG activity (a re-analysis of the data in Sanders et al., 2002). 

Aromatherapists often claim that it is only the natural EO odours that have 

therapeutic properties (Tisserand, 1977). Whereas, lavender enabled participants to 

complete the maths task more accurately and more quickly than without any odour, 

rosemary odour increased alertness (Diego et al., 1998). Again, in both studies 

participants’ odour preferences were not mentioned.   

Another maths-based study employed the Uchida-Kraepelin test, a mathematical 

additions test, as the anxiogenic stimuli (Toda & Mormoto, 2008). Ten-minute 

lavender odour inhalation following the test decreased levels of chromogranin A. In 

contrast, there was no decrease in the control group who did not inhale lavender. 

Chromogranin A is an acidic glucoprotein, co-released with adrenaline and 

noradrenaline in response to anxiogenic stimuli (Kanno et al., 1999). However, since 

there was no comparison odour, and administration was not blind, it is difficult to 

attribute these effects specifically to lavender.    

When a stronger anxiogenic stimulus, pain, was used lavender had no effect in 

improving mood, as measured by the positive and negative affect scales (PANAS) 

(Watson ,Clark and Tellegan, 1988), or anxiety (STAI), or on decreasing salivary 

cortisol elevations in response to the pain (Gedney, Glover, & Fillingim, 2004; Hoferl, 

Krist & Buchbauer, 2006). However, the authors did report that lavender odour had 

an effect on memory. Participant’s self-reports after the study indicated that lavender 
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had different effects on pain perception depending on the sex of the participant. 

Males reported diminished pain sensitivity, whereas females reported diminished pain 

unpleasantness. However, when lavender was compared with rosemary, the findings 

with rosemary were similar, although to a lesser extent. The authors concluded that 

lavender or aromatherapy might have had memory effects, altering how participants 

viewed the experience retrospectively. Memory might have an important role to play 

in anxiety. This is because some aspects of memory, such as the laying down of new 

memories and memory recall, share common neurological substrates with anxious 

behaviour, for example the hippocampus and frontal cortex. Indeed, some types of 

anxiety do have a strong memory component to them, for example the flash backs 

associated with PTSD. Furthermore, there is some evidence that anxiolytic drugs 

might impair memory depending on the dose prescribed (Gray & McNaughton, 2003). 

There is other evidence for lavender odour giving rise to improved mood while 

impairing memory function. In a randomised between-subjects study, participants 

(n=142)   were exposed to 4 drops of lavender EO on a diffuser pad,  4 drops of 

rosemary odour, or no odour (4 drops of water), and asked to complete a battery of 

cognitive tests (Moss et al., 2003). Lavender odour impaired working memory and 

reaction time. Additionally, it improved contented mood, but not calmness and led to 

a decrease in alertness, which continued beyond testing.   

Pain has also been used as a stressor in five-day-old infants. The anxiolytic effects of 

linalyl-acetate odour were tested on endocrine responses to the heel-prick test for 

phenylketonuria (Kawakami et al., 1997). The stress hormone, cortisol, was used as 

the dependent measure. Infants (n=83) exposed to linalyl-acetate or baby milk 

produced less cortisol during the test than when compared with no odour. The odours 

were placed in a bottle with a smelling blotter which was placed 1.5 cm from the tip 

of the bottle and the bottle was held 2-3 cm from the infant’s nose during the heel-

prick. No mention is made of whether the mothers used lavender during pregnancy, 

or after the birth, and thus whether its odour might be associated with the reassuring 

presence of their mother, which might also account for the effects seen here.   

Similarly, the effects of  S-(+)– linalool odour exposure, R-(-)- linalool odour  (the 

entantiomer prevalent in lavender) and a no-odour control were tested in a between-

subjects design study on participants taking part in the Trier Social Stress Task 

(Kirschbaum, Pirke & Hellhammer, 1993; Höferl, Krist & Buchbauer, 2006). Both 
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physiological and endocrine measures were taken. Linalool –(R) – odour was 

reported as stress relieving: heart-rate decreased; whereas linalool – S-(+) had an 

activating effect: blood pressure (systolic and diastolic) and heart-rate were higher 

than both the control and the R-(-) - enantiomer. In both cases, cortisol was lower 

after twenty minutes than in the control group. This is reflective of a lower cortisol 

response during the resting phase in those exposed to either odour when compared 

with the control.   

1.4.2.2.4 Acute effects versus prolonged effects  

Another failing in most studies looking at lavender odour’s anxiolytic effects is that 

only acute effects are considered. Since sensory adaptation allows organisms to 

habituate to their surroundings, repeated or prolonged exposure to an odorant leads to 

decreases in stimulus-specific sensitivity (Dalton, 2000). Thus, when working with an 

odour, one might expect participants to habituate to that odour after a short time, for 

example after, or even before, the end of the experiment. Cooke and Ernst (2000) 

claim that aromatherapy has only short-lived and transient effects in alleviating 

anxiety; if this is the case, habituation to the odour would explain the observed effect. 

As most studies look at acute effects only, it is not clear whether any effects 

experienced are merely transient while exposure to the odour is taking place or are 

lasting and continue once exposure to the odour has ceased. There is little evidence of 

lavender’s effects lasting for longer than the duration of the experiment. The effects 

of lavender, administered in a footbath, have been shown to last for ten minutes when 

compared with a control bath with no lavender in it (Saeki, 2000). In this study 

lavender increased blood flow and parasympathetic nervous system activity. The 

design of the experiment was within-subjects and participants were female trainee 

nurses. However, ten minutes is not long and the effect could be classed as a transient 

one.   

1.4.2.2.5 Summary   

In summary, lavender’s odour would appear to be important in eliciting any mood 

effects, but these effects might be only transitory. The studies described here indicate 

that lavender might possess some specific pharmacological properties. For instance, 
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Heuberger et al. (2004) indicated that linalool odour is not necessary for 

physiological deactivation; however, the odour might be necessary for perceived 

wellbeing. In addition there might be reasons other than simply a lack of perception 

of the odour to explain why linalool failed to reduce self-reported anxiety in 

Heuberger’s study: other components of the oil could be required for this action. 

Studies on other oils have shown that the effects of EOs are complex and could act 

via a number of different physiological and psychological mechanisms 

(Hongratanaworakit, Heuberger, & Buchbauer, 2004).  

It is not clear, then, whether any reported anxiolytic effects from the studies discussed 

here are caused by lavender’s pleasant odour, or a combination between its odour and 

direct pharmacological effects. Thus with no standardisation of task and no blinding 

to the odour it is difficult to dissect exactly if lavender relieves anxiety. None of these 

studies provide evidence of pharmacological anxiolysis that can be attributed to 

lavender EO. At best, if lavender does relieve anxiety, then it looks as though its 

mechanism of action is not simple. Possible potential mechanisms of action for 

odours,  such as lavender EO, have been summarised into the following four 

categories: quasi-pharmacological, in which smaller amounts than would normally be 

taken in by a drug are being absorbed to exert a mild pharmacological effect; 

semantic effects, in which memories formed from highly charged emotional 

situations, are associated with an odour; hedonic mechanisms, emotional responses, 

depending on their pleasantness or unpleasantness, evoked by odours; fourthly, 

placebo effects, arising as a result of suggestion or expectation (Jellinek, 1998). It has 

also been suggested that direct pharmacological effects reinforce each successive 

exposure to the EO odour (Broughan, 2001).  

In conclusion, cognitive mechanisms of odour transduction often confound 

pharmacological effects in humans. Therefore, the next section will examine work 

conducted using animals naïve to the odour of lavender. This method potentially 

overcomes some of the difficulties presented in the human studies mentioned above. 

In particular, studying the effects of lavender on animals that are naïve to its odour 

and its reputed effects eliminates some of the cognitive difficulties encountered when 

testing lavender odour on human participants. It also allows for longer-term testing of 

the odour in a controlled environment, which would not be so easy to do when 

employing human participants. 
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1.4.3 Animal research   

1.4.3.1 Studies examining lavender odour’s effects on measures related to 

anxiety in animals   

Animals that have been reared in a laboratory setting allow for a more controlled 

approach, as their complete past history of drug exposure and conditioning is known. 

In-vivo animal experiments examining lavender’s anxiolytic effects have been mainly 

carried out in rodents. However, one study looking at dogs housed in a rescue shelter 

indicated that they spent more time resting and were less vocal following lavender 

inhalation for four hours per day, for five days (Graham, Wells, & Hepper, 2005). 

These effects were interpreted as increasing the wellbeing of the dogs. No details are 

given of how much lavender the dogs inhaled each day. Also, the reported effects 

could be because of sedation rather than anxiolysis, since lavender odour and its main 

components linalool and linalyl-acetate, when admisistered indivivually, were 

demonstrated to have powerful sedative properties and were able to reverse the 

effects of hyperagitation caused by caffeine injection in mice (Buchbauer, Jirovetz, 

Jager, Dietrich, & Plank, 1991). Injected caffeine increased locomotor activity to 

approximately 60% above normal activity. Lavender odour decreased this locomotor 

activity by about 90%, back to nearly normal activity. Its main constituents linalool 

and linalyl-acetate also reduced activity but to a lesser extent, 57% and 47% 

respectively, suggesting that the components work in synergy in the whole oil. The 

plasma content of the EOs was also measured one hour after inhalation to ascertain 

whether volatility (ability to evaporate) had anything to do with the measured effects. 

Results showed no correlation between volatility and locomotor effect (Buchbauer, 

Jirovetz, Jager, Plank, & Dietrich, 1993). However, a significant proportion of the 

linalool was conjugated to glucuronic acid when linalool was measured before and 

after incubation of the blood samples with ß-glucuronidase (Jirovetz, Buchbauer, 

Jager, Raverdino, & Nikiforov, 1990) et al., 1990). Buchbauer and his colleagues 

(1990) also noted that the more lipophilic esters were able to reduce the motor 

behaviour of the animals in relatively lower concentrations than their corresponding 

alcohols could achieve after inhalation, even though some of the alcohols were more 

volatile. Buchbauer’s group attributed this sedative activity to their ability to cross 
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membranes such as the blood brain barrier more effectively rather than to their 

volatility (Buchbauer, Jirovetz, Jager et al., 1993). These results are interesting when 

compared with the effects of lavender odour in humans, where odour hedonics could 

also play a part in the behavioural effects. It is important to note that although many 

anxiolytics cause sedation, depending on dose, sedation does not necessarily equate 

with anxiolysis.   

There are other rodent studies that indicate lavender’s potential acute anxiolytic 

effects; lavender had anxiolytic effects similar to chlordiazepoxide injection after one 

hour’s exposure in an open field rat model of anxiety (Shaw, Annett, Doherty, & 

Leslie, 2007). By contrast, inhalation of higher doses of lavender odour led to 

sedation. Chronic exposure to the odour was not tested.  

1.4.3.2 Studies examining orally-administered lavender’s effects on measures 

related to anxiety in animals   

Studies have also indicated that orally-administered EOs share similar effects to those 

of the odour (Kovar, Gropper, Friess, & Ammon, 1987). The effects of oral lavender 

in models of anxiety, such as the four plate test, the hole-board test, the elevated plus-

maze and the potentiation of barbiturate sleeping-time have been examined 

(Guillemain, Rousseau, & Delaveau, 1989). Lavender, 1/60 dilution in olive oil at a 

dose of 0.5ml/20g, was administered acutely by oral gavauge to mice thirty minutes 

prior to testing. Results in the exploratory tests indicated that lavender caused 

sedation rather than anxiolysis, possibly because the dose was too high. A lower dose 

might have had an anxiolytic effect in the other tests rather than just a sedative one. 

In the barbiturate test, sleeping time significantly increased in response to lavender, 

indicating an interaction with the GABAA receptor complex (Guillemain et al., 1989). 

However, a further study revealed that oral lavender’s effects on barbiturate sleeping 

time might be short-lived, as it was found to disappear after five days administration 

(Delaveau et al., 1989).    
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1.4.3.3 Studies examining injected lavenders effects on measures related to 

anxiety in animals   

Injected lavender EO provides evidence in favour of it having acute anxiolytic effects, 

aside from any effects attributable to odour hedonics. Twenty minutes after lavender 

essential oil injection (s.c) mice exhibited anti-conflict activity similar to that seen 

after diazepam administration (Umezu, 2000). The test used was the Geller-Seifter 

conflict test; it has been argued that this test is a test of phobia rather than general 

anxiety (Gray & McNaughton, 2003). Incidentally, the dose used was comparable 

with those that would be used in an aromatherapy massage session (i.e.1600 mg/kg). 

However, in another study lavender also had anti-conflict effects in Vogel’s test at 

800mg/kg, which is a lower dose than that estimated to be used in an aromatherapy 

session (Umezu et al., 2006). Umezu used injections as the administration route, 

rather than odour, as he hypothesized that odours are not potent enough to have 

anxiolytic effects. This route also controls any preferences due to odour, which might 

also affect animal behaviour. The results were comparable to those given by 

diazepam at doses ranging over 0.5-2mg/kg. Interestingly, and arguing for specific 

effects attributable to specific oils, Umezu has conducted a number of studies 

examining anti-conflict tests of essential oils and found anti-conflict activity for only 

two oils, rose EO (Umezu, 1999) and lavender EO (Umezu et al., 2006). Rose EO is 

not thought to act via the GABA binding site because flumazenil, the competitive 

GABAA receptor inhibitor, failed to antagonise rose oils anti-conflict effects; 

although, both the oils of rose and lavender exhibited similar overall effects when 

compared with those of diazepam.  

In a further examination of lavender’s anti-conflict effects and a search for the 

components of lavender responsible, linalool was identified, having an effect in both 

models, at 600mg/kg and 400mg/kg respectively (Umezu, et al., 2006). Other 

components that might also contribute to lavender’s anti-conflict effects are: linalyl-

acetate, which, at 1600 mg/kg significantly decreased the number of electric shocks 

received by the mice in Vogel’s test; borneol, which increased the response rate in 

Geller’s test, at 800 mg/kg, and significantly decreased it in Vogel’s test; camphene, 

which increased responses in Geller’s test, at 800 mg/kg, and had no effect in Vogel’s 

test; and,  cineol and terpin-en-4-ol, which produced significant responses in the safe 

period. These results indicate that although linalool appears to have the most potent 
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effects in both tests when compared with lavender’s other components, the other 

components could also contribute to the effects of the whole oil lending evidence to 

the synergy effects described by aromatherapists (Price, 1998).   

In contrast to these results, injected linalool (125 mg/kg, i.p) failed to have an 

anxiolytic effect in a study using rats in the elevated plus-maze (Cline et al., 2008). 

However, in the human study conducted by Heuberger and colleagues (2004), 

linalool also failed to have anxiolytic effects on self-report measures. The 

measurement of behaviours in this study (Cline et al., 2004) appears to be flawed 

because measures of fine and gross motor movement were taken instead of specific 

ethological measures, such as risk-assessment and exploratory measures (see Chapter 

2 for an explanation of these behaviours). In addition, the linalool might have been 

present in too small a dose.  

1.4.3.4 Studies examining the effects of lavender and its components on pathways which 
might be implicated in the anxiety response.   

There are only a few studies in animals which examine lavender’s effects on anxiety. 

Therefore, it is important to look at the effects of lavender and its components on 

other systems; these could also share common pathways relevant to the mechanisms 

involved in anxiety responses.  

More evidence in favour of lavender’s pharmacological effects, and possible potential 

mechanism of anxiolytic action, are provided by studies on the effects of lavender on 

seizures induced by electric-shock or by convulsant drugs in mice (Atanassova–

Shopova & Roussinov, 1970). Low doses of injected lavender (i.p.) exhibited 

depressive effects on the central nervous system, whereas high doses exhibited 

anticonvulsive effects. Lavender prevented convulsions induced by 

pentylenetetrazole, a non-competitive GABAA receptor inhibitor, which binds at the 

picrotoxin-sensitive site of the GABAA receptor but might also have activity on 

AMPA receptors. AMPA receptors are a class of glutamate receptor. However, 

lavender did not inhibit strychnine convulsions. Strychnine is a glycine receptor 

antagonist; glycine is one of the most widely distributed inhibitory neurotransmitters 

in the CNS. In addition, in this study, lavender potentiated the narcotic (anaesthetic) 

effects of chloral hydrate, alcohol and Evipan-sodium without having narcotic effects 
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when used alone (Atanassova – Shopova & Roussinov, 1970). It also checked the 

effects of amphetamine (Aktedron) and caffeine by inhibiting motor activity.  Similar 

effects have also been found for linalool in mice (Elisabetsky, Marschner, & Souza, 

1995).  

Studies in rats have also indicated that dilute, but not neat, lavender odour (1 in 100 

(vol/vol) in water) depresses sympathetic nerve activity in adipose tissue and 

increases parasympathetic (vagal nerve) activity (Shen et al., 2005).  These effects 

lasted for 90 minutes following lavender odour exposure. Administration of a local 

anaesthetic or zinc sulphate, both of which inactivate olfactory receptors, completely 

abolished this activity, indicating possible odour mediated effects, rather than effects 

via the pulmonary route. Thioperamide, an H3 antagonist, also completely abolished 

these effects, providing evidence of an interaction of lavender and linalool with 

histaminergic pathways (Shen et al., 2005). In addition, later studies indicated that 

lavender decreased blood pressure in rats and implicated the hypothalamic 

suprachiasmic nucleus in the autonomic nervous system response (Tanida, Niijima, 

Shen, Nakamura, & Nagai, 2006; Shen et al., 2007). The suprachiasmic nucleus has a 

role to play in coordinating neuroendocrine circadian rhythms; these regulate a 

number of hormone systems including the stress hormone cortisol.   

In accordance with this, vaporised lavender (L. burnatti super) odour also has been 

demonstrated to have effects on the endocrine system. Lavender oil and its major 

component linalool have been shown to alter plasma adrenocorticotropic hormone 

(ACTH), catecholamine and, gonadotropin levels in ovariectomised rats. These 

hormones have a role to play in the stress response and might explain any tension 

relieving properties of lavender (Yamada, Mimaki, & Sashida, 2005).  

There is also evidence that orally or inhaled lavender has anti-nociceptive, pain-

relieving effects following 60 minute lavender inhalation or oral ingestion of 100 

mg/kg lavender (Barocelli et al., 2004). However, in this study linalool or linalyl-

acetate did not have the same analgesic effects as whole lavender, possibly owing to 

too low a dose being used. The variety of lavender used here was not L. angustifolia, 

but L. hybrida Reverchon Grosso (a hybrid of L. angustifolia and L. latifolia), which 

is hardier and yields higher amounts of the EO. In contrast to this study, in other 

studies linalool has been reported to have anti-nociceptive properties. Sub-cutaneous 

linalool injection had pain-relieving properties both in male mice and in rabbits in the 



 

65

 
conjunctival reflex test (Peana et al., 2003). Linalool, in these studies, appeared to 

activate opiodic and cholinergic systems. Furthermore, in studies using Wistar rats, 

linalool was reported to have cholinergic local anaesthetic activity and the ability to 

block NMDA receptors. It also exerted some of its effects by: muscarinic (M2), 

opioid or dopamine (D2) receptor, potassium channels (Peana et al., 2004). Likewise, 

linalool significantly inhibited glutamate-induced nociception effects in mice in the 

induced paw-licking test; which is a test of how long an animal spends licking its 

injured paw when ionic but not metabotrophic agonists are present (see section 

1.2.3.2 for a description of the different types of glutamate receptor) (Batista, et al., 

2008).  

The conclusions that can be drawn from these studies in animals are limited. 

Lavender and its main components appear to influence a variety of neurotransmitter 

systems. Whether this is a direct or indirect interaction is not clear. Although, the fact 

that lavender appears to have effects on GABA-ergic and glutamatergic systems as 

well as the HPA axis are all promising evidence for a role in anxiolysis. However, 

these studies in animals also indicate that there is no real consensus as to how 

lavender’s components interact with neurotransmitter receptors, particularly those 

involved in anxiety.  

1.4.4 In vitro research 

1.4.4.1 Potential direct pharmacological effects of lavender and its components.  

In vitro studies allow a closer examination of any potential pharmacological 

mechanisms of action of EOs and their constituents, aside from any psychological 

properties. There are, however, not very many of these types of studies, so again it is 

necessary to look more widely at studies that involve systems which could be 

implicated in anxiety-type   behaviour.   

Studies indicate that lavender’s components interact with a wide variety of 

neurotransmitter systems, for example linalool’s nociceptive mechanisms are 

probably mediated through a reduction in the production or release of nitric oxide 

(NO) in glutamatergic or cholinergic systems (Peana, Marzocco, Popolo, & Pinto, 

2006). Inhibition of the enzyme that produces NO, neuronal nitric oxide synthase 

(nNOS), has been associated with anxiolysis (Spiacci, Kanamaru, Guimares, & 
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Oliveira, 2008). Linalool might also mediate some of its effects via the adenosine A1 

and A2 receptors (Peana et al., 2004).   

In experiments on muscle tissue, lavender EO and linalool at final concentrations of 2 

x 10-5 and 2 x 10-4 g/ml were found to decrease tone in skeletal muscle and have a 

spasmolytic effect on smooth muscle (guinea pig ileum and rat uterus). The 

mechanism of action was thought to be postsynaptic and not atropine-like. 

Additionally, lavender caused a rise in intracellular cAMP, similar to that seen during 

‘stress’ activation mediated by the sympathetic nervous system (Lis-Balchin & Hart, 

1997, 1999). The increase in cAMP was suggested to be via a direct action on the 

adenyl-cyclase subunit rather than via receptor binding; thus, linalool might enter the 

cell to exert its effects.  

Experiments examining the effects of lavender and its components on mouse cortical 

membranes have indicated that linalool exerts some of its effects by a direct 

interaction with the glutamate NMDA receptor complex (Brum, Elisabetsky, & Souza, 

2001; Silva Brum, Emanuelli, Souza, & Elisabetsky, 2001). Additional evidence was 

provided by aqueous extracts of lavender flowers, which, although not the EO do 

contain similar components. The extract provided protection against glutamate 

toxicity in cerebellar granula cell tissue-culture (Buyukokuroglu, Gepdiremen, 

Hacimuftuoglu, & Oktay, 2003). Interestingly, in the Elisabetsky study it was noted 

that linalool did not interact directly with the GABAA receptor, although changes in 

GABA-mediated neuronal inhibition or effects on GABA release and uptake were not 

ruled out (Elizabetsky et al., 1995). In contrast to these results, cloning experiments 

on the GABAA receptor in Xenopus oocytes have provided further evidence for 

lavender exerting a direct pharmacological effect. The effect is similar to the effects 

seen with alcohol, tobacco, or BDZs when taken into an organism by the bloodstream, 

lungs, skin or intestine (Aoshima & Hamamoto, 1999).   

More specifically, Re, et al. (2000) demonstrated that linalool inhibited acetylcholine 

release and decreased channel open time at the neuromuscular junction in the mouse 

left hemi-diaphragm. It was suggested that linalool’s effects might be related to a 

reduction in calcium-ion influx in the presynaptic terminal channels. This might be 

caused by inhibition of the voltage-gated sodium and potassium channels or by an 
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interaction of linalool with the cell membranes (Re et al., 2000); thus linalool might 

also have indirect effects by interacting with cellular membranes.  

1.4.4.2 Potential indirect effects of lavender and its components.  

EOs have been shown to react with cell membranes and to have cytotoxic effects at 

low concentrations (100nl/ml) (Teuscher, Melzig, & Villmann, 1989; Teuscher et al., 

1990). Teuscher and his colleagues concluded that EOs which reach cells in high 

concentrations mediate unspecific effects such as irritation and cell membrane 

destruction. However, EOs usually reach cells in very low concentrations, where, 

depending on their physiochemical properties and their molecular shape, they can 

become integrated into the cell membranes. Here they can influence enzymes, ion-

channels and receptors within their locality (Teuscher et al., 1989, 1990). Indeed, 

there is evidence for this in model membranes where terpenes easily incorporated 

themselves into monolayers of dipalmytoyl-phosphatidylcholine (Turina, Nolan, 

Zygadlo, & Perillo, 2006). The fact that terpenes are either amphypathic or 

hydrophobic, and therefore have a tendency to partition towards membranes, lends 

them the possibility of changing membrane structure and surface electrostatics. These 

properties would explain their concomitant effects on membrane permeability and on 

the activity of intrinsic proteins such as GABAA receptors, which are post-synaptic 

membrane proteins. Terpenes from EOs other than lavender have been shown to 

modulate the GABAA receptor and its allosteric binding sites in this way. In studies 

looking at the effects of terpenes on chlordiazepoxide behaviour in relation to an 

artificial membrane, the terpenes caused the chlordiazepoxide to remain in the 

membrane phase (Del Turina & Perillo, 2003). Terpenes have also been shown to 

enhance transdermal permeation of skin, transforming stratum corneum lipids by 

disrupting the interlamellar hydrogen-bonding network at the polar head group region. 

As a result, they increase hydration levels of lipid membranes, probably by forming 

new aqueous channels, altering the internal structure of membranes and making the 

latter more permeable to drugs (Narishetty & Panchagnula, 2005). It is interesting 

that linalool has been cited as being one of the sorbent promoters for dermal delivery 

of the psychotropic drug haloperidol (Aqil, Ahad, Sultana, & Ali, 2007).   

EO terpenes have also been shown to act as pro-oxidants; they can depolarise inner 

cell membranes in organelles such as mitochondria, where they affect calcium-ion 
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cycling and reduce the pH gradient, thus affecting the proton pump and the ATP pool. 

Permeability of outer and inner mitochondrial membranes leads to cell death. 

However, EOs also contain molecules which protect the cell from such effects. This 

fact possibly provides evidence for their reported synergistic effects, in that trace 

components might moderate the activity of the major components. It has also been 

suggested that several components of an EO define its properties, such as fragrance, 

texture, colour, membrane permeability and, cell penetration. These properties 

influence its distribution within the cell and this ultimately determines its properties. 

For this reason it has been suggested that the study of EOs should involve the whole 

oil rather than the component parts (Bakkali, Averbeck, Averbeck, & Idaomar, 2008).   

It appears that EOs can exert their effects in-vitro by both direct effects on systems 

such as GABA, glutamate, and acetylcholine and via indirect effects because of their 

solubility in cell and organelle membranes. Interestingly, in studies looking at the 

dermal toxicity of lavender and its components, linalyl-acetate and linalool were 

found to have cytotoxic effects, whereas the whole oil did not (Prashar, Locke, & 

Evans, 2004). Thus some of the components of the oil must have a protecting effect, 

perhaps lending weight to the use of the whole oil rather than its separate components 

in any form of treatment using lavender EO.  

1.4.5 Summary of in-vivo and in-vitro effects of lavender EO and its 
components.  

A number of possible routes both specific and non-specific are suggested by which 

lavender EO could cause anxiolysis.  In vivo and in vitro studies provide strong 

evidence for the pharmacological properties of lavender both via the bloodstream and 

possibly also via an olfactory route (Shen et al., 2005; Heuberger et al., 2004; 

Buchbauer, Jirovetz, Jager et al., 1993; Kovar et al., 1987). Lavender might also work 

by a dual mechanism causing autonomic deactivation which is reinforced by direct 

CNS actions and in turn enhance perceived wellbeing (Heuberger et al., 2004).   

By way of comparison, and arguing in favour of a specific effect attributed to 

lavender EO and not just EOs in general, rose oil will be discussed next.  As 

mentioned above rose oil (Umezu, 1999) also has a long anecdotal history of being 
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anxiolytic, which is verified by some laboratory tests (Umezu, 1999), but its 

mechanism of action could be different to that of lavender.  

1.5 THE EFFECTS OF ROSE, ROSA DAMASCENA, 

ESSENTIAL OIL ON ANXIETY  

Rosa damascena Miller, EO, sometimes known as Rose Otto, also has a very long 

history of use for wellbeing and uplifting mood (Gurib-Fakim, 2006; Wells, 2005). 

There is only a small body of scientific evidence for rose oil having anxiolytic effects, 

for example, in the laboratory; volatalised rose oil odour caused a 40% overall 

reduction in sympathetic nerve activity, as measured by heart-rate variation, and a 

30% reduction in plasma adrenaline concentration in humans (Haze, Sakai, & Gozu, 

2002). In contrast to lavender oil, rose oil increased CNV indicating that it has a 

stimulating rather than a relaxing effect (Torii et al., 1988).   

Animal studies also show support for its anxiolytic effects; in two conditioned models 

of anxiety (the Geller–Seifter and Vogel's tests), acute intraperitoneal administration 

of rose EO to mice had anti-conflict effects (Umezu, 1999). Rose oil’s effects were 

not obliterated by the BDZ antagonist flumazenil (Umezu, 1999). This suggests that 

the anti-conflict action of rose oil is not mediated by the BDZ binding site on the 

GABAA-receptor complex. However, like lavender, rose oil also potentiated 

barbiturate induced sleeping-time, indicating a possible interaction with the GABAA 

receptor complex (Rakhshandah & Hosseini, 2006). In contrast to lavender, studies in 

mice looking at the effects of rose oil and its components on locomotor activity did 

not confirm rose oil’s anecdotally reported sedative effects. There was a very slight 

effect on sedation in untreated mice but after hyperagitation with caffeine, rose oil, 

unlike lavender, was not able to calm the mice (Buchbauer, Jirovetz, Jager et al., 

1993). Additionally, acute (7 minutes), volatalised rose oil inhalation also showed 

direct behavioural effects by increasing the amount of time that rats tolerate an 

anxiety-provoking environment; the elevated plus-maze (de Almeida, Motta, Brito 

Faturi, Catallani, & Leite, 2004). Other studies have shown that reserpine antagonises 

the effects of rose oil in the forced swim test, suggesting that rose oil might act via a 

presynaptic mechanism (Khalaj & Farzin, 2006). Thus, the underlying mechanism of 

action of rose oil is, also as yet, unclear. However, the results of these few studies 



 

70

 
would indicate that rose oil’s anxiolytic effects differ from those of lavender in both 

their mechanism and mode of action.   

Studies in animals would indicate that regardless of whether it is administered orally 

or via its odour, lavender’s effects are similar. Studies in humans indicate that there 

might be a dissociation between lavender’s effects depending on whether it is 

administered with the odour intact or with the odour removed, for example 

Heuberger’s study (2004). In order to elicit direct anxiolytic actions, lavender odour 

first has to reach the brain. It can do this via a number of routes, three of which are 

mediated via the nose the olfactory, the vomeronasal and the trigeminal pathways 

(Savic, 2001). Alternatively, odorants can sometimes, depending on their properties, 

travel directly to the brain via the neuronal axon (for example cocaine) or in the 

bloodstream via the lungs and pulmonary circulation route.   

The nasal pathways will be discussed more fully in the next section.  

1.6 POTENTIAL ROUTES FOR ODORANTS TO REACH 

THE BRAIN AND AFFECT BEHAVIOUR  

The olfactory and vomeronasal pathways share common CNS structures with those 

involved in the aetiology of anxiety, namely the limbic system, which was originally 

called the rhinencephalon or smell brain and later named the limbic lobe by Broca 

(Van Toller, 1988; Savic 2001; Spinella, 2002). The third pathway, the trigeminal 

pathway, might have a regulatory role to play in olfaction, but it is probably not 

involved in mediating any potential anxiolytic effects of EOs and so will be be only 

briefly discussed (Hummel, Futschik, Frasnelli, & Huttenbrink, 2003; Savic, 2002). 

1.6.1 Olfaction  

Olfactory pathways and the pathways involved in anxiety share some of the same 

brain structures (Song & Leonard, 2005). Aromatherapy’s reputed effectiveness is 

that the olfactory system is closely linked to the limbic system, which as discussed 

earlier (section 1.1.3.1), is central to the biology of anxiety. The olfactory pathways 

are also the most common route of administration of EOs (Ehrlichmann & Bastone, 

1992; Percival, 1995; Price & Price, 1999; Wormwood, 1997), see Figure 1.6 (below). 
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Potentially, olfactory pathways have the ability to produce a quicker effect on 

behaviour than the bloodstream route; this would be useful in the treatment of some 

anxiety disorders such as panic.    

  

Figure 1-6 The anecdotally suggested routes by which EOs might alleviate 
anxiety (adapted from Price & Price 1999).   

1.6.1.1 Neuroanatomy of olfaction and odour transduction  

1.6.1.1.1 Odorants  

An odour is the sensory stimulation from a group of molecules that are airborne and 

travel to the olfactory epithelia, located in the roof of the nasal cavities in the nose, 

for detection by the nasal receptors. Not all molecules possess the properties to enable 

them to be odorants (Stoddart, 1976). In order to be an odorant a molecule or group 

of molecules has to be volatile, have a low molecular mass (below 350 Daltons) and 

have a high vapour pressure (Ohloff, 1986). They also have to have relatively low 
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polarity in order to travel through the lipid-rich nasal mucosa to the epithelium, where 

they can bind to nasal receptors (Ohloff, 1986). EO molecules are generally low 

molecular mass volatiles with these properties (Lamparsky & Müller, 1994; Kohlert 

et al., 2000). The olfactory sense is able to distinguish among a practically infinite 

number of chemical compounds at very low concentrations (Firestein, 1996; 

Mombaerts, 1999).   

1.6.1.1.2 Olfactory pathways  

The nose is an external structure on the head of most mammals and the nasal cavity is 

usually bilaterally symmetrical, bisected by a septum. In mammals, this olfactory 

organ is incorporated into the respiratory system. Structurally, the nose is designed to 

inhale odours, although it is the olfactory nerve, cranial nerve 1, which is responsible 

for the sense of smell (Kandel, Schwartz, & Jessell, 2000). In order to facilitate 

odour-detection, sniffing takes place, drawing the volatilised odour molecules up the 

nose to the olfactory epithelium where the odour molecules can bind to the olfactory 

receptors of cranial nerve 1. This in turn facilitates detection and identification of the 

odour, although even without sniffing odorants can still be detected (Sobel et al., 

1998).    

The olfactory epithelium is situated at the top of the nasal cavity. In humans, this area 

is about 5cm2 whereas in rodents it is much larger (Dodd & Squirrell, 1980; Engen, 

1982). The nasal epithelium contains the sensory cells also known as the olfactory 

receptor cells. It is bathed in mucus, which contains water, mucopolysaccharides, 

immunoglobins (IgA) and proteins (which include enzymes such as lysozyme, and 

other peptidases and xenophobic agents). Some processing of odour molecules takes 

place here by the enzyme molecules. The lipids in the mucus assist in the transport of 

the odorants to the olfactory receptor molecules; only molecules that are soluble in 

the mucus will reach the olfactory receptors (Dodd & Squirrell, 1980).  

The sensory cells, or olfactory nerve cells (cranial nerve 1), are bipolar neurons that 

are unique in that they can regenerate (Graziadei, Levine, Monti Graziadei, 1978). 

Each one is likely to express only one type of receptor but one odour molecule could 

activate more than one kind of receptor. In humans there are approximately 10 
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million receptor molecules and in dogs there are approximately 200 million (Engen, 

1982). In 1991, Axel and Buck discovered a family of roughly 1000 genes that 

encode the odour receptors (Axel, 1995). In humans and mice, this comprises 1-2% 

of the total number of genes, second only to the immune system. This family of 

olfactory receptor genes is part of an even larger group of proteins called G protein-

coupled receptors. G proteins, so named because they derive energy from the 

hydrolysis of guanosine triphosphate (GTP), sit below certain types of receptors that 

cross the cell membrane (Gilman, 1987). When an odorant binds to a specific odorant 

receptor, it triggers the G (olf) protein to stimulate adenylate cyclase type III to 

synthesize cAMP. cAMP in turn opens a cyclic nucleotide gated cation channel, 

allowing an influx of Ca2+ ions to open the Ca2+ activated chloride channel. This 

leads to an influx of chloride ions and depolarization of the olfactory neuron 

(Bhandawat, Reisert, & Yau, 2005).  

Each olfactory neuron cell has hundreds of olfactory receptors situated on non-motile 

cilia, which project into the mucus. The other end of the sensory cell, the axon, 

projects into the olfactory bulb at the front of the brain and terminates in structures 

called glomeruli, which are nerve junctions containing numerous synapses. A given 

receptor-type projects to one or at most a few glomeruli.  The olfactory bulbs are 

elongated paired structures at the anterior (front) inferior (underneath) surface of the 

cerebral hemispheres. There are two olfactory bulbs lying on each side of the centre 

of the brain. The olfactory receptors in the nose project to the ipsilateral (same 

hemispheric side of the brain) mitral and tufted cells that form the glomeruli in the 

olfactory bulb. The axons of the mitral and tufted cells form the lateral olfactory tract; 

this projects to the olfactory cortex and via the anterior commissure to the other 

olfactory bulb. The mitral cell axons project ipsilaterally to the olfactory cortex, 

whereas the axons of the tufted cells are responsible for the connection between the 

two bulbs, allowing feedback control of the signal between the two olfactory bulbs 

(Engen, 1982; Savic & Gulyas, 2000; Savic, 2001).   

The olfactory cortex consists of the anterior olfactory nucleus, the piriform cortex, the 

periamygdaloid and the transentorhinal cortex. The olfactory tract connects directly 

to the periamygdaloid cortex, while the olfactory tubercle connects to the 

mediodorsal thalamic nucleus. Additionally, the third neuron in the olfactory pathway 

projects from the olfactory cortex and the amygdala to the orbitofrontal cortex, the 
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subiculum, the thalamus, the hypothalamus, the brain stem, and, the caudate nucleus. 

All of these structures are involved in the processing of emotions and emotional 

information (Royet et al., 2001; Savic, 2001; Davis & Eichenbaum 1999; Zald & 

Pardo, 1997; Kalin, Shelton, & Davidson, 2007; Royet et al., 2001; Savic et al., 2000; 

Zald & Kim, 1996) (see section 1.1.3.1). Likewise, there are projections back to the 

olfactory bulbs from most of the main structures involved in the anxiety or defence 

response. Concurrent with this is the olfactory bulbectomy animal model of 

depression, in which treatment with antidepressants alleviates the behavioural 

symptoms that result from removal of the olfactory bulbs (Song & Leonard, 2005; 

McGrath & Norman, 1998).   

Unlike rodents, humans are considered to be microsomatic, meaning that humans 

have relatively small olfactory bulbs. Rodents are classed as macrosomatic and 

thought to rely heavily on smell for their normal behaviour patterns. This idea has 

been challenged. Keverne, (1980) and Kohl, Atzmueller, Fink, and Grammer, (2001) 

argued that animals with more developed brains have the capacity to have a more 

sophisticated sense of smell (Keverne, 1980). In addition, in primates, olfactory 

receptors can respond to more than one odour type, and are thought to be detected via 

the patterns of signalling that the odours elicit, and the olfactory bulb is hypothesised 

to act more as a filter than a detection system.    

Interestingly, a loss of olfaction can have a major impact on human wellbeing (Doty, 

2001). This could be evidence for an influence of odorants, such as EOs, on health 

and wellbeing, Altered sense of smell has been reported after exposure to low levels 

of environmental chemicals; one example of this is cacosmia, which causes the 

sufferer to detect foul smells even when none is present (Bell, Schwartz, Amend, 

Peterson, & Stini, 1994). This illness is linked to multiple-chemical-sensitivity 

syndrome and can cause depression and anxiety in some individuals (Bell et al., 

1994). Likewise, altered sense of smell has been reported in other psychological 

illnesses such as schizophrenia (Purdon & FlorHenry, 2000), hysteria (Weintraub, 

1973), and alcoholic Korsakoff syndrome (Hulshoff Pol et al., 2002). Furthermore, in 

early Alzheimer’s disease, olfaction is impaired and this might be an early marker of 

the disease (Kovacs, Cairns, & Lantos, 2001). Loss of olfaction has also been 

reported in HIV patients (Graham, Graham, Bartlett, Heald, & Schiffman, 1995) and 

in Parkinson’s disease (Hawkes, Shephard, & Daniel, 1997).   
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It is also of interest that linalool interacts with adenyl-cyclases in in-vitro studies 

(Lis-Balchin & Hart, 1999 and see previous section), and cAMP is the most abundant 

second messenger in the olfactory neurons.  

1.6.2 The Vomeronasal system  

In many mammals the vomeronasal pathway mediates important behavioural and 

physiological effects in both sexes by detecting odours produced by pheromones 

(Wyatt, 2003). There is some evidence that components of EOs could act in a 

pheromone-like way in some species of insect (Wyatt, 2003).  

1.6.2.1 Pheromones  

Pheromones are airborne chemicals that are released by an individual into the 

environment affecting the physiology and behaviour of other members of the same 

species (Savic 2001). Pheromones are usually released as a warning of imminent 

danger, or as an advertisement of reproductive availability/status or position in the 

social structure of the group. In terms of communication, pheromones can be 

compared to hormones; they are slow-travelling compared to reflex reactions, can 

linger, and have an effect for a long time after the signal was sent (Bjering, Deinboll, 

& Maehlen, 2000; Savic, 2001; Tronson, 2001; Watson, 1999). Pheromones are 

thought to have evolved from hormones leaking from organisms to advertise to con-

specifics, for example, events important to species’ survival such as fertility and stage 

of oestrous (Wyatt, 2003).  

It is interesting to note that in order to protect the survival of their species, plants 

evolved to produce odours that attract insects and animals, enabling their pollen to be 

passed on to other plants to enable cross-fertilisation (Wyatt, 2003; Reddy & 

Guerrero, 2004; Raguso, 2004). More evidence for pheromone-like effects of EOs is 

found in the orchid (Genus: Ophrys), in which EO components mimic the 

pheromones of the male Aculeate hymenoptera:  wasps, bees and ants (Borg-Karlson 

& Groth, 1986). In particular, linalool, which is present in lavender EO, has 

pheromone like properties. These include enhancing the approach behaviour of 
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several male bee species, including Colletes, and Andrena (Borg-Karlson & Groth, 

1986). EOs have been found to have pheromone-like activity in insects such as desert 

locusts (Assad et al., 1997) and, in common with other pheromone-like substances, 

EOs sometimes have hormone-like activity (Howes, Houghton, Barlow, Pocock, & 

Milligan, 2002; Wyatt, 2003). This includes lavender essential oil, which was found 

to increase breast size in prepubescent boys and interact with the oestrogen receptor 

in tissue-culture tests (Henley, Lipson, Korach, & Bloch, 2007).   

1.6.2.2 Vomeronasal pathways  

In many, but not all mammals, pheromones are usually detected first by the 

vomeronasal organ (VNO), Jacobson’s organ, located in the nasal passages (Watson, 

1999).   

In animals which possess an accessory olfactory bulb (AOB), such as the gerbil, it is 

positioned behind the main olfactory bulb and has a similar but more simplified 

structure (see Figure 1.7 below).   

   

Figure 1-7 A side view of the vomeronasal organ and olfactory and accessory 
olfactory bulbs in the possum (Halpern, Daniels, & Zuri, 2005). 
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The vomeronasal organs are two bilateral tubular pits inside each nasal septum, rather 

like pouches. They are located in the upper part of the nose and lined by sensory cells, 

which are very sensitive to low concentrations of pheromone molecules. The axons of 

these sensory cells project to the accessory olfactory bulb (Tronson, 2001).   

Neurons project from the AOB to the medial nucleus of the amygdala via the 

accessory olfactory tract and then to the hypothalamus, which then sends signals via 

the endocrine system. Neurons from the AOB are completely separate from the 

olfactory system. If the VNO is destroyed in guinea pigs or mice, the animals can still 

smell odours via the olfactory route but they cannot mate successfully. The 

interaction of the VNO with the endocrine system means that pheromones can change 

endocrine states (Keverne, 2002). However, although olfactory bulbectomy in the rat 

or the gerbil impairs common olfactory behaviours, such as investigation of con-

specifics and food-seeking behaviours, it does not prevent normal mating and 

insemination of mature female gerbils by males. This was exemplified when five 

male gerbils received complete olfactory bulbectomies by removal of the main and 

accessory bulbs. The success of the operation was confirmed after the study by 

histological examination of the gerbil brains. All of these gerbils mated with normal 

females and produced normal healthy off-spring, even though none of them 

responded to either food odour (a sunflower seed) or the odour of strange male con-

specifics. The authors explained this mating behaviour by the theory of multisensory 

dependence of mammals; the gerbils were housed together for a few weeks, which 

enabled the males to investigate the females using other sensory systems to initiate 

and support mating behaviour (Cheal & Domesick, 1979). In a further experiment, 

cuts to the vomeronasal nerve prevented male gerbils from copulating during brief, 

rather than prolonged, encounters with strange females (l’Hommedieu & Hull, 1978).   

There is evidence for the presence of a very small vomeronasal organ in humans. 

However, there is no evidence to show that it is lined with active sensory neurons and 

therefore it has been assumed to be vestigial (Stockhorst & Pietrowsky, 2004). Recent 

studies looking at the expression of vomeronasal receptor molecules in humans found 

VIr receptors, which are pheromone receptors (Rodriguez, Greer, Mok, & Mombaerts, 

2000). These are expressed in the human olfactory mucosa but not the human 
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vomeronasal pits, possibly indicating that pheromones in humans mediate their 

effects via the olfactory pathways (Rodriguez et al., 2000).  

Although humans do not appear to have a separate VNO system, research has 

demonstrated that they do respond to pheromone-like compounds. Putative 

pheromones in humans have been shown to be involved in a variety of endocrine 

responses and social behaviours. One example is the McClintock effect in which the 

menstrual cycles of women living in close proximity synchronise. This effect can be 

replicated by exposing women to the underarm secretions taken from other women 

(Olsson, Lundstrom, Diamantopoulou, & Esteves, 2006).  

Furthermore, androstenone odour, an androgen-like compound, increases 

hypothalamic activity in women; whereas, estratetraenol, an oestrogen like substance 

found in female urine, boosts hypothalamic activity in men’s brains (Savic 2001). 

Interestingly, in laboratory studies androstendione can positively enhance mood in 

heterosexual women if a man, but not a woman, is running the study. The same is 

true, but in reverse, when heterosexual men are exposed to estratetraenol (Olsson et 

al., 2006).  

There is some evidence that olfaction rather than a vomeronasal pathway might be 

involved in this sex-specific behaviour in humans. The congenital disorder, 

Kallman’s syndrome, links an absence of the sense of smell to hypogonadism 

(Hardelin, 2001). In these patients, olfactory structures in the brain are lacking and 

this coincides with small testes in individuals. Studies have also revealed a link 

between gonadotropin-releasing hormone and the embryonic olfactory system 

(Hardelin, 2001; Swaab, 2004).  

It has also been suggested that the VNO might mediate its effects via the trigeminal 

nerve, cranial nerve 5 (Watson, 2001), as discussed briefly below.   

1.6.3 Trigeminal pathway  

Odorants sometimes have an ability to cause cold or burning sensations when they 

are sniffed, for example, minty odours can cause a cooling sensation in the nose 
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(Dragich & Halpern, 2008). These effects are mediated by cranial nerve V, the 

trigeminal nerve (Doty, 2001). This nerve-set is responsible for the sensations of 

touch, movement, pain, and temperature being relayed from the head and facial areas 

to the trigeminal nucleus in the brain stem (Valls-Sole, 2005). The trigeminal nerve 

also has a role in modifying nasal potency, nasal secretion and respiratory processes. 

It also modulates elements of odour perception (Savic, 2001; Yousem et al., 1997). 

The trigeminal system is involved in the activation of many areas of the brain, 

particularly the ones involved in pain perception, as well as the trigeminal nucleus in 

the brain stem (Tronson, 2001). Parts of the limbic system are also activated by the 

trigeminal nerve (Iannilli, Gerber, Frasnelli, & Hummel, 2007).   

Odorants and other lipophilic volatile molecules might also cross the blood brain 

barrier themselves, rather than mediating their effects via CNS pathways, in order to 

exert a direct effect on the brain and then behaviour (Buchbauer, Jirovetz, Jager et al., 

1993; Illum, 2004).  

1.6.4 Other routes of odorants to the brain  

On inhalation, not all odours bind to the olfactory, vomeronasal or trigeminal 

receptors. Some molecules inevitably pass to the lungs and enter the bloodstream. 

Others might pass through the nasal endothelium, by-passing the blood-brain barrier, 

and thus enter the CNS (Illum, 2003; Hanson & Frey, 2007; Costantino, Illum, 

Brandt, Johnson, & Quay, 2007). Some drugs act in this way, for example cocaine 

(Stathis et al., 1995). Similarly, components of EOs have lipophilic properties, which 

could facilitate this effect (Buchbauer & Jirovetz, 1994; Buchbauer, Jirovetz, Jager et 

al., 1993). As already discussed in section 1.4.2.2, detection of an odorant is not 

required for it to be registered in the brain. Even the brains of anosmic patients are 

active in the same way as normosmics in the presence of an odorant; perhaps 

detection of the odour is not needed for an odour to exert behavioural effects (Nasel 

et al. 1994; Sobel et al., 1999).  

Researchers have looked at the potential of using the olfactory route to deliver drugs 

to the brain, especially where delivery by other routes is not possible and a rapid 

onset of action of the drug is needed. The uptake of drugs into the brain via this route 
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has been found to be dependent on molecular mass and lipophilicty, and therefore 

EOs are suitable candidates (Illum, 2003). Because of the potential speed of action of 

nasally-delivered drugs, pharmaceutical companies are aiming to develop drugs that 

can be administered in this way to treat anxiety disorders, such as panic attacks (Illum, 

2003). Migraine drugs such as sumatripan, zolmitriptan and ergotamine are already 

delivered via this route (Illum, 2003).  

It must be pointed out that even though an olfactory route to the brain appears the 

most likely mechanism for EOs to exert their effects, injected and orally-administered 

EOs often have the same effects as EOs administered as an odour (Kovar, 1987; 

Umezu et al., 2006). Likewise, if lavender is exerting its effects via pheromonal 

systems, then it might be possible that any anxiolytic effects will be more pronounced 

in species with an active VNO system. Although humans have not yet been shown to 

have an active VNO, it has been demonstrated that odours have a profound effect on 

human physiology and behaviour, presumably via the olfactory route. Thus, perhaps 

the two systems have integrated in humans. Some evidence for this might be provided 

by VIr pheromone receptors, which are expressed in the olfactory mucosa rather than 

any VNO type pits in the nose.  

1.7 RESEARCH QUESTIONS  

Human studies show effects for lavender, but, with one exception, they are 

confounded by the possibility that effects are cognitive or associative rather than 

pharmacological in origin. Animal studies can eliminate the possibility of cognitive 

effects, but have only been studied with acute doses of lavender. Cognitive 

mechanisms of odour transduction often confound pharmacological effects in humans. 

It could be argued that if the effects of lavender odour are purely due to odour 

hedonics, then they would only be transitory in nature until habituation to that odour 

takes place. Studies in humans using the odour are confounded because of the 

psychological effects associated with odours. Using animals naïve to the odour of 

lavender to investigate lavender’s effects overcomes some of the difficulties 

presented in the human studies mentioned earlier. This thesis attempts to answer two 

questions (1.7.1 and 1.7.2):  
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1.7.1 Does lavender relieve anxiety following longer-term 
administration in animal models of anxiety?  

From the odour studies described in humans and in animals, only the acute effects of 

lavender have been examined. When examining the effects of odours, it has been 

suggested that any effects due to an odour will rapidly diminish as habituation to the 

odour takes places (Dalton, 2000). A meta-analysis conducted by Cooke and Ernst 

(2000) would provide evidence for this, as after examining the results of  a small 

number of published studies that examined the effects of EOs on anxiety, they 

concluded that EOs have a small but transient anxiolytic effect.   

Testing odour effects in animals allows for a more controlled approach, because 

laboratory-reared animals have no expectation effects and, if testing is conducted in 

animals naïve to the odour there will be no memory or expectation effects caused by 

the odour. Unlike humans, laboratory animals generally live in very controlled and 

unchanging environments, making it easier to expose the laboratory animal to odour 

over a prolonged period. Therefore, the first questions posed by this thesis are 

whether lavender odour has an anxiolytic effect in animal models of anxiety, and 

whether this effect continues, or even potentiates, with prolonged exposure or 

alternatively diminishes as habituation to the odour takes place.    

It has been noted in Umezu’s studies that acutely administered lavender had anti-

conflict effects in two different conflict tests: Vogel's test and the Geller-Siefter test 

(Umezu, 2000; Umezu 2006).  Of the other essential oils that they tested, only rose 

oil also had an anti-conflict effect (Umezu, 1999; Umezu et al., 2002). Therefore, it 

would also be interesting to compare prolonged lavender odour administration with 

the effects of prolonged rose odour administration and the commonly prescribed 

anxiolytic, diazepam. If, following longer-term exposure, there is an anxiolytic effect 

in response to either odour, then it would be of interest to ascertain whether the 

behavioural profiles are similar to each other and whether they are similar to that of 

diazepam; this might suggest similar mechanisms of action.  

Finally, most work in animals has been conducted in the males of the species, even 

though anxiety in humans is more prevalently reported in females (Kinrys & Wigant, 

2005). Therefore, it is of interest to examine the effects of lavender in both male and 
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female animals to see if these treatments, but in particular lavender EO odour, are 

more effective in either males or females.   

Secondly, if the results in animals indicate that in controlled environment prolonged 

lavender odour administration does have anxiolytic effects, then it would be of worth 

to see if these effects translate into humans in a placebo-controlled and randomised 

trial.   

1.7.2 Are lavender’s effects anxiolytic in anxious humans when tested 

in a randomised placebo-controlled double-blind trial?  

Following on from part one of the thesis, if lavender proves to be anxiolytic in the 

animal models then, prior to doing further in-vivo and in-vitro studies, it is important 

to establish whether its effects are also truly anxiolytic in humans by using a 

controlled and validated test of anxiety, such as a laboratory-based study. The second 

part of this thesis examines the question; if lavender works to relieve anxiety in 

animals then does it also work in humans?   

As discussed, the problem when working with odours in an experimental setting is 

mainly one of blinding to the odour. It is very difficult to blind participants to an 

odour such as lavender in a placebo-controlled and double-blind trial. In fact, the only 

reported study that has been conducted in humans, which controls for the odour, 

examined only the effects of one component of lavender (acute dermally 

administered linalool) rather than the whole oil (Heuberger et al., 2004). Importantly, 

this study looked at only relaxed participants, participants were presumably relaxed 

as the linalool was massaged into their abdomen, and the study did not include an 

intervention to measure linalool’s effectiveness to relieve anxiety in anxious or 

stressed participants. However, the results of the physiological measures taken, that 

relate to the somatic symptoms of anxiety, indicated that linalool might have specific 

pharmacologically anxiolytic properties besides any effects caused by its odour.   

Since an administration route such as massage might confound any attempts to create 

anxiety in participants, an alternative approach is via oral-administration in sealed 

capsule. At first consideration, this route of administration might seem confounded 
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because oral administration introduces the complication of the digestive system, 

where essential oil components, such as linalool, might be degraded by the acid in the 

stomach and then rendered inactive by the enzyme systems in the liver following 

first-pass metabolism. However, although not in human studies, studies in mice that 

had been fed linalool, in order to determine linalool’s metabolic fate, indicated that 

only 57% of the linalool is eliminated following treatment by the liver. It follows that 

the other 43% might be pharmacologically available to exert its effects (Letizia et al., 

2003). In addition, in some branches of aromatherapy it is acceptable to administer 

the oils orally (Schnaubelt, 1995). Furthermore, animal studies provide evidence that 

injected and orally-administered EOs often have similar effects to EOs administered 

in odour form (Kovar, 1987; Umezu et al., 2006). There are a few published studies 

that have been conducted using sealed capsule administration of essential oils other 

than lavender; these show some success in elucidating effects that have been 

traditionally attributed to the odour of the oil rather than from eating it (Kennedy et 

al., 2002; Tildesley et al., 2003).  

As discussed earlier, some studies that have attempted to show that lavender can 

relieve anxiety in a stressful situation have used tasks that might not be anxiety 

eliciting. Prior to examining longer-term effects, it is important to have a valid 

laboratory test of anxiety and to ascertain whether acute lavender has any anxiolytic 

effects. Therefore, it is planned in a second study to develop a laboratory test of 

anxiety and then to test the anxiolytic effects of whole lavender oil in humans by 

acute oral administration in a randomised double-blind placebo-controlled trial (RCT).  

Finally, it was decided to include both male and female participants in the studies 

conducted here. This was because anxiety is more prevalent in females (Kinrys & 

Wigant, 2005). In addition, females are reported to make more use of aromatherapy 

than males (Greenfield, Innes, Allan & Wearn, 2002; Risberg et al., 2004). There 

have been studies conducted examining lavender’s effects on anxiety in both males 

and females, and there have been no reported differences, (Leherner et al., 2006). 

However, lavender has been shown to have potentially estrogenic effects (Henley, 

Lipson, Korach, & Bloch, 2007), and, as has been mentioned previously, estrogens 

and other neurosteroids could be implicated in the pathophysiology of anxiety 

(Toufexis et al., 2006).  
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The thesis that follows is in two sections: part one examines the prolonged effects of 

lavender odour administration in two animal models of anxiety. Part two examines 

the effects of lavender in a dose response, placebo-controlled, and randomised study, 

in which lavender is administered to human particpants orally in sealed capsules.    
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CHAPTER 2 ANIMAL MODELS OF 
ANXIETY  

2.1 OVERVIEW OF ANIMAL MODELS  

One of the first stages in validating a new drug for treatment of a condition is to test 

its effects in animal models; no drug marketed in the UK can be licensed without 

undergoing rigorous tests on mammals other than humans (Dixon & Fisch, 1998). In 

an academic setting, animal models play a necessary and important role in 

understanding the aetiology and treatment of disease. In the pharmaceutical industry 

they are mainly used in the validation and testing of drugs and in drug discovery. 

One of the basic tenets of ethological (behavioural) theory is that all mammals share 

a common phylogenetic history, and all systems, including the CNS, are similar 

(Belzung & Philippot, 2007). In other words the human brain contains recognisable 

circuits that are also found in other mammals, including rodents and primates. This 

might be because these circuits are necessary for the survival and reproduction of the 

species, as suggested by Darwinian theories of evolution, (Wilner, 1991; Blanchard, 

Hynd, Minke, Minemoto, & Blanchard, 2001). Although speech plays a large part in 

human behaviour, human non-verbal behaviour can be compared to animal behaviour 

and changes in normal behaviour can be an indicator of maladaptive 

psychiatric/mental behaviour (Dixon & Fisch, 1998; Lawford et al., 2003; Franzini & 

Spears, 2003). For example, Table 2.1 illustrates the strong behavioural similarities 

in response to anxiety in both animals and humans; these lend weight to the use of 

animal models as pre-clinical models of drugs to treat human anxiety.           
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Table 2.1 Comparison of anxiety symptoms (in all types of anxiety disorders) in 
animals and humans.  

Behaviour Humans Animals 

Fear (excessive)- (more specific to phobia and panic than 

GAD) 

  

Worry (for no reason) 

  

Guilt (for no reason) 

  

Feelings of failure 

  

Subjective anxiety 

  

Defence 

  

Avoidance 

  

Escape (attempt to) 

  

Non-verbal vocalisation 

  

Hypervigilance 

  

Inhibition of exploratory behaviour/suppression of 

ongoing behaviour 

  

Freezing immobility 

  

Flight 

  

Risk-assessment behaviours 

  

Increase in heart-rate, blood pressure, urination, 

defecation, muscle tension, respiration (i.e. autonomic 

hyperactivity-sweating increased skin conductance) 

  

Increase startle response 

  

Increase plasma Cortisol/ Corticosterone.  

  

Insomnia 

  

Distractibility 

  

(Green & Hodges, 1991; Hodges & Joseph, 1992; Nutt, 1990).  
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Animal models need to be validated before they can be reliably used to measure 

conditions such as anxiety (Rodgers, 2006). Validation usually involves 

demonstrating similarities between the animal system and the human system, using 

concepts that can be measured and analysed, (McKinney, Gardner, Barlow, & 

McGuire, 1994; Dixon & Fisch, 1998; Blanchard et al., 2001). For example, face 

validity, which as the name indicates, is a visual measure of validity and measures 

visual symptoms relevant to the condition. For example, in depression, visual 

symptoms include lethargy, weight loss, sleep alterations and lack of movement. 

However, face validity is the weakest form of validity. For example, monkeys have a 

facial expression which looks like a human smile; however, in monkeys this 

expression uses very different muscles, and although it looks the same as a human 

smile, it is an indicator of aggression and not happiness or joy (Blanchard, Blanchard, 

Griebel & Nutt, 2008). 

Good predictive validity is when the model behaves in the way one would expect 

when treated with drugs that make the condition worse or better and the dosage 

(mg/kg) corresponds to the dose that would be used to treat the same condition in 

humans. 

Construct validity demands that the model demonstrates a good theoretical rationale 

(Starkey, 2000), in that the same underlying mechanisms that cause the symptoms in 

humans cause the homologous symptoms in the model (Dixon & Fisch, 1998). From 

an evolutionary perspective, whatever the behaviours involved in anxiety within a 

species, the underlying neurological and endocrine pathways are conserved between 

species e.g. rodents and humans (Blanchard, et al., 2008). Thus, different behaviours 

can be seen as representing homologous traits between species. It is these types of 

homologous traits, or behaviours, that animal models of anxiety seek to measure. 

Models with good construct validity are usually based on a well-developed theory 

such as, for example Gray and McNaughton’s septohippocampal theory of anxiety 

(2003) (see section 1.2.2). 

Reproducibility in other laboratories and independently agreed criteria for the 

measurement/interpretation of behaviour are also vital in the validation of a model, 

according to the criteria of (Bunney & McKinney, 1969). 
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One problem with animal models of anxiety is that the aetiology of anxiety in 

humans is far from straightforward (see Chapter 1 section 1.2). It occurs at a variety 

of levels and symptoms are very wide ranging and overlap with other illnesses. In 

addition, the animals used in these models are ‘normal’ and anxiety is induced by 

controlled environmental challenges inherent in the model. For example, risk-

assessment behaviours by rodents in response to cat odour is a normal healthy self-

defence behaviour, but can be used as a measure of the effect of an anxiolytic. This 

type of behaviour is very different from the pathological anxiety exhibited in a 

human when there is no stressor present, even though the symptoms are similar in 

both cases. Furthermore, humans verbalise and animals cannot, although ultrasonic 

vocalisation in rats has been used as a measure of anxiety (Sanchez, 2003). 

Ethological signs in animals are open to the interpretation of the onlooker (Archer, 

1973) and might not mean the same as in the human. Hence, validation, especially 

construct validity, is important. Behaviours in the model need to be homologous with 

the behaviour in the human condition; that is they occur for the same reasons. For 

example, maternal behaviour might not present in the same way in a rat compared 

with a human, but has the same underlying mechanism and neurotransmitter pathway. 

Face validity alone is not enough and predictive validity might represent a good 

screen test, but not necessarily a good model. Construct validity is the most 

important as it ensures that the model is asking the correct questions (Overall, 2000; 

Wilner, 1991).  

2.2 BEHAVIOURAL ANIMAL MODELS OF ANXIETY  

Behavioural animal models of anxiety can be divided into two types conditioned and 

unconditioned.  

Conditioned Models: animals require training or treatment prior to the start of the 

experiment. The training usually involves pavlovian or operant conditioning 

measures, which involve aversive stimuli e.g. mild electric shock to condition the 

avoidance of normally ‘ongoing’ behaviour. In other words, the animal avoids being 

punished because it remembers that it hurt the last time and is frightened of it 

happening again, giving rise to anxiety in the animal. These models might also 
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involve food or water deprivation regimes, which add additional confounds when 

trying to interpret results. For example, in the Vogel water-lick conflict, electric 

shocks to rats reduce the number of licks compared to controls and anxiolytics 

increase the rates of responding. In the Geller-Seifter conflict test, electric shocks and 

an increased availability of food are signalled by a tone and response rates during this 

period are increased by known anxiolytics such as chlordiazepoxide and barbiturates 

(Weiss, Lightowler, Stanhope, Kennett, & Dourish, 2000). Given the specific 

conditioning effects of treatments it has been suggested these models might be more 

representative of phobia rather than general anxiety (Gray & McNaughton, 2003).  

Unconditioned models: Models measuring unconditioned or spontaneous behaviour 

in which animals are exposed to a variety of novel situations are known as 

unconditioned models. This type of model generally measures the conflict between 

exploration of a new environment and the fear that being in a new environment might 

bring threats to survival, in other words, approach-avoidance conflicts (Hendrie, 

Weiss, & Eilam, 1996). These situations create a conflict between exploration and 

defensive reactions. Some examples are new environments, or the presence of cage 

mates that could represent a threat to survival; these promote the FFFS response, 

hypervigilance and fear. All of these can be compared to human symptoms of anxiety 

(see Table 2.1 above). These paradigms are thought mainly to model generalized 

anxiety disorder and aspects of panic, for example, escape from the open arms in the 

case of the elevated plus-maze (Cheeta, Kenny, & File, 2000; Cole & Rodgers, 1995). 

These, models are generally held to have good theoretical rationale for studying 

anxiety and thus good construct validity.  

Some advantages of these models are that they are related to the animal’s natural 

behaviour and so provide some ecological validity; they are cheap, easy to use and 

ethically more acceptable. As mentioned, exploratory models, in particular the 

elevated plus-maze but also the black white box, have been well validated and shown 

to have good predictive and construct validity (see sections 2.2.1 and 2.2.2, below). 

Some disadvantages are that the tests are not considered specific enough, as they 

measure exploration, which is controlled by several factors, as well as anxiety 

(Archer, 1973). However, ethological analysis provides a basis for good construct 

validity (Blanchard et al., 2008). An example of this is risk-assessment behaviour, 

which is the assessment of whether it is safe to move or whether a predator is still 
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lurking. This behaviour is forward looking in modality and utilises the same brain 

areas as human worry. Therefore, a detailed ethological analysis needs to be carried 

out with all of these models (Bourin, 1997). 

Ethological analysis involves counting when and how often in a specific situation a 

participant displays certain behavioural elements. Cluster elements are identified 

statistically, providing a behavioural ‘fingerprint’ that can be used to compare 

different treatments allowing behaviours to be compared within different species. An 

example of this is defence of individual space, which is similar in rats and humans 

(Dixon & Fisch, 1998).  

Different models seem to represent different types or different aspects of anxiety and 

most of the models of anxiety measure more than one factor, usually including 

general anxiety disorder. Some of the models, particularly the conditioned ones, are 

more closely related to specific disorders. Examples include phobic disorder in 

electric shock conditioned tests, post-traumatic stress in the uncontrolled shock model, 

obsessive-compulsive disorder in ultrasonic vocalisation, general anxiety disorder in 

the exploratory models, as well as panic in the elevated plus-maze exploratory model 

(Bourin, 1997; Cheeta et al., 2000; Cole & Rodgers, 1995). It is therefore important 

when using these models that a number of different models are used.  

Unconditioned models have the best ecological validity, as they represent 

circumstances that the animal is likely to find itself in and so are the most realistic. 

Two of these types of models have been widely validated for use in rodents and have 

been shown to have good construct validity with human correlates of anxiety 

(Blanchard et al., 2008). These are, the Elevated plus-maze, (EPM) and the 

Black/White box (BWB).      
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2.2.1 Elevated plus-maze (EPM)  

The EPM was first introduced by Handley and Mithaney for use with rats. It was 

based on work by Montgomery (1955) and was later adapted by Lister for use with 

mice (1990). More recently, it was adapted for use with the mongolian gerbil (Varty, 

Morgan, Cohen-Williams, Coffin, & Carey, 2002). The EPM is a cross shape, 

elevated 50cm above the ground. It consists of two opposite, walled arms with the 

other two opposing arms left open. Ledges, 1cm high, have been added to these arms 

to prevent animals falling off during exploration and to encourage exploration of the 

open arms (Fernandes & File, 1996). The underlying principle is that elevated open 

arms are more anxiety-provoking, and therefore rodents would prefer to spend more 

time in the closed arms (Rodgers & Dalvi, 1997). The time spent in the open or 

closed arms and the number of entries into the closed or open arms reflects the level 

of anxiety being experienced by the animals. If anxious, a rodent will spend more 

time in the closed arms and enter them more. If the animal has been treated with an 

anxiolytic, for example, non-sedative doses of diazepam or chlordiazepoxide, it will 

spend considerably more time on the open arms and enter the open arms more 

frequently (Handley & Mithani, 1984, Green & Hodges, 1991; Weiss et al., 2000). In 

contrast, if treated with an anxiogenic, such as yohimbine or caffeine, then the 

opposite will occur and the animal will spend more time in the closed arms, while 

entries to and time spent on the open arms will be less (Pelow, Chopin, File & Briley, 

1985).    

However, a weakness of the EPM is that, although it is particularly sensitive to the 

anxiolytic effects of BDZ related drugs, which are effective in treating anxiety in 

humans, the EPM does not consistently give anxiolytic results when testing more 

modern anxiolytic drugs such as the 5-HT drug, buspirone. In order to refine the test 

further and overcome this problem, workers have included ethological, behavioural 

measures, for example, measures of risk-assessment (stetch-attend postures) and 

exploration (head-dipping and rearing), as well as behaviours such as grooming, 

immobility, and locomotor activity in each area of the maze (Blanchard, Blanchard, 

Rodgers, & Weiss, 1990; Blanchard, Yudko, Rodgers, & Blanchard, 1993; Cole & 

Rodgers, 1995; Rodgers & Johnson, 1995; Wall & Messier, 2000; Carobrez & 

Bertoglio, 2005).   
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Generally, when rodents are exposed to a stressor such as a predator or predator 

odour, they first freeze and orient themselves towards the danger and then they carry 

out risk-assessment behaviours, such as stetch-attending: slowly approaching the 

dangerous area, in what is called a flat back approach (Blanchard et al., 1991). Risk-

assessment behaviour is forward-oriented approach behaviour.  It involves checking 

if the coast is clear and if it is safe to explore; it has been likened to worry-type 

anxiety in humans (Blanchard & Blanchard, 1989; Blanchard, Blanchard, Griebel, & 

Nutt, 2008) and is different from normal exploration. This type of behaviour is 

thought to reflect the conflict behaviour mentioned in Gray’s septohippocampal 

theory of anxiety (2003) and might either facilitate ongoing behaviour or cause 

behavioural inhibition depending on the outcome of the risk-assessment. As 

mentioned in section 1.2.2 and 1.2.3) anxiety is a complex and not unitary condition 

and different types of anxiety respond to different drugs. Risk-assessment behaviours 

are reported to be more sensitive to anxiolytic drugs and to the type of anxiety found 

in general anxiety disorder in humans (Carobrez & Bertoglio, 2005; Blanchard, et al., 

2008). In contrast, when a rodent remains in the closed arm the type of anxiety 

elicited can be likened to avoidance, which is more similar to phobia. Also, escape 

from an open to a closed arm has been compared to panic and Gray’s FFFS 

(Blanchard et al., 2008; Gray & McNaughton, 2003). Extensive work involving 

lesion studies and injecting 5HT anxiolytics, and other drugs, into various parts of the 

brain have confirmed these findings (Blanchard et al., 2008).  

Ethological behavioural analysis has proved to be more sensitive to non-BDZ 

anxiolytics in detecting serotonergic type drugs, for example buspirone, which are 

only effective in GAD at anxiolytic doses (Setem, Pinheiro, Motta, Morato, & Cruz, 

1999; Carobrez & Bertoglio, 2006; Varty, Morgan, Cohen-Williams, Coffin, & Carey, 

2002). It is also sensitive to the anxiolytic effects of hormones and neurotransmitters 

such as corticotropin releasing hormone (CRH) (Schmidt & Muller, 2006) and other 

novel anxiolytics such as neurokinin 1 receptor agonists (Varty et al., 2002), as well 

as to anxiogenics such as caffeine (El Yacoubi, Ledent, Parmentier, Costentin, & 

Vaugeois, 2000). This model has been extensively validated in both rats and mice 

(Albrechet-Souza, Borelli, & Brandao, 2008; Cruz, Frei, & Graeff, 1994; Pellow, 

Chopin, File, & Briley, 1985; Wall & Messier, 2001; Wall & Messier, 2000; 

Fernandes & File, 1996; Rodgers & Johnson, 1995). It is popular because it is 
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sensitive to the effects of both anxiolytic and anxiogenic agents and results are 

quickly obtained.  

It is important to note that the effects of drugs on locomotor activity could potentially 

confound the results in terms of measuring anxiety. Factor analysis of behavioural 

data has shown that measures of closed-arm entry frequency reflect motor activity 

(Rodgers & Johnson, 1995; Fernandes & File, 1996; Cruz, Frei, & Graeff, 1994). 

Even so, locomotor behaviour can still confound results, making it difficult to 

distinguish between sedative effects of treatment and anxiogenic/anxiolytic effects, so 

immobility and locomotor activity are often also measured when using this test.   

Factor analysis has been conducted on large amounts of data generated using the 

EPM in both rats (Cruz et al., 1994; Fernandes, Gonzalez, Wilson, & File, 1999; Ohl, 

Toschi, Wigger, Henniger, & Landgraf, 2001; Ramos, Berton, Mormede, & 

Chaouloff, 1997) and mice (Rodgers & Johnson, 1995; Wall & Messier, 2000) 

revealing that these behaviours factor on to two, three or up to six factors. However, 

while it is considered good to measure a wide variety of behaviours, there is some 

question as to what exactly such behaviours are measuring. In order to refine these 

factor analytic models further and reduce the large number of factors to more 

meaningful constructs, Wall & Messier (2000) used ‘confirmatory’ factor analysis to 

suggest a vastly reduced two-factor model. They suggested that one factor, 

unprotected exploration, consisted of head-dipping (head and shoulders exploring 

over the sides of the open arm and from the centre square), percentage open arm 

entries and open arm duration. The other factor represented ‘protected exploration,’ 

which consisted of percentage closed arm entries and time spent on the closed arms, 

as well as stetch-attending (stretching the body forwards to see if it is safe to progress 

while leaving the hind quarters stationary) and vertical stretches, rearing (standing on 

hind legs).    

Studies looking at changes in an animal’s behaviour over the time of its first exposure 

to the EPM have shown changes in preference for the open or closed arms, leading to 

suggestions that the EPM is a model of state rather than trait anxiety (Andreatini & 

Bacellar, 2000). It has been shown that, on second exposure, the animals spend more 

time in the closed arms, even when drugs that had an anxiolytic effect in the first trial 

are administered in the second trial. Experiments exposing rats injected with 
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chlordiazepoxide to repeated exposures on the EPM, with and without ledges on the 

open arms, have suggested that, in the first exposure, the open space of the open arms 

creates the aversive environment. In contrast, fear in the second exposure was thought 

to be caused by the elevation. Therefore, the two exposures are measuring different 

forms of fear (Fernandes & File, 1996). The second exposure fear has been likened 

more to that caused by phobias in humans (File, 2001). Only animals naïve to the 

maze will be used in studies described here.   

Quite often, the EPM is not the only test used experimentally. It has been shown that 

it is important when using a battery of tests, to test using the EPM early on in the 

study. Evidence from studies with mice have shown that prior-maze exposure, to any 

kind of exploratory maze can detract from the novelty of the EPM and thus limit their 

activity in the EPM (Rodgers & Cole, 1993). Therefore, in the studies described here 

the EPM model will always be used first prior to the BWB.  

The EPM like many exploratory models of anxiety is also sensitive to sex differences; 

male rats are more sensitive to factors affecting anxiety rather than motor activity. By 

contrast, female rats are more sensitive to factors affecting motor activity rather than 

anxiety (Fernandes et al., 1999; Archer, 1975). It has been suggested that oestrogens 

increase exploratory behaviour in females (Archer, 1975). Studies have shown that 

the EPM might have different effects on females depending on the stage of oestrous 

of the rodent being tested (Koss, Gehlert, & Shekhar, 2004; Weiser, Foradori, & 

Handa, 2008). Likewise, progesterones also have anxiolytic effects on EMP-induced 

anxiety (Gomez, Saldivar-Gonzalez, Delgado, & Rodriguez, 2002; Löfgren, 

Johansson, Meyerson, Lundgren, & Backstrom, 2006).   

2.2.2 Black white box (BWB)  

The BWB consists of a Perspex box with two compartments, one clear and brightly 

illuminated and the other dark. Separating these two compartments is a wall with a 

small aperture/doorway, no larger than 7cm wide, in the middle of it. Hence, it is also 

known as the light dark box (Bourin & Hascoet, 2003). Usually, the dark side is one 

third and the light side is two-thirds of the total volume. Nocturnal rodents prefer to 

stay in the safe dark side of the box, rather than the aversive bright side (Bourin & 

Hascoet, 2003). It was initially validated in mice (Crawley & Goodwin, 1980; 
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Costall, Jones, Kelly, Naylor, & Tomkins, 1989; Kilfoil, Michel, Montgomery, & 

Whiting, 1989; Sanchez, 1997); and later in rats, (Chaouloff, Durand, & Mormede, 

1997; Chaouloff, Kulikov, Sarrieau, Castanon, & Mormede, 1995; Kulikov, 

Castanon, & Mormede, & Chaouloff, 1995; Chaouloff, Castanon, & Mormede,  

1994; Smythe, Bhatnagar, Murphy, Timothy, & Costall, 1998; Smythe, Murphy, 

Bhatnagar, Timothy, & Costall, 1996; Sanchez, 1996). There has also been a short 

paper published of a validation in male gerbils (Lapiz & Hogg, 2001).  

The stressors in this model are the novel environment and the light (Hascoet & 

Bourin, 2003). The time spent in each compartment is measured; more time spent in 

the light compartment, along with more crossings into the light compartment, is 

interpreted as anxiolytic-like behaviour. More time spent in the dark compartment is 

interpreted as anxiogenic-like behaviour. As with the other exploratory models, 

exploratory behaviours, such as rearing and sniffing, have also been taken into 

account as measures of anxiolysis (Sanchez, 1997). In addition to these measures, the 

rodent is usually placed in the light-side of the box and the length (latency) of time 

taken to enter the dark-side is measured. A longer latency is interpreted as anxiolysis 

or sedation, depending on the effects of the treatment (Bourin & Hascoet, 2003). In 

summary, anxiolysis in this test is interpreted as a longer latency to enter the black 

box, more exploration, a higher number of transitions between compartments, 

locomotion and time spent in the light box (Hascoet & Bourin, 2003). Anxiogenic 

behaviour is generally characterised by more time spent in the dark compartment, a 

shorter latency to enter the dark compartment, and less exploration and time spent in 

the light-side (Bourin & Hascoet, 2003).  It has been argued that locomotor effects in 

this model factor on to measures of anxiety and are not linked to drug-induced 

locomotor behaviour (Hascoet & Bourin, 1998).   

This model is also similar to the other exploratory models, in that the genetic strain of 

the animal and pre-test manipulations such as handling, housing conditions and acute 

stressors, has an effect on baseline results, and therefore can increase the robustness 

of the models as a test of anxiolysis (Sanchez, 1997).  

Drug effects in the black white box: as with all of the other exploratory models, 

BDZs generally tend to have an anxiolytic effect, and high doses can induce sedation, 

which affects locomotor activity and thus the number of transitions between 
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compartments (Crawley & Goodwin, 1980; Hascoet & Bourin, 1998). The BWB has 

been shown to be sensitive to the anxiolytic effects of 5HT-1A agonist, buspirone 

(Shimada et al., 1995; Sanchez, 1996). However, mixed results have been obtained 

with other drugs acting at serotonin receptor sites. Likewise, the SSRIs, popularly 

used to treat anxiety disorders, give mixed results when tested acutely in the BWB 

(Bourin & Hascoet, 2003; Sanchez & Meier, 1997).   

Neuropeptide receptor ligands, which have been implicated in anxiety, have also 

been tested for effects in the BWB with mixed results. Examples of neuropeptides 

tested in the BWB are cholecystokinin (Acosta, 1998), CRF (Griebel, Perrault, & 

Sanger, 1998), neurokinin (Zernig, Troger, & Saria, 1993) and dopamine antagonists 

(Timothy, Costall, & Smythe, 1999) (see also (Bourin & Hascoet, 2003)). Other 

agents tested include the stimulant and anxiogenic drug caffeine, which is an A2 

adenosine receptor antagonist (El Yacoubi et al., 2000), and the synthetic 

amphetamine, MDMA, also known as ‘ecstasy’ (Maldonado & Navarro, 2000).  

In all of the exploratory models, factors such as pre-test handling, cage position, 

exposure to predator odour, or other aversive circumstances prior to testing, can 

affect the outcome of results (Sanchez, 1996; Izidio, Lopes, Spricigo, Jr., & Ramos, 

2005). Also, all of the exploratory models of anxiety are affected by the age and 

weight of the animals being tested (Hascoet, Colombel, & Bourin, 1999) and by 

environmental factors, such as the amount of illumination present in the light areas of 

the mazes (Blanchard et al., 2008).  

2.2.3 Comparison of the two models  

Although both models are exploratory models of anxiety with good construct validity, 

there have been some studies that indicate that they are modelling different aspects of 

the anxiety response (Belzung & Le Pape, 1994). For example, in lesion studies of 

the hippocampus and amygdala, only rodents in the BWB responded in an anxiolytic 

fashion to both lesions to the amygdala and to the hippocampus. By contrast, the 

successive alleys test (a modified version of the EPM) was only responsive to lesions 

to the hippocampus on first exposure (McHugh, Deacon, Rawlins, & Bannerman, 

2004). The second exposure to the successive alleys test was more like the BWB, in 

that it was responsive to lesions to the amygdala and to the anxiolytic effects of BDZs 
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perfused directly into the amygdala (Do-Rego et al., 2006). Likewise, the BWB, but 

not the EPM on first exposure, is responsive to the anxiolytic effects of BDZ 

infusions directly into the entire amygdala (Gray & McNaughton, 2003). Therefore, 

perhaps the BWB is measuring anxiety-related to avoidance (phobic type anxiety) 

which, according to Gray and McNaughton’s (2003) model of anxiety, is controlled 

by the amygdala.  In contrast, first exposure to the EPM might be more reflective of 

behavioural inhibition, which is thought to be controlled by the septohippocampal 

loop and is responsible for scanning behaviour such as risk-assessment (see Gray & 

McNaughton, 2003).   

This suggestion here is in contrast with the alternative suggestions, that the approach-

avoidance paradigm created by the open arms of the EPM is more representative of 

panic disorder. The open arms are thought to create a fight-flight situation where the 

rodent can escape from the aversive stimuli of the open arms, to the closed arms 

(Cheeta, Kenny, & File, 2000; Cole & Rodgers, 1995). However, when risk-

assessment behaviour is included as a measure, the EPM becomes responsive to 

behavioural inhibition type behaviour; this has been likened to worry and is seen in 

GAD (Blanchard & Blanchard, 1989b; Blanchard, Yudko et al., 1993; Cole & 

Rodgers, 1994; Rodgers & Dalvi, 1997; Griebel, Rodgers et al., 1997; Griebel, 

Blanchard et al., 1997; Rodgers, 1997; Carobrez & Bertoglio., 2005). This type of 

anxiety is thought to be controlled by the septohippocampal loop system (Gray & 

McNaughton, 2003). Although both of these models are measuring constructs related 

to anxiety, with the addition of ethological measures the EPM appears to be a model 

of GAD and anticipatory type anxiety; whereas, the BWB appears to be measuring 

avoidance.   

Both of these models have, to some extent, been validated in the Mongolian gerbil, 

Meriones uguiculatus (see Varty et al., 2002; and Lapiz & Hogg, 2001), which is 

becoming an increasingly popular choice because of its ease of handling and breeding. 

They are generally quite placid creatures. In addition, some of their receptors such as 

the NK1 receptor molecules share more homology with the human NK1 receptor than 

do those of more commonly tested rodents, such as rats or mice. The next section will 

discuss the ethology of the gerbil, as this is the animal used in the animal models of 

anxiety studies described in part I of this thesis.  
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CHAPTER 3 THE GERBIL (MERIONES 
UNGUICULATUS)  

The Mongolian gerbil, Meriones unguiculatus, cited as far back as 1965 as a 

promising new laboratory animal because of its docile nature and ease of breeding 

(Marston & Chang, 1965), is being increasingly used in laboratory studies of anxiety. 

Gerbils share neuro-endocrinological similarities with humans. The gerbil neurokinin 

I (NK1) receptor is more similar to the human NKI receptor than that of rats or mice. 

NK1 receptors are widely distributed in brain regions that are implicated in the 

pathogenesis of anxiety; agonists at these sites mimic the autonomic and behavioural 

effects of anxiety (Holmes et al., 2003). Acute stress enhances NK1 receptor 

occupation by substance P in limbic regions (Ebner et al., 2004; Ebner & Singewald, 

2006). Mice lacking the gene for substance P, or conversely lacking the NK1 receptor 

gene, are less anxious than wild-type mice and show anxiolysis when tested in 

models of anxiety (Brocco et al., 2008).   

As existing drug treatments are not effective for all patients, the search for better 

anxiolytic drugs with fewer side-effects continues. Recently, drugs which target the 

neurokinin system, in particular NK1 receptors, have been the focus of intensive 

clinical and preclinical study (Ebner & Singewald, 2006; Gobbi & Blier, 2005; 

Holmes et al., 2003), particularly since there is some evidence that drugs that act on 

the NK1 receptor have an effect on human anxiety. For example, the NK1 antagonist, 

GR205, 171, relieves social phobia (Furmark et al., 2005).   

However, current models of anxiety that employ rodents, such as rats and mice, have 

limited utility when testing these newer potential anxiolytics. This is because there 

are species differences in the affinity of non-peptide NK1 receptor antagonists for the 

NK1 receptor (Engberg et al., 2007). Gerbil NK1 receptors have a very similar 

affinity for non-peptide NK1 antagonists to that of human NK1 receptors (Duffy et al., 

2002). This is because of identical primary structures in the seven trans-membrane 

domains of the NK1 G-protein trans-membrane receptor linked structure, and 

consequently gerbils share a more similar pharmacology when compared with human 

NK1 receptors than do rat or mouse NK1 receptors (Beresford et al., 1991; Duffy et 

al., 2002; Engberg et al., 2007). As a result, this species is now being used more 
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frequently in anxiety research. Work has shown that gerbils respond in a similar way 

to rats and mice when tested in animal models of anxiety in response to drugs 

commonly tested in these models (Varty et al., 2002; File, Cheeta, Akanezi, 2001). 

Added to this similarity, the main stress hormone in humans, cortisol, would also 

appear to be one of the main stress hormones in gerbils, rather than corticosterone 

which is the main stress hormone in rats and mice (Fenske, 1991; Morse & Davis, 

1990; Oliver & Peron, 1964). Gerbils also form pair-bonds for life, a behaviour that is 

more akin to that of humans when compared to other rodents (Marston & Chang 1965; 

Starkey 2000; Ågren, Zhou, & Zhong, 1989; Agren, 1984). These facts serve to 

increase the construct validity of models that use gerbils and which seek to model 

human symptoms of anxiety.   

The facts that they are not nocturnal, thought to be crepuscular (more active in the 

morning and evening (Refinetti, 2006; Brain, 1999)), breed easily and readily form 

colonies in captivity (Thiessen & Yahr, 1977), all add to their attractiveness as a 

laboratory animal. They have a typical lifespan of about four years, reaching sexual 

maturity at 10-12 weeks. They can have as many as 10-12 litters in their lifetime; the 

average litter size is 4.5, and weaning takes place at 21-25 days (Thiessen & Yahr 

1977). Typical of a desert rodent, their food consumption is 5-8g/day and water 

consumption 4-7ml/day on average. The average body weight of an adult male and 

female are 100g and 85g respectively (Thiessen & Yahr 1977).   

In their natural habitats Mongolian gerbils are burrowing, desert rodents, living in 

deserts and semi-deserts from South Africa to Mongolia and Manchuria.  Illinger first 

described the Genus Meriones of the order Rodentia in 1811 and ‘Meriones 

unguiculatus’ was first identified as a species by Milne-Edwards in 1867. A 

distinctive feature of the Mongolian gerbil is its propensity to exhibit seizures; these 

occur spontaneously in response to various stimuli, such as stress, or stroking the 

back of the neck. These seizures are because of synaptic ultra-structural changes in 

the hippocampus of the gerbil (Brain, 1999; Loskota, Lomax, & Rich, 1974; Cutler & 

Piper, 1990). Research that is more recent has revealed that seizure-sensitive gerbils 

have altered expression of the GABAA receptor in the hippocampus (Hwang et al., 

2004). Additionally, decreases in BDZ receptor binding sites in the substantia nigra 

and periaqueductal gray, midbrain regions, have been shown in seizure sensitive 

gerbils relative to normal controls (Olsen, Walmsley, Lee & Lomax, 1986). To 
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minimise the number of gerbils excluded from the studies here, and to ensure GABA 

receptor distribution was as similar as possible to rats, the seizure resistant (SR) strain 

of gerbils were used in the current study.    

Gerbils that are currently used in laboratories are from a very limited population of 

five females and four males, first introduced into the USA in 1954 by Victor 

Schwentker. Hence, there is very little genetic variation between these animals. Tests 

show that there is no behavioural or physiological indication that these animals are in 

any way abnormal (Thiessen & Yahr 1977).   

A number of animal models of anxiety using gerbils have been validated in various 

laboratories. These validations show that these animals behave in a manner 

comparable to rats and mice, which have been widely validated for use in these 

models of anxiety, for example, studies looking at the ethological gerbil EPM suggest 

that it is sensitive to a range of anxiolytic agents and not just BDZ related drugs 

(Varty, Cohen-Williams, Morgan, Pylak 2002; Varty, Morgan, et al. 2002). Similar 

results have been obtained with the BWB (Lapiz & Hogg 2002) and the social 

interaction model (File, Cheeta, & Akanezi, 2001). In addition, like mice, they are 

sensitive to the locomotor effects of SSRIs in novel situations (Prinssen, Ballard, 

Kolb, & Nicolas, 2006).  

Although gerbils rely heavily on scent to demarcate their territory and to advertise 

their reproductive status to their mates, studies have shown that olfactory 

bulbectomised male gerbils still mate normally (Cheal & Domesick 1979); this is 

possibly because saliva is the main attractant between male and female gerbils (Smith 

& Block, 1991).  

The fact that gerbils are macrosomatic, rely heavily on odour for their normal 

behaviour and have relatively large olfactory bulbs compared to their size, and appear 

to have an active vomeronasal organ, could potentially confound any odour studies 

that are investigating potential anxiolytics for humans, because humans are classed as 

microsomatic and do not have an active vomeronasal organ. However, as discussed 

earlier, human behaviour has also been shown to be influenced by pheromone-like 

chemicals (Berliner, 2003; Berliner, 1996; Jacob, Garcia, Hayreh, & McClintock, 

2002; Jacob & McClintock, 2000; Yasumatsu, Uchida, Sugano, & Suzuki, 1994) and 
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odours do influence human behaviour (see section 1.6). The rationale for these 

studies is that we still use EO odours to alleviate anxiety, even though, as humans we 

are classed as being microsomatic. Furthermore, the studies of Kovar et al. (1987) in 

mice provided evidence for orally delivered and inhaled effects of EOs being similar. 

Likewise, injected EOs also appear to have potent effects (Umezu et al., 2006), which 

would argue for a mechanism of action that does not necessarily include the olfactory 

and vomeronasal organs in the action of EOs on the brain. Extrapolating from this 

therefore, gerbil models of anxiety ought still to be valid tests of the anxiolytic 

properties of EOs in so far as they are valid screen tests of any other type of 

postulated anxiolytic.   

In order to use the gerbil EPM and BWB in our laboratory the animals first need to be 

shown to be sensitive to the anxiolytic effects of drugs used to treat anxiety, such as 

the BDZs and drugs which act on the serotonin receptors system; for example, 

diazepam and buspirone. Consequently, the chapters that follow describe firstly the 

validation procedures of the models and the results of these validations. These are 

followed by the use of the validated models to test the effects of prolonged lavender 

odour, and to compare this with prolonged exposure to rose EO, another pleasant 

smelling odour, as well as chronically administered diazepam.    
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CHAPTER 4 GERBIL STUDIES: MATERIALS 
AND METHODS 

4.1 ANIMAL HUSBANDRY  

Mongolian gerbils (Meriones unguicalatus), from a breeding stock at UCLan, which 

was originally purchased from Huntingdon Life Sciences (Huntingdon, 

Cambridgeshire), were weaned at three weeks of age and housed in unrelated same-sex 

groups of 3-4. Cages were of a standard size (33x25x19.5 cm). Animals were kept 

under a 12 hour light cycle (lights on 0700- 1900 h) and in constant temperature 

conditions (21+/-1o C). Food, CRMP (supplied by Special Dietary Services, Witham, 

Essex, CM8 3RD), and water were available ad libitum. Each cage was supplied weekly 

with a supplementary food, which included sunflower seeds and fruit, and a cardboard 

tube and wooden block for environmental enrichment purposes. The gerbils were at 

least 10 -12 weeks old at testing. All animals were maze-naïve and used only once on 

each maze. All procedures were conducted in accordance with the UK Animals 

(Scientific Procedures) Act 1986. Ethical approval was obtained from the University’s 

Animal Procedures Committee.   

4.2 GERBIL MODELS OF ANXIETY 

4.2.1 Elevated plus-maze (EPM)  

The EPM, (see Figures 4.1 and 4.2) relies on the natural anxiety-related behaviour of 

rodents to remain in shadow, close to walls (thigmotaxis) and to avoid heights. The 

maze provides free access to either a protected dark and enclosed environment or an 

unprotected brightly lit, open and elevated environment (Albrechet-Souza, et al., 2005). 

The rationale behind the EPM is that it creates a conflict between the animal’s desire to 

explore the maze and its fear of bright open spaces and heights. Thus, a frightened 

gerbil will try to avoid the open, brightly lit, and high-up areas and remain in the 

relative safety of the dark, enclosed areas, sticking closely to the walls, thigmotaxis. A 

gerbil exhibiting less ‘anxious-type’ behaviour will explore more and will spend more 

time than it otherwise would in the open areas of the maze.  
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Structurally, the elevated plus-maze used here was based on the one developed by 

Montgomery (1955) and then adapted for rats (Handley & Mithani, 1984) and for mice 

by Lister, (1990) (Rodgers & Dalvi 1997). The EPM used in this study was made of 

Perspex, formed in a plus-shape, with four perpendicular arms set around a centre 

square and elevated 50cm above the ground on a podium. The arm dimensions were 

40cm length and 8cm width with a centre square (7.5 cm x 7.5 cm). Two of the 

opposing arms had walls 28.5 cm high, blackened with 80% windscreen tint and the 

other two were open, apart from the addition of a 1cm deep ledge around the open arms 

(Fernandes et al., 1996). The floor of the maze was made of black melamine. Light 

levels were at 270 Lux.  The maze was surrounded on the floor by a black and white 

checked cloth around the bottom of the maze; this was to discourage gerbils from 

jumping off the mazes (Figure 4.1).  

  

Figure 4-1 A Mongolian gerbil on open arm of the elevated plus-maze.  

Studies on the visual depth perception and acuity of gerbils found that a checked cloth 

lessened the likelihood of their jumping from the maze (personal communication Dr. N 

Starkey based on unpublished data). Two cameras, placed on either side of the maze, 

recorded gerbil behaviour on VHS tape for future analysis (Figure 4.2).   
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Figure 4-2 Schematic of camera positions around the EPM.  

4.2.2 Black and White Box (BWB)  

The rationale behind the BWB is similar to the EPM. When gerbils are anxious they 

enter quickly and remain in the darker, smaller section of the box where they can hide, 

and when they are less anxious they spend more time in exploration, particularly in the 

light side of the box.  

  

Figure 4-3 A Mongolian gerbil in the dark compartment of the black-white box, 
looking into the white compartment.  

Camera
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closed arms  

 open arms  
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The black white box (BWB) used here was based on the one validated by Costall and 

colleagues (1989). It was a Perspex box of dimensions: 30cm width x 40cm height x 

51cm length; divided into two separate compartments, 1/3 and 2/3 of the volume. The 

compartments were separated by a black wall with an aperture (small doorway) in its 

centre (10cm x 7cm) to allow the gerbils access to both compartments of the box (see 

Figure 4.3). The walls of the larger 2/3 compartment were transparent and open to the 

light in the room. An angle-poise lamp containing a 60 W bulb was angled over this 

side to make the light side aversive and to reduce shadows. The smaller compartment, 

one third of the total volume, was painted black to make it dark, and the dimmed 

overhead lights helped create shadow in this section. Two cameras recorded activity, 

one above the box to record gross movement and transitions between compartments and 

the other camera, which was perpendicular to the light side, recorded fine activity in the 

white side and at the crossing point (see Figure 4.4).       

Figure 4-4 Schematic of the gerbil black-white box showing camera positions.       
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4.3 BEHAVIOURAL MEASURES 

4.3.1 Behavioural measures in the EPM  

The EPM maze is designed to discriminate anxiolytic and anxiogenic responses from 

purely locomotor effects. This is achieved by examining animals’ preferences for 

unprotected (open) and protected (closed) environments, and observing their ethology in 

these areas (Cruz et al, 1994). These should be interpreted in the context of the full 

behavioural profile (Cruz et al., 1994). All tests were videoed for subsequent scoring 

using Hindsight 1.5 (ethological analysis software, Scott Weiss, Leeds).  

Behaviours and locations scored 

These measures were based on conventional measures described elsewhere (Frey, 

Löscher, Reiche, & Schulz, 1983; Varty, et al., 2002; Wall & Messier 2001) and are 

described in Table 4.1 below:   

Table 4.1 Description of behaviours measured in the EPM   

Behaviour  Description 
Open entry All four paws in the open arm 
Closed entry All four paws in the closed arm 
Total entries The frequency of open plus the 

frequency of closed entries. 
Centre square Not in open or closed arm but on the 

maze 
Rearing  Upright posture with gerbil’s forelegs 

moving into the air or leaning against a 
wall 

Locomotor  Any movement around the maze 
Immobile     No visible movement 
Headdip  Scanning over the sides of the maze 

towards the floor; this can be protected, 
occurring on a closed arm or centre 
square or unprotected, occurring from 
the open arm. 

Stetch-attend  Head and shoulders stretched forward 
without moving the whole body 
forwards then retracting back to 
original position. 

Seizures/fits Twitching of vibrissae and ears; motor 
arrest with general myoclonic jerks, 
and sudden extreme spontaneous motor 
movement/loss of motor control 
generally followed by a period of 
immobility  
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Derived Measures  

In addition to frequency and duration of the measures in Table 4.1, percentage measures 

were also calculated. Percentages are a more robust measure as they provide a reference 

of one measure compared to another; whereas, absolutes only give an arbitrary measure 

which, when not compared to anything, have no point-of-reference component. For 

example, open entries could increase, which indicates a decrease in anxiety. However, 

at the same time closed entries could also increase indicating an increase in anxiety. In 

fact, these increases actually reflect an increase in locomotor activity, which is 

confounding the interpretation of these two measures. Percentage open entries take into 

account locomotor activity and hence, any increase in open entries when expressed as a 

percentage of total entries can be interpreted as a true increase and therefore a decrease 

in anxiety. Derived measures included the following: percentage open arm entries: 

((open entries/total entries) x 100); percentage closed arm entries; percentage open arm 

duration, i.e. (open arm time /300) x 100); percentage closed arm duration. Percentage 

protected head-dips any that occurred on the centre or from the closed arms as a fraction 

of the total head-dips: (((closed arm head-dips) + (centre square head-dips)) / (total 

head-dips) x100), and percentage protected stretch-attends (((closed arm stretch-attend) 

+ (centre stretch-attend)) / (total head-dips) x100).   

Behaviours were coded as low anxiety, anxious behaviour, or drug effects, as seen in 

sedation or increased locomotor activity (Rodgers & Dalvi, 1997; Rodgers & Johnson, 

1995; Salome et al., 2002) as follows:   

Low anxiety behaviours: increased frequency and duration of open entries, increased 

percentage open entries, percentage open arm time, total head-dipping, decreased closed 

arm duration and decreased percentage duration.  

Anxious behaviours: increased closed arm duration, increased percentage closed arm 

time and risk-assessment behaviours; percentage stetch-attends and percentage 

protected head-dipping ((head-dipping occurring in the closed arms and centre square) / 

total head-dips) x100) (Rodgers & Johnson 1995) and, seizures.   
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Locomotor behaviours: measures of drug effects on general locomotor activity include 

changes closed arm entries and total entries (Rodgers & Johnson, 1995). Although total 

entries is a mixed measure consisting of open and closed entries and, thus, also loads 

onto the anxiety factor in addition to locomotor behaviour and immobility (Rodgers & 

Johnson, 1995).   

4.3.2 Behavioural measures in the BWB  

Behaviours and locations scored  

Behaviours measured include:  

Time spent in each compartment (all four paws in each compartment) and 

around the crossing point  

Movement between the two compartments (crossing frequency)  

Frequency and duration of:  

Rearing  

Sniffing  

Locomotor   

Freezing (immobility)   

Derived measures were:  

Latency black (the time taken after initial placement of a gerbil in the white side 

facing the entrance to the black side to move into the less aversive black side 

compartment)  

Percentage entries to the white and black sides  

Exploration a composite score of rearing and sniffing (rear/sniff) frequency and 

duration, representing environmental exploration of the maze (exploratory frequency 

and duration)  

These were based upon conventional measures previously described (Smythe, Murphy, 

Timothy, & Costall, 1997; Chaouloff, 1994; Chaouloff et al., 1994; Costall et al., 1989; 

Bridges & Starkey, 2004).   
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An anxiolytic response would be represented by more exploration, for example: more 

rearing, sniffing, and locomotor activity particularly in the white side, larger percentage 

duration white, and, more movement between the two compartments (crossing 

frequency). More freezing behaviour in this model generally indicates anxiety but it 

could also be indicative of drug-induced sedation, particularly if it takes place in the 

white side. Higher anxiety is represented by less time spent and less activity in the white 

side, and, more time spent in the black side. Coding of behaviours followed that 

established by other workers for this test (Bridges & Starkey 2004; Chaouloff 1994; 

Costall et al. 1989).  

In addition, seizures were recorded in both models. Seizures were defined as, twitching 

of vibrissae and ears, motor arrest with general myoclonic jerks, sudden extreme 

spontaneous motor movement and, loss of motor control, generally followed by a period 

of immobility (Frey et al., 1983).  

4.4 PROCEDURES 

4.4.1 General procedure for gerbil maze studies  

For two weeks prior to the validations, the experimental gerbils were weighed, scruffed, 

and, handled, as they would be during injection in the treatment room. The purpose was 

to habituate them to the environment and handling by the experimenter during 

experimental procedures and, in order to lessen seizures in the validation procedure 

(Frey et al., 1983).   

Since gerbils are not nocturnal (Refinetti, 2006) testing was conducted between the 

hours of 8:00 and 14:00, lights on. Testing procedure was as follows: at approximately 

8:00 on the day of testing the gerbils were moved from their holding rooms to the pre-

experimental room, in their home cages and racks, and left to acclimatize for one hour 

(see Figure 4.5 for a schematic layout of the experimental suite).  
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Figure 4-5 Schematic layout of the gerbil experimental suite and holding rooms.   

On testing, each gerbil was placed firstly on the EPM in the centre square, facing an 

open arm and left to explore for five minutes. Gerbils that fell off the maze were 

returned only after the first time of falling off. Following any subsequent fall they were 

returned to their cage until it was time to go in the BWB. Any gerbils off the maze for 

longer than 100 seconds were excluded from the analysis. Immediately after this, gerbils 

were tested in the BWB. The gerbil was placed in the centre of the light-side of the 

BWB, facing the dark-side, and left to explore for a further five minutes. Between the 

testing of each gerbil, faecal boli were removed and the mazes washed and dried 

thoroughly by using a detergent routinely used to clean the cages in the animal house, 

any possible pheromone/drug-urine odour effects were overcome (Dixon, Huber, & 

Kaesermann, 1984; Halpin, 1976).  

Behaviours were recorded on video tape. Two trained observers that were blind to 

experimental conditions later scored the videos using ‘Hindsight‘ (Scott Weiss, Leeds 

University), a computer assisted scoring program (inter-rater reliability and intra-rater 

reliability was > 0.9). Hindsight converted behaviours and locations in each of the 

mazes to frequency and duration of behaviour and location on each maze.  
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4.5 DATA ANALYSIS  

Data from gerbils that had seizures were excluded from the main analysis (Bridges & 

Starkey, 2004). Seizure data were analysed separately for association between seizure 

occurrence and experimental condition.  

Occasionally, gerbils jumped from the EPM and animals were returned to the EPM as 

quickly as possible. When this occurred, data were included in the subsequent analysis 

providing the gerbil had spent at least two thirds of the test session on the maze (i.e. 200 

seconds). The data from these animals were corrected to standardise the data to five 

minutes (300s) using the following formula:  

(Dependent variable / (300- time off the maze)) x 300.  

Although fit data were not included in the main analysis they were analysed separately, 

using the Chi squared test for association, firstly for all gerbils and then separately for 

each sex.       
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CHAPTER 5  AN EXAMINATION OF THE 
EFFECTS OF TWO ANXIOLYTIC AND TWO 
ANXIOGENIC DRUGS IN THE GERBIL 
ELEVATED PLUS-MAZE AND BLACK-WHITE 
BOX AS A VALIDATION OF THEIR USEFULNESS.   

5.1 INTRODUCTION  

In order to determine if the EPM and BWB are useful tests of anxiety in gerbils, it was 

necessary to compare the effects of each of two anxiolytics, diazepam and buspirone, 

and two anxiogenics, caffeine and FG7142, on those behaviours that are typically used 

to reflect anxiety in other rodents tested in these models.  The structures of these drugs 

are as shown in Figures 5.1 to 5.4.  

 

Figure 5-1 The structure of diazepam  

   

Figure 5-2 The structure of buspirone 



 

113

     

Figure 5-3 The structure of caffeine  

 

Figure 5-4 the structure of FG7142 (N-methyl-ß-carboline-3-carboxamide)  

5.2 GERBIL MAZE VALIDATION METHODS  

5.2.1 Experimental design  

The design of the experiment was a between-groups one, with a minimum of 10 gerbils 

per group, using stratified random sampling to achieve the required number of gerbils 

per group, for each sex and drug group tested. In order to minimise pheromone effects 
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and for logistical reasons, randomisation of testing took place between cages; thus all 

cage mates were tested with the same drug (cage mates were non-related gerbils 

separated at weaning). Hence, the design of the study took the form of a between-

subjects randomised block design.  

5.2.2 Drugs used in the validations  

Diazepam (0.05-1mg/kg), caffeine (0.05-3mg/ml), buspirone (1-30mg/kg) and FG7142 

(1-30mg/kg) were purchased from Sigma- Aldrich, Poole.  

The drugs were dissolved as follows: diazepam, caffeine and buspirone in distilled 

water with 50 l of Tween-20 and sonicated for twenty minutes; FG7142, in distilled 

water with a drop of glycerol and sonicated for 20 minutes. Drug doses were chosen 

from doses used in similar studies using rats, mice or gerbils (Baldwin, Johnston, & File, 

1989; Stanford, Baldwin, & File, 1989; Ballard, Sanger, & Higgins, 2001; Barry, 

Costall, Kelly, & Naylor, 1987; Chaouloff et al., 1997; Costall et al., 1989; Varty, 

Morgan, et al., 2002). Drug doses were as follows: diazepam:  vehicle, 0.05mg/kg, 

0.1mg/kg, 0.5mg/kg, and 1mg/kg; caffeine: vehicle, 0.5mg/kg, 5mg/kg, 15mg/kg, 

30mg/kg; buspirone: vehicle, 1mg/kg, 3mg/kg, 10mg/kg, 30mg/kg; Fg7142: vehicle, 

1mg/kg, 3mg/kg, 10mg/kg, 30mg/kg.  

Each drug was dissolved in one of two vehicles. Hence, there were two vehicle controls: 

distilled water with 50 l of Tween-20 as the control for diazepam, caffeine and 

buspirone, and distilled water with a 50 l of glycerol as the control for FG7142.  

Drugs were administered by intra-peritoneal (i.p.) injection, using a size 27 gauge 

needle at a dose volume of 1ml/100g thirty minutes prior to placing the gerbil on the 

EPM.   

The numbers of gerbils in each drug group was as follows.  Controls: female, Tween-20, 

n = 23, glycerol, n = 19. Male: Tween-20, n = 19, glycerol, n = 21. Each drug dose 

group consisted of n = 12 males or n = 12 females, thus in total there were 60 males and 

60 females tested for each individual drug.  
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5.2.3 Protocol and order of testing  

On the day of testing, gerbils were moved to the pre-experimental room in their home 

cages and left for at least an hour. Thirty minutes prior to testing on the mazes each 

gerbil was removed from its home cage, weighed, injected (intra-peritoneal) with 

vehicle or drug and then singly housed in the pre-experimental room until testing on the 

mazes.   

Each drug type was tested separately and males and females were tested on separate 

days to minimise drug urine and pheromone effects (Dixon et al., 1984; Halpin 1976). 

Females were tested first for each drug. Testing began with the lowest concentration of 

drug and followed in consecutive order of increasing dose ending with the highest 

concentration of drug.   

Work in other laboratories (Cruz-Morales, Santos, & Brandao, 2002; Frussa-Filho & 

Ribeiro, 2002) has revealed that using rodents twice (re-testing) on the EPM confounds 

results. Therefore, in this validation, each animal was used only once: first, on the EPM 

for five minutes test duration followed by the BWB for five minutes test duration.   

5.2.4 Data analysis  

There were only nine dependent variables, which are too few cases in each cell to 

warrant using a MANOVA. In addition, the data were skewed and kurtosed. Therefore, 

the analyses that were conducted were non-parametric. The Jonckheere-Terpstra trend 

test, which has more power when comparing ordered alternatives, as in the case of 

increasing drug doses, than the more frequently used Kruskall-Wallace non-parametric 

ANOVA , was used (Siegel & Castellan, 1998). 

5.2.4.1 Missing data 

EPM  

Gerbils which had seizures were as follows: vehicle (combined) males, 5; females, 7. 

For data on seizures in gerbils that had been treated with anxiolytic or anxiogenic, drugs 

see Table 5.1 below. 



 

116

  
Table 5.1 Number of seizures in gerbils on the EPM in response to diazepam, buspirone, 
caffeine and FG7142  

Diazepam Buspirone Caffeine FG7142  Dose  

  
m f m f m f m f 

1 2 4 1 8 11 12 7 5 
2 1 1 3 5 6 8 1 3 
3 1 0 7 6 14 9 3 6 
4  3 0 3 7 7 17 3 4 

 

m = males; f= females. 

Diazepam: Dose 1: 0.05mg/kg; dose 2 0.1mg/kg; dose 3 0.5mg/kg, dose 4:1mg/kg. Buspirone: Dose 1 

1mg/kg; dose 2 3mg/kg; dose 3 10mg/kg, dose 4 30mg/kg.  

Caffeine: Dose 1 0.5mg/kg, dose 2 5mg/kg, dose 3 15mg/kg, dose 4 30mg/kg.  

FG7142: Dose 10.5mg/kg, dose 2 5mg/kg, dose 3 15mg/kg, dose 4 30mg/kg.  

Chi square analysis of fit data, using a 2 (fit /no fit) x 5 (drug dose) design, indicated 

that seizures were not significantly associated with differing doses of diazepam in all 

gerbils ( 2 (4) = 7.09, p n/s), or male gerbils when tested ( 2 (4) = 4.14, p = n/s). 

However, in females, there was a significant association between increasing dose and a 

lower seizure frequency ( 2 (4) = 9.66, p >0.05). There was no relationship between 

buspirone dose and fit occurrence in all gerbils ( 2

 

(12) = 17.95, p n/s), or males or 

females when tested separately (males 2 (8) = 12.77; females 2

 

(12) = 13.47).  

Increasing caffeine dose was associated with a higher frequency of fits in all gerbils ( 2 

(12) = 57.48, p < 0.001), causing increased seizures in both males and females ( 2 (8) = 

34.48, p < 0.001; 2 (12) = 34.69, p < 0.001). Likewise, there was a significant 

relationship between FG7142 dose and fit occurrence in all gerbils ( 2 (4) = 8.82, p < 

0.05 (one tailed)) and in males ( 2 (4) = 8.37, p < 0.05 (one tailed)). In females there 

was no significant relationship ( 2 (4) = 3.71, p n/s) between fits and caffeine dose. 

BWB  

The number of gerbils excluded based on seizures was as follows: vehicle control: 

males, 1; females, 3. For data on seizures in gerbils treated with anxiolytic and 

anxiogenic drugs see Table 5.2 below   



 

117

 
Table 5.2 Number of seizures in gerbils on the BWB in response to diazepam, 
buspirone, caffeine and FG7142  

Diazepam Buspirone Caffeine FG7142  Drug 
dose m f m f m f m f  
1 1 1 0 0 0 0 0 1 
2 1 0 0 0 0 0 0 0 
3 0 0 0 0 1 0 0 0 
4  0 0 1 1 0 2 0 1 

 

m = males; f = females 

Diazepam: Dose 1: 0.05mg/kg; dose 2 0.1mg/kg; dose 3 0.5mg/kg, dose 4:1mg/kg. Buspirone: Dose 1 

1mg/kg; dose 2 3mg/kg;  dose 3 10mg/kg, dose 4 30mg/kg,.  

Caffeine: Dose 1 0.5mg/kg, dose 2 5mg/kg, dose 3 15mg/kg, dose 4 30mg/kg.  

FG7142: Dose 10.5mg/kg, dose 2 5mg/kg, dose 3 15mg/kg, dose 4 30mg/kg.  

Data from these were treated separately, using the Chi squared test for associations of fit 

frequency of seizures versus drug dose. There were no significant associations between 

drug dose and fit occurrence for any of the drugs tested.   

5.3 RESULTS  

5.3.1 EPM validation results  

5.3.1.1The effects of diazepam on male and female gerbil behaviour in the EPM  

Median, inter-quartile ranges and J-T trend test result for male and female gerbils in 

response to each dose are presented in Table 5.3.  

To test for differences between the sexes, male and female data were compared pair-

wise using the Mann-Whitney U test for each dose prior to analysis in the Jonckheere- 

Terpstra trend test for ordered alternatives. Results indicate that locomotor duration (U 

= 6, p < 0.05) at 0.05 mg/kg and immobile duration (U = 9, p < 0.05) at 0.1mg/kg were 

higher in females than males, while rear frequency (U = 12.5, p < 0.05) at 0.1mg/kg was 

higher in males. These variables were analysed separately for each sex. (See Table 5.1 

for median and inter-quartile ranges and J-T trend test results)  
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Data from both sexes of gerbils were combined in the analysis of the remaining 

variables. Results of this analysis were as follows: at 0.05mg/kg there was an increase in 

exploration; head-dip frequency was higher than in vehicle control animals (U = 96.5, p 

< 0.05). At 0.5mg/kg total entries (U = 15.5, p < 0.05), percentage open entries (U = 

127, p < 0.01), percentage open duration (U = 146, p <0.05) and head-dip frequency (U 

= 80, p < 0.001) were higher; while percentage closed entries (U = 147, p < 0.05) and 

percentage closed duration (U = 145, p <0.05) were lower than controls. At 1mg/kg the 

anxiolytic profile was further strengthened, total entries (U = 118, p <0.05), percentage 

open entries (U = 89.5, p < 0.01), percentage open duration (U = 94, p < 0.01), and 

head-dip frequency (U = 53.5, p < 0.001) were higher than controls; while percentage 

closed entries (U = 103.5, p < 0.01), percentage closed duration (U = 81, p < 0.01) and 

stretch-attend frequency (U = 131.5, p < 0.05) were less than vehicle controls at this 

dose.   

In males alone, immobile duration was significantly lower at 0.1mg/kg (U = 15, p <0.01) 

and 0.5mg/kg (U = 17.5, p < 0.05), while in females, rear frequency was significantly 

lower at the top dose (1mg/kg) (U = 32, p < 0.05) (See Table 5.1 for median inter-

quartile ranges and J-T results).  



 

119

 
Table 5.3 Effects of acute diazepam (i.p.) on male and female gerbil behaviour in 
the elevated plus-maze. (Median and inter-quartile ranges)  

Median and inter-quartile ranges Dependent 
variable 

Diazepam 
dose 
(mg/kg) All gerbils Males Females 

J-T 
statistic 

vehicle 17.09, 28.50, 35.00 19.54, 25.00, 30.50 17.50, 31.00, 38.07 

0.05 25.00, 2.97 34.69 26.55, 32.44, 34.32 25.00, 33.88, 42.00 

0.1 27.00, 3.44, 41.07 31.00, 34.22, 41.07 16.63, 39.00, 41.46 

0.5 30.00, 36.50*,, 44.44 30.00,35.00, 38.00 30.70, 40.04, 49.62 

Total entries 

    

1 32.75, 41.70*, 48.00 38.12, 40.83, 50.50 28.10, 41.83, 47.00 

i3.63*** 

vehicle 36.36, 44.44, 56.52 41.47,44.44, 55.86 34.01, 44.44, 55.53 

0.05 48.15, 54.14, 62.50 47.75, 50.81, 62.02 48.15, 56.90, 68.18 

0.1 41.18, 50, 00, 62.50 41.18, 49.42, 55.56 37.79, 54.55, 64.58 

0.5 51.14, 57.14**, 66.23 52.27, 61.91, 66.67 51.32, 56.25, 62.90 

Percentage 
open  entries

     

1 57.50, 60.38**, 70.27 54.49, 60.38, 69.17 57.50, 62.43, 70.27 

i 3.91*** 

Vehicle 40.00, 52.78, 60.00 44.14, 55.56, 58.54 41.74, 48.39, 62.65 

0.05 37.50, 45.86, 51.85 37.98, 49.19, 52.25 31.82, 43.10, 51.85 

0.1 37.50, 50.00, 58.82 44.44, 50.58, 58.82 35.42, 45.45, 62.21 

0.5 33.77, 42.86*, 48.86 33.33, 38.09, 47.73 37.10, 43.75, 48.68 

Percentage 
closed 
entries 

    

1 29.73, 39.62**, 42.50 30.83, 39.63, 45.51 29.73, 37.57, 42.50 

i -3.47** 

vehicle 18.30, 34.83, 57.02 25.65, 29.34, 43.57 16.23, 43.36, 59.61 

0.05 41.07, 49.95, 60.55 38.48, 53.51, 60.25 44.09, 47.65, 62.85 

0.1 30.78, 38.48, 56.01 31.48, 43.21, 54.58 13.99, 33.18, 63.69 

0.5 41.25, 56.39*, 63.05 45.24, 59.65, 69.88 43.18, 52.61, 59.24 

Percentage 
open 
duration 

    

1 55.92, 60.64**, 69.32 46.77, 60.00, 67.05 55.92, 62.14, 69.32 

i 3.71*** 

vehicle 23.81, 33.19, 39.29 28.15, 32.29, 37.44 23.59, 34.08, 38.94 

0.05 19.36, 25.18, 32.97 20.41, 23.59, 34.89 19.27, 26.28, 28.15 

0.1 21.20, 31.09, 38.60 21.19, 30.33, 38.60 19.64, 31.09, 37.39 

0.5 14.77, 23.46*, 31.21 11.88, 21.25, 26.61 23.18, 23.71,  32.99 

Percentage  
closed 
duration 

    

1 13.98, 18.63**, 23.20 16.30, 21.6324.77 12.84, 17.2121.51 

i -
3.87*** 

vehicle 7.59, 16.00, 24.88 7.59, 16.00, 20.00 10.50, 18.91, 28.46 

0.05 10.76, 16.46, 20.00 8.78, 15.93, 23.50 12.13, 16.46, 19.66 

0.1 12.83, 24.00, 25.51 17.22, 24.50, 25.67 7.01, 17.00, 24.75 

0.5 5.05, 12.32, 19.31 5.00, 11.00, 14.00 7.86, 16.89, 21.02 

Rear 
frequency 

    

1 7.30, 8.94, 11.00 10.00, 16.44, 18.23 5.43, 7.91*, 8.94 

i i -0.23 
i i i -2.34* 

vehicle 3.58, 20.42, 48.88 13.52,33.22, 96.29 3.27, 12.79, 28.29 

0.05 1.37, 8.65, 20.33 1.32, 9.89, 19.23 2.15,8.65, 20.44 

0.1 0.00, 2.61, 13.67 0.00, 1.29**, 2.61 11.77, 20.97, 23.30 

0.5 0.00, 1.92, 9.33 1.27, 1.76*, 3.41 0.00, 2.08, 11.37 

Immobile 
duration 

    

1 2.30, 5.43, 13.90 3.26, 5.43, 9.69 2.30,7.48, 85.62 

i i -2.16* 
i i i -1.02 

   

vehicle 56.79, 105.14, 125.26 77.86, 104.12, 115.43 44.33, 12.89, 30.62 

0.05 93.86, 103.96, 112.04 89.62, 95.47, 103.96 110.17, 13.28, 25.07 

0.1 84.01, 94.54, 102.60 84.01, 91.31, 102.27 58.11, 95.88, 09.79 

0.5 90.24, 101.95, 115.36 96.32, 101.28, 106.12 84.88, 03.41, 18.07 

Locomotor 
duration 

    

1 90.34, 102.28, 112.28 103.77,105.41,115 85.93, 92.81, 110.59 

i i 1.13 
i i i -1.23 

vehicle 13.00, 27.00, 43.77 21.49, 26.00, 33.50 13.00, 34.67, 47.66 

0.05 35.00, 49.00*, 52.67 30.98, 41.28, 50.44 48.56, 52.34, 55.83 

0.1 21.00, 37.00, 49.00 30.99, 40.05, 49.00 13.41, 21.00, 44.38 

0.5 44.32, 58.50***, 72.34 40.00, 58.00, 69.00 50.32, 59.46, 72.34 

Head-dip 
Frequency 

    

1 57.02, 66.43***, 83.69 55.29, 63.90, 75.00 57.02, 68.58, 86.00 

i 5.54*** 

Stretch- vehicle 1.32, 4.80, 12.00 1.00, 3.65, 6.50 2.66, 8.51, 16.34 i -2.69** 
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0.05 3.59, 5.71, 8.57 1.13, 5.19, 10.67 4.21,6.31, 8.57 

0.1 0.00, 2.00, 5.93 0.00, 1.51, 3.00 0.00,4.51, 5.96 

0.5 0.00, 3.15, 6.84 1.00, 4.00, 6.00 0.00,2.11, 6.84 

attend 
frequency 

    
1 0.00, 2.41*, 4.00 0.00, 2.41, 4.00 1.00, 2.28, 5.00 

vehicle 5.00, 8.96, 23.08 2.50, 11.77, 20.79 5.69, 8.41, 22.33 

0.05 3.57, 7.28, 11.90 2.73, 6.43, 8.59 5.66, 10.76, 16.28 

0.1 4.44, 11.11, 18.42 7.41, 11.81, 18.42 2.22, 5.36, 22.14 

0.5 3.41, 6.83, 13.96 3.79, 6.76, 7.02 1.90, 8.57, 16.64 

Percent 
protected 
head-dips 

    

1 3.85, 6.41, 11.54 2.83, 6.82, 19.88 3.85, 5.71, 11.54 

-1.09 

 

Number of gerbils in each group was all gerbils: vehicle n = 26, 0.01 mg/kg n= 14, 0.05 mg/kg n = 17, 
0.1mg/kg n = 20, 1mg/kg n = 17. Male gerbils: vehicle n = 11, 0.01 mg/kg n= 8, 0.05 mg/kg n = 10, 
0.1mg/kg n = 9, 1mg/kg n = 7. Female gerbils: vehicle n = 15, 0.01 mg/kg n= 6, 0.05 mg/kg n = 7, 
0.1mg/kg n = 11, 1mg/kg n = 10. i  J-T results for all gerbils;   i i results for male gerbils,  i i i results for 
female gerbils. Levels of significance: p< 0.05*, p < 0.01**, p < 0.001***.      
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5.3.1.2 The effects of buspirone on male and female gerbil behaviour in the EPM  

Median, inter-quartile ranges and J-T trend test results for male and female gerbils in 

response to each dose are presented in Table 5.4  

Pair-wise comparisons of male and female gerbils revealed that at 3mg/kg head-dip 

frequency (U = 6 p < 0.05) and immobile duration (U = 2, p < 0.05) were less in 

females than males; whereas, rear frequency (U = 0.5, p < 0.05) at 10mg/kg was greater 

in females than males. Data for these variables were analysed separately for males and 

females.  (See Table 5.2 for median, inter-quartile range and J-T trend test results).  

For all other variables, data from males and females were combined for analysis in the 

J-T test. At 1mg/kg total entries were significantly higher than vehicle-treated controls 

(U = 97, p < 0.05); while at 3mg/kg percentage open entries (U = 87.5, p, 0.05), 

percentage open duration (U = 67, p < 0.01) and locomotor duration (U = 19, p <0.001) 

were higher than vehicle controls. Also at this dose, total entries (U = 97, p < 0.05), 

percentage closed entries (U = 87.5, p < 0.05) and percentage closed duration (U = 

100.5, p < 0.05) were less. At 10mg/kg percentage open duration (U = 54, p < 0.01) and 

locomotor duration (U = 65, p < 0.05) were higher, and percentage closed duration (U = 

38, p < 0.01) was less, than vehicle control. At 30mg/kg total entries (U = 19, p <0.001), 

percentage closed entries (U = 63, p < 0.05) and percentage closed duration (U = 61, p < 

0.01) were all lower, and percentage open entries (U = 63, p < 0.01) were higher, than 

vehicle control.  

In males, pair-wise analysis revealed that rear frequency was significantly less when 

compared with control at 30mg/kg (U = 16, p < 0.05).  
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Table 5.4  Effects of acute buspirone (i.p.) on male and female gerbil behaviour in the elevated plus-
maze. (Median and inter-quartile ranges)  

Median and inter-quartile ranges 

 
Dependent 
variable 

Buspirone 
Dose 
(mg/kg) 

All gerbils Males Females 

J-T 
Statistic 

vehicle 17.09, 28.50, 35.00 19.54, 25.00, 30.50 17.50, 31.00, 38.07 

1 26.19,29.00*, 34.00 20.09, 26.19, 30.09 17.50, 31.00, 38.06 

3 14.00, 20.70*, 23.32 9.50, 17.35, 26.15 29.00, 31.00, 34.40 

10 4.00, 12.68, 14.00 1.69, 2.37, 7.68 19.00, 22.00, 22.00 

Total 
entries 

30 1.11, 2.00***, 4.38 1.11, 2.00, 2.79 9.83, 14.00, 15.50 

i -5.65*** 
i i -4.43*** 
i i i 3.37*** 

vehicle 39.29, 44.44, 56.52 41.47, 44.44, 55.81 1.16, 4.69, 14.52 

1 30.77, 43.67, 64.71 46.64, 64.71, 72.39 36.99, 44.44, 55.53 

3 50.00, 54.55*, 66.67 53.37, 64.37, 71.46 33.13, 35.48, 43.66 

10 46.15, 54.41, 70.00 73.08, 100.00, 100.00 50.00, 52.00, 52.63 

Percentage 
open 
entries 

30 66.07, 100.00**, 100.00 60.00, 100.00, 100.00 45.83, 50.00, 61.55 

i 3.64*** 
i i 3.08** 
i i i 2.37** 

vehicle 43.48, 55.56, 60.71 44.14, 55.56, 58.53 66.07, 87.50, 100.00 

1 35.29, 56.33, 69.23 27.65, 35.29, 53.36 44.47, 55.56, 63.01 

3 33.33, 45.45*, 50.00 28.57, 35.63, 46.63 56.33, 64.52, 66.87 

10 30.00, 45.59, 53.85 0.00, 0.00, 26.92 47.37, 48.00, 50.00 

Percentage 
closed 
entries 

30 0.00, 0.00*, 33.93 0.00, 0.00, 40.00 38.45, 50.00, 54.16 

i -3.64*** 
i i -3.08** 
i i i -2.37** 

vehicle 17.60, 32.08, 47.07 25.65, 29.34, 43.57 0.00, 12.50, 33.92 

1 21.73, 47.60, 63.95 36.50, 51.27, 57.66 14.78, 36.20, 46.60 

3 44.68, 50.47**, 72.81 47.27, 71.85, 77.39 31.53, 43.93, 53.94 

10 45.33, 56.05**, 81.48 24.76, 45.33, 70.83 44.68, 46.15, 49.35 

percent 
open 
duration 

30 7.67, 59.91, 85.14 29.22, 59.91, 90.39 51.46, 60.53, 76.07 

i 3.32*** 
i i 2.14* 
i i i 2.54** 

vehicle 23.37, 32.22, 36.82 28.15, 32.29, 37.44 7.10, 38.85, 73.44 

1 15.46, 23.90, 34.45 11.10, 15.46, 20.12 18.90, 32.15, 36.37 

3 8.95, 22.47*, 32.10 4.04, 11.41, 29.19 28.73, 34.45, 44.08 

10 5.80, 11.91**, 18.62 0.00, 0.00, 9.65 22.47, 25.91, 32.97 

percent 
closed 
duration 

30 0.00, 0.00**, 10.20 0.00, 0.00, 45.21 9.58, 12.98, 16.64 

i -4.65*** 
i i -3.49*** 
i i i -3.23** 

vehicle 7.59, 16.00, 22.00 7.59, 16.00, 20.00 0.00, 0.96, 10.20 

1 14.00, 20.50, 26.00 13.11, 14.00, 20.00 10.50, 17.00, 26.34 

3 10.00, 15.00, 23.95 4.00,13.00, 22.27 20.50, 24.00, 25.08 

10 12.00, 13.08, 17.51 4.06, 7.12, 9.56 11.00, 17.00, 23.94 

rear 
frequency 

30 0.51, 2.51, 8.98 0.00, 1.51*, 6.16 13.08, 14.43, 19.25 

i -2.37** 
i i -2.64* 
i i i -0.82 

vehicle 3.58, 23.84, 51.36 13.52, 33.22, 96.27 3.33, 6.00, 19.10 

1 0.00, 0.00, 0.00 0.00, 0.00, 6.03 3.27, 12.79, 40.78 

3 0.00, 3.29, 16.50 2.22, 12.21, 39.95 0.00, 0.00, 2.25 

10 0.00, 9.56, 36.74 68.56, 121.68, 158.94 0.00, 0.00, 10.07 

immobile 
duration 

30 62.96, 83.19, 157.64 71.59, 88.06, 157.63 6.24, 46.77, 142.02 

i 0.68 
i i 1.82* 
i i i -1.14 

locomotor vehicle 74.46, 106.11, 125.26 77.86, 104.12, 115.45 83.39, 112.89, 130.61 i 2.13* 



 

123

 
1 130.34, 157.67, 159.28 144.81, 159.28, 169.35 136.04, 156.09, 157.67 

3 152.50,155.37, 167.61*** 141.79, 158.70, 182.59 152.50, 154.62, 162.50 

10 101.88, 150.62, 167.35* 65.12, 76.75, 124.39 137.02, 157.36, 163.40 

duration 

30 72.05, 105.78, 147.65 72.05, 84.56, 123.22 94.61, 147.65, 177.67 

i i 0.27 
i i i 3.17** 

vehicle 13.00, 27.00, 40.00 21.49, 26.00, 33.50 13.00, 27.71, 40.88 

1 30.00, 38.50, 53.00 41.50, 53.00, 60.54 29.63, 36.00, 38.50 

3 27.00, 28.47, 33.51 27.73, 32.75, 36.37 25.00, 27.00, 28.00 

10 13.06, 31.50, 45.00 9.53, 13.06, 22.02 24.50, 37.07, 46.92 

head-dip 
frequency 

30 5.23, 13.26, 29.75 3.41, 11.62, 26.74 9.65, 18.63, 31.50 

i -1.22 
i i -1.37 
i i i -0.10 

vehicle 1.32, 4.00, 12.00 1.00, 3.65, 6.50 1.88, 7.88, 14.00 

1 3.00, 4.65, 14.00 3.25, 3.49, 8.74 2.91, 5.82, 9.90 

3 8.33, 10.35, 11.00 7.50, 10.68, 13.00 8.33, 10.00, 11.00 

10 5.00, 13.19, 18.00 13.50, 14.00, 20.64 3.11, 6.00, 15.69 

stretch-
attend 
frequency 

30 3.51, 4.87, 15.47 4.41, 8.47, 23.00 2.50, 3.51, 5.32 

i 1.85* 
i i 3.06** 
i i i -0.40 

vehicle 0.00, 8.93, 18.52 2.50, 11.76, 20.79 2.63, 8.33, 16.38 

1 16.67, 27.31, 50.00 27.31, 28.21, 45.76 13.21, 16.67, 33.33 

3 11.11, 22.22, 25.00 8.47, 13.37, 24.39 22.22, 24.00, 25.00 

10 8.11, 20.49, 38.46 12.90, 25.81, 49.26 12.01, 18.75, 30.34 

percent 
protected 
head-dips 

30 6.62, 14.82, 28.21 2.78, 14.63, 21.53 10.10, 22.92, 51.66 

i 1.52 
i i 0.13 
i i i 2.03* 

 

Group sizes: all gerbils: vehicle n = 26, 1mg/kg n = 6, 3mg/kg n = 13,10mg/kg n= 10, 

30mg/kg n =12. Male gerbils: vehicle n= 11, 1mg/kg n=3, 3mg/kg n = 8, 10mg/kg n = 

3, 30mg/kg n = 8. Female gerbils: vehicle n=15,1mg/kg n= 3, 3mg/kg n = 5,10mg/kg n= 

7, 30 mg/kg n= 4 
i  J-T results for all gerbils;   i i results for male gerbils,  i i i results for female gerbils. Levels of significance: 

p< 0.05*, p < 0.01**, p < 0.001
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5.3.1.3 The effects of caffeine on male and female gerbil behaviour in the EPM  

Median, inter-quartile ranges and J-T trend test results for male and female gerbils in 

response to each dose are presented in Table 5.5  

Pair-wise comparisons of data from male and female gerbils revealed that percentage 

open entries was higher in females than males (U = 0, p <0.05), while percentage closed 

entries was higher in males than females (U = 0, p < 0.05) at 0.5mg/kg. None of the 

other measured variables differed between the sexes and so were combined (see Table 

5.3 below for median, inter-quartile range and J-T results). Only percentage open 

duration and head-dip frequency showed significant dose-related trends (see Table 5.3). 

Percentage open duration (U = 46, p <0.05) and head-dip frequency (U = 42, p <0.05) 

were significantly less at 30mg/kg when compared with vehicle control gerbils. For 

median, inter-quartile ranges and J-T results see Table 5.5 below.    
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Table 5.5 Effects of acute caffeine on male and female gerbil behaviour in the 
elevated plus-maze (Median and inter-quartile ranges).  

Median and inter-quartile ranges 

 
Dependent 
variable 

  
Drug 
Dose 
(mg/kg) All gerbils Males Females 

J-T 
statistic 

 
vehicle 17.09, 29.00, 35.00 17.09,25.50, 32.00 17.50, 31.00, 38.07 

0.5 16.58, 34.19, 36.39 6.50, 12.00, 27.12 27.68, 34.38, 36.39 

5 12.62, 19.00, 31.00 8.50, 17.41, 21.50 12.62, 31.00, 37.98 

15 5.16, 24.05, 38.16 10.55, 18.11, 25.99 5.95, 30.00, 42.45 

Total 
entries 

30 9.71, 12.56, 22.50 10.50, 20.00, 22.50 9.71, 12.55, 26.53 

i-1.68 

 

vehicle 39.29, 44.44, 56.52 40.63, 44.10, 60.00 36.99, 44.44, 55.53 

0.5 28.86, 40.00, 51.88 12.20, 24.39, 28.86 41.88, 51.88, 66.67 

5 45.16, 50.00, 54.17 51.92, 54.17, 60.15 35.29, 44.80, 50.00 

15 33.75, 46.05, 64.37 31.25, 37.50, 52.08 42.11, 50.00, 62.07 

Percent 
open entries 

30 35.00, 40.54, 54.00 15.00, 30.00, 39.00 40.27, 50.27, 80.00 

i -0.35 
i i i 0.63 

vehicle 43.48, 55.56, 60.71 40.00, 55.90, 59.38 44.47, 55.56, 63.01 

0.5 48.13, 60.00, 71.14 71.14, 75.61, 87.80 33.33, 48.13, 58.13 

5 45.83, 50.00, 54.84 39.85, 45.83, 48.08 50.00, 55.20, 64.71 

15 35.63, 53.95, 66.25 47.92, 62.50, 68.75 37.93, 50.00, 57.89 

Percent 
closed 
entries 

30 46.00, 59.46, 65.00 61.00, 70.00, 85.00 20.00, 49.73, 59.73 

i i 0.35 
i i i -0.64 

vehicle 17.60, 30.70, 46.14 24.69, 28.13, 36.76 14.78, 36.20, 46.60 

0.5 19.10, 23.95, 46.80 9.86, 19.72, 21.83 29.01, 46.80, 62.41 

5 11.06, 28.16, 41.74 19.61, 37.42, 42.47 5.80, 27.43, 41.74 

15 4.56, 14.28, 24.85 10.36, 14.17, 14.28 2.57, 19.43, 30.27 

Percent  

 

open 
duration 

30 12.69, 16.93*, 21.63 8.47, 16.93, 24.82 12.69, 17.48, 21.63,  

i -2.00* 

 

vehicle 23.81, 32.29, 36.82 30.85, 33.78, 39.58 18.90, 32.15, 36.37,  

0.5 26.23, 38.43, 57.55 39.13, 55.55, 77.15 25.67, 34.09, 48.98 

5 27.20, 39.94, 52.85 17.78, 27.20, 42.01 39.94, 44.36, 89.94 

15 32.37, 42.13, 71.85 37.57, 59.54, 71.85 36.22, 39.79, 44.47 

Percent 
closed 
duration 

30 23.12, 43.98, 69.21 23.12, 25.37, 61.09 21.99, 49.50, 69.21 

i 1.63 

 

vehicle 7.59, 16.00, 21.00 7.58, 13.50, 19.00 10.50, 17.00, 26.35 

0.5 5.41, 18.23, 22.04 5.00, 8.00, 22.55 10.53, 19.82, 22.04 

5 5.00, 9.00, 12.44 3.31, 8.00, 9.50 5.00, 14.50, 21.22 

15 1.86, 9.96, 35.42 1.63, 2.26, 9.60 2.98, 30.83, 40.00 

Rear 
frequency 

30 3.77, 11.00, 14.14 5.50, 11.00, 11.50 3.77, 11.91, 21.28 

i -1.25 

 

vehicle 3.58, 21.30, 51.36 7.51, 37.40, 143.71 3.27, 12.79, 40.78 

0.5 0.00, 0.00, 58.66 0.00, 0.00, 139.24 0.00, 0.00, 58.66 

5 0.00, 0.00, 65.18 0.00, 0.00, 32.59 0.00, 0.31,  08.61 

15 0.00, 58.81, 172.17 57.63, 115.27, 136.86 0.00, 0.36,  85.88 

Immobile 
duration 

30 10.17,138.80, 193.07 9.15, 17.09, 103.51 71.03, 67.51, 10.76 

i -0.24 

 

vehicle 74.46,106.16, 125.26 56.79, 105.14, 118.21 83.39, 12.89, 30.62 

0.5 110.73,151.06, 176.90 77.70, 151.06, 165.90 110.73, 56.43, 76.90 

5 71.87, 156.21, 181.09 104.95,156.21, 185.20 30.51, 53.12, 81.09 

15 41.79, 111.71, 156.46 62.49, 82.26, 153.28 40.86, 41.15, 41.20 

Locomotor 
duration 

30 39.20, 52.92, 137.81 76.35, 135.90, 137.81 39.20, 52.89, 30.54 

i 0.95 
i i 0.83 
i i i 0.61 

 

vehicle 13.00, 27.00, 38.00 18.99, 26.00, 27.00 13.00, 27.71, 40.88 

0.5 17.61, 23.70, 30.86 11.50, 23.00, 23.35 20.23, 30.86, 43.53 

5 12.44, 18.74, 26.81 12.72, 14.00, 21.37 4.21, 25.90, 27.00 

Head-dip 
frequency 

15 4.63, 10.19, 25.47 4.63, 7.00, 7.73 11.91, 23.00, 27.93 

i -2.54* 
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30 9.41, 14.00*, 16.98 7.50, 14.00, 14.50 0 .41, 15.13, 22.07 

vehicle 1.32, 4.00, 12.00 1.00, 2.78, 4.00 1.88,7.88, 14.00 

0.5 2.55, 4.32, 11.78 5.67, 11.33, 15.67 2.55,3.57,8.28 

5 4.00, 7.00, 11.00 6.00, 9.37, 10.48 1.00,4.50, 14.52 

15 0.00, 1.91, 8.26 1.91, 2.82, 3.68 0.00,0.00, 12.00 

Stretch-
attend 
frequency 

30 2.09, 3.77, 15.39 12.00, 22.00, 26.00 1.96,2.98,6.27 

i 0.11 

 
vehicle 0.00  ,9.52, 18.52 0.00, 14.22, 23.08 2.63,8.33, 16.39 

0.5 10.32, 16.13, 38.04 13.04, 26.09, 43.48 10.32, 13.38, 33.06 

5 0.00, 11.11, 33.33 8.85, 14.29, 36.67 0.00,5.56, 25.00 

15 10.00, 43.79, 87.50 28.57, 57.14, 78.57 20.00, 30.43, 75.00 

percent 
protected 
head-dips 

30 5.56, 14.29, 39.71 33.81, 53.33, 76.67 0.00, 5.56, 18.60 

i 1.68 

  

Group sizes: all gerbils: vehicle n = 25, 1mg/kg n = 7, 3mg/kg n = 13, 10mg/kg n= 8, 

30mg/kg n = 7. Male gerbils: vehicle n= 10, 1mg/kg n= 3, 3mg/kg n = 7, 10mg/kg n = 3 

, 30mg/kg n = 3 . Female gerbils: vehicle n= 15,1mg/kg n= 4, 3mg/kg n = 6,10mg/kg n= 

5, 30 mg/kg n= 4. 
i  J-T results for all gerbils;   i i results for male gerbils,  i i i results for female gerbils. Levels of significance: 

p< 0.05*, p < 0.01**, p < 0.001*** 
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5.3.1.4 The effects of FG7142 on male and female gerbil behaviour in the EPM  

Median, inter-quartile ranges and J-T trend test results for male and female gerbils in 

response to each dose are presented in Table 5.6.  

Pair-wise comparisons of male and female gerbils revealed that there were differences 

between the sexes; percentage open entries were higher in males than females at 

30mg/kg (U = 0, p <0.05). In contrast, percentage closed entries and duration were 

higher in females at the 30m/kg dose (U = 0, p < 0.05 and U = 0, p < 0.05, respectively). 

For all other variables, data from male and female gerbils were combined. Only 

locomotor duration (J-T = -2.84, p < 0.01) and stretch-attend frequency (J-T = 1.97, p < 

0.05) showed dose-related trends. Overall, locomotor duration at 5mg/kg (U = 35, p 

<0.05) and at 30mg/kg (U = 16, p <0.01) were significantly less, whereas stretch-attend 

frequency was significantly higher, than vehicle at 30mg/kg (U = 16.5, p < 0.01). For 

median, inter-quartile ranges and J-T results see Table 5.4 below.  

Variables that differed between males and females were analysed separately. In females 

at 30mg/kg percentage open entries (U = 1 p < 0.05) were significantly lower than, and 

closed entries significantly higher than (U = 1, p < 0.05), vehicle control treated gerbils.  
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Table 5.6 Effects of acute FG7142 on male and female gerbil behaviour in the 
elevated plus-maze (Median and inter-quartile ranges).  

Median and inter-quartile ranges 
Dependent 
variable 

Drug 
dose 
(mg/kg) All gerbils Males Females 

J-T 
results 

vehicle 20.84, 26.00, 33.42 23.00, 25.97, 32.00 18.37, 33.00, 43.31 

0.5 25.00, 27.00, 36.00 13.50, 24.50, 31.01 27.00, 36.00, 38.00 

5 26.00, 27.00, 28.74 26.00, 26.07, 27.41 27.50, 28.00, 35.34 

15 11.48, 22.00, 34.25 15.39, 22.00, 27.75 7.28, 29.43, 53.15 

Total 
entries 

    

30 13.86, 24.00, 33.05 22.00, 32.29, 37.82 12.88, 21.50, 30.76 

i -0.9 n/s 

vehicle 41.21, 48.08, 60.43 35.29, 45.45, 60.87 44.95, 55.56, 57.88 

0.5 48.15, 55.56, 59.09 50.64, 56.11, 69.55 38.89, 55.56, 56.00 

5 45.45, 50.00, 54.17 46.15, 51.00, 54.17 42.37, 50.00, 53.01 

15 50.00, 51.47, 60.36 41.67, 53.55, 60.36 50.00, 50.00, 60.00 

Percentage 
open entries 

   

30 33.33, 42.86, 58.62 37.50, 54.55, 58.62 24.32, 36.02*, 52.68 

i i -0.07 
n/s 
i i i -1.81* 

vehicle 39.57, 51.92, 58.79 39.13, 54.55, 64.71 42.12, 44.44, 55.05 

0.5 40.91, 44.44, 51.85 30.45, 43.89, 49.36 44.00, 44.44, 61.11 

5 45.83, 50.00, 54.55 45.83, 49.00, 53.85 46.99, 50.00, 57.63 

15 39.64, 48.53, 50.00 39.64, 46.45, 58.33 40.00, 50.00, 50.00 

Percentage 
closed 
entries 

  

30 41.38, 57.14, 66.67 41.38, 45.45, 62.50 47.32, 63.98*, 75.68 

i i 0.07 
n/s 
i i i 

1.81** 

vehicle 14.17, 33.92, 53.10 8.92, 25.34, 54.88 18.09, 41.60, 49.15 

0.5 36.15, 51.14, 65.28 43.65, 58.21, 72.37 26.34, 50.45, 56.77 

5 26.22, 35.23, 44.64 26.22, 34.59, 38.24 23.90, 37.39, 46.83 

15 16.93, 48.96, 58.05 34.46, 55.03, 62.83 10.50, 20.35, 35.08 

Percentage 
open 
duration 

  

30 12.49, 33.45, 45.80 33.45, 38.88, 56.34 10.99, 19.73, 34.17 

i -0.9 

vehicle 20.18, 35.42, 48.85 20.02, 34.49, 51.23 22.72, 36.34, 42.53 

0.5 20.21, 21.94, 29.06 10.61, 20.97, 21.84 26.03, 29.06, 41.29 

5 26.74, 33.19, 43.65 26.01, 31.65, 41.11 28.18, 33.19, 49.42 

15 9.47, 21.12, 37.31 9.47, 16.63, 25.02 14.70, 36.81, 67.39 

Percentage 
closed 
duration 

  

30 16.62, 27.25, 37.34 16.62, 23.32, 33.27 14.25, 37.68, 42.26 

i i 1.26 
n/s 
i i i 1.24 

vehicle 9.68, 17.00, 23.50 12.00, 17.00, 24.00 9.18, 17.00, 20.27 

0.5 9.85, 11.00, 18.00 4.93, 10.43, 14.50 11.00, 17.00, 22.00 

5 15.00, 20.47, 25.00 13.80, 17.49, 25.00 20.08, 21.00, 23.00 

15 2.65, 11.86, 16.00 4.35, 13.40, 16.00 1.00, 7.36, 14.86 

Rear 
frequency 

   

30 7.98, 16.38, 21.00 7.98, 15.00, 17.19 8.09, 16.65, 24.00 

i 0.16 

vehicle 1.90, 18.26, 50.97 6.38, 18.57, 44.28 0.00, 17.95, 50.97 

0.5 0.00, 1.75, 14.94 088, 8.35, 21.50 0.00, 1.26, 5.82 

5 1.92, 6.59, 11.26 2.57, 5.77, 11.97 1.84, 6.59, 11.03 

15 1.29, 5.72, 121.92 1.89, 5.72, 22.00 0.41, 110.20, 234.94 

Immobile 
duration 

   

30 6.30, 15.46, 68.99 6.30, 9.28, 25.30 9.08, 19.29, 148.89 

i -1.47 

vehicle 83.39, 111.33, 130.16 92.33, 98.46, 118.72 91.72, 128.43, 149.52 

0.5 96.05, 103.14*, 105.83 83.10, 102.86, 104.35 96.05, 105.83, 106.52 

5 79.48, 91.54, 95.96 78.25, 81.81, 93.42 91.88, 93.61, 99.81 

15 54.25, 92.46, 106.24 78.84, 92.46, 102.44 22.40, 83.13, 138.44 

Locomotor 
duration 

   

30 66.36, 88.72**, 101.83 66.36, 89.20, 102.89 47.44, 79.78, 97.08 

i -2.84** 

vehicle 14.87, 27.60, 39.36 11.74, 22.00, 38.72 19.53, 27.95, 40.50 

0.5 39.34, 47.07, 55.00 39.50, 45.53, 49.53 39.34, 55.00, 58.00 

5 22.00, 31.42, 46.00 22.00, 31.71, 34.49 20.50, 28.99, 47.00 

Headdip 
frequency 

   

15 20.97, 37.29, 49.12 29.00, 44.00, 52.41 11.47, 21.68, 35.71 

i -0.54 
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30 18.00, 23.00, 45.61 23.00, 31.00, 46.96 13.46, 19.16, 22.07 

vehicle 2.09, 6.00, 10.33 3.21, 6.00, 8.00 2.09, 6.00, 11.67 

0.5 8.00, 18.00, 21.00 13.00, 19.50, 21.45 6.00, 8.00, 18.58 

5 6.00, 9.00, 14.00 6.85, 11.00, 15.00 5.59, 6.82, 11.00 

15 3.69, 7.62, 13.00 4.69, 10.87, 14.38 3.50, 5.17, 7.62 

Stretch-
attend 
frequency 

  
30 2.97, 10.31**, 18.12 2.34, 10.31, 12.00 4.01, 10.50, 19.03 

i 1.97* 

vehicle 0.00, 7.08, 18.63 0.00, 7.50, 18.75 1.92, 7.02, 15.14 

0.5 5.08, 9.09, 30.23 4.55, 10.31, 20.89 5.08, 5.17, 30.56 

5 6.25, 15.63, 26.32 15.63, 22.84, 26.67 2.17, 6.25, 9.45 

15 8.58, 14.07, 23.09 8.58, 13.33, 15.92 7.61, 22.61, 35.00 

percent 
protected 
head-dips 

  

30 5.66, 16.22, 26.32 5.66, 9.68, 20.00 8.11, 21.85, 30.56 

i 1.63 

 

Group sizes: all gerbils: vehicle n = 15, 1mg/kg n = 7, 3mg/kg n = 11,10mg/kg n= 6, 30mg/kg n = 7. Male 

gerbils: vehicle n= 9 , 1mg/kg n= 3, 3mg/kg n = 6 , 10mg/kg n = 4 , 30mg/kg n = 4 . Female gerbils: 

vehicle n= 6, 1mg/kg n= 4 , 3mg/kg n = 5, 10mg/kg n= 2 , 30 mg/kg n= 3. 
i  J-T results for all gerbils;   i i results for male gerbils,  i i i results for female gerbils. Levels of significance: 

p< 0.05*, p < 0.01**, p < 0.001***. 
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5.3.2 BWB validation results 

5.3.2.1 The effects of diazepam on male and female gerbil behaviour in the BWB  

Median, inter-quartile ranges and J-T trend test results for male and female gerbils in 

response to each dose are presented in Table 5.7.  

There were sex differences in the percentage of time spent in the black compartment 

following treatment with diazepam. More specifically, following 0.1mg/kg diazepam, 

males spent significantly longer in the black compartment compared to females (U = 27, 

p < 0.05). At 0.5mg/kg (U = 20, p < 0.01) and 1mg/kg (U 26, p< 0.05) this situation was 

reversed, i.e. females spent significantly longer in the black compartment compared to 

males. Thus, analyses were conducted separately for each sex for this variable. (See 

Table 5.5 for median, inter-quartile ranges and J-T results).   

Pair-wise comparisons of diazepam dose versus vehicle, for variables that showed a 

significant dose-related trend, revealed that at 0.05mg/kg more time was spent in 

exploration (exploration duration white U = 264, p <0.05) and less time in freezing/ 

sedation (immobile duration white U = 272, p, 0.05), in the white compartment. At 

0.1mg/kg exploratory behaviour was higher than vehicle-treated animals (exploration 

frequency white U = 264.5, p < 0.05; exploration duration white U = 211.5, p < 0.01). 

Again, at 0.5mg/kg exploration was higher than vehicle indicated by more traversing 

between compartments (crossing frequency U = 303, p < 0.05 and exploration duration 

white U = 305, p < 0.05). This anxiolytic profile was strengthened still further at 

1mg/kg with higher crossing frequency (U = 189.5, p < 0.001), exploration frequency 

white (U = 181.5, p < 0.001), exploration duration white (U = 215, p < 0.01) and less 

immobile duration white (U = 272.5, p < 0.05) than vehicle. See Table 5.7 for median, 

inter-quartile range and J-T results.  

Trend analysis revealed a significant dose-related trend in the time spent in the black 

compartment by male gerbils (males J-T = -3.57, p < 0.001; females J-T = 0.43, n/s). In 

males, pair-wise percentage duration black at 0.5mg/kg and 1mg/Kg were significantly 

less when compared to vehicle-treated gerbils (0.5 mg/kg, U = 45, p < 0.01;  1mg/kg , U 

= 34, p < 0.01).  
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Table 5.7 The effects of diazepam on gerbil behaviour in the black-white box. 
Results are presented as median and inter-quartile ranges.   

Median and inter-quartile ranges Dependent 
Variable 

Diazepam 
dose 
(mg/kg) All gerbils Male gerbils Female gerbils 

J-T 
Statistic 

Vehicle 4.56, 8.24, 22.08   6.64, 10.07, 22.08 3.90, 7.77, 22.63 

0.05 5.11, 7.39, 14.03   5.21, 8.54, 45.42 4.01, 7.20, 9.01 

0.1 3.73, 11.37, 19.06  3.73, 8.23, 19.06 6.72, 15.76, 19.78 

0.5 4.29, 7.00, 20.59   5.82, 7.52, 22.24 3.49, 5.33, 14.94 

Latency 
black 

      

1 4.66, 6.75, 13.46   5.71, 7.58, 10.96 2.37, 6.21, 23.40 

i -0.78, n/s 

vehicle 40.69, 46.39, 56.86   39.89, 46.39, 48.80 42.13, 47.68, 58.04 

0.05 37.11, 43.76, 51.08   38.20, 42.43, 53.04 36.44, 43.90, 49.11 

0.1 41.16, 48.35, 56.27   35.52, 44.94, 51.11 44.62, 53.71, 62.51 

0.5 39.61, 46.80, 49.64   46.09, 47.60, 51.10 38.38, 40.99, 48.57 

% White 
duration 

      

1 44.63, 47.22, 52.73   45.84, 48.70, 54.93 42.72, 45.40, 49.44 

i -0.67, n/s 

vehicle 32.40, 39.98, 44.78 35.24, 41.51, 46.70 30.43, 36.35, 42.65 

0.05 32.85, 38.11, 44.43 35.59, 39.59, 43.21 30.12, 37.93, 45.65 

0.1 29.10, 34.37, 39.73 34.37, 37.96, 44.99 28.63, 30.68, 35.81 

0.5 28.81, 37.65, 42.52 28.32, 32.27, 36.61* 39.22, 40.82, 45.74 

%Black 
 duration 
duration 

1 31.45, 33.63, 36.37 29.58, 32.22, 33.86** 33.63, 36.37, 44.14 

i i-3.57*** 
i i i0.43, n/s 

vehicle 36.00, 42.50, 51.00   38.00, 42.50, 50.00 35.00, 46.50, 54.00 

0.05 38.00, 44.00, 52.00   36.00, 41.00, 45.00 41.00, 51.50, 59.00 

0.1 41.00, 44.00, 53.00   43.00, 45.00, 47.00 38.50, 51.00, 56.00 

0.5 39.00, 49.00 57.00 * 40.50, 53.00, 55.50 40.50, 47.00, 61.00 

Crossing 
frequency 

      

1 48.00,56.00,67.00***  

 

49.00, 58.00, 66.00 47.00, 54.50, 73.00 

i 3.57*** 

vehicle 56.69, 64.80, 72.57 56.69, 64.80, 72.57 55.84, 63.13, 82.25 

0.05 42.91, 53.45, 62.20 42.91, 53.45, 62.20 45.38, 56.11, 68.22 

0.1 38.96, 51.04, 55.26 38.96, 51.04, 55.26 55.50, 62.02, 65.55 

0.5 51.14, 57.43, 60.57 51.14, 57.43, 60.57 43.91, 50.88, 57.97 

Mobile 
Duration 
white 

 

1 62.74, 63.97, 69.76 62.74, 63.97, 69.76 45.88, 52.44, 55.82 

i -1.78 

vehicle 50.00, 74.00, 82.00 50.00, 74.00, 82.00 56.50, 72.50, 89.50 

0.05 71.00, 84.00, 114.00 71.00,84.00, 114.00 63.00, 74.50, 83.00 

0.1 78.00, 88.00, 96.00* 78.00, 88.00, 96.00 67.50, 80.00, 92.00 

0.5 77.00, 82.00, 87.00** 77.00, 82.00, 87.00 56.00, 60.00, 90.50 

Exploratio
n 
frequency 
white 

1 87.00,101.00,109.5** 87.00, 101.00, 109.50 76.00, 86.00, 98.00 

i 3.12** 

vehicle 40.91, 51.27, 57.85 36.76, 52.37, 58.46 42.04, 50.45, 55.37 

0.05 50.60, 54.38, 66.74 51.88, 54.19, 66.88 48.51, 55.30, 66.61 

0.1 52.90, 62.08, 71.49** 53.90, 64.18, 71.17 50.62, 60.43, 71.93 

0.5 47.36, 57.84, 64.69 55.42, 63.99, 65.52 39.80, 48.22, 63.57 

Exploratio
n Duration 
white 

 

1 53.72, 61.43, 73.64** 57.67, 66.51, 76.60 45.77, 59.60, 69.12 

i 3.06** 

vehicle 0.00, 3.38, 7.36 0.00, 3.38, 7.36 0.00, 1.79, 7.52 

0.05 0.00, 0.00, 0.99 0.00, 0.00, 0.99 0.00, 0.33, 2.03 

0.1 0.00, 0.00, 0.88 0.00, 0.00, 0.88 0.31, 1.37, 5.46 

0.5 0.31, 1.16, 1.62 0.31, 1.16, 1.62 0.00, 0.00, 2.88 

Immobile 
Duration 
white 

 

1 0.00, 0.00, 0.19 0.00, 0.00, 0.19 0.00, 0.00, 2.03 

i -2.3* 

 

Group sizes All gerbils: vehicle n= 38, 0.05mg/kg n= 20, 0.1 mg/kg n= 21, 0.5 mg/kg n= 22, 1mg/kg n= 

21. Males: vehicle n= 18, 0.05mg/kg n= 10, 0.1 mg/kg n= 10, 0.5 mg/kg n= 11, 1mg/kg n= 11.Females: 

vehicle n= 20, 0.05mg/kg n= 10, 0.1 mg/kg n= 11, 0.5 mg/kg n= 11, 1mg/kg n= 10.Levels of significance 

for J-T test and Mann Whitney U pair-wise comparisons with vehicle * = p < 0.05, ** = p< 0.01, *** = p 

< 0.001.  
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5.3.2.2 The effects of buspirone on male and female gerbil behaviour in the BWB 

Median, inter-quartile ranges and J-T trend test results for male and female gerbils in 

response to each dose are presented in Table 5.8.  

Analysis revealed significant sex differences for all of the behavioural measures in the 

BWB following the two highest doses of buspirone (10mg/kg & 30mg/kg). Closer 

inspection of the data revealed that these differences were largely a result of male 

gerbils failing to enter the black compartment of the box during the test session 

following these two doses of buspirone. Thus, there were significant differences 

between male and female gerbils in their latency to enter the black compartment 

(10mg/kg (U = 13, p < 0.001; 30mg/kg (U= 23.5, p < 0.05)). Males spent a significantly 

greater percentage of the test session in the white compartment compared to females 

(10mg/kg (U = 13, p < 0.01; 30mg /kg (U = 23.5, p < 0.05)). In contrast, females spent a 

significantly greater proportion of their time in the black compartment of the BWB 

compared to males (10mg/kg (U = 0, p < 0.001); 30mg/kg (U = 21.5, p < 0.05)). 

Consistent with this, females showed a significantly higher frequency of crossing 

between the compartments compared to males (10mg/kg (U = 0, p < 0.001); 30mg/kg 

(U =19.5, p < 0.05)). In addition to these differences, males showed a significantly 

greater duration of immobility in the white compartment compared to females following 

30mg/kg (U = 1, p < 0.001). Given these sex differences, subsequent analyses were 

carried out separately for male and female gerbils.   

Treatment with buspirone had significant effects on most of the behaviours measured in 

male and female gerbils in the BWB (these data are summarised in Table 5.8). The 

exceptions to this were latency to enter the black compartment (J-T =-3.1, p < 0.05 for 

males, J-T = 0.61, p n/s for females) and mobile duration in the white compartment (J-T 

= 1, p n/s for males, J-T = 0.29, n/s for females). Hence, in males at 1mg/kg exploration 

frequency and duration white (U = 39.5, p < 0.01, U = 44, p < 0.05) were higher, while 

the time spent in the black compartment (percentage duration black U= 61, p < 0.05) 

and the time spent in freezing/ sedation (U= 27.5, p < 0.001) were less than vehicle 

controls. At 3mg/kg latency black (U = 49.5, p < 0.05) was higher, while time spent 

crossing between compartments (crossing frequency (U = 14, p < 0.001)) and time spent 
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in the black compartment (percentage black duration (U = 47.5, p < 0.05)) were 

significantly less than male vehicle controls.   

In male gerbils treated with 10mg/kg and 30 mg/kg buspirone, latency black (U = 22, p 

< 0.001; U = 22.5, p < 0.001 respectively) was higher than vehicle-treated gerbils. 

While, percentage black duration at 10mg/kg (U = 5, p < 0.001) and 30mg/kg (U = 5.5, 

p < 0.001), crossing frequency at 10mg/kg (U = 1, p < 0.001) and 30mg/kg (U = 0, p < 

0.001), exploration frequency at 10mg/kg (U = 3, p < 0.001) and 30mg/kg (U = 11, p < 

0.001) and exploration duration at 10mg/kg (U = 12, p < 0.001) and 30mg/kg (U = 12, p 

< 0.001) were all significantly lower than vehicle controls. In contrast, time spent in the 

white compartment (percentage duration white at 10mg/kg (U = 19 p < 0.001) and 

30mg/kg (U = 2, p < 0.001) and time spent immobile at 10mg/kg, (immobile duration at 

10mg/kg  (U = 5, p < 0.001) and 30mg/kg (U = 9, p < 0.001)) was higher than vehicle 

controls.   

In females at 1mg/kg, 3mg/kg, 10mg/kg and 30mg/kg movement between the two 

compartments was less than in vehicle control gerbils (crossing frequency at 1mg/kg (U 

= 44.5, p < 0.05), 3mg/kg (U = 19.5, p< 0.01), 10mg/kg (U = 16.5, p < 0.001) and 

30mg/kg (U = 0, p < 0.001)). Exploration frequency was also lower at 10mg/kg (U = 

93.5, p < 0.05) than in vehicle-treated gerbils. 

Again at 30mg/kg, percentage black duration (U = 30, p < 0.01), crossing frequency (U 

= 0, p < 0.001), exploration frequency (U = 30.5, p < 0.01) and exploration duration (U 

= 36, p < 0.05) were also less than in vehicle control gerbils. Additionally, sedation, 

immobile duration, (U = 21.5, p < 0.001) and time spent in the white compartment, 

percentage duration white (U = 31, p < 0.001) was higher than vehicle control gerbils.     
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Table 5.8 The effect of buspirone on male and female gerbil behavior in the black-
while box (Table of medians and inter-quartile ranges).  

Median and inter-quartile ranges 

Dependent 
variable 

Buspirone 
dose 
(mg/kg) 

Males Females 

J-T Statistic 

vehicle 6.64, 10.07, 22.08 4.23, 8.15, 25.59 
1 4.58, 7.42, 8.15 2.93, 5.43, 19.97 
3 14.33, 22.62, 41.36* 8.28, 10.57, 21.20 
10 300+ (did not enter)** 8.28, 17.74, 25.49 

Latency 
black 

30 300+ (did not enter)*** 0.00, 10.24, 56.12 

i i -3.1* 
i i i 0.61 n/s 

vehicle 39.88, 46.38, 48.80 42.44, 47.67, 57.89 
1 39.82, 45.01, 49.93 45.75, 57.12, 63.11 
3 41.08, 62.36, 81.91 40.02, 48.59, 70.83 
10 99.62, 100.00, 100.00** 37.46, 44.09, 68.44 

% White 
Duration 

30 99.61, 100.00, 100.00*** 75.66, 87.84, 100.00** 

i i 5.06*** 
i i i 1.92* 

vehicle 35.24, 41.50, 46.70 30.62, 36.35, 41.48 
1 31.34, 33.19, 38.06* 27.21, 31.94, 39.81 
3 6.85, 20.33, 36.85* 22.43, 35.41, 45.93 
10 0.00, 0.00, 0.00*** 16.36, 47.22, 48.63 

% Black 
duration 

30 0.00, 0.00, 0.00*** 0.00, 8.34, 13.75** 

i i -6.46*** 
i i i -1.97* 

vehicle 36.00, 41.50, 49.00 39.00, 47.00, 54.00 
1 35.00, 38.00, 46.00 27.50, 35.00, 43.50** 
3 7.00, 21.00, 25.50*** 28.00, 31.00, 31.00*** 
10 0.00, 0.00, 0.00*** 16.00, 27.00, 28.00*** 

Crossing 
frequency 

30 0.00, 0.00, 1.00*** 0.00, 5.50, 12.00*** 

i i -6.8** 
i i i -6.59*** 

vehicle 56.69, 64.80, 72.57 57.75, 65.63, 84.14 
1 55.25, 64.51, 79.13 65.68, 80.23, 85.24 
3 68.64, 82.14, 102.09** 55.58, 77.01, 96.26 
10 15.59, 18.12, 49.92 60.39, 71.41, 80.27 

Mobile 
Duration 
white  

30 42.52, 83.86, 143.95 24.78, 68.12, 125.46 

1.00, n/s 
0.29, n/s 

vehicle 50.00, 74.00, 82.00 65.00, 75.50, 91.00 
1 88.50, 97.00, 103.00** 64.50, 77.00, 109.00 
3 39.00, 50.00, 69.00 63.00, 72.50, 87.00 
10 1.00, 3.00, 12.00*** 52.00, 68.00, 72.00 

Exploration 
frequency 
white  

30 8.00, 15.50, 25.00*** 6.00, 21.50, 57.00** 

i i -4.65*** 
i i -3.09** 

vehicle 36.76, 52.37, 58.46 42.58, 51.44, 55.71 
1 63.15, 68.67, 72.20** 46.29, 59.49, 79.85** 
3 32.39, 44.37, 57.48 53.26, 58.24, 74.09* 
10 2.47, 5.16, 15.05*** 36.66, 51.36, 56.34 

Exploration 
Duration 
white  

30 7.37, 21.28, 22.28*** 4.83, 21.62, 41.00* 

i i 4.03*** 
i i i -1.81* 

vehicle 0.00, 3.38, 7.36 0.00, 1.79, 6.54 
1 0.00, 0.00, 0.00 0.00, 0.00, 2.44 
3 0.66, 8.89, 102.36 0.00, 0.00, 8.62 
10 203.82, 234.53, 279.40*** 0.00, 0.00, 32.33 

Immobile 
Duration 
white  

30 115.74, 170.23, 239.79*** 11.74, 97.58,224.71*** 

i i 4.39*** 
i i i 2.32* 

 

Group sizes Males: vehicle n = 18; 0.5 mg/kg n = 11; 5mg/kg n = 11; 15 mg/kg n = 9; 30 mg/kg n = 10. 

Females: vehicle n = 18; 0.5 mg/kg n = 11; 5mg/kg n = 10; 15 mg/kg n = 13; 30 mg/kg n = 10. Levels of 

significance for J-T test and Mann Whitney U pair-wise comparisons with vehicle * = p < 0.05, ** = p< 

0.01, *** = p < 0.001.
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5.3.2.3 The effects of caffeine on male and female gerbil behaviour in the BWB  

Median, inter-quartile ranges and J-T trend test results for male and female gerbils in 

response to each dose are presented in Table 5.9.  

Sex differences were apparent for all variables. At 0.5mg/kg caffeine, crossing 

frequency (U = 20.5, p < 0.01), percentage duration in the white compartment (U = 29, 

p < 0.05), locomotor activity (mobile duration white (U = 17, p< 0.05)) and exploration 

in the white compartment (frequency (U = 12, p < 0.01) duration (U = 26, p < 0.01)) 

were significantly lower in females compared to males. Following the same dose of 

caffeine, females also spent a significantly greater proportion of the test session in the 

black side (U = 28, p < 0.05) and significantly longer immobile in the white side of the 

BWB compared to males (U = 32.5, p < 0.05). The only other sex differences were 

observed following 5mg/kg caffeine, which resulted in females taking significantly less 

time to enter the black compartment (U = 21, p < 0.05). Hence, all data for males and 

females were analysed separately.  

For median, inter-quartile ranges and trend test data see Table 5.9.    

In males, at 0.5mg/kg time spent in the white compartment (percentage duration white 

(U = 55, p< 0.05)) and locomotor activity were higher (mobile duration white (U = 34, 

p< 0.001)), while time spent in the black compartment (percentage duration black (U = 

34, p < 0.001)) and in freezing/sedation (immobile duration white (U = 39.5, p < 0.05) 

were less than vehicle controls. At 5mg/kg, locomotion (mobile duration white (U= 20, 

p < 0.001) was higher, while percentage duration black (U = 52, p < 0.05) and immobile 

duration white (U = 50, p < 0.05) were lower, than vehicle controls. At 15mg/kg latency 

black (U = 53, p < 0.05), percentage duration white (U = 53, p < 0.05), mobile duration 

white (U = 56, p < 0.05) and immobile duration white (U = 62.5, p < 0.05) were higher 

than vehicle, while, percentage duration black (U = 43, p < 0.01) was lower. Finally, at 

30mg/kg, percentage duration black (U = 22.5, p < 0.001) and crossing frequency (U = 

26.5, p < 0.01) were less, and percentage duration white (U = 51, p < 0.05) was higher, 

than vehicle.   

In female gerbils at 5mg/kg and 30mg/kg, mobile duration white (U = 51, p < 0.05 and 

U = 39, p < 0.05, respectively) was higher than vehicle control females; whereas, 



 

136

 
crossing frequency at 15 and 30mg/kg (U = 58.5, p < 0.05 and U = 31.5 p < 0.01, 

respectively) was less. 
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Table 5.9  The effect of caffeine on male and female gerbil behavior in the black-
while box. (Table of medians and inter-quartile ranges).  

Median and inter quartile ranges Dependent 

variable 

Caffeine 

dose 

(mg/kg) Males Females 

J-T Results 

vehicle 6.64, 10.07, 22.08 3.90, 7.77, 22.63 

0.5 6.86, 15.43, 27.58 1.59, 3.38, 11.56 

5 8.62, 18.62, 27.44 5.33, 6.02, 13.13 

15 16.09, 20.66*, 96.56 5.41, 10.16, 20.11 

Latency 

black 

      

30 6.86, 36.30, 85.05 2.80, 3.63, 17.19 

i i 2.48** 
i i i 0.09 

vehicle 39.89, 46.39, 48.80 42.13, 47.68, 58.04 

0.5 46.53, 53.51*, 57.97 35.48, 39.08, 50.33 

5 44.01, 56.34, 62.93 40.28, 47.72, 56.78 

15 52.64, 61.69*, 81.53 34.02, 48.73, 79.02 

% white 

duration 

      

30 51.23, 59.21*, 93.77 44.95, 66.25, 83.57 

i i 3.1** 
i i i 0.81 

vehicle 35.24, 41.51, 46.70 30.43, 36.35, 42.65 

0.5 26.21, 30.45, 37.40** 32.32, 45.06, 49.78 

5 21.21, 29.92, 40.30* 24.58, 34.49, 47.32 

15 7.60, 19.90, 27.43* 16.07, 35.78, 41.67 

% black 

duration 

      

30 2.99, 14.89, 27.29** 7.58, 15.11,40.36 

i i -4.7*** 
i i i -1.4 

vehicle 36.00, 41.50, 49.00 34.50, 45.50, 53.00 

0.5 40.00, 49.50, 53.00 26.00, 34.00, 40.00** 

5 34.00, 38.00, 45.50 31.00, 37.50, 45.00 

15 18.50, 25.00, 38.50* 9.00, 29.00, 38.50** 

Crossing 

frequency 

      

30 4.00, 17.00, 29.00*** 14.00, 28.00, 32.00** 

i i -3.86*** 
i i i -3.1*** 

vehicle 56.69, 64.80, 72.57 55.84, 63.13, 82.25 

0.5 81.52, 85.55, 92.86*** 56.04, 66.65, 81.05 

5 77.90, 85.77,109.60*** 74.34, 84.31, 99.69* 

15 64.19, 76.83, 100.11 43.47, 62.03, 86.57 

Mobile 

Duration 

white 

 

30 53.24, 66.19, 95.17 78.33, 95.97, 109.88* 

i i 1.97* 
i i i 2.11* 

vehicle 50.00, 74.00, 82.00 56.50, 72.50, 89.50 

0.5 67.00, 101.50, 110.00* 32.00, 46.50, 61.50** 

5 82.00, 96.00, 100.50* 72.00, 85.50, 108.00 

15 61.00, 85.00, 99.50 35.00, 72.00, 84.00 

Exploratio

n 

frequency  

 White 

  

30 35.00, 43.00, 58.50* 36.00, 62.00, 69.00 

i i 1.19 
i i i -0.76 

vehicle 36.76, 52.37, 58.46 42.04, 50.45, 55.37 

0.5 46.73, 63.92, 72.12 30.92, 45.25, 51.36 

5 50.20, 65.00, 73.91 46.52, 61.02, 74.04 

15 48.85, 61.80, 79.71 35.30, 51.35, 57.69 

Exploratio

n 

Duration 

White 

  

30 34.84,45.12, 60.55 37.77, 47.75, 72.12 

i i 0.4 
i i i 0.43 

 

vehicle 0.00, 3.38, 7.36 0.00, 1.79, 7.52 

0.5 0.00, 0.00, 0.00* 0.00, 0.30, 5.52 

5 0.00, 0.00, 0.61* 0.00, 0.00, 0.00* 

15 2.70, 9.34, 53.84 0.00, 0.00, 53.99 

Immobile 

Duration   

 White 

   

30 1.51, 31.53, 148.98 0.00, 10.22, 51.41 

i i 1.81* 
i i i 0.1 
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Group sizes All gerbils: vehicle n = 38; 0.5mg/kg n= 22; 5mg/kg n = 21; 15mg/kg n = 22; 30mg/kg n = 

20. Males: vehicle n = 18; 0.5mg/kg n= 10; 5mg/kg n = 11; 15mg/kg n = 11; 30mg/kg n = 11. Females: 

vehicle n = 20; 0.5mg/kg n= 12; 5mg/kg n = 10; 15mg/kg n = 11; 30mg/kg n = 9.Levels of significance 

for J-T test and Mann Whitney U pair-wise comparisons with vehicle * = p < 0.05, ** = p< 0.01, *** = p 

< 0.001. 
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5.3.2.4 The effects of FG7142 on male and female gerbil behaviour in the BWB.  

Median, inter-quartile ranges and J-T trend test results for male and female gerbils in 

response to each dose are presented in Table 5.10.  

There were differences between male and female gerbils in their response to Fg7142. At 

3mg/kg the crossing frequency between compartments (U = 26.5, p < 0.05) was 

significantly higher in females than males. Mirroring this, females spent significantly 

less time immobile in the white compartment compared to males (U = 25, p < 0.01). 

Following 10mg/kg, Fg7142 females were significantly more active (mobile duration 

(U = 29, p < 0.05)) and less immobile in the white zone than males (U = 23, p < 0.001). 

At 30mg/kg females took significantly longer to enter the black zone (U = 31, p < 0.05), 

spent significantly longer in the white side (U = 23, p < 0.01) and were more active 

(mobile duration (U = 28, p < 0.05)) compared to males. These variables were analysed 

separately for each sex and are summarised in Table 5.10 below.  

When data from each dose were compared with vehicle for each of the behaviours that 

did not differ between the sexes, there were consistent trends (see Table 5.10 below). 

Gerbils spent less time in the black side, percentage black duration (1mg/kg U = 181, p 

< 0.05; 10mg/kg U = 282, p < 0.05; 30mg/kg; U = 313, p <0.05) and more time 

exploring the white compartment, exploration frequency (1mg/kg U = 235.5, p < 0.01; 

3mg/kg U= 283, p < 0.05) and duration (1mg/kg U = 194, p < 0.01; 3mg/kg U = 198.5 p 

< 0.01; 10mg/kg U = 284, p< 0.05; 30mg/kg U = 274, p < 0.01) than vehicle-treated 

controls.   

Variables that differed between males and females were analysed separately and 

compared to their own vehicle for each drug dose.  In males, at 1mg/kg, latency black 

was higher than vehicle (U = 61, p < 0.05). At 3mg/kg, locomotor activity was less than 

vehicle (mobile duration white U = 59, p < 0.01). Similarly, at 10mg/kg, both locomotor 

activity (mobile duration white U = 41.5, p < 0.01) and freezing/ sedation (U = 46.5, p < 

0.01) were less than vehicle-treated animals. Again, at 30mg/kg, mobile duration white 

was lower than vehicle-treated gerbils (U = 52, p < 0.01).  

In females, latency black was higher at the top dose 30mg/kg (U = 52, p < 0.05) than 
vehicle-treated gerbils.  
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Table 5.10    The effect of FG7142 on male and female gerbil behaviour in the 
black-while box. (Table of medians and inter-quartile ranges).  

Median and inter-quartile ranges 
Dependent 

variable 

FG7142 

dose 

(mg/kg) all gerbils males females 

J-T Result 

vehicle 4.56, 8.24, 22.08 6.64, 10.07, 22.08 3.90, 7.77, 22.63 

1 8.60, 13.84, 23.07 13.49, 15.15, 23.07* 3.85, 10.05, 18.18 

3 5.94, 9.01, 12.85 6.23, 9.72, 12.90 5.00, 7.36, 11.10 

10 4.8, 9.20, 21.53 4.31, 6.81, 13.26 8.79, 15.60, 27.43 

Latency  

black 

      

30 4.99, 9.56, 19.28 1.59, 6.97, 11.70 9.45, 13.02, 27.28* 

i i -2.11* 
i i i 2.07* 

vehicle 40.69, 46.39, 56.86 39.89, 46.39, 48.80 42.13, 47.68, 58.04 

1 48.89, 53.08, 62.26 47.20, 50.83, 59.52 50.79, 58.83, 68.45 

3 39.80, 44.03, 47.54 42.90, 44.03, 48.21 39.29, 42.65, 47.54 

10 44.51, 48.03, 55.64 42.37, 45.70, 47.62 49.45, 54.92, 56.52 

% White 

 duration 

      

30 41.00, 48.59, 59.61 38.13, 41.00, 47.48 49.44, 51.28, 66.60 

i i -1.17 
i i i 1.19 

vehicle 32.40, 39.98, 44.78 35.24, 41.51, 46.70 30.43, 36.35, 42.65 

1 25.76,28.30, 34.20* 26.98, 32.27, 34.16 25.34, 28.12, 33.82 

3 32.58, 39.44, 41.21 30.64, 40.53, 41.70 36.10, 38.85, 41.20 

10 27.06,32.72, 40.26* 32.72, 35.10, 40.96 26.11, 28.59, 34.50 

% Black 

Duration 

30 25.17,37.64, 39.15* 34.19, 37.73, 40.87 24.44, 28.29, 38.32 

i -1.76* 

vehicle 37.00, 44.00, 51.00 36.00, 41.50, 49.00 34.50, 45.50, 53.00 

1 32.00, 42.50, 49.50 37.00, 45.00, 48.50 22.00, 38.00, 48.00 

3 37.00, 42.00, 50.00 35.50, 38.00, 41.50 40.00, 49.00, 52.00 

10 38.00, 41.00, 52.00 37.00, 40.00, 47.00 35.50, 47.00, 49.50 

Crossing  

frequency 

      

30 34.50, 39.00, 48.00 35.00, 44.50, 47.50 26.50, 34.00, 44.50 

i i -0.12 
i i i -1.34 

vehicle 56.10, 64.25, 73.30 56.69, 64.80, 72.57 55.84, 63.13, 82.25 

1 58.83, 66.78, 74.41 60.52, 67.59, 72.92 57.17, 63.20, 78.37 

3 48.56, 54.61, 57.64 50.52, 54.61, 57.04** 47.26, 54.92, 57.64* 

10 49.50, 52.84, 61.82 46.11, 50.22, 54.18** 51.04, 55.64, 67.14 

Mobile 

Duration 

White 

 

30 46.84, 55.01, 62.54 42.01, 48.87, 58.12* 54.08, 60.32, 65.29 

i i -3.85*** 

-1.29 

vehicle 56.00, 73.50, 84.00 50.00, 74.00, 82.00 56.50, 72.50, 89.50 

1 70.50,87.50,108.** 63.00, 84.00, 100.50 84.00, 106.00, 124.00 

3 68.00,80.00, 93.00* 68.50, 78.00, 92.50 68.00, 85.00, 111.00 

10 63.00,77.00, 100.00 72.50, 79.00, 92.50 53.50, 73.00, 109.00 

Exploration 

frequency 

White 

 

30 70.50, 79.00, 97.50 67.50, 78.00, 90.50 73.50, 81.00, 102.00 

i 1.34 

vehicle 40.91, 51.27, 57.85 36.76, 52.37, 58.46 42.04, 50.45, 55.37 

1 55.98,63.82,78.46* 50.44, 62.23, 71.50 58.68, 64.71, 87.39 

3 51.79,63.76,69.42* 52.02, 65.08, 68.80 50.58, 62.98, 71.62 

10 46.00,64.49, 71.68* 50.47, 68.99, 71.64 36.21, 58.43, 69.93 

Exploration 

Duration 

White 

 

30 49.19,61.47,69.38* 45.77, 58.21, 66.91 56.14, 64.84, 77.59 

i 4.21*** 

vehicle 0.00, 1.92, 7.36 0.00, 3.38, 7.36 0.00, 1.79, 7.52 

1 0.00, 2.01, 12.49 0.00, 1.38, 12.49 0.00, 4.51, 6.22 

Immobile 

 Duration 

 White 3 0.00, 0.00, 0.66 0.00, 0.66, 2.20 0.00, 0.00, 0.00** 

i i -2.45** 

1.09 



 

141

 
10 0.00, 0.33, 7.75 0.00, 0.00, 0.00 0.88, 2.47, 12.08 

 
30 0.00, 1.49, 8.46 0.00, 0.00, 5.03 1.18, 3.50, 9.67 

 
Group sizes: All gerbils: vehicle n = 38, 1mg/kg  n = 20, 3mg/kg n = 21, 10mg/kg n = 22, 30mg/kg n =  

23. Males: vehicle n = 18; 1mg/kg n = 11, 3mg/kg n = 11, 10mg/kg n = 11, 30mg/kg n = 12. Females:  

vehicle n = 20; 1mg/kg n = 9, 3mg/kg n = 10, 10mg/kg n = 11, 30mg/kg n = 11.Levels of significance for 

J-T test, and Mann Whitney U pair-wise comparisons: * = p < 0.05, ** = p< 0.01, *** = p < 0.001.  
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5.3. 3 Results summary   

To recap: in the EPM, alterations in spatiotemporal measures, such as more open entries 

and, time spent in the open arms and less closed duration, represent an anxiolytic profile. 

Additionally, ethological measures, for example, more exploration (head-dipping) and, 

less risk-assessment (stretch-attending) are also indicators of an anxiolytic profile. The 

converse of these represents anxiogenesis.   

EPM: In summary, the trend test results showed that diazepam caused dose-related 

increases in behaviours related to anxiolysis. For example, there were increased time 

and entries to the open arms and exploration, while time spent in the closed arms and 

risk-assessment behaviours decreased. In contrast, buspirone also had an anxiolytic 

profile, but it was more limited in the behaviours it affected and there were difference 

between males and females in ethological measures. Thus, spatiotemporal measures of 

time spent in, and entries to, the open arms increased in all gerbils.  Ethological 

behaviours such as head-dipping, sedation, immobility and rearing differed between the 

sexes. In response to the anxiogenic drug caffeine, there was an anxiogenic dose-

response profile: open-arm entries and exploration decreased, and these behaviours 

reached significance at the top dose in pair-wise testing, but there were some sex 

differences. FG7142 also had an anxiogenic profile, risk-assessment behaviour 

increased in all gerbils, and the effect was more pronounced in females, they entered the 

open arms significantly less than males and vehicle controls.   

In the BWB, indicators of a decrease in anxiety include more time spent in the white 

side, an increased number of transitions between compartments, higher crossing 

frequency, a longer latency to initially enter the black compartment, and more 

exploration and locomotor activity in the box. Higher levels of anxiety-type behaviours 

are typified by more time spent in the black side, a shorter latency to enter the black 

compartment, less exploratory behaviours and, possibly, more immobility; although, 

these behaviours can represent sedation.   

BWB: Diazepam’s profile was anxiolytic. Results of the trend test indicated that 

exploration of the white side increased and this was most pronounced in males. Also, 

black duration significantly decreased in males but not females. Buspirone differed 
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between the sexes for all behaviours measured and only produced a truly anxiolytic 

profile in males at the lowest dose. In females, the dose-related increase in white 

duration provides evidence of anxiolysis. However, the decreases in crossing frequency 

and exploration and the increase in immobility indicate that sedation was predominant. 

Thus, the BWB was able only to detect anxiolysis in males in response to buspirone. 

There were sex differences in response to caffeine and the profile was not clearly 

anxiogenic. In males at lower doses, movement around the box and time in the white 

side was higher than vehicle-treated animals, whereas, at the top dose, movement was 

less than vehicle-treated animals. However, spatiotemporal measures in males were not 

in keeping with anxiogenesis, white time increased and black time decreased in a dose-

relatedfashion. Similarly, females’ activity in the white side was higher than vehicle-

treated animals at the top two doses. However, at these two doses, crossing frequency 

was lower after reaching a peak at the middle dose. In other words, at these doses, 

caffeine failed to produce anxiogenesis in the BWB. In FG7142-treated gerbils, there 

was anxiolysis rather than anxiogenesis indicated by increased latency to enter the black 

compartment, increased activity in the white side, decreased black duration and 

immobility. Locomotor activity was lower in males but only at the middle doses, but 

freezing behaviour was lower at the top dose. The only indication of a potential increase 

in anxiety was in males at the top dose; movement around the white side was 

significantly lower.   

5.4 DISCUSSION:  THE EFFECTS ANXIOLYTIC AND 
ANXIOGENIC DRUGS IN THE GERBIL EPM AND BWB: 
Are both models valid models of anxiety?   

5.4.1 Discussion of the effects of anxiolytic and anxiogenic drugs in 
the gerbil EPM.  

Diazepam’s anxiolytic profile, particularly at the top two doses, is consistent with other 

reported findings in female gerbils (Varty, Morgan et al., 2002). However, if closed 

entries are taken to be a measure of sedation, as reported in the EPM in mice (Rodgers 

& Johnson, 1995) and in rats (Cruz et al., 1994), then there was sedation at all but the 

lowest (0.05mg/kg) dose. Risk-assessment behaviours are reported to be more sensitive 

to anxiolytic drugs and to the type of anxiety found in general anxiety disorder in 
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humans (Blanchard & Blanchard, 1989b; Griebel, Blanchard, & Blanchard, 1997; 

Blanchard et al., 1993; Blanchard et al., 2001). Given that locomotor duration did not 

differ significantly between vehicle and any of the top two doses, nor were there any 

increases in immobile duration, as would be expected if sedation were a prevalent 

feature, it can be concluded that the decreasing trend in closed entries is not entirely 

related to locomotor activity, but was a reflection of fewer entries to, and, time spent in 

the closed arms, and therefore of less anxiety-like behaviours in the gerbils in general. 

Thus, it would appear that the gerbil EPM is more in line with the two-factor model 

proposed by Wall & Messier, (2000 & 2001). In this model they proposed that the EPM 

measures only two main factors: anxiety measured by open exploration (entries and 

duration) and unprotected head-dips, and protected exploration measured by rearing, 

closed exploration (entries and duration) and, stretch-attend behaviour. In diazepam 

treated females rearing was significantly less at the top dose, indicating a reduction in 

protected exploration and therefore less anxiety.  

Diazepam’s lack of difference between male and female gerbils on measures related to 

anxiety is similar to findings in other rodents. For example, the rat showed no 

differences between the sexes in its anxiolytic response to diazepam and the effective 

anxiolytic dose of 1mg/kg was similar to the gerbils tested here  (Hagenbuch, Feldon, & 

Yee, 2006).   

Additionally, fit results indicate that female gerbils are more sensitive to the sedative 

and anti-seizure properties of diazepam than male gerbils. Studies on untreated gerbils 

indicated no sex differences in susceptibility to seizures, indicating that this sex 

difference is because of an interaction of diazepam with female gerbils (Kaplan & 

Miezejeski, 1972). In rats, seizure susceptibility and its treatment with BDZs has been 

shown to be dependent on sex and strain (Brandt, Glien, Potschka, Volk, & Loscher, 

2003).  

Following buspirone administration, anxiolysis was evident, according to Wall & 

Messier’s (2000) two-factor model, at all but the lowest dose when only total entries 

were higher. In addition, according to this model, anxiolysis was particularly apparent 

in males at the top dose; at this dose rearing significantly decreased. However, if less 

closed arm entries are to be taken as a measure of sedation, as in the factor analysis 

models of Rodgers and Johnson (1995) in mice and Cruz et al., (1994) in rats, then pure 
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anxiolysis was evident only at 10mg/kg. The model reported here differs slightly from 

Varty’s validation in female gerbils (Varty et al., 2002) in which there was only pure 

anxiolysis at 3mg/kg. At higher doses, fewer closed entries led them to believe that 

there were some drug-related sedation effects taking place (Varty et al., 2002).   

It is interesting that only spatiotemporal and not risk-assessment behaviours were 

affected by buspirone. Risk-assessment measures are reported to be more sensitive to 

factors related to anxiety, particularly GAD, for which buspirone is prescribed 

(Blanchard, 1991). However, avoidance of and escape from open entries, indicated by 

lower numbers of open entries and time spent in them, has been suggested to relate to 

panic and phobia, for which buspirone is not effective (Cole & Rodgers, 1995; Cheeta et 

al., 2000; Uchiyama, Toda, Hiranita, Watanabe, & Eyanagi, 2008). It is perhaps also 

important to bear in mind that in humans buspirone takes up to two weeks to have an 

anxiolytic effect and so acute tests do not necessarily have good construct and 

predictive validity for this drug.  

The differences in response to buspirone between the sexes indicate that female gerbils 

might be less sensitive to the anxiolytic effects of buspirone at the lower doses. 

Interestingly, work in rats has shown differences between male and female rats in 

serotonergic neuron density in the dorsal and median raphé (Dominguez, Cruz-Morales, 

Carvalho, Xavier, & Brandao, 2003). This might provide an explanation for the 

differences in response to 5HT-1A antagonist and partial agonist buspirone   

The anxiogenic drugs, caffeine and FG7142, gave the expected profiles. However, even 

though the overall ethograms were anxiogenic the behavioural profiles differed for each 

drug.  In the case of caffeine, less open-arm exploration (open arm time) and head-dip 

frequency reflected anxiogenesis, but this was only at the top (30mg/kg) dose. This 

result is comparable with work in other species of rodent in which only high doses of 

caffeine cause anxiety and lower doses act as a stimulant (Kulkarni et al., 2007; 

Bhattacharya, Satyan, & Chakrabarti, 1997). The sex differences in response to caffeine 

are similar to those seen in humans (Botella & Parra, 2003) with males being more 

sensitive to the acute anxiogenic effects of caffeine in both species. When compared 

with females, open entries were less, and, closed entries more in male gerbils. 

Unsurprisingly, caffeine caused a dose-related increase in seizures in both male and 
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female gerbils. Caffeine is widely used in seizure research in rodents for its ability to 

cause seizures (Morgan & Durcan, 1990).   

Similarly, FG7142 also had an anxiogenic profile at the top dose (30mg/kg) in both 

male and female gerbils, which confirmed results in other gerbil EPMs (Varty, Morgan 

et al., 2002). The decrease in locomotor duration at this dose, although reflective of 

sedation, might also be a sign of less exploration because of increased anxiety. 

Interestingly, spatiotemporal measures were affected only by FG7142 in females. The 

fact that anxiogenesis was reflected in behavioural measures alone and not in 

spatiotemporal measures, stretch-attend frequency significantly increased in all gerbils, 

could be likened to GAD type anxiety. Risk-assessment measures such as stretch-

attends are reported to be more sensitive to factors related to anxiety, particularly GAD 

(Blanchard et al., 1990), whereas increased escape from open entries have been 

suggested as relating to panic (Cole & Rodgers, 1995; Cheeta et al., 2001).   

Also, at the top dose, females were more anxious than males in that they entered the 

open arms less and the closed arms more. Interestingly, in Varty’s female gerbil EPM, a 

similar behavioural profile emerged at 30mg/kg even though in their validation the 

baseline was altered for anxiogenic drug testing to prevent ceiling effects; lighting 

levels were altered to give a less aversive baseline (Varty, Morgan et al., 2002).  

FG7142 also caused a dose-related increase in seizures in male gerbils, which is not 

unsurprising since FG7142 injections are often used to induce seizures in epilepsy 

research (Stanford et al., 1989).  

5.4.2 Discussion of the effects of anxiolytic and anxiogenic drugs, in the 

gerbil BWB  

The drug profiles in the BWB were more complex than those of the EPM.   

The anxiolytic effects of diazepam are in keeping with previously reported findings in 

rats, mice and gerbils (Holmes, Iles, Mayell, & Rodgers, 2001; Chaouloff et al., 1997; 

Lapiz & Hogg, 2001; Costall et al., 1989; Crawley & Goodwin, 1980) and those 

obtained in the EPM. Like the EPM results, the profile at the lowest dose was weakly 
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anxiolytic as only exploratory behaviours were higher and there was no change in 

spatiotemporal measures at this dose. The anxiolytic profile was strengthened with 

increasing dose. Diazepam appeared to alter the spatiotemporal measures in males only, 

which highlights the need to examine both behaviour and location when studying 

gerbils in the BWB. It is common in other rodent models to report only spatiotemporal 

measures; if this had been the case here then the anxiolytic effect of diazepam would 

have only been reported in male gerbils at the top two doses, thus limiting the 

sensitivity and usefulness of the model. The lack of sex differences in response to 

diazepam concurs with those obtained in the gerbil EPM, discussed above, as well as 

those reported for rodents in other models, such as the rat EPM and the marble burying 

test (Wilson, Burghardt, Ford, Wilkinson, & Primeaux, 2004; Chadda & Devaud,  2004).  

In contrast with results from diazepam administration, there were dose-related sex 

differences in response to buspirone. In particular, males showed greater immobility and 

less activity at lower doses than females. Sex differences in response to drugs acting on 

5HT1A have been reported in other models of anxiety and species of rodent. For 

example, females were much more sensitive to the effects of 5HT1A agonist 8-OH-

DPAT than males in the rodent anxiety defence battery of tests (Blanchard et al, 1991). 

Concurrent with this, only males responded to the anxiolytic effects of buspirone at the 

lowest dose; exploratory behaviour was higher and immobility and time in the black 

side were less than vehicle. These findings are similar to those in the gerbil EPM 

(above) and to those reported previously in male gerbils (Lapiz & Hogg, 2001). In 

contrast, similar doses in females led to more exploration in the light side of the box; 

this observation could be interpreted as a mild anxiolytic effect. However, at higher 

doses of buspirone, exploratory behaviour was lower and immobility higher, probably 

reflecting sedation; this was similar to reports by Varty and co-workers (2002) about 

buspirone’s effects in their gerbil EPM. Immobility is not uncommon following acute 

administration of buspirone and is probably because of its alpha-2-adrenoceptor 

antagonist action, which affects glucocorticoid release. This, in turn, suppresses 

locomotor activity masking its anxiolytic effects (Lim et al., 2008). In rats, these effects 

wear off after the first hours following administration (Lim et al., 2008). Perhaps a 

longer uptake time is required before testing buspirone’s effects in this model. On the 

other-hand, it is possible that testing buspirone at a lower dose in females might have 

proved more effective, since sedation was also a predominant feature at several of the 

higher doses tested in Varty et al.’s female gerbil EPM, whereas in Varty’s model, 
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anxiolysis was detected at lower doses (Varty, Morgan et al., 2001). In a similar way to 

the EPM the differences between males and females in the density of serotonergic 

pathways in the parts of the brain associated with fear and anxiety, in particular the DR 

(Bouali et al., 2003; Birzniece et al., 2001; Dominguez et al., 2003), might help to 

explain this difference in response between the sexes. Taken together, these findings 

suggest that males appeared to be more sensitive to the effects of this drug in both 

models. Thus, the BWB appears to successfully detect the effects of the 5HT-1A 

agonist buspirone in male gerbils, but shows limited utility in female gerbils. These 

results also highlight the importance of construct and ecological validity, since in 

humans, buspirone only exerts its clinical effects in relieving anxiety (GAD) after at 

least two weeks of administration, which would argue the case for chronic, rather than 

acute, studies in these models having more validity.  

With regard to the anxiogenic drugs, the effects of caffeine were somewhat ambiguous. 

Males showed lower black side duration but at lower doses caffeine appeared to have 

stimulant effects, increased activity and exploration. By contrast, at the highest dose 

caffeine produced an anxiogenic behavioural profile (reduced crossing frequency and 

exploration), although this profile could also be interpreted as sedation. In females, 

anxiogenic effects were apparent at the lowest dose. In other studies, caffeine appears to 

have an inverted U-shaped mode of action, in that activity decreases at intermediate 

doses compared with lower doses but increases again at higher doses (Hascoet & 

Bourin, 1998). Also, whether anxiety or activity is created is dependent on dose. The 

dose used here was possibly not high enough to induce anxiety, since, in other species 

of rodent, for example mice, higher doses than the ones used here are required to create 

anxiety (Baldwin, 1989; Hascoet & Bourin, 1998; Simmons, 1996). These rather 

ambiguous findings reflect earlier studies in mice, which have either reported that 

caffeine had an anxiogenic profile, a stimulant effect, or produced no change in 

behaviour in the BWB (Hascoet & Bourin, 1998; Hascoet, et al., 2001; Yacoubi et al., 

2000). As with buspirone, sex differences were apparent in response to caffeine. 

Previous research has indicated that a link might exist between caffeine and oestrogen; 

oestrogen in female mice, but not male mice, blocks the neuroprotective effects of 

caffeine (Xu, et al., 2006). This might partially explain the sex differences described 

here.   
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The dose response profile of FG7142 was not convincingly anxiogenic, as the 

predominant effect was an increase in exploratory behaviour in the white compartment. 

Similar baseline effects on FG7142’s ability to induce anxiety have been reported in 

other behavioural paradigms of anxiety (Carey et al., 1992).  In males, the higher doses 

also decreased locomotor activity in the white side. These findings partly concur with 

previous studies which suggest that FG7142 typically reduces exploration of the 

aversive white compartment of the BWB (Costall et al., 1989). However, they differ 

from an earlier study, which suggested that FG7142 did not alter behaviour of male 

gerbils in the BWB (Lapiz & Hogg, 2001). Previous studies of the effects of FG7142 in 

male mice in the BWB have been contradictory (Bourin & Hascoet, 2003). Thus, the 

absence of anxiogenic effects in this case does not necessarily suggest that gerbils 

cannot be used in the BWB.   

Female gerbils’ lack of response to FG7142 might be partly explained by a 

neurosteroid interaction with this drug (Shansky, et al., 2004). In rats, the anxiogenic 

effects of FG7142 have been shown to be dependent on stage of oestrous. In conditions 

of low oestrogen, such as oestrous, FG7142 does not cause anxiety. When oestrogen is 

high, such as during proestrous, FG7142 is an effective anxiogenic agent (Carey, et al., 

1992). In this study, stage of oestrous was not tested and female gerbils were selected 

regardless of their stage in the oestrous cycle, because earlier studies had suggested it 

did not alter their behaviour in the BWB (Bridges & Starkey, 2004).   

The BWB used here is not alone in its inability to detect anxiogenesis caused by 

caffeine and FG7142; other workers have also found that the BWB is limited in its 

ability to detect anxiogenic drugs such as caffeine in mice (Bourin & Hascoet 2003; 

Hascoet & Bourin 1998). It is interesting to note that these results in the BWB are 

contrary to those of the EPM, where anxiety was evident at the top dose and this 

predominantly in female gerbils. However, the fact that the BWB model was not very 

responsive to drugs which are used to treat GAD might suggest that it is modelling 

some other aspect of anxiety. It has been suggested that altering the light intensity over 

the light compartment of the BWB might interfere with the expression of GAD related 

behaviours (Blanchard et al., 2008). It is also interesting to note that in the elevated T-

maze FG7142 has been shown to be effective in creating the types of behaviours that 

reflect GAD, but not the types of behaviours that relate to panic; whereas, caffeine 
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failed to affect behaviours related to GAD or to panic in the same model (Graeff, 

Ferreira Netto, & Zangrossi, 1998).   

The differences in behavioural profile between male and female gerbils highlights that 

the response of male and female gerbils to anxiolytic drugs should be accounted for 

when conducting studies of this type. These differences have been reported in other 

species too (Blanchard, Shepherd, et al., 1991; Shepherd, Flores, Rodgers, Blanchard, & 

Caroline Blanchard, 1992). They also suggest that current tests might need some 

adaptation to be used successfully in female rodents and that the effect of the stage of 

the oestrous cycle on drug action needs to be taken into account.   

5.5 EPM AND BWB VALIDATION SUMMARY AND 
CONCLUSIONS.  

Of the two models tested, the EPM, in particular, was bidirectionally sensitive to the 

effects of anxiolytic and anxiogenic drugs and showed predictive validity in both male 

and female gerbils in a manner comparable with Varty’s female gerbil EPM (Varty, 

Morgan et al. 2002). Diazepam was anxiolytic in both male and female gerbils on all 

measures. In contrast, buspirone’s anxiolytic profile was limited to spatiotemporal 

measures, while ethological behaviours differed between the sexes. In response to the 

anxiogenic drugs, caffeine gave an anxiogenic dose-response profile that reached 

significance at the top dose, but there were some sex differences, while, in response to 

FG7142, risk-assessment behaviour increased in all gerbils. In addition females were 

generally more anxious than males. By contrast, the BWB was more limited in its 

ability to detect the actions of anxiolytic drugs, and this seemed to be limited to 

diazepam in both sexes and only buspirone in males. However, the fact that buspirone’s 

anxiolytic effects take a few weeks to become clinically effective in humans is possibly 

also the case in gerbils. This observation would argue against the validity of acute 

testing of this type of drug in animal models. Of the two models, the EPM seemed to 

validate more clearly, indicating that the BWB might need some adjustments before it 

can be widely used as a model of anxiety.   

The differences in drug profile between the two models highlight the fact that the two 

models might not be modelling the same aspects of anxious behaviour or, at least, that 
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the EPM might be more sensitive to certain aspects of anxious behaviour and the BWB 

to others. Studies have shown that the BWB might reflect activity related to avoidance; 

whereas, the EPM might measure behaviours related to behavioural inhibition and 

scanning (see section 2.2.3 for a further discussion). These latter types of behaviours 

have been likened to worry in humans. Thus, the EPM is possibly more related to 

aspects of GAD; whereas, the BWB might be reflecting avoidance/escape behaviours 

more like phobia or panic, which are not responsive to the types of drugs used to treat 

GAD (Blanchard et al., 2008).   

Bearing in mind these differences and that, in the odour studies, chronic effects are of 

interest as well as acute effects, it was decided to proceed with both models. 

Recognising that there are these differences between the BWB and the EPM might give 

some indication of whether the two odours have similar or different mechanisms of 

action if they do prove to be anxiolytic in these models. However, it is also recognised 

that any interpretation of results in the acutely tested gerbil BWB might be subject to 

limitation in its current form.  

In the next section the use of these models to assess both acute and chronic effects of 

the two odours, lavender, Lavandula angustifolia Mill, and rose, Rosa damascena Mill, 

essential oils will be discussed. Since rose oil odour has also been shown to have 

anxiolytic effects possibly via a differing mechanism than lavender (see section 1.4.5), 

it was decided to compare its effects to lavender oil as a second odour study.  

Additionally, a third study was conducted examining the effects of chronic diazepam in 

both these models in order to compare the effects of a widely used anxiolytic drug with 

those of the EO odours. It was also an aim to compare chronic buspirone with the 

odours’ effects and those of diazepam, but unfortunately in the end that was not possible 

because the project licence holder emigrated and thus any work carried out under this 

project had to cease consistent with the Animals (Scientific Procedures)  Act 1986.  

Validation results showed sex differences in both models in response to all of the drugs 

tested. Additionally, other workers have shown that stage of oestrous might influence 

the effects of anxiolytic drugs (see previous discussion). Therefore, it was decided to 

include stage of oestrous of female gerbils as a measure in the odour studies that follow.   
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Studies have shown that in order to detect anxiolysis it is better to use animals that are 

more anxious at baseline (Varty et al., 2002). There has been some evidence in this 

laboratory that individual housing of gerbils is one way achieving this higher anxiety 

baseline (Starkey, Normington & Bridges, 2007). Therefore, the gerbils in the next 

study were individually housed prior to and for the duration of the odour studies.   

These three studies are presented in the next chapter (chapter 6).
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CHAPTER 6 AN EXAMINATION OF THE EFFECTS 
OF LAVENDER (LAVANDULA ANGUSTIFOLIA) AND 
ROSE (ROSA DAMASCENA) ESSENTIAL OILS AND 
DIAZEPAM FOLLOWING SHORT AND LONG-TERM 
ADMINISTRATION IN THE GERBIL ELEVATED PLUS-
MAZE AND GERBIL BLACK-WHITE BOX  1   

6.1 INTRODUCTION  

Following the validation studies of the gerbil EPM and BWB with two widely used 

anxiolytic drugs, as described in the previous chapter, this chapter describes three 

studies which were conducted in these models to examine the effects of lavender EO 

odour (L. angustifolia Mill.) on anxiety and to compare its effects with the effects of 

another reputedly anxiolytic odour, rose (Rosa damascena Mill.) essential oil odour, and 

the commonly used anxiolytic drug diazepam.   

Initially two pilot studies, one for each odour, were conducted over one hour to assess 

any anxiolytic effects prior to conducting the main study (See appendix 2 for odour pilot 

studies). Results indicated that lavender caused mild anxiolysis and sedation particularly 

in male gerbils. These gerbils spent less time in the closed arms of the EPM and there 

were fewer percentage protected head-dips in male gerbils when compared with 

controls. In the BWB anxiolytic effects were milder and sedation was more prevalent, 

locomotor activity was less and, while not quite reaching statistical significance, latency 

black was longer than in controls. It is interesting to note that females appeared more 

anxious following acute lavender exposure; protected head-dips were higher in female 

gerbils. However, even though these effects were anxiolytic they were very different to 

diazepam’s and buspirone’s effects in both models (see Gerbil validation chapter, 

chapter 5). Nevertheless, lavender’s effects could be compared to diazepam’s, which, at 

the lowest concentration, had an effect on exploration (head-dips increased). 

                                                

 

1 Most of this chapter has been published in the following publications: 
Bradley, B. F., Starkey, N. J., Brown, S. L., & Lea, R. W. (2007). Anxiolytic effects of Lavandula 
angustifolia odour on the Mongolian gerbil elevated plus-maze. J.Ethnopharmacol., 111, 517-525. 
Bradley, B. F., Starkey, N. J., Brown, S. L., & Lea, R. W. (2007). The effects of prolonged rose odor 
inhalation in two animal models of anxiety. Physiol Behav., 92, 931-938.  
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In contrast to lavender, rose oil increased anxiety.  It caused an increase in protected 

head-dips in both males and females in response to the EPM and a decrease in time 

spent in the white compartment in the BWB. Interestingly, in other studies acute rose oil 

has been reported to have anxiolytic effects (Umezu, et al., 1999; de Almeida, et al., 

2004).   

It has been suggested that the ability of essential oils to relieve anxiety are only transient 

(Cooke & Ernst, 2000). Therefore, if they have any value at all, it will be only in the 

short-term. There have been no properly controlled studies to address longer-term 

effects of lavender or rose essential oil and their effects on anxiety.  

There is plenty of published evidence in the peer-reviewed scientific literature that 

lavender possesses acute anxiolytic properties. However, many of the studies are poorly 

controlled and provide only evidence that lavender might relieve anxiety temporarily 

(see section 1.4). Furthermore, there are even fewer studies that provide any evidence 

for rose oil’s ability to relieve anxiety (see section 1.4.5). It has already been mentioned 

in the previous chapter that a true test of an anxiolytic is not an acute test, as is often 

conducted, but a chronic study. Often, prescribed anxiolytic drugs only begin to work 

after 10 days (Sinclair & Nutt, 2007). Thus, the aim here was to compare the effects of 

lavender EO with rose oil, which might also have anxiolytic properties but via differing 

neurochemical targets than those of lavender (Umezu, et al., 1999; Buchbauer, et al., 

2004). If the anxiolytic effects were caused by pleasant odour effects then anxiolysis 

would be only expected to be short-term. The aims also included a comparison of these 

odours with diazepam. Diazepam was chosen because it gave a clear anxiolytic profile 

in both models of anxiety in the validation studies.  

It was also of interest to compare whether any anxiolytic effects caused by the odours 

gave the same or differing behavioural fingerprints and whether one was more effective 

in one model or the other. This was the case with the anxiolytics discussed in the 

previous chapter; acute buspirone and acute diazepam both had anxiolytic effects, but 

gave differing behavioural fingerprints.   
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Thus, the study conducted here compared the effects of one-day or two-weeks of 

lavender or rose odour exposure, or injected diazepam after thirty minutes or two weeks 

administration.   

6.2 MATERIALS AND METHODS  

6.2.1 Animals   

At testing all gerbils were mature and aged between 28 and 38 weeks (males 82.8±1.6 g 

and females 67±1g). In total, 291 gerbils were included in the study: 144 males and 147 

females. All procedures were conducted in accordance with the Animals (Scientific 

Procedures) Act 1986. Ethical approval was obtained from the University’s Animal 

Procedures Committee. 

6.2.2 Chemicals  

Both Lavandula angustifolia Mill. and Rosa damascena Mill. (botanic author Philip 

Miller, 1768 for both) EOs were purchased from Robert Tisserand Ltd. Robert 

Tisserand identified the species. Organic Lavandula angustifolia, obtained from steam 

distillation of flower heads grown in the foothills of the French Pyrenees, was purchased 

from Robert Tisserand Ltd. UK. The voucher specimen is stored at Tisserand Ltd. UK 

(Personal communication: Karl Watson, Tisserand Ltd. UK). Likewise, rose oil was 

also obtained by steam distillation of the petals of Rosa damascena flowers grown in 

Bulgaria and purchased from Robert Tisserand Ltd.  

EO composition was determined by GC–MS, injection volume 1µL (Column: SGE, 

BPX5 (non-polar) bonded phase fused silica; 0.22mm i.d.; 25m length; 0.25m film 

thickness; splitter on, ratio 50:1 Carrier: Helium. Injector 250

 

C, detector 250

 

C. 

Column 50

 

C, 2 min; 5

 

C/min to 100

 

C; 20

 

C/min to 250

 

C for 0.5 min. GC/MS: 

Perkin-Elmer Turbo-Mass) using a modified version of the Adams (1995) method as 

described by Kim and Lee (2002).   

Odour exposure was via an electronic vaporiser and aromastone (Robert Tisserand Ltd.) 

placed in the animal holding room and the experimental suite, but out of reach of the 
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animals during behavioural testing. The odour was refreshed three times daily (8:00, 

12:00 and 16:00 h) with four drops of the EO to achieve the concentration commonly 

recommended by aromatherapists (Moss et al., 2003).  

Diazepam (1 mg/kg) (Sigma–Aldrich Fancy Rd., Poole, Dorset, UK), was dissolved in 

distilled water with 5% of Tween-20 and sonicated for 20 min. The dose used in this 

study was shown to be effective in the EPM studies (see Chapter 5) and in other gerbil 

validation studies (Varty, Morgan et al., 2002).   

6.2.3 Procedure  

The animals in the control (no odour) group were tested two weeks prior to the lavender 

oil group to ensure that these animals were not exposed to the EO odour. During the two 

week break between the control and lavender study the rooms used for the studies were 

thoroughly cleaned to minimise any odour carry over from the previous group. Again, 

following the lavender oil study the room was thoroughly cleaned and left empty for a 

further two weeks. This was to ensure that gerbils in the rose odour group were not 

exposed to any residual lavender odour.  

In all of these odour studies, following behavioural testing, the gerbils were weighed 

and stage in the oestrous cycle of each female gerbil was determined using the method 

of Nishino and Totsukawa (1996); with stages II and III combined to make four stages 

of oestrous rather than five (proestrous, oestrous, metoestrous, dioestrous). After this, 

gerbils were returned to their home cages. A Kruskall-Wallace analysis of dependent 

variables from each stage of oestrous in the EPM and the BWB revealed no significant 

differences in behaviour between each stage of oestrous in each odour condition. Thus, 

all analyses were conducted regardless of stage of oestrous.  

6.2.3.1 Lavender odour  

After two weeks habituation to handling, the gerbils were moved to the odour room and 

exposed either to lavender odour (acute lavender: males n = 14, females n = 12; chronic 

lavender males n = 13, females n = 12) or no-odour control (water only: males n = 13, 

females n = 13). Daily handling of gerbils continued throughout this time. Gerbils 

exposed acutely were tested on the mazes the next day after 24h exposure to lavender 
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odour. Gerbils in the chronic lavender group were exposed daily for 14 days to lavender 

and tested on day 15. 

6.2.3.2 Rose odour  

Following this, after 2 weeks habituation to handling, the gerbils in the rose group were 

moved to the odour room and exposed either to rose odour (acute rose: males n=12, 

females n=12; chronic rose: males n=12, females n=12) or control (water only: males 

n=14, females n=13). Daily handling of gerbils continued throughout this time. The 

same pattern of exposure to the rose oil odour was followed as for the lavender odour 

groups. Gerbils exposed acutely were tested on the mazes the next day after 24 h 

exposure to rose odour. Gerbils in the chronic rose group were tested on day 15 

following 14 days exposure to rose oil.  

6.2.3.3 Diazepam   

Diazepam, or vehicle alone, was administered by intraperitoneal injection (1 ml/100 g 

body weight) either once (vehicle control: males n =19, females n =23, or 1 mg/kg 

diazepam: males n =11, females n =10), or each morning for the 14 day duration of the 

study (vehicle control: males n =12, females n =8 or 1 mg/kg diazepam: males n =13, 

females n =10). In addition, gerbils were weighed and handled daily.  

6.2.4 Data analysis  

As with the validation studies, data from gerbils that had seizures were excluded from 

the main analysis. Seizure data were analysed separately for association between seizure 

occurrence and experimental condition.   

Much of the data failed to meet the assumptions required for analysis by parametric 

methods, showing positive or negative skews of greater than 1.96 (Tabachnick & Fidell, 

2001). As it was predicted that the chronic administration of lavender would create 

stronger effects than acute administration, results were analysed using the Jonckheere-

Terpstra (J–T) test, which is designed to detect trends for ordered alternatives. This test 

is more powerful than the Kruskall-Wallis non-parametric ANOVA in this case of 

sequentially ordered data (Siegel & Castellan, 1988). Where a significant effect was 



 

158

 
found (p < 0.05) one-tailed Mann–Whitney U-tests were used for pair-wise testing of 

no-odour control versus each odour condition   

Diazepam data were analysed pair-wise (Chronic Diazepam vs. Vehicle Control) by 

Mann-Whitney U-tests. Significance was set at the conventional 0.05 level one tailed.  

The J–T test does not perform interaction analyses. To identify any possible sex-based 

interactions in the data, pre-planned two tailed pair-wise testing of male versus female 

gerbils for each odour group and control were conducted for each DV. Any behaviour 

which showed significant differences in any condition between the sexes were analysed 

separately for the J–T tests and pair-wise comparisons.                         
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6.2.5 GC/MS Analysis of EOs  

6.2.5.1 Lavender oil  

The components of the lavender oil used in this study were analysed by GC/MS. 

Identification of the main peaks was by comparison of the retention times of the peaks 

with those of known standards and then by confirmation with the NIST GC/MS library 

and an in-house monoterpene library. The main lavender components were identified as 

linalyl-acetate (43.98%), linalool (38.47 %), lavandulyl-acetate (4.81 %), ß-myrcene 

(1.44 %), terpinen-4-ol (1.25 %), ß- terpineol (1.05%), cis-linalool oxide (0.77%), trans-

linalool oxide (0.66%) and ocimene (0.55 %) (see Figure 6.1). Lavender EO has 

previously been characterised (Shellie et al., 2002) and the data in the chromatogram 

from the present study compare well with the published data.    

Figure 6-1 GC/MS profile of Lavandula angustifolia Mill. EO.GC/MS conditions: Column: SGE, 
BPX5 (non polar) bonded phase fused silica.  Injector 250O C, Detector 250O C. Column 50O C, 2 
minutes; 5O C / minute to 100O C; 20O C/ minute to 250O C for 0.5 minutes.  GC/MS: Perkin-Elmer 
Turbo-Mass. Peaks: S = solvent front, 1 = ocimene, 2 = linalool, 3 = terpinen – 4- ol, 4 = linalyl-
acetate.     
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6.2.5.2 Rose oil  

The main components of rose oil were identified as myrcene (3.25%), benzyl alcohol 

(3.76%), rose oxide (0.57%), phenyl-ethyl alcohol (2.39%), geraniol (17.69%), ß 

citronellol (36.31%), nerol (8.12%), geranyl-acetate (1.73%) and methyl-eugenol 

(2.84%). Rose oil has been previously characterised and the data in the chromatogram 

(see Figure 6.2) compares well with other published data (Ozel, Gogus, & Lewis, 2006; 

Umezu et al., 2002; Jirovetz et al., 2005).  

   

Figure 6-2 GC/MS profile of Rosa damascena Mill. EO.GC/MS conditions: Column: SGE, BPX5 
(non polar) bonded phase fused silica.  Injector 250O C, Detector 250O C. Column 50O C, 2 minutes; 
5O C / minute to 100O C; 20 OC/ minute to 250O C for 0.5 minutes.  GC/MS: Perkin-Elmer Turbo-
Mass. Peaks: IS = internal standard, 1 = myrcene, 2 = benzyl alcohol, 3 = rose oxide, 4 = phenyl 
ethyl alcohol, 5 = geraniol, 6 = â-citronellol, 7 = nerol, 8 = geranyl acetate, 9 = methyl eugenol,          
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6.3 RESULTS  

6.3.1. Exclusions as a result of seizures  

In the no-odour control group, two female gerbils had seizures on the EPM and one 

male in the BWB; their data were excluded from the study. For details of the number of 

gerbils excluded from the EPM because of seizures see Table 6.1.  See Table 6.2 for the 

BWB seizure data. A chi-squared analysis revealed no significant associations between 

any odour or diazepam and the number of fits that occurred.   

Table 6.1 The number of gerbils excluded from the elevated plus-maze on the basis 
of seizures  

Number of fits in the elevated plus-maze 
Acute Chronic Odour/drug 
Male Female Male Female 

Lavender 1 0 0 1 
Rose 0 1 0 2 
Diazepam vehicle 0 2 0 2 
Diazepam (1mg/kg)  3 0 1 0 

 

Table 6.2 The number of gerbils excluded from the black-white box on the basis of 
seizures  

Number of fits in the black white box 
Acute Chronic Odour/drug 

Male Female Male Female 
Lavender 0 0 0 0 
Rose 0 0 0 1 
Diazepam vehicle 1 3 0 0 
Diazepam (1mg/kg)  0 0 0 0 
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6.3.2 Lavender odour studies  

6.3.2.1 Lavender odour results in the EPM  

There were significant differences between males (n =12) and females (n =7) in 

percentage protected head-dip, when exposed to chronic lavender odour (Mann-

Whitney U = 39, p < 0.05) (see Table 6.3).  

Therefore, for this variable the two sexes were analysed separately. In the J-T analysis, 

only females showed a significantly decreasing trend of protected head-dip (t= 2.11, p < 

0.05). Pair-wise comparisons revealed fewer protected head-dips (U = 10, p < 0.01) in 

females when the chronic lavender gerbils were compared to controls.  

Prolonged exposure to lavender odour in all gerbils revealed significantly increasing 

trends for percentage open entries (t = 1.74, p < 0.05) and head-dip frequency (t = 5.29, 

p < 0.001), while there were decreasing trends for closed entries (t = -1.72, p < 0.05) 

and stetch-attend frequency (t = 5.87, p < 0.001).   

Pair-wise comparisons of the acute lavender odour-condition compared to control 

revealed higher head-dip frequency (U= 35 p < 0.001), and lower stetch-attend (U= 71, 

p < 0.001) and percentage protected head-dip (U = 165, p < 0.05) frequencies. See 

Table 6.3 for median and inter-quartile range results.   

All gerbils (both male and female) exposed to chronic lavender odour compared to 

control gerbils exhibited a greater percentage of open entries (U = 166, p < 0.05) and 

head-dip frequency (U = 28, p < 0.001); while, their percentage closed entries (U = 166, 

p < 0.05) and stetch-attend frequenies (U = 25, p < 0.001) were less than controls (See 

Table 6.3).  

Comparisons of results of gerbils exposed to acute lavender with those exposed to 

chronic lavender revealed less stetch-attends in the chronic condition than in the acute 

condition (U = 210, p < 0.05) (Table 6.3).   
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Table 6.3 Effects of prolonged (two weeks) vs. 24 hour lavender odour or no-odour 
control on male and female gerbil behaviour on the elevated plus-maze.   

Dependent variable  No odour Acute lavender Chronic lavender 

Total entry 21.00,25.50, 31.00 23.00, 27.50, 33.00 22.00, 26.00*, 28.00 
% Open entry 45.95, 50.42, 58.00 45.45, 52.33, 60.86 50.00, 58.33, 63.33 
% Closed entry 44.22, 50.00, 60.51 40.90, 49.13, 55.88 40.00, 46.66 *, 52.38 
Open duration 94.94, 130.03, 159.38 114.00, 140.37, 170.2 136.80, 150.18, 165.72 
Closed duration 82.95, 101.78, 108.35 75.10, 105.65, 124.85 83.10, 96.78, 107.56 
Immobile duration 4.13, 11.47, 22.48 0.00, 0.00, 3.79 0.00, 1.30, 3.28 
Locomotor duration 130.74, 141.53, 162.89

 

135.66, 142.57, 152.50

 

151.50, 160.87, 171.91 
Head-dip frequency 13.00, 16.39, 23.50 33.00, 42.00***, 52.00

 

33.00, 46.00***, 56.00 
Stretch-attend frequency 23.00, 27.00, 30.68 15.00, 18.00***, 24.00

 

11.00, 16.00***, 18.00 
Male % Protected Head-dip 8.51, 24.24, 33.33 4.69, 11.79, 13.16 10.2, 13.16, 17.14 
Female % Protected Head-dip

 

11.11, 31.03, 45.83 4.46, 9.29, 20.45 4.16, 5.52**, 10.17 

 

Gerbils were exposed to lavender odour 4 drops three times per day in an ‘aroma stream’ vaporiser for 24 

hours per day, one day for acute and 14 days for prolonged exposure. (See text for further details). Data 

are presented as (25th percentile) median (75th percentile). * Levels of significance Mann Whitney U one 

tailed: * p < 0.05, **p< 0.01, ***p< 0.001. Sample sizes: No Odour  n = 24; Acute Lavender  n = 24; 

Chronic Lavender  n = 19. Male gerbils: control n = 13; acute lavender n = 12; chronic lavender n = 

12.Female gerbils: control n = 11; acute lavender n = 12; chronic lavender n = 7.
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6.3.2.2 Lavender odour results in the BWB  

There was a significant difference between males (n= 12) and females (n = 13) in the 

no-odour control condition in the time spent in the white compartment. Females spent 

longer in the compartment than males (U = 32, p < 0.05). As a result, time spent in the 

white compartment was examined separately for both males and females in the J-T 

trend-test and no significant trends were identified across the control and treatment 

groups.   

Lavender odour caused an increasing trend in latency black (J-T = 3.04, p < 0.05) and 

immobile duration (J-T = 2.08, p < 0.05). Pair-wise comparisons of acute lavender 

versus control indicate that latency black (U = 231.5, p < 0.05) was significantly longer 

in the acute condition than controls and that it increased even more after chronic 

exposure compared to controls (U = 166.5, p < 0.01). However, prolonged exposure to 

lavender odour also caused significantly more sedation; after two weeks exposure 

immobile duration significantly increased (U = 250, p < 0.05). For median and inter-

quartile range results see, Table 6.4. 
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Table 6.4 The effects of prolonged (two weeks) vs. 24 hour lavender odour or no-
odour control on gerbil behaviour on the black-white box.  

Median and inter-quartile ranges Dependent 

variable 
Odour group 

All gerbils Males Females 

control 1.21, 1.49, 8.41 1.35, 1.87, 5.63 1.21, 1.49, 8.84 

acute lavender 1.54, 3.02*, 8.90 1.81, 3.41, 8.90 1.48, 2.45, 9.75 
Latency 

black 
Chronic lavender 2.47, 6.65*, 12.24 2.80, 6.65, 8.52 2.36, 5.55, 16.12 

control 30.00, 35.00, 38.00 31.00, 34.50, 39.00 27.00, 35.00, 38.00 

acute lavender 32.00, 35.50, 40.00 32.00, 36.00, 44.00 31.50, 34.50, 39.50 

Crossing 

frequency 

  

chronic lavender 29.00, 34.00, 36.00 33.00, 36.00, 36.00 28.00, 31.00, 34.50 

control 48.15, 52.03, 55.40 46.75, 48.21, 52.29 52.03, 54.47, 55.95 

acute lavender 48.69, 52.79, 56.25 48.99, 52.81, 56.11 47.10, 52.25, 59.63 
% duration 

white 
chronic lavender 49.47, 54.36, 60.03 47.55, 53.59, 58.73 51.54, 59.07, 64.65 

control 35.05, 39.62, 41.66 38.62, 40.58, 42.17 34.62, 35.76, 39.80 

acute lavender 34.32, 37.23, 40.82 34.32, 37.23, 40.42 33.72, 37.84, 40.93 
% duration 

black 
chronic lavender 31.46, 38.43, 43.38 33.00, 39.56, 43.38 29.03, 35.97, 41.59 

control 62.60, 72.30, 77.02 54.85, 67.07, 73.45 67.63, 73.79, 81.49 

acute lavender 64.16, 72.10, 78.00 62.12, 71.64, 77.48 65.93, 72.10, 89.02 

Locomotor 

duration 

  

chronic lavender 62.58, 70.14, 75.29 62.58, 69.74, 73.27 62.32, 71.86, 87.22 

control 94.00,106.00,111.0 101.50,105.50,108.00 92.00, 106.00, 116.00 

acute lavender 84.00,98.00, 104.00 86.00, 95.00, 103.00 77.50, 102.50,  107.00 

Exploration 

frequency 

white chronic lavender 87.00,99.00, 115.00 82.00, 99.00, 107.00 88.50, 114.50, 139.50 

control 93.90,106.02,114.2 98.08, 108.84, 114.49 90.59, 103.73, 108.47 

acute lavender 93.28,106.30,114.5 96.64, 108.11, 114.85 86.60, 102.87, 112.73 

Exploration 

Duration 

white  chronic lavender 92.52,103.56,114.66 96.84, 103.56, 107.45 89.82, 103.89, 120.50 

Control 0.00, 0.00, 0.00 0.00, 0.00, 0.00 0.00, 0.00, 0.00 

acute lavender 0.00, 0.00, 0.00 0.00, 0.00, 0.00 0.00, 0.00, 0.74 

Immobile 

duration 

  

chronic lavender 0.00, 0.00*, 0.99 0.00, 0.00, 0.99 1.21, 1.49, 8.84 

 

Gerbils were exposed to lavender odour 4 drops three times per day in an ‘aroma stream’ vaporiser for 24 
hours per day, one day for acute and 14 days for prolonged exposure. (See text for further details). Data 
are presented as (25th percentile) median (75th percentile). * Levels of significance Mann Whitney U one 
tailed: * p < 0.05, **p< 0.01, ***p< 0.001.Sample sizes: No Odour n = 25; Acute Lavender n = 26; 
Chronic Lavender n = 25.Males No Odour n = 12; Acute Lavender n = 14; Chronic Lavender n = 13. 
Females No Odour  n = 13; Acute Lavender  n = 12; Chronic Lavender  n = 1
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6.3.3 Rose odour   

6.3.3.1 Rose odour results in the EPM   

A summary of the behavioural effects of rose oil are presented in Table 6.4. In the 

acute rose odour condition there were significant differences between males and 

females in percentage open duration (U = 25, p < 0.05), which was significantly higher 

in males compared with females. In contrast, percentage protected head-dips (U = 30, p 

<0.05) were significantly higher in females than males. Male and female data for these 

behaviours were examined separately in the J-T test; no significant trends were 

identified across the control and treatment groups for either sex (see Table 6.5 for 

medians and inter-quartile ranges). In the chronic rose condition, there were no 

significant differences between males and females.   

For the remaining variables there were increasing trends in total entries (J-T = 2.24, p < 

0.05), rear frequency (J-T = 2.42, p < 0.05) and head-dip frequency (J-T = 5.83, p < 

0.001), and decreasing trends in immobile duration (J-T = 4.25, p < 0.001) and stetch-

attend frequency (J-T = 2.35, p < 0.01). These variables were analysed pair-wise for 

each odour condition versus the no-odour condition.   

Acute exposure to rose oil led to significant higher rear frequency (U = 178.5, p < 0.05) 

and total head-dip frequency (U = 100, p < 0.001) accompanied by a significantly lower 

immobile duration (U = 88, p < 0.001) compared to the no-odour condition.    

Fourteen days exposure to rose oil odour resulted in significantly more total entries (U = 

124.5, p < 0.05), higher rear frequency (U = 121, p < 0.05), more total head-dips (U = 

13, p < 0.001) and a significantly lower immobile duration (U = 60, p < 0.001) 

compared to controls.   

Comparing acute versus chronic rose odour to look for true trends, there was a 

significantly increasing trend in head-dip frequency (U = 129.5, p < 0.05) following 

chronic exposure.  
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Table 6.5 The effects of acute and chronic rose oil odour exposure on male and 
female gerbil behaviour on the elevated plus-maze. 

Median and inter-quartile ranges 

 
Dependent 
variable Odour/drug  

 All Gerbils Male Female 

control 22.00,26.00,31.00 19.00, 25.00, 29.00 24.00, 27.00, 32.00 

acute rose 25.00,29.50,33.00 25.00, 27.50, 30.00 26.00, 30.00, 33.00 Total entries 

chronic rose 26.00, 31.5, 36.00 26.00, 30.00, 34.00 25.50, 29.00, 35.00 

control 45.95,50.00, 55.77 41.38, 50.00, 50.00 48.38, 52.94, 55.78 

acute rose 42.5, 54.92 ,63.63 53.33, 56.85, 62.07 38.89, 42.50, 46.67 
% Open 
entry 

 

chronic rose 44.44, 52.66, 55.88 42.86,48.98,55.56 45.19, 53.31, 57.94 

control 44.80, 50.0, 60.51 48.39, 50.00, 53.85 44.22, 47.06, 51.62 

acute rose 40.62, 50.00,65.05 37.93, 43.15, 46.67 53.33, 57.50, 61.11 
% Closed 
entry 

chronic rose 44.44, 51.0, 57.14 44.44, 51.03, 57.14 42.06, 46.69, 54.80 

control 31.65, 43.34, 53.13 33.02, 43.80, 52.80 33.52, 44.13, 53.12 

acute rose 28.68, 41.77, 51.62 41.36, 43.36, 51.61 21.85, 26.09, 30.13 
% Open 
duration 

 

chronic rose 31.87, 40.49, 52.68 36.62, 41.70, 52.74 36.89, 43.46, 47.75 

control 28.51, 34.44, 36.11 10.78, 32.58, 35.33 28.72, 32.84, 35.93 

acute rose 28.10, 37.85, 47.77 28.10, 32.31, 35.66 45.52, 47.46, 48.46 
% Closed 
duration 

chronic rose 31.38, 35.06, 38.49 27.11, 33.44, 38.21 31.68, 34.03, 40.14 

 

control 17.00, 23.00, 27.00 6.00, 24.00, 27.00 17.50, 21.00, 25.00 

Rear 
frequency  

acute rose 21.51, 27.50, 37.00 22.00, 25.00, 29.00 29.00, 36.00, 42.00 

 

chronic rose 23.00, 29.00, 32.00 21.00, 29.00, 32.00 22.50, 25.50, 32.50 

control 4.13, 11.18, 19.24 1.20, 12.97, 28.21 1.20, 12.97, 28.21 

acute rose 0.00, 0.00, 3.41 0.00, 0.00, 4.78 0.00, 0.00, 4.78 
Immobile 
duration 

chronic rose 0.00, 0.00, 6.04 0.00, 0.00, 0.66 0.00, 0.00, 0.66 

control 13.00, 16.78, 23.50 6.00, 13.00, 15.00 6.00, 13.00, 15.00 

acute rose 23.00, 29.00, 43.02 29.00, 31.50, 46.00 29.00, 31.50, 46.00 
Head-dip 
frequency 

chronic rose 38.00, 44.50, 52.19 39.00, 45.00, 56.00 39.00, 45.00, 56.00 

control 24.50, 27.00, 30.68 19.00, 27.00, 30.00 19.00, 27.00, 30.00 

acute rose 20.00, 24.50, 28.01 19.00, 20.00, 30.00 19.00, 20.00, 30.00 
Stretch-
attend 
frequency 

chronic rose 19.00, 22.50, 25.00 22.00, 25.00, 28.00 22.00, 25.00, 28.00 

control 9.02, 24.62, 40.03 8.50, 24.24, 33.33 9.40, 26.62, 43.50 

acute rose 8.51, 14.58, 22.18 6.65, 9.09, 15.28 15.13, 25.00, 34.96 
% Protected 
Head-dip 

 

chronic rose 11.54, 14.61, 23.40 10.95, 17.84, 25.71 13.70, 16.24, 22.10 

J-T statistic is based on Monte Carlo assumptions using 10000 sampled tables with starting seed 2000000. Sample size: All gerbils 

control n= 25, acute rose odour n = 22, chronic rose odour n = 25. Males: control n = 14, acute rose odour n = 12, chronic rose 

odour n = 12. Females: control n = 11, acute rose odour n = 11, chronic rose odour n =10. 

* Levels of significance one tailed: * p < 0.05, **p< 0.01, ***p< 0.001. J-T results all gerbils i, male ii; female iii 
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6.3.3.2 Rose odour results in the BWB   

A comparison of males and females for each odour group revealed no significant 

difference between the sexes for any behaviour in the BWB. Thus, data were analysed 

for the group as a whole, irrespective of sex, and are summarised in Table 6.6.   

Prolonged exposure to rose oil led to significantly increasing trends in crossing 

frequency (J-T = 2.22, p < 0.05), latency black (J-T = 2.77, p < 0.01), percentage 

duration white (J-T = 3.43, p < 0.001), exploration frequency white (J-T = 4.03, p < 

0.001) and locomotor duration (J-T = 2.78, p < 0.001), while there were significantly 

decreasing trends in percentage black duration (J-T = -3.08, p < 0.05).  

Pair-wise comparisons were conducted when the J-T test revealed a significant trend.  

Short-term exposure to rose oil odour resulted in a significantly longer latency to enter 

the black compartment (U = 182, p < 0.01), percentage white duration (U = 168, p < 

0.01) and a higher exploratory frequency in the white area (U = 100, p < 0.001) 

compared to the no-odour controls. Percentage time spent in the black compartment (U 

= 160, p < 0.01) was significantly less than controls.  

Similarly, comparisons of no odour versus chronic exposure to rose oil odour for these 

variables revealed a higher crossing frequency between the compartments (U = 167, p < 

0.01), a longer latency to enter black compartment (U = 179, p < 0.05) and a longer 

percentage time spent in the white area (U = 149, p < 0.01), more exploratory frequency 

white (U = 99, p <0.001) and higher locomotor duration (U = 154, p < 0.001) were also 

apparent. In addition, the percentage time spent in the black compartment (U = 178, p < 

0.05) was significantly lower.  Furthermore, a comparison of acute versus chronic rose 

odour exposure revealed a significantly longer time spent in locomotor duration (U = 

185, p < 0.05).  
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Table 6.6 The effects of acute and chronic exposure to rose oil odour on gerbil 
behaviour in the black-white box.  

Dependent 
variable 

Odour 
group 

Median and inter- 
quartile ranges 

control 29.00, 34.00, 38.00 

acute rose 30.00, 34.50, 41.00 
Crossing 
frequency 

chronic rose 33.00, 40.00, 44.00 

control 1.21,1.49,8.41 

acute rose 1.84, 5.73,12.58 Latency black 

chronic rose 1.95, 5.05, 14.55 

control 47.08, 51.82, 55.40 

acute rose 53.29, 58.86, 61.21 
% Duration 
white 

chronic rose 53.36, 60.80, 66.42 

control 35.05, 39.71, 41.82 

acute rose 30.17, 32.33, 38.01 
% Duration 
black 

chronic rose 27.64, 31.51, 38.65 

control 93.00, 105.00, 111.00 

acute rose 115.50, 123.00, 136.00 
Exploratory 
Frequency 
white 

chronic rose 111.50, 125.00, 143.50 

control 91.53, 105.00, 114.42 

acute rose 105.85, 116.60, 122.48 
Exploratory 
Duration white 

chronic rose 91.12, 110.22, 118.84 

control 58.63, 71.70, 77.02 

acute rose 63.17, 72.66, 78.95 
Locomotor 
duration 

chronic rose 68.34, 82.56, 89.76 

control 0.00, 0.00, 0.00 

acute rose 0.00, 0.00, 0.00 
Immobile 
duration 

chronic rose 0.00, 0.00, 0.00 

 

Sample size: control n= 26, acute rose odour n = 24, chronic rose odour n = 24. 

* Levels of significance one tailed: * p < 0.05, **p< 0.01, ***p< 0.001  
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6.3.4 Diazepam (i.p) 

6.3.4.1: Diazepam EPM  

Data are summarised in Table 6.7 below. There were no sex differences following acute 

treatment. Overall, acute treatment with diazepam led to significantly more total entries 

(U = 118, p < 0.05), percentage open entries (U = 89.5, p < 0.05) and total head-dips (U 

= 53.5, p < 0.001) and a longer open duration (U = 65, p < 0.01) compared to vehicle-

treated controls. Accompanying this, percentage closed entries (U = 104, p < 0.01) and 

stretch-attends (U = 131.5, p < 0.05) were significantly less and closed duration shorter 

(U = 98, p < 0.01) than in vehicle treated gerbils (See Table 6.7).  

Pair-wise comparisons between males and females in the chronic diazepam and chronic 

vehicle control groups revealed a significantly higher stetch-attend frequency in the 

chronic vehicle-control condition in females compared to males (U = 1.5, p < 0.01) see 

Table 6.5. In addition, females treated with chronic diazepam showed significantly 

fewer stretch-attends than males (U = 34, p < 0.05).   

Pair-wise comparisons of vehicle control and diazepam for each sex for these variables 

revealed that in chronically-treated female gerbils the frequency of stretch-attending 

was significantly less (U = 14.5, p < 0.01) when compared to same sex vehicle-treated 

controls. There were no significant differences in males.  

In all gerbils, percentage open entries (U = 122.5, p < 0.05), open duration (U = 130, p 

< 0.05) and head-dip frequency (U = 66.5, p < 0.001) were significantly higher when 

treated chronically with diazepam compared with vehicle control. In contrast, immobile 

duration was significantly lower (U = 111, p < 0.01) (See Table 6.7). 
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Table 6.7 The effects of acute (30 minute) diazepam (1mg/kg), versus acute saline 
vehicle (i.p), and chronic (two weeks) diazepam (1mg/kg), versus saline vehicle 
(daily (i.p.) injection, on gerbil behaviours on the elevated plus-maze.  
Table of median and inter-quartile ranges.  

Dependent 
variable 

Acute vehicle 
 control Acute diazepam Chronic vehicle  

control 
Chronic 
diazepam 

Total entries 17.09,28.50 35.00 47.00, 50.50*,53.00 24.00, 28.00, 33.00 29.00, 37.00***,42.00 

% open entries 36.36, 44.44,56.52 50.00, 59.55,65.96 45.74, 54.67, 61.65 45.94, 60.64, 71.43 

%closed 
entries 

40.00, 52.77, 60.00 34.04, 40.45,50.00 38.34, 45.33, 54.26 28.57, 39.36, 54.05 

Open duration 52.79, 96.25, 141.20 167.76,181.91**207.95 115.56,144.36,177.40 150.61, 171.55*, 199.80 

Closed 
duration

 

70.10,96.66,110.46

  

41.93,55.90**,69.59 86.35,100.11,132.47 34.24,55.73,81.49 

Rear 
Frequency 

2.00,8.50,16.00 9.00,10.50*, 11.00 24.50,  26.50, 28.00 10.00,22.00,30.00 

Locomotor 
duration 

56.79, 105.14,125.26 90.34,102.28,112.28 141.66,146.38, 154.92 135.35, 155.58,165.42 

Locomotor 
duration males 

33.40,104.12,115.43 15.37, 46.31, 108.46 140.69,146.07, 153.69 135.69,153.82,165.28 

Locomotor 
duration 
females  

73.45,96.46, 108.02 47.79, 82.86,95.28 115.82,145.46, 151.98 162.90,170.75*,181.40 

Immobile 
duration 

3.58,  20.42, 48.88 0.00, 5.25,*** 13.90 2.61, 8.35, 17.08 0.00, 0.00**, 11.36 

Head-dip 
Frequency 

13.00, 27.00, 43.77 51.00, 59.50*** , 86.00 25.50, 29.50,45.50 43.00, 51.00***,73.00 

Stretch-attend 
frequency 
(males) 

1.00, 3.00, 4.00 

 

0.00, 2.00, 3.00 

 

8.00,15.00,17.00 

 

15.00, 18.00, 22.00 

 

Stretch-attend 
frequency 
(females) 

 

1.50,5.00,12.00 

 

1.00,2.00,5.00 

 

26.00, 27.50, 29.00 

 

8.50,13.50*, 22.00 

  

Acute vehicle n = 40, acute diazepam n= 18.Chronic vehicle control n= 20, chronic diazepam n= 22. 

Males acute vehicle n= 19, acute diazepam n = 8; chronic vehicle control n = 12, chronic diazepam n = 12. 

Females acute vehicle control n= 23, acute diazepam n = 10; chronic vehicle control n = 8, chronic 

diazepam n= 10. * Levels of significance one tailed: * p < 0.05, **p< 0.01, ***p< 0.001. 
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6.3.4.2 Diazepam BWB  

Data are summarised in Table 6.8 below. A comparison of male and female gerbils in 

the acute diazepam group revealed that males spent significantly less time in the black 

compartment than females (percent duration black U = 26, p < 0.05). In addition, males 

spent significantly more time exploring the white side compared to females (exploratory 

frequency white U = 26.5, p < 0.05) and more time moving around in the box than 

females (locomotor duration U = 15, p <0.01). Thus, analyses of these variables were 

conducted separately for each sex.   

When compared with male vehicle controls, male gerbils treated acutely with diazepam 

spent significantly less time in the black compartment (percent duration black U = 35, p 

< 0.01), and significantly more time exploring the white compartment (exploration 

frequency white U =31, p < 0.01) than vehicle-treated male gerbils, whereas, female 

gerbils spent less time than vehicle controls moving around the BWB (U = 44, p< 0.01).   

Acute treatment with diazepam also led to some non sex-specific effects, including 

significantly higher frequency of crossing between compartments (U =204.5, p < 0.001), 

longer duration of exploratory behaviour in the white compartment (U = 233, p < 0.01) 

and shorter immobile duration (U = 285, p < 0.05) compared to vehicle-treated controls. 

These data are summarised in Table 6.8 below.  

The chronic diazepam condition analysis revealed that females explored the BWB 

significantly more than male gerbils (crossing frequency U = 29.5, p < 0.05). Therefore, 

subsequent analyses involving this measure were conducted separately for males and 

females. Follow-up tests revealed that frequency of crossing between compartments was 

significantly higher in male gerbils after two weeks of diazepam administration 

compared with same sex vehicle controls (U = 11.5, p<0.001). Similarly, in females, 

crossing frequency was significantly higher (U = 0, p < 0.001) compared with same sex 

vehicle controls (See Table 6.8 below).  

With regard to non-sex specific effects, chronic treatment with diazepam led to a 

significantly higher frequency of exploratory behaviour in the white compartment 

compared to vehicle-treated gerbils (U=115, p < 0.01) (See Table 6.8). 
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Table 6.8 The effects of acute (30 minute) diazepam (1mg/kg) versus acute saline vehicle i.p, and 
chronic (two weeks) diazepam (1mg/kg) versus saline vehicle (daily i.p. injection) on gerbil 
behaviours on the black-white box. Median and inter-quartile ranges. 

Dependent 
variable 

Acute Vehicle Acute 
Diazepam 

Chronic Vehicle Chronic Diazepam 

Crossing 
frequency 
(All gerbils) 

37.00,43.50, 51.00 48.00,56.00***, 68.00 34.50, 39.00, 41.00 50.00, 53.00, 58.00 

Crossing 
frequency 
(Males) 

38.00, 42.50, 50.00 49.00, 58.00, 66.00 34.00, 38.50, 43.00 46.00, 50.00***, 53.00 

Crossing 
frequency 
(Females) 

35.00, 46.50, 54.00 47.00, 54.50, 73.00 35.00, 39.00, 40.00 53.00, 57.00***, 59.00 

Latency black 4.56, 8.24, 22.08 4.66, 6.75, 13.46 1.79, 5.85, 9.72 2.03, 3.85, 7.17 

% White entries 48.00, 52.06, 54.55 46.81, 51.14, 54.72 44.44, 46.29, 48.27 43.00, 45.28, 47.11 

% Black entries 45.45, 47.94, 52.00 45.28, 48.86, 53.19 51.73, 53.71, 55.56 52.89, 54.72, 57.00 

% Duration 
white 

41.13, 46.82, 57.89 44.63, 47.22, 52.73 43.85, 47.42, 53.32 40.23, 46.68, 49.83 

% Duration 
black 

32.4, 39.98, 44.78 31.45, 33.63, 36.37 36.03, 42.03, 46.36 36.53, 41.65, 44.76 

% Duration 
black (Males) 

36.67, 40.60, 46.15 29.58, 32.22**, 33.86 37.11, 42.03, 48.19 35.48, 40.71, 42.71 

% Duration 
black (Females) 

30.43, 35.81, 42.65 33.63, 36.37, 44.14 36.03, 42.30, 46.36 41.65, 43.26, 46.78 

Exploratory 
Frequency White

 

56.00, 73.50, 84.00 80.00, 94.00, 104.00 99.00, 110.00, 126.50 125.50, 138.00**, 152.50 

Exploratory 
Frequency White 
(Males) 

56.50, 74.00, 83.00 87.00, 101.00**, 109.50 91.50, 120.00, 133.00 123.00, 138.00, 153.00 

Exploratory 
Frequency White 
(Females) 

57.50, 67.00, 86.00 76.00, 86.00, 98.00 105.00, 108.00, 110.00 128.00, 138.00, 152.00 

Exploratory 
Duration White 

41.06, 50.42, 57.85 53.72, 61.43***, 73.64 80.07, 91.06, 105.57 88.13, 95.31, 102.98 

Locomotor 
Duration 

56.10, 64.25, 73.30 52.33, 62.07, 64.82 61.28, 71.09, 83.14 59.53, 68.82, 73.74 

Locomotor 
Duration (Males) 

56.76, 66.27, 72.14 62.74, 63.97, 69.76 55.44, 71.95, 79.12 65.29, 69.91, 76.16 

Locomotor 
Duration 
(Females) 

56.92, 65.16, 79.99 45.88, 52.44***, 55.82 66.11, 70.46, 85.81 56.74, 59.93, 68.82 

Immobile 
Duration 

0.00, 2.25, 7.92 0.00, 0.00***, 0.38 0.00, 0.00, 0.00 0.00, 0.00,  0.00 

Sample size: All gerbils, acute vehicle control n = 42, acute diazepam n= 21; chronic vehicle control n= 20, chronic diazepam n= 23. 

Males, acute vehicle N = 19, acute diazepam n = 11; chronic vehicle control n =12, Chronic diazepam n= 13. Females acute vehicle 

n = 23, diazepam n = 13; Chronic vehicle control n =10, Chronic diazepam n= 10 * Levels of significance one tailed: * p < 0.05, 

**p< 0.01, ***p< 0.001. 
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6.3.5 Summary of results.  

GC/MS profiles of both oils indicate that the oils used in these studies compare well 

with those used in other studies and meet the recommended and required standards for L. 

angustifolia and R. damascena oils.  

Results indicate that prolonged exposure to either lavender or rose oil odour has 

anxiolytic effects in the models tested here and these profiles differed for each oil and 

both were unaffected by stage of oestrous.   

Lavender  

In the EPM, acute exposure to lavender odour caused mild anxiolysis in both male and 

female gerbils. This is indicated by a higher frequency of exploratory behaviour (total 

head-dips) and less risk assessment behaviour (protected head-dipping and stetch-

attending). In the BWB effects were less marked; latency to enter the aversive black 

compartment was longer in both acute and chronic (two-week exposure) conditions. 

Lavender also appeared to cause mild sedation after prolonged exposure in the BWB. 

An inspection of the data revealed that this immobility was very slight and that the 

immobile duration median remained at zero. Chronic exposure (2 weeks) to lavender 

odour in the EPM potentiated the anxiolytic effects, percentage open entries and head-

dip frequency were higher, while closed entry frequency, stretch-attend frequency and 

percentage protected head-dips (in females) were less than no-odour controls. Fewer 

closed entries indicate that lavender odour caused slight sedation in the gerbils. 

However, relatively more open-entries and head-dips in the chronic lavender condition 

and fewer stretch-attends in both acute and chronic groups lend support to lavender 

having genuine anxiolytic effects, particularly in this model, and not simply locomotor 

effects.   

Rose  

Acute rose odour had an anxiolytic effect on only ethological measures in the EPM and 

caused more exploration around the EPM and less freezing behaviour. However, 

traditional measures of anxiolysis, such as the frequency and duration of open entries 

and the duration of closed entries, were unaffected. Chronic rose gave a similar profile 
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to that of acute rose in the EPM, but with the addition of more total entries. Again, there 

was no significant change in the percentage of closed entries, an indication of drug 

locomotor effects, indicating that this represents exploration of both arms of the maze 

and possibly anxiolysis. In contrast to the EPM, rose odour's effects in the BWB were 

very markedly that of an anxiolytic drug. It was characterised by a longer latency for 

gerbils to move from the white compartment to the safety of the black compartment, 

more exploration of the white compartment, and less time in the black compartment. 

This profile was further strengthened in the chronic condition with more exploration of 

the whole box (crossing frequency and percentage locomotor duration); these 

behaviours have been shown in previous studies to represent anxiolysis (Hascoet & 

Bourin, 2003; Lapiz & Hogg, 2001).   

Diazepam  

Diazepam gave the traditionally expected anxiolytic profile on both spatiotemporal and 

ethological measures in the EPM. Similar to lavender’s profile, but contrasting with rose 

oil’s profile, acute diazepam caused less closed entries; this might be explained as either 

sedation or as anxiolysis (see Section 5.4). In the BWB, acute diazepam caused more 

exploratory behaviour (crossing frequency and the duration of exploration in the white 

area of the box) and some sedation as evidenced by an increase in time spent immobile. 

Chronic diazepam had a similar profile to acute diazepam but was lacking in sedation 

and with more exploration. However, even the profile of chronic diazepam appears to 

be somewhat less anxiolytic than that of rose oil odour for gerbils in the BWB.  

6.4 DISCUSSION AND CONCLUSION  

6.4.1 Does prolonged exposure to lavender odour act as an anxiolytic in 
the gerbil?   

Previously, studies have reported acutely administered lavender EO to cause sedation; 

the odour decreased motility in male and female mice in locomotor tests (Buchbauer, 

Jirovetz, Jager, 1991) and orally-administered diluted lavender decreased movement in 

the EPM (Guillemain et al., 1989). These results are similar to lavender odour’s effects 

on gerbils in the pilot studies reported here (appendix 2) where acute, one-hour’s, 
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exposure to lavender had mildly anxiolytic effects and caused some sedation. It has 

been suggested, in humans though not rodents specifically, that this initial mild 

anxiolytic response is only transient (Cooke & Ernst, 2000). Contrary to these 

suggestions, results indicate that, rather than being a transient effect that dissipates, 

prolonged lavender odour exposure has a greater anxiolytic effect than acute lavender 

exposure. These results provide evidence for a pharmacological mode of action for 

lavender. Additionally, pair-wise testing of acute and chronic lavender data revealed a 

significant trend and, although this was only on one behavioural measure: stretch-attend 

frequency, which decreased, this again indicates a decreasing anxiolytic trend with 

increased odour exposure (Blanchard, et al., 1993).   

Although differing in some detail, the chronic EPM lavender profile appears to be 

broadly similar to the diazepam profile. Gerbils treated with chronic diazepam exhibited 

lower levels of anxiety-related behaviour. This was reflected in more open-entries and 

less stretch-attends and after 2-weeks exposure to lavender odour the decrease in 

anxiety is almost identical to chronic diazepam. However, after only 24 h exposure, 

acute lavender only affected risk-assessment and exploration measures; whereas, acute 

diazepam also affected spatiotemporal measures (more total entries, open entries, open 

duration and decreased closed duration and entries). The decreased closed entries in the 

diazepam condition indicate possible sedation. These results indicate, perhaps, that 

although lavender is having an anxiolytic effect it is achieving its results via differing 

pathways to those of diazepam. It is of interest that studies looking at the acute and 

chronic effects of antidepressant Gepirone, a 5HT-1A agonist, in rats, yielded results 

similar to those obtained with lavender odour in the gerbil EPM (Silva & Brandao, 

2000). Acute administration of Gepirone affected only ethological measures reflecting 

anxiolysis, while after 15-day, chronic, treatment with Gepirone traditional arm entry 

measures were also significantly anxiolytic. These results more closely mirror those 

seen in this study when gerbils were exposed acutely and chronically to lavender odour. 

Consistent with this are other reports, which have suggested that lavender’s mode of 

action, although similar to diazepam, might act upon multiple pathways by both BDZ-

related and non-BDZ related mechanisms (Umezu, 2000). Since lavender EO odour is a 

complex mixture of chemicals (Shellie et al., 2002) it might possess the potential to 

work upon multiple pathways. Furthermore, Elizabetsky et al. (1995) suggested that 

linalool prevents glutamate (the main excitatory neurotransmitter) from binding to its 

receptors in the neocortex of rats. Therefore, rather than potentiating the action of 
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GABA, the main inhibitory neurotransmitter, it is possible that lavender odour is 

working by inhibiting the opposing excitatory neurotransmitter system. In addition, 

studies have shown that lavender odour and its components raise the levels of cAMP in 

smooth muscle (Lis-Balchin & Hart, 1999). There is a class of glutamate receptors, 

metabotropic G protein coupled glutamate-receptors, which modify neuronal and glial 

excitability through G protein subunits acting on membrane ion-channels and second 

messengers such as cAMP (Lis-Balchin & Hart, 1999). Additionally, the terpenes in 

EOs have been shown to have an influence on mitochondrial membranes and oxidative 

phosphorylative processes (Bakkali, et al., 2008). Mitochondrial control of energy levels 

in the cell as well as calcium levels have been shown to influence anxiety in mice tested 

in the EPM and BWB (Einat, Yuan, & Manji, 2005).   

The observation that the anxiolytic actions of both lavender and diazepam when 

administered in chronic form were more pronounced in females is interesting. Previous 

studies in rats report sex differences depending on stage of oestrous, or no sex 

differences on testing in the EPM, after administration of acute diazepam (Fernandes et 

al., 1999; Wilson, et al., 2004). There has been no report of sex differences in gerbils 

treated with diazepam and tested on the EPM. Although sex-differences have been 

reported in gerbils that have not received prior drug treatment but have been tested on 

the EPM. Females were found to have a more anxious baseline when compared with 

male gerbils (Bridges & Starkey, 2004). Given the similarities of the lavender results 

with the Gepirone results, and the fact that in other rodents there are sex differences in 

the serotonin receptor system in the DR nucleus (Dominguez, et al., 2003), the sex 

differences in the gerbils exposed to chronic lavender in this study might also be 

because of differences in the serotonin receptor systems in the DR nucleus. It is possible 

that chronic lavender odour is interacting with the serotonergic system in females to 

produce the enhanced anxiolytic effects after chronic lavender odour exposure. There is 

some evidence in humans for lavender having estrogenic effects (Henley, et al., 2007) 

and oestrogen receptor ß  has been shown to interact with the serotonergic system in the 

DR (Weiser, et al.,  2008).  

Compared with the EPM results, lavender had very mildly anxiolytic effects in the 

BWB (latency to enter the black side increased following both acute and chronic 

administration). As mentioned in the previous chapter, it is possible that these two 

models are measuring different aspects of anxiety. If this is the case then it is possible 
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that lavender is having more of an effect on the cognitive forward-thinking aspects of 

anxiety, related to worry rather than to avoidance, particularly in females. However, 

since there are limitations to the validation of the BWB in its current form, this needs 

further future investigation.   

In comparison, diazepam had an anxiolytic profile in both acute and chronic conditions, 

although there was some sedation following acute administration; exploration (crossing 

frequency and white exploration) increased both acutely and chronically and the 

sedation seen following acute administration (longer immobile duration) was no longer 

present following chronic administration. Interestingly, and again in contrast with 

lavender, there were sex differences in response to diazepam in the BWB. Males were 

less anxious following acutely administered diazepam than female gerbils. However, 

following chronic administration, anxiolytic profiles were broadly the same for both 

males and females providing further evidence for a differing mechanism of action of 

lavender when compared to that of diazepam.  

6.4.2 Does prolonged exposure to rose odour also act as an anxiolytic in 
the gerbil?   

Similar to the lavender results, habituation to rose odour did not take place. In contrast 

to the pilot studies, where one hour’s exposure to rose oil failed to produce anxiolysis, 

rose oil appeared to have anxiolytic properties in both the EPM and BWB, which were 

unaffected by stage of oestrous. Furthermore, the behavioural fingerprints obtained are 

not identical to those of diazepam or lavender in either model. Unlike lavender in the 

EPM, acute rose odour showed an anxiolytic effect only on ethological measures, while 

causing more exploration around the EPM and less freezing behaviours. However, 

traditional measures of anxiolysis, such as the frequency and duration of open entries 

and the duration of closed entries, were unaffected. Chronic rose gave a similar profile 

to that of acute rose in the EPM, but with the addition of more total entries. Again, there 

was no significant change in percentage-closed entries, which are an indication of drug 

locomotor affects (Rodgers & Johnson, 1995). Therefore, this represents increased 

general exploration of both arms of the maze and possibly anxiolysis by increasing the 

approach component of the anxiety approach-avoidance conflict. Although rose's EPM 

profile is one of mild anxiolysis it is very different from the anxiolytic profile of 

diazepam, which, as already mentioned, gave the traditionally expected anxiolytic 
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profile on both spatiotemporal and ethological measures. Acute diazepam also caused 

some sedation, as shown by less closed entries, contrasting with the rose oil profile, 

where there was no sign of sedation.  It also differs from that of lavender, which, 

although its profile was more one of risk-assessment and exploration than diazepam, 

lavender did, also, have some effects on spatiotemporal measures.   

In contrast to the EPM, and lavender in the BWB, rose odour's effects in the BWB were 

what would be expected of an anxiolytic drug. It was characterised by a longer latency 

for gerbils to move from the white compartment to the safety of the black compartment 

as well as more exploration of the white compartment and less time in the black side. 

This profile was further strengthened in the chronic condition, with more exploration of 

the whole box (crossing frequency and percentage locomotor duration). This has been 

shown in previous studies to represent anxiolysis (Lapiz & Hogg, 2001; Rodgers & 

Johnson, 1995). In comparison, acute diazepam caused more exploratory behaviour 

(crossing frequency and the duration of exploration in the white area of the box) as well 

as some sedation as evidenced by less time spent immobile. Chronic diazepam had a 

similar profile to acute diazepam, but without the sedation and with more exploration. 

However, even the profile of chronic diazepam appears to be somewhat less anxiolytic 

than that of rose oil odour for gerbils in the BWB. Likewise, lavender had only very 

mildly anxiolytic effects in the BWB. It affected only the time taken for gerbils to 

escape from the aversive white compartment to the relative safety of the black 

compartment. Thus, in contrast to lavender, rose oil’s results in the BWB suggest that 

rose oil has an effect on the behaviours that are linked to the avoidance aspects of 

anxiety. However, given the problems in validating the BWB, further work is needed in 

order to substantiate this claim.  

Similar to lavender, these differing profiles suggest that rose oil odour and diazepam are 

not acting via the same mechanisms. Indeed, it has already been suggested that rose oil's 

mechanism of action is probably not via the benzodiazepine route (Umezu, 1999) and 

these EPM findings appear to be supportive of this. As already mentioned, in the EPM, 

spatiotemporal measures have been identified as good indicators of benzodiazepine 

activity.  In contrast, risk-assessment behaviours, without alterations to spatiotemporal 

measures, might be more typical of non-benzodiazepine anxiolytic actions, for example 

5HT-1A agonists such as buspirone (Cole & Rodgers, 1994; Griebel et al., 1997) and 

ipsapirone (Setem et al., 1999). These behaviours are thought to be more reflective of 
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the worry components of anxiety (Wall & Messier, 2001). Further evidence for the 

action of rose oil, potentially via a biogenic amine-type pathway, is provided by 

inhibition of immobile effects by reserpine when rose oil was tested in the murine-

forced swimming test (Khalaj & Farzin, 2006). Reserpine acts presynaptically to block 

monoamine neurotransmitter release from the vesicles in which they are encapsulated in 

the synapse. However, studies using the calcium channel-blocker Verapamil indicate 

that it has weak effects in the murine EPM and strongly anxiolytic effects in the murine 

BWB (Kozlovskii & Prakh’e IV, 1995), which is remarkably similar to the effects of 

rose oil found here. Furthermore, in-vitro experiments looking at the effects of rose oil 

on the guinea pig trachealis muscle provide evidence that rose oil might exert some of 

its effects via the action of calcium channels (Boskabady, Kiani, Rakhshandah, 2006). 

Rose oil is a complex mixture of chemicals, which might act on multiple pathways 

(Ozel, et al., 2006). In Vogel's and the Geller–Seifter anti-conflict tests, citronellol and 

2-phenethyl-alcohol were shown to be the components mainly responsible for anti-

conflict effects (Umezu et al., 2002). Geraniol has also been identified as a component 

of rose oil (Umezu et al., 2002). High concentrations of geraniol have estrogenic 

activity (Howes et al., 2002), and estrogens have been shown to reduce anxiety in 

female rats (Hill, Karacabeyli, Gorzalka, 2007). This is one possible explanation for the 

differences between male and female gerbils in the EPM. However, sex differences in 

response to rose oil odour were minor and only observed in the EPM following acute 

exposure. Female gerbils exhibited higher levels of anxiety, less open entries and more 

protected head-dip behaviour compared to males. However, after 2 weeks exposure to 

rose odour any sex differences disappeared. These results contrast with the sex 

differences observed in diazepam treated gerbils in both the EPM and BWB. This also 

suggests that rose oil might reduce differences in anxiety-like behaviour between males 

and females.   

6.4.3 Conclusions  

These studies provide evidence for lavender and rose EOs having longer-term effects, 

which potentiate over time, rather than just having limited temporary effects as 

suggested by one meta-analysis of their anxiolytic effects in humans (Cooke & Ernst, 

2000).   
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The fact that these two odours appear to have differing mechanisms of action adds 

weight to the argument for specific pharmacological effects for each odour. Broadly 

speaking, lavender had more potent anxiolytic effects in the EPM; whereas, rose oil’s 

anxiolytic effects appear to be more prevalent in the BWB. As mentioned  in chapter 5 

(see summary Chapter 5.5), the BWB did not validate as well as the EPM, but was 

included here as it might be measuring aspects of avoidance-type anxiety rather than 

general anxiety. Studies by other workers indicate that behaviour in the BWB might be 

mediated by amygdala function, whereas, in the EPM it might be hippocampal function 

that predominates (Do-Rego et al., 2006; McHugh, et al., 2004). Thus, rose oil might 

have more of an effect on the avoidance and arousal aspects of anxiety, which are 

thought to be mediated by the amygdala. In contrast, lavender’s effects might be 

mediated by the behavioural inhibition system and therefore have an influence on the 

cognitive aspects of anxiety, such as risk-assessment, which has been likened to human 

worry (Gray & McNaughton, 2003; Blanchard et al., 1993).   

The fact that animals rapidly habituate to the presence of odours would lend support to 

lavender and rose possessing distinct and specific longer-term pharmacological effects. 

Prolonged odour administration causes olfactory receptor adaptation and reductions in 

neuronal responses to that odorant (Wilson, in press). This being the case, any longer-

term effects probably have nothing to do with odour preference at all, since the gerbils 

will no longer detect the presence of the odour.  

However, one limitation of these studies pertains to the possible role of odour 

preference in gerbils. It is very difficult, and perhaps even impossible, to account for 

odour preferences in gerbils. Perhaps the differing behavioural profiles between the two 

odours could be accounted for by some innate preference for either odour. Without 

actually controlling for the odour, it is impossible to say. The use of animals that have 

not previously been exposed to lavender or rose odour eliminates confounding due to 

learning mechanisms. However, the gerbils’ natural preferences for odour might have 

some confounding effect. Future researchers might consider the use of treatments, such 

as zinc sulphate (ZnSO4), that impair the nasal mucosa. Although it should be noted that 

such treatments might carry some methodological issues in that in some species they do 

not always cause complete anosmia, for example the rat (Slotnick, Glover, & Bodyak, 

2000). Furthermore, impairments to the olfactory senses have been shown to occur in 

other mental illnesses, such as depression (Atanasova et al., 2008), and as such might 
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confound studies attempting to examine the effects of odours on anxiety. In this vein, 

olfactory bulbectomy of the rat has been used as a model of depression (Song & 

Leonard, 2005).    

Another approach to overcome this preference problem and to establish any true 

anxiolytic properties, which do not require the odour for anxiolytic effects, would be to 

feed encapsulated essential oil to participants. This method of delivery has been used in 

studies examining the cognitive and mood enhancing effects of other EOs, such as 

lemon balm (M. officinalis) and Spanish sage (S. lavandulaefolia), in humans (Kennedy, 

et al., 2002; Tildesley et al., 2003). Similarly, oral gavauge has been used in mice to 

deliver acute doses of lavender prior to testing on the EPM (Guilleman et al., 1989). 

However, in this study, the lavender was not encapsulated and so it could be argued that 

any effects are mediated by odour preference or some other mechanism that involves 

odour. Although lavender EO has not been fed to humans in encapsulated form prior to 

the studies reported here, linalool, the major component of lavender, has been massaged 

into the abdomens of participants who were wearing oxygen masks, and therefore not 

exposed to its odour effects (Heuberger et al., 2004). In Heuberger’s study (2004), 

removal of either the odour or the other components of lavender also seem to have 

removed any cognitive anxiolytic effects, while retaining linalool’s physiological and 

autonomic anxiolytic effects. These results indicate that the odour might be required for 

the cognitive, mood-enhancing, anxiolytic properties to be effective. Alternatively, 

perhaps the whole oil, rather than one component, is required for anxiolysis. However, 

since the olfactory system, including the phylogenetically old and conserved entorhinal 

cortices, and the limbic system (the seat of anxiety) are very closely linked, perhaps 

removing the odour might also remove lavender’s propensity to mediate anxiolysis. 

Likewise, feeding lavender to participants could also cause any active components of 

the oil to be rendered inactive during digestion. With these limitations in mind, it was 

decided to proceed with phase two of the thesis and use orally-administered 

encapsulated lavender as the route of administration in a randomised, placebo-

controlled and double-blind study.   

Thus, in part one of this thesis the problem of whether lavender EO odour has only 

transient effects, or whether it has properties more akin to a drug, which like many 

drugs is potentiated over time, has been addressed. It has been confirmed that lavender’s 
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anxiolytic effects, in the rodent models tested here, potentiate over time. However, these 

studies do not address the question of whether odour preferences play a part in lavender 

(or rose) oil’s effects. Hence, the second part of this thesis attempts to begin to answer 

the question of whether the odour of lavender is required for its mood enhancing 

anxiolytic effects. Because of the difficulties of feeding gerbils (and rodents in general) 

encapsulated EOs without them chewing it and  detecting its odour and the fact that it is 

not possible to assess the cognitive components of anxiety, such as worry and  mood in 

gerbils, then the second part of this thesis will be conducted using human participants.   

In addition, a further longer-term aim of the second part of the thesis is to conduct 

longer-term studies in humans too. However, this is dependent on establishing a suitable 

test and it would only be worth conducting chronic studies if results of acute testing in 

humans provided reason to believe that lavender’s longer-term effects are worthy of 

investigation.   

Lavender was chosen for this next phase of studies, rather than rose oil, because it was 

lavender that had more potent effects in the EPM. The EPM was the model that gave 

more reliable validity in terms of expected responses to known anxiolytic and 

anxiogenic drugs. In addition, there has been very little research on rose oil compared to 

lavender. More is known about lavender’s potential mechanisms of action. However, in 

the future it would also be of interest to investigate rose oils effects in a similar human 

study.
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CHAPTER 7 ORAL ADMINISTRATION OF 
LAVENDER IN HUMANS: A LABORATORY TEST 
OF ANXIOLYTIC EFECTS.   

7.1 INTRODUCTION   

In the previous chapter it was shown that in a widely used preclinical model of anxiety, 

the EPM, lavender odour has anxiolytic effects. As discussed, one limitation to the 

previous work is that it was not possible to take into account any natural preferences for 

the odour that the gerbils might have had.   

Oral administration of lavender oil by sealed capsule presents an opportunity to test 

double-blind placebo-controlled studies of putative pharmacological effects in humans. 

Oral administration of EOs is common in Europe (Schnaubelt, 1998) and studies have 

shown that capsule administrations of lemon balm, Melissa officinalis (Kennedy,  et al., 

2002) and Spanish sage, Salvia lavandulaefolia (Tildesley et al., 2003) EOs have 

beneficial effects on human cognitive performance. However, there has been no 

published study examining the anxiolytic effects of lavender in humans in a double-

blind randomised placebo-controlled trial.    

Although there have been no placebo-controlled randomised double-blind studies of 

lavender odour, there is some evidence for the effectiveness of lavender oil in the 

treatment of anxiety in humans (see Introduction, section 1.4). However, as discussed in 

section 1.4, the locus of anxiolytic effects in humans is unclear. Pharmacological effects 

cannot easily be differentiated from either innate or learned preferences for lavender 

odour. Moreover, it has been shown that pleasant odours can positively modulate mood 

(Weber & Heuberger, 2008; Burnett et al., 2004) (see section 1.4).   

Suspenseful film-clips have been used to elicit anxiety (Santagostino et al., 1996; Tull 

& Roemer, 2007; Aftanas, Reva, Savotina, Makhnev, 2004). They have also been 

shown to increase levels of physiological arousal typical of the somatic components of 

anxiety, such as cardiovascular measures, electrodermal skin response (GSR) and 
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respiration (Totten & France, 1995; Kreibig, et al., 2007).  Heart-rate variation (HRV) is 

vagally mediated and is an index of the central peripheral feedback capacity, it is lower 

in anxious participants (Thayer & Lane, 2007; Brosschot, Van Dijk, & Thayer, 2007; 

Pieper, Brosschot, van der, & Thayer, 2007; Friedman & Thayer, 1998; Gorman & 

Sloan, 2000; Johnsen et al., 2003; Watkins, Grossman, Krishnan, & Sherwood, 1998; 

McCraty, Atkinson, Tiller, Rein, & Watkins, 1995; Thayer & Friedman, 2002). Thus, 

anxiolytic effects are associated with HRV increases. Since HRV is vagally mediated, it 

might be a sensitive measure of the effects of anxiolytics on the parasympathetic 

nervous system (McCraty et al., 1995). There is also some evidence that 

parasympathetic measures might be more sensitive to lavender’s effects than the more 

often tested GSR and HR (Duan et al., 2007; Saeki, 2000).   

Other measures to be included in the study are measures of facial muscle response. 

There is a high correlation between activity in the corrugator muscle in the face, the 

muscle that causes the frown lines between the eyebrows, and higher levels of stress and 

anxiety (Cacioppo & Tassinary, 2001). Salivary cortisol is widely used as a measure of 

HPA axis activity and is expected to rise in response to stress in a significant proportion 

of the population (Höferl, et al., 2006). Measures of blood pressure are also widely used 

as indicators of autonomic activation and hence they too were included.  

The aim of this study was to provide a randomised double-blind and placebo-controlled 

test of the effects of capsule administration of lavender in humans. It was expected that 

oral administration of lavender oil capsules (100 µl and 200µl) would have dose-

dependent anxiolytic properties, measured using self-report measures of anxiety and 

mood, and physiological measures of respiration, electrodermal response, heart-rate and 

HRV.  However, if orally-administered lavender failed to have anxiolytic effects then 

this might argue that the odour is required for any potential anxiolytic effect or could be 

because the active constituents of the lavender are being eliminated or inactivated 

during digestion.      
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7.2 MATERIALS AND METHODS  

7.2.1 Design  

A randomised placebo-controlled double-blind study was conducted to compare the 

effects of three lavender doses (0 µl, 100 µl, 200µl) and sex on participants in response 

to a neutral film, an anxiety-provoking film, and a light-hearted recovery film. Ethical 

approval was granted by the departmental ethics committee (see appendix three, section 

one) and was in accordance with the British Psychological Society Code of Conduct 

(2006) and the Declaration of Helsinki (1964). 

7.2.2 Participants   

Ninety seven healthy adult non-smoking participants (58 females, 39 males) aged 18-74 

years (mean 35.56 +/- 1.19 SEM); BMI ranging from 17.5- 40.8 (mean 22.91+/- 1.88), 

were recruited from the general population. Recruitment was via poster, flier, 

newspaper articles (see appendix3 section 1) and two local radio appearances (BBC 

Radio Lancashire’s ‘Tony Livesey’s Breakfast Show’ and Carole Turner’s chat show 

‘Later with Carole’). Group sizes were as follows: placebo, males n= 12, females n= 19; 

100 l lavender, dose males n= 13, females n=19; 200 l lavender, dose males n= 14, 

females n= 18.   

7.2.2.1 Participant screening  

Following advice from Mr Venkat Iyer (Neurosurgeon, Royal Preston Hospital) all 

potential participants were screened for allergies to lavender by means of a patch test: a 

drop of the capsule contents was applied to the inside forearm of participants and 

massaged in; any itching or swelling in this area over the next 24 hours was reported. 

Only one person reacted to the lavender capsule contents and did not take part in the 

study. Of the remaining participants, one female vomited during the baseline phase and 

therefore data from this participant were excluded from the study (final n=96).   

On recruitment, participants were given a participation pack to complete, which 

contained an overview of the experimental protocol and a consent form enquiring about 

the fitness of participants. Anyone who was not in good health or was taking prescribed 
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medication was screened out at this stage of recruitment. Information about height and 

weight was also sought; this part of the form was completed on arrival at the laboratory 

prior to taking part in the study. The pack also included dietary instructions; for 24 

hours prior to the study participants abstained from a list of food, beverages and 

toiletries containing the components of lavender as well as from alcohol, tea, and coffee 

(see appendix 3, section 3, for participation pack). Participants were free to withdraw 

from the study at any time.  

7.2.3 Film-clips   

Suspenseful film-clips are effective and ethically acceptable tools for the creation of 

anxiety (Kreibig et al., 2007). Gross and Levenson, (1995) have created a library of 

films demonstrated to influence discrete moods (Rottenberg, Ray, & Gross, 2007). 

‘Silence of the Lambs’ was selected from this library (Clip length:  3'29") and edited 

following Gross and Levenson’s recommendations. The clip depicts a lone female 

detective who is searching in a dark cellar for a psychopathic killer; it has been shown 

to elicit mild fear/ anxiety (Gross & Levenson, 1995). Anxiety effects from films are 

additive (Rottenberg et al., 2007). This clip was followed immediately by a nine minute 

edited version of ‘Open Water’, featuring a couple being stalked by sharks. This was 

shown in pilot studies to be effective in changing moods by the positive and negative 

affect schedule (PANAS) (Watson et al.,1988) and by Gross and Levenson’s film 

questionnaire (Rottenberg et al., 2007) (see appendix 4). Any scenes of violence or 

injury were edited out to prevent elicitation of emotions related to disgust rather than 

anxiety.  

In addition ‘Nature Watch’ a 30 minutes TV documentary program, was validated as a 

neutral film and shown to cause no positive or negative affect, or anxiety. Finally a 

recovery film was selected  from Laurel and Hardy’s ’Towed in a Hole’, and was 

screened for ten minutes to prevent participants leaving the laboratory feeling anxious.  

All film-clips were viewed on a Panasonic NV-DS (TY – SP42P8W-K) 106.7 cm 

screen width TV, which was linked to a Panasonic DVD player (S29 D). 
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7.2.4 Lavender Capsules  

Gelatine lavender capsules, were manufactured by Power Health Ltd., Pocklington, 

York, YO42 1NR (Tildesley et al., 2005), and contained either organic Lavandula 

angustifolia oil (100 l or 200 l), which was purchased from Tisserand Ltd., 

(www.Tisserand.com), and combined with sunflower oil, or just sunflower oil (placebo). 

GC/MS studies showed that lavender reached the bloodstream 15 minutes following 

ingestion of the capsules and reached a maximum at 30 minutes following the ingestion 

of 200 l of lavender (data presented in appendix 5). In addition, the manufacturers 

indicated that the capsule would disrupt at 30 minutes following ingestion (personal 

communication email Mandy Sharp).  

7.2.5 Measurements  

7.2.5.1 Self-report measures  

Spielberger’s state-trait anxiety questionnaire (STAI- Y) was used to measure state and 

trait anxiety (Spielberger, Gorusch, Lushene, Vagg, & Jacobs, 1983). The STAI-Y is a 

well-validated and widely used measure of state and trait anxiety in laboratory studies 

and in clinical practice (Spielberger et al., 1983; Grös, Antony, Simms, & McCabe, 

2007).  It is reported to have been used in over 3000 studies and has averaged internal 

consistencies of above 0.89, Chronbach’s alpha, and test –retest reliability of r= 0.88 for 

trait anxiety and r = 0.77 for state anxiety, as would be expected (Grös et al., 2007).   

State anxiety is transitory; it is present at a specific moment in time. In contrast, trait 

anxiety is a more permanent feature of personality and represents a predisposition to 

experience state anxiety (Grös, et al., 2007). People with high trait anxiety are more 

likely to perceive a stressful situation as dangerous or threatening and are more likely to 

experience higher state anxiety (Spielberger, 1983).    

A general measure of normal mood was also sought. Emotional experience has been 

shown to have two general dimensions: positive and negative affect. These emerge 

http://www.Tisserand.com
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consistently in research across a broad range of experiences (Watson et al., 1988). The 

positive and negative affect scales (PANAS), used in this study, have been developed 

and validated to measure these factors and are very reliable, giving a Chronbach’s alpha 

of 0.83 (Watson et al., 1988). Negative affect is strongly associated with measures of 

general neuroticism and anxiety and is often used as a measure of normal anxiety (Gray 

& Watson, 2007).   

7.2.5.2 Physiological measures  

Physiological parameters were recorded simultaneously and continuously during each 

phase of the study using the Biopac MP100 Hardware (Biopac systems Inc.) and 

AcqKnowledge software version 3.8.1(11.03.2004, Biopac systems Inc. Santa Barbara, 

California, USA). Sampling rate was at 500Hz.   

Heart-rate: ECG100B amplifier set to R-wave; gain 1000; upper frequency response 

35Hz; lower frequency response 0.05 Hz. ECG electrodes: 3M electrodes (Southern 

Syringe Ltd., Manchester). Electrode placement was in a three lead unipolar modified 

chest configuration following the modified I lead version (Stern, Ray, & Quigley, 2001). 

Galvanic skin response: GSR100B amplifier: gain 50 mho; upper frequency response 

10 Hz; lower frequency response 0.5Hz. Ag/AgCl finger electrodes (TSD103A) were 

used via the constant voltage (0.05V) technique. Electrodes filled with a high 

impedance electrolyte paste Gel 100 (Biopac Inc.) were placed on the second phalanx of 

the middle and index finger of the non-dominant hand (Cacioppo & Tassinary 1999).   

Respiration rate: A strain gauge respiration transducer, TSD201 and the RSP100C 

amplifier measured breathing-rate. The transducer was placed around participant’s 

thorax, just below the breast line and on the sternum.  Gain settings: low pass filter; 

10Hz; 0.5Hz filter set to DC and 0.5 Hz filter set to DC.     

Facial EMG: The left corrugator muscle signal was measured using an EMG100B 

amplifier set at: gain 5000; lower frequency response 500Hz; HDN 100Hz; upper 

frequency response 1.0 Hz and surface electrodes Ag/AgCl (EL 204S), 4mm contact 

area. EMG was measured by placing two electrodes filled with conductive gel (Gel 100 

Biopac inc.) over the eye, one over the brow bone on the corrugator supercilii muscle 
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and one on the forehead (ground) following the placement described by Cacioppo and 

Tassinary (1999) these were secured with surgical tape.   

Salivary Cortisol: Saliva samples were taken after the neutral film, after the anxiety film 

after debriefing, and just prior to participants leaving the laboratory, 20minutes after the 

end of the anxiety film, when it is expected that, on average, there will be a rise in 

salivary cortisol in response to stress (Höferl, et al., 2006). Salivary cortisol was 

analysed using the DRG salivary cortisol kit (IDS Ltd., Boldon, Tyne and Wear). This 

kit is a standard competitive Enzyme Linked Immuno-Sorbent Assay (ELISA).  In this 

kit, the wells of a standard 96 well micro-titre plate are coated with anti-cortisol 

antibody. Standard volumes (100 µl), of known and unknown concentrations of cortisol 

in the standards, controls, and samples being tested, are added to separate wells; in 

addition, a standard volume of cortisol linked to an enzyme (conjugate) is added to each 

of the wells. These compete for binding sites on the antibody molecules. Following a 

specified incubation time (one hour) any unbound material is washed from the wells and 

a substrate for the enzyme, 3, 3, 5, 5, tetra-methyl-benzidine, is added to each of the 

wells of the plate. The plate is incubated for a further thirty minutes. The reaction is 

stopped by adding acid, such as sulphuric or hydrocholoric and the concentration of the 

product, produced by the enzyme-substrate reaction, is measured using optical density 

readings at 450nm wavelength. Finally, a standard curve is constructed from the known 

amounts of cortisol in the standards and the absorbance values from the unknown 

samples are extrapolated from the standard curve.   

The lower detection limit of the assay was 1.14ng/ml. The intra- and inter-assay 

coefficients of variation were 4.83%, 1.37%, 1.84% over the standard curve and 6.4% 

respectively.    

Blood pressure readings, systole and diastole, were taken every three minutes by a 

Critikon Dinamap vital-signs monitor 8100, following the procedure reported in 

Cacioppo and Tassinary (1999).  
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7.2.6 Procedure  

The study took place in the Department of Psychology’s purpose built health suite (see 

Figure 7.1 below for suite layout) 

  

Figure 7-1 Schematic plan of the Health Psychology Research Suite  

On arrival at the waiting room, compliance with dietary restrictions was confirmed. 

Participants were asked to complete general health questionnaires, a consent form and 

initial self-report measures. Next, participants were seated in a comfortable chair in the 

experimental room and the physiological transducers were attached (see Figure 7.2 of a 

mock participant below).   
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Figure 7-2 The stress laboratory, a ‘mock’ participant about to watch the film-
clips  

The transducers were also attached to the Biopac and computer situated on the other 

side of a one-way mirror in an adjacent electrophysiological laboratory, from where the 

experimenter could observe proceedings. During the study, any communication between 

participant and experimenter took place via an intercom system linking the two rooms. 

Participants were facing away from the one-way mirror system to minimise any 

reactivity bias. The Biopac physiological system was situated on the other side of a one-

way mirror in an adjacent room, and transducer leads were fed through two conduits to 

this room and attached to the transducers. Once the study had begun, the experimenter 

observed proceedings via the one-way mirror system. Participants watched the film-

clips in the dark. Lights were turned on at the end of each film-clip to allow participants 

to complete the self-report measures.   

Baseline measures were taken for approximately ten minutes. During this time 

participants were asked to relax and imagine a pleasant situation, such as lying on a 

warm beach. Once baseline measures were relatively stable, participants were asked to 

complete self-report measures. Following this, the participants took their allocated dose 
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of lavender capsules with a small cup of water. Viewing of film-clips proceeded with 

the neutral film and then questionnaires followed by the anxiety clip, questionnaires and 

finally the recovery clip. Timings of film-clips were: neutral clip immediately after 

taking the capsules, anxiety-provoking clip 35 minutes after capsule administration, and 

recovery clip 50-minutes after capsule administration. During viewing time, 

physiological measures were taken continuously. Participants were asked to engross 

themselves in the clips as much as possible. They were asked to complete the self-report 

measures with regard to how they felt while watching the respective clips. Timing of the 

clips was based on the time taken for lavender’s major components to peak in the 

bloodstream following oral administration (see appendix 5) so that the average peak 

concentration of lavender in the bloodstream coincided with the anxiety film-clip.   

7.2.7 Data reduction   

All data were screened manually prior to data reduction and any movement artefacts or 

noise were either removed or filtered out using the appropriate filter for the signal being 

reduced.  

Heart-rate (bpm) data were transformed into 30 second mean rates for each phase 

except baseline. For baseline phase, the rate of the last minute was taken. Each of the 

data points for each phase was subtracted from the baseline to adjust for baseline values, 

as recommended by Stern, Ray, and Quigley (2001), Howell, (2002), Tabachnik and  

Fidell, (2001). The means of each of these baseline adjusted change scores were 

calculated for each phase of the study.   

Measures of HRV in the time domain were derived from HR following recommended 

guidelines (Malik et al., 1996; Berntson et al., 1997; Niskanen, Tarvainen, Ranta-aho, & 

Karjalainen, 2004). This measure of HRV has been shown to be more robust to changes 

in breathing-rate than the alternative power spectral density methods (Penttila et al., 

2001). Measures taken were mean and standard deviation of inter-beat-interval (RR) 

data (SDRR )( measured in seconds); root mean square of differences of successive RR 

intervals (RMSSD); and the percentage value of consecutive RR intervals that differ 

more than 50ms (NN50%). These measures are considered indices of cardiac 

parasympathetic activity (Penttilä et al., 2001).  



 

194

  
For GSR data the overall tonic skin level (GSL) was calculated for each 30 second 

phase and treated as for HR data. The mean number of galvanic skin responses (GSR 

frequency) was extracted by removing the drifting baseline using a high pass filter (IIR) 

set to 0.05Hz. Only peaks above 0.02 mho were counted as responses.   

For breathing-rate data peaks were counted manually and expressed as breaths per 

minute.   

7.2.8 Data analysis  

All data were adjusted relative to baseline by subtracting baseline measures from those 

obtained during each phase of the study (Howell, 2002; Heuberger et al., 2004). These 

data were screened for normality for each group following the recommended procedures 

(Tabachnick & Fidell, 2001).  

Self-report data met the assumptions of normality and were analysed using a mixed 

design MANCOVA (SPSS version15): 2 (sex) x 3 (lavender dose: 0 µl, 100 µl, 200µl) x 

2 (time: neutral, anxiety) with sex and dose as between-group variables and time as a 

within-group variable.   

Physiological data were analysed by first comparing male and female data for sex 

differences using the Mann-Whitney U test. Wherever there was a sex difference 

subsequent analyses were performed separately for males and females; otherwise, all 

data were combined. To test for the effects of lavender dose, the Jonckheere-Terpstra 

test for ordered alternatives, which is more powerful than the Kruskall-Wallace 

nonparametric ANOVA (Siegel & Castellan, 1998) was employed for each phase of the 

study; followed by pair-wise comparisons of each dose with placebo using the Mann-

Whitney U-test where appropriate. Alpha levels were set at 0.05.   
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7.3 RESULTS  

See Table 7.1 below for participant characteristics  
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Table 7.1 Mean and standard deviations of age, height, weight and trait anxiety scores on male and female participants.  

Males

 
Females

 
Lavender

 

dose

 

N

 

age

 

height

 

weight

 
Percent

 

Body

 

fat

 
STAI

 

TRAIT

 

Anxiety

 

N

 

age

 

height

 

weight

 
Percent

 

Body

 

fat

 
STAI

 

TRAIT

 

Anxiety

 

placebo

 

12

 

31.17 
(9.94)

 

176.58 
(8.84)

 

81.30 
(15.86)

 

20.49 
(6.75)

 

39.36 
(9.62)

 

19

 

32.32 
( 8.31)

 

162.22 
(6.03)

 

62.90 
(10.36)

 

29.43 
(6.94)

 

38.58 
(8.81)

 

100

 

13

 

38.85 
(11.25)

 

178.19 
(4.95)

 

85.65 
(15.58)

 

20.14 
(6.13)

 

37.46 
(7.43)

 

20

 

43.05, 
(14.66) 

 

164.97 
(7.66) 

 

72.82 
(15.95)

 

33.77 
(8.81)

 

37.65 
(9.31)

 

200

 

14

 

33.50 
(10.83)

 

181.21 
(3.44)

 

85.89 
(15.04)

 

19.71 
(6.03)

 

32.57 
(5.12)

 

19

 

33.47 
(9.95) 

 

164.75 
(6.74)

 

65.48 
(11.26)

 

30.04 
(7.16)

 

37.63 
(10.18)

 

Total

 

39

 

34.56 
(10.91)

 

178.78 
(6.04)

 

84.40 
(15.21)

 

20.10 
(6.22)

 

36.29 
(7.86)

 

58

 

36.40 
(12.20)

 

163.97 
(6.84)

 

67.10 
(13.26)

 

31.10 
(7.80)

 

37.95 
(9.29)

 

Group sizes: Males placebo n= 12, 100 l n= 13, 200 l n= 14. Females placebo n= 19, 100 l n= 19, 200 l n= 18. Significance level * p < 0.05. 
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7.3.1 Self-report measures  

Mean levels of change in anxiety, positive affect and negative affect at different doses 

of lavender are shown in Table 7.2 (below).  

Table 7.2  Effects of orally-administered lavender capsules on state anxiety scores after the neutral 
film. Data presented are baseline adjusted means and SEM.  Statistical significance: * p < 0.05. 
Group sizes placebo n= 31, 100 µl n = 32, 200 µ l = 32.  

Difference 
score 

Lavender 
dose 

All 
participants 
Mean (S.D) 

Males 
Mean (S.D) 

Females 
Mean (S.D) 

placebo 
-3.50 
(6.34) 

-2.71 
(5.95) 

-4.00 
(6.68) 

100 
-4.28 
(7.54) 

-2.69 
(7.73) 

-5.37 
(7.42) 

State 
anxiety 
(neutral – 
baseline) 

200* -7.32* 
(6.92) 

-4.50 
(5.96) 

-9.52 
(6.96) 

placebo 
2.89 
(10.50) 

1.62 
(6.92) 

3.68 
(12.36) 

100 
5.59 
(12.80) 

3.62 
(7.91) 

6.95 
(15.35) 

State 
anxiety 
(anxiety 
film– 
baseline) 200 

6.54 
(11.44) 

5.93 
(8.23) 

7.01 
(13.65) 

placebo 
-0.97 
(3.60) 

-0.58 
(4.08) 

-1.21 
(3.36) 

100 
-2.59 
(4.56) 

-3.15 
(5.11) 

-2.21 
(4.25) 

Negative 
affect 
(neutral – 
baseline) 

200 
-0.72 
(3.27) 

0.43 
(4.15) 

-1.61 
(2.09) 

placebo 
3.61 
(7.25) 

1.83 
(2.59) 

4.74 
(8.94) 

100 
5.44 
(7.38) 

2.85 
(4.98) 

7.21 
(8.32) 

Negative 
affect 
(anxiety 
film– 
baseline) 200 

5.94 
(6.70) 

6.21 
(7.00) 

5.72 
(6.66) 

placebo 
-7.99 
(7.69) 

-6.90 
(6.07) 

-8.68 
(8.65) 

100 
-5.44 
(8.89) 

-7.46 
(7.38) 

-4.05 
(9.74) 

Positive 
affect 
(neutral – 
baseline) 

200 
-8.84 
(8.40) 

-7.21 
(7.26) 

-10.10 
(9.19) 

placebo 
-4.14 
(5.86) 

-2.70 
(5.39) 

-5.05 
(6.10) 

100 
-3.94 
(7.19) 

-2.69 
(5.91) 

-4.79 
(7.99) 

Positive 
affect 
(anxiety 
film– 
baseline) 200 

-3.69 
(7.64) 

-3.21 
(8.26) 

-4.06 
(7.34) 

 

Group sizes: Males placebo n= 12, 100 l n= 13, 200 l n= 14. Females placebo n= 19, 100 l n= 19, 200 l 
n= 18. Significance level * p < 0.05.     



 

198

 
Mixed MANCOVAs for each measure: state anxiety, negative affect and positive affect 

for the two phase of the study (neutral film and anxiety film each corrected for baseline) 

revealed a significant main interaction for state anxiety for each phase of the study and 

lavender dose (F (2, 86) = 4.67, p < 0.05 eta 2 =0.1). Adjustment was made for one 

covariate (trait anxiety), which did not contribute significantly to the model. Thus, 

separate ANCOVAs were conducted to examine the effects of lavender dose on state 

anxiety following the neutral and anxiety phases of the study. Alpha levels were set at 

p< 0.025 for each ANCOVA, and because of uneven group sizes, the conservative 

Pillai’s trace criterion used. There was a significant effect for lavender dose on state 

anxiety following the neutral film (F (2, 93) =4.10, p < 0.05; eta 2 = 0.08). Adjustment 

was made for trait anxiety which contributed significantly to the model, (F (1, 93) = 

7.10, p < 0.01, eta 2= 0.07). Post-hoc comparisons using the LSD test (for 3 means) 

revealed a significantly greater decrease in state anxiety after the neutral film following 

administration of the 200 µl dose of lavender when compared with placebo: mean 

difference 5.50, p < 0.05.  The 100µl group had a mean difference of 2.27, p < 0.05 (see 

Figure 7.3).   

                      

Figure 7-3 The effects of orally-administered lavender capsules on state anxiety 
scores after the neutral film. Data presented are baseline adjusted means and SEM. 
Statistical significance: * p < 0.05. Group sizes placebo n= 31, 100 l n = 32, 200 l 
= 32.   
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During the anxiety film-clip phase of the study lavender dose did not have a significant 

effect on state anxiety (F (2, 93) = 0.68, p= 0.51, partial eta 2 =0.01). There were no 

significant effects of lavender on either negative or positive affect scores. 

7.3.2 Physiological measures  

For medians and inter-quartile ranges see Table 7.3. All data were adjusted for baseline 

(see Methods Section 7.2.8).                           



 

200

 
Table 7.3 Baseline adjusted group medians and inter-quartile ranges of different 
physiological measures during a neutral, anxiety and light hearted recovery film 
following orally-administered  encapsulated lavender (100µl, 200 µl) or placebo 
(sun flower oil).  

Physiological 
measure 

Lavender 
dose (µl) All participants Males Females 

placebo -18.91, 1.78, 10.55 

  

100 -13.71, 1.18, 13.98 

  
Heart-rate 
(BPM) neutral 

200 -14.56, -11.30*, 27.08 

  

placebo -93.07, 20.09, 31.12 

  

100 -63.91, 6.28, 18.85 

  

Heart-rate 
(BPM) anxiety 

200 -74.26, 3.06, 23.84 

  

placebo 

 

-23.59, -20.42, 3.96 -113.99,-73.19,13.20 

100 

 

-75.52,-42.68, 11.23 -55.80, -11.97, 4.12 

Heart-rate 
(BPM) recovery 

200 

 

-73.59,-37.69, 21.07 -86.02, -52.52, 6.11 
placebo -2.96, -0.58, 1.46 

  

100 -2.63, -0.35, 1.79 

  

Diastole neutral 

200 -4.08, -1.42, 2.36 

  

placebo -2.21, 0.00, 3.88 

  

100 -0.73, 0.97, 3.54 

  

Diastole anxiety 

200 -2.95, 0.67, 3.67 

  

placebo -4.40, -1.67, 1.89 

  

100 -2.63, 0.56, 3.79 

  

Diastole recovery 

200 -1.83, 0.00,2.83 

  

placebo -4.15,-2.00,0.00 

  

100 -4.29, -2.36, 0.58 

  

Systole neutral 

200 -4.73, -1.33, 2.25 

  

placebo -1.50, 1.89, 3.90 

  

100 -0.75, 1.71, 5.18 

  

Systole anxiety 

200 -0.92, 2.50, 5.34 

  

placebo -3.34, 0.67, 2.81 

  

100 -3.25, 1.09, 4.50 

  

Systole recovery 

200 -1.80, 0.67, 6.11 

  

placebo 5.18, 5.22, 6.97 

  

100 3.96, 5.25, 5.71 

  

Cortisol neutral 
(unadjusted for 
baseline) 

200 4.10, 4.99, 5.82 

  

placebo 4.65, 4.75, 6.12 

  

100 3.36, 4.64, 5.68 

  

Cortisol anxiety 
(unadjusted for 
baseline) 

200 4.15, 4.74, 5.61 

  

placebo 4.91, 5.10, 6.65 

  

100 4.41, 5.20, 6.06 

  

Cortisol recovery 
(unadjusted for 
baseline) 

200 4.37, 5.04, 5.69 

  

placebo -0.16, -0.60, 0.70 

  

100 0.24, -0.57, 1.21 

  

Galvanic skin 
level ( S) neutral 

  

200 0.62, -0.87*, 1.11 
-0.87*

   

placebo -0.14, 0.36, 0.83 

  

100 0.36, 0.82, 1.08 

  

Galvanic skin 
level ( S) anxiety 

 

200 0.00, 0.66, 0.91 

  

placebo 0.04, 0.65, 1.22 

  

100 0.40, 0.78, 1.11 

  

Galvanic skin 
level ( S) 
recovery 

 

200 0.54, 0.79, 1.26 
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placebo -0.54, -0.32, 0.00 

  
100 -0.07, -0.00, 0.33 

  
Galvanic skin 
frequency  ( S) 
neutral 

200 -0.19, -0.00, 0.03 

  
placebo 

 
0.00, -0.0260, 0.07 -0.10, 0.03, 0.03 

100 

 
-0.05, 0.0000, 0.01 -0.07, 0.05, -0.02 

Galvanic skin 
frequency  ( S) 
anxiety males 

 
200 

 
0.02, 0.0013*, 0.01 -0.03, 0.02, -0.00 

placebo -0.02, 0.00, -0.04 

  
100 -0.00, 0.02, 0.08 

  
Galvanic skin 
frequency  ( S) 
recovery 

200 -0.00, 0.02, 0.04 

  

placebo 0.0000, 0.0002, 0.0016 

  

100 0.0000, 0.0002, 0.0008 

  

Corrugator 
EMG neutral 

200 0.0000, 0.0002, 0.0013 

  

placebo 0.0000, 0.0003, 0.0016 

  

100 0.0001, 0.0004, 0.0013 

  

Corrugator 
EMG anxiety 

200 0.0000, 0.0003, 0.0016 

  

placebo 0.0000, 0.0005, 0.0019 

  

100 0.0000, 0.0005, 0.0018 

  

Corrugator 
EMG 
recovery 

200 0.0000, 0.0005, 0.0022 

  

placebo 0.06, 1.38, 2.89 

  

100 0.37, 1.89, 3.90 

  

Respiration rate 
Breaths per min) 
neutral 

200 0.75, 2.00, 2.75 

  

placebo -0.10, 0.03, 0.03 

  

100 -0.07, 0.05, 0.01 

  

Respiration rate 
Breaths per min) 
Anxiety 

200 -0.03, 0.02, 0.00 

  

placebo -2.50, 0.00, 1.00 

  

100 -1.00, 1.50, 2.50 

  

Respiration rate 
Breaths per min) 
recovery 

200 -1.00, 0.50, 2.00 

   

     

Group sizes Placebo n= 31, 100 l = 33, 200 l = 33, significance levels * p< 0.05, ** p < 0.01.  
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Heart-rate  

No sex differences in HR were detected in the neutral phase of the study and male and 

female data were combined. These data were analysed separately for males and females 

during the anxiety film but not the neutral film or the recovery film.  

Analysis revealed a main effect for lavender dose on heart-rate during the neutral film 

(J-T = 1.77, p < 0.05) but not the anxiety (J-T =0.33) or recovery clips (J-T = 0.25). 

Pair-wise comparisons showed that, at 200 l lavender, heart-rate was significantly less  

than placebo ( U = 402, p < 0.05) see Figure 7.4.  

 

Figure 7-4 The effects of orally-administered lavender capsules on (a), heart-rate, 
(b), galvanic skin level and (c), heart-rate variation (NN50%) during the neutral 
film-clip. Data presented are baseline adjusted means and SEM. Statistical 
significance:* p < 0.05. Group sizes placebo n= 32, 100 l  n= 32, 200 l = 33.       
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Galvanic skin response  

There were sex differences in GSR frequency (U = 63.5, p < 0.05) during the anxiety 

but not the neutral film. These data were analysed separately for males and females 

during the anxiety film but not the neutral film.  

Analysis of neutral film data revealed a decreasing trend in galvanic skin level with 

increasing lavender dose (J-T = 1.73, p < 0.05) in all participants. Pair-wise follow up  

tests showed this trend reached statistical significance at 200 l lavender compared to 

placebo (U = 372, p < 0.05); see Figure 7.6. During the anxiety-provoking film there 

was a dose-relatedincrease in galvanic skin response in males (J-T = 1.90, p < 0.05). 

Further pair-wise analysis indicated that this reached significance at the top dose of 

lavender (U = 41.5, p < 0.05) see Figure 7.5.  

 

Figure 7-5 The effects of orally-administered lavender capsules on galvanic skin 
response frequency during the anxiety film-clip in males. Data presented are 
baseline adjusted means and SEM. Statistical significance: * p < 0.05. Group sizes 
placebo n= 13, 100 l n = 13, 200 l = 14.  

Lavender failed to have any significant effects on respiration (breaths per minute) 

systolic or diastolic blood pressure, cortisol or corrugator EMG during any of the film-

clips (see Table7.2).  
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Table 7.4  Baseline adjusted median and inter-quartile ranges of heart-rate 
variation while watching a neutral, anxiety inducing and light hearted recovery 
film-clip film following orally-administered  encapsulated lavender (100µl, 200 µl) 
or placebo (sun flower  

Dependent 
variable 

Lavender 
dose ( l) 

All participants males females 

Placebo -0.01, 0.02, 0.11 

    

100 -0.02, 0.01, 0.07 

    

Neutral 
SDRR 

200 0.00, 0.02, 0.09 

    

placebo 

  

-0.03, 0.02, 0.07 -0.07, -0.01, 0.01 

100 

  

-0.03, 0.00, 0.01 -0.05, 0.01, 0.03 

Anxiety 
SDRR 

  

200 

  

-0.04, -0.02, 0.00 -0.02, 0.01, 0.08 

placebo -0.02, 0.01, 0.10 

    

100 -0.03,  -0.004, 0.06 

    

Recovery 
SDRR 

  

200 -0.01, 0.00, 0.02 

    

placebo -15.05,  11.90, 106.37 

    

100 -43.66, -0.41, 67.36 

    

Neutral 
RMSSD 

  

200 -10.64,  23.22, 128.44 

    

placebo 

  

-49.49, 15.77, 99.16 -121.78, 18.13,10.43 

100 

  

-46.46, 2.75, 16.85 68.25,12.49,64.44 

Anxiety 
RMSSD 

  

200 

  

-72.22, -23.49, -0.24 -17.04, 22.69*,168.01 

placebo 

  

-42.17, 6.23, 75.15 -62.09, 14.97,108.76 

100 

  

-57.09, 5.67,  86.76 -45.91, -3.48,78.64 

Recovery 
RMSSD 

  

200 

  

-24.66, -5.98, 0.05 0.52, 27.49, 61.68 

placebo -6.14, -0.01, 4.51 

    

100 -4.30, 0.53, 4.93 

    

Neutral 
NN50% 

  

200 -0.98, 4.09*, 7.04 

    

placebo -12.01, -2.68, 1.51 

    

100 -6.77, -0.76, 3.24 

    

Anxiety 
NN50% 

  

200 -9.76, -2.89, 3.04 

    

placebo 

  

-2.05, 0.26, 8.04 -5.84, -0.07, 5.07 

100 

  

0.75, 4.14, 9.23 -3.91, -0.94, 9.90 

Recovery 
NN50% 

  

200 

  

-14.35,  -2.77, -0.42 1.67,  7.19*, 9.00 

 

Group sizes Placebo n= 31, 100 l = 33, 200 l = 33, significance levels * p< 0.05, ** p < 0.0     
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Heart-rate variation  

For median and inter-quartile range measures of HRV, see Table 7.4. All data were 

adjusted for baseline (see Methods section 7.2.8).  

A number of HRV parameters differed according to sex. These were SDRR at 200 l 

(U = 78, p < 0.05) and RMSSD at 200 l (U = 71, p < 0.05) during the anxiety film, 

and RMSSD at 200 l (U = 76, p < 0.05) and NN50% at 200 l (U= 59, p <0.01) 

during the recovery film-clip. These were analysed separately by sex.  

Regardless of sex, during the neutral film there was a significant lavender dose-

related increase in HRV (NN50%) in all participants (J-T = 1.74, p < 0.05). When 

each dose was compared with placebo this reached significance at 200 l (U = 395, p 

< 0.05) (see Figure 7.4).   

In females, there were significant lavender dose-related trends in RMSSD during the 

anxiety film-clip (J-T = 1.87, p < 0.05) and in NN50% (J-T = 1.94, p < 0.05) during 

the recovery film-clip. Further pair-wise analysis of each lavender dose, compared 

with placebo, during the anxiety film showed that RMSSD was higher at the 200 l 

dose of lavender (U = 115, p < 0.05). Likewise, during the recovery film NN50% was 

significantly higher (U = 114, p < 0.05) at top dose (see Figures 7.6 and Table 7.4).   

There were no trends in any of these measures in males; however, there was a non-

parametric multivariate effect, in males, as measured by the Kruskall-Wallace test.  

There were significant group differences between the doses in the NN50% measure 

during the recovery film (H = 6.10, p < 0.05). However, pair-wise testing in males of 

each dose, compared with placebo for this measure, revealed no significant effects.       



 

206

 
  

 

Figure 7-6 The effects of oral lavender administration on heart-rate variation in 
females while watching an anxiety eliciting film-clip (RMSSD)  and a recovery 
film-clip (NN50%). Data presented are baseline adjusted means and 
SEM.Statistical significance: * p < 0.05. Group sizes placebo n= 19, 100 l= 19, 
200 l= 19; significance * p< 0.05.  

7.4 DISCUSSION  

Using a placebo-controlled double-blind design, the effects of orally-administered 

lavender capsule were tested on self-report and physiological indicators of anxiety. 

Compared to the placebo, a 200 l dose caused a greater self-reported state anxiety 

reduction from baseline after the neutral film. There were no between-group 

differences after the anxiety-producing clips. Similar effects were noted for the 

physiological measures, with 200 l lavender causing lower heart-rate and GSR, and 

higher HRV, compared to placebo, after the neutral clip. Fewer between-dose 

differences were observed after the anxiety-provoking film-clip. 200 l administration 

was associated with a higher GSR in males after the anxiety clips suggesting an 

anxiogenic effect. In contrast, a higher HRV suggests a parasympathetically mediated 

anxiolytic effect in females. Again, HRV was higher during the recovery clip in 

females who had taken the 200 l lavender dose.    

The most striking feature of these findings is that, after the neutral film-clip, lavender 

administration showed anxiolytic effects on self-report, HR, GSR and HRV measures, 

but that this effect was largely not sustained over the anxiety clips. There are a 

number of possible explanations for this. Firstly, it is possible that lavender’s effects 
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might be of a short duration and could therefore have elapsed by the time that the 

anxiety-provoking film was shown. However, the fact that lavender was still active in 

the recovery phase in females weakens this explanation.   

Secondly, lavender might be insufficiently strong to modulate highly anxiety-

provoking stimuli. Acute, capsule-administered lavender might show effectiveness 

during resting states, but does not greatly moderate experimentally induced anxiety. 

The effect of lavender on anxious states could be dependent on chronic rather than 

acute administration. Studies examining effects in animals indicate that, like other 

anxiolytic drugs, lavender’s anxiolytic effects potentiate over time (Bradley et al., 

2007a). Thus, acute administration might not be sufficient to moderate the levels of 

anxiety experienced in this study. Indeed, many drugs prescribed to treat anxiety do 

not have anxiolytic effects when taken acutely; the SSRIs and buspirone often 

increase anxiety in the short-term, but are efficacious after a few weeks of 

administration (Sinclair & Nutt, 2007).   

Alternatively, perhaps the dose of lavender was not high enough to elicit an 

anxiolytic response to the anxiety-provoking films in the human study. However, in 

studies looking at other EOs the converse has been found to be true, with lower doses 

being more effective in improving cognition and mood, particularly when participants 

were tested a few hours after capsule administration rather than immediately 

following digestion (Tildesley et al, 2005). These studies showed that low doses of 

Spanish sage EO (50 l) continued to have effects on mood for up to 6 hours after 

administration.   

One possible explanation is that qualitatively different aspects of anxiety might have 

been elicited with apprehensive anxiety elicited during the neutral film, and panic 

anxiety, characterised by an inability to escape, elicited during the anxiety-provoking 

clips. In males, lavender increased GSR, an indication of increased sympathetic 

arousal. This increased sympathetic activity is similar to results found in response to 

diazepam administration in males (Teixeira-Silva et al., 2004). It is possible that the 

anxiety-eliciting clips produced anxiety more related to panic than mild apprehension 

since participants could not easily escape from watching the film-clips. Thus, the 

film-clips might represent proximal threat as described by Blanchard and Blanchard 

(1988) from which there is no easy escape. Hence, lavender could have reduced 
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anxiety related to apprehension and approach during the neutral film, but had less 

effect on panic/avoidance type anxiety in males. It might be significant that even 

prescribed anxiolytics, such as diazepam, and 5HT drugs, such as chlormipramine, 

have often lacked anxiolytic effects against experimentally induced anxiety (Teixeira-

Silva et al., 2004); sometimes these drugs have even increased experimental anxiety 

(Guimaraes, Zuardi, & Graeff, 1987; Zuardi, 1990; Fell et al., 1985 in (Geddes, Gray, 

Millar, & Asbury, 1993)). Additionally the lack of cortisol response to the anxiety-

eliciting film-clip lends weight to this, since there have been many reports that, 

during panic attacks, plasma (and thus salivary) cortisol does not increase (Garcia-

Leal et al., 2005). The lack of cortisol response was not unexpected, since this has 

been found to be the case in other research using short film-clips (Hubert & Jong-

Meyer, 1991). However, the fact that males showed an increased sympathetic 

response would indicate that the film elicited the rapid locus coeruleus, sympathetic 

arousal response, possibly mediated via the amygdala (Gorman & Sloan, 2000). In 

other film research, salivary cortisol has been shown to correlate with reports of 

mood. In this study, although there were trends of increasing negative affect, the 

mood measures failed to reach significance (Hubert & Jong-Meyer, 1989).  

The increases in HRV in female participants, although only one measure, might be an 

indication that lavender interacted with the parasympathetic nervous system in 

females to modulate anxiety. However, similar HRV results in females subjected to 

the odour of lavender, following ten minutes inhalation (Saeki & Shiohara, 2001), 

provide evidence that lavender does increase HRV in females and that this is a true 

effect in this study too. Moderation of HRV by sex might reflect an interaction of 

lavender with neurosteroids. Estrogens also have a beneficial effect on HRV 

(Mercuro et al., 2000; Rosa Brito-Zurita et al., 2003) and there is evidence that 

lavender interacts with steroids (Henley, Lipson, Korach, & Bloch, 2007). 

Furthermore, estrogens have been shown to interact with the cholinergic system, 

which mediates vagal nerve activity, and also the 5HT system (McEwen & Alves, 

1999). This might suggest alternative mechanisms of action for lavender. It has been 

reported that lavender lessened the anti-cholinergic side-effects of the antidepressant 

imipramine (Akhondzadeh et al., 2003). Thus, lavender could modulate the 

cholinergic system positively, which might explain its effects in increasing HRV here. 

There is evidence that linalool, a major component of lavender, exerts some of its 
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effects via modulation of muscarinic transmission as well as opiodergic, 

dopaminergic and K+ channels (Peana et al., 2004).   

Studies on the in-vitro neurotropic effects of lavender would suggest that any 

cholinergic effects are not because of direct interactions of lavender with the 

cholinergic system (Atanassova-Shopova & Roussinov, 1970). Furthermore, animal 

studies provide evidence for lavender having similar effects on behaviour to drugs 

that mediate their effects via 5HT pathways (Bradley et al, 2007a; chapter 6, Section 

6.4). Interestingly, in both the 5HT and cholinergic systems there are differences 

between the male and female brain (McEwen & Alves, 1999). Other studies in 

animals provide evidence for a modulatory role of 5HT on cholinergic systems 

particularly in brain regions involved in anxiety, for example the dorsal hippocampus 

(File et al., 2000). SSRIs, which also mediate their effects via 5HT pathways, also 

have beneficial effects in increasing HRV in anxiety sufferers (Gorman & Sloan, 

2000). Although there is a paucity of research on sex differences in response to 

anxiolytic drugs such as SSRIs, young (< 44) rather than older (>44), females have 

been shown to be more sensitive to the effects of 5HT drugs than males (Kornstein et 

al., 2000; Martenyi, Dossenbach, Mraz, & Metcalfe, 2001). Similarly, in this study, 

lavender seemed to have more effects in females than males. It would be interesting 

to investigate whether lavender has the same HRV-increasing effects in 

postmenopausal women, since the mean age of the females here was 35. Also, similar 

to drugs which exert their effects by direct interaction with the 5HT system, 

lavender’s anxiolytic effects seem to potentiate over time (see chapter 6). Similar to 

this study lavender, seemed to have more potent anxiolytic effects in female rodents 

than male rodents (Bradley et al., 2007a). Thus, lavender’s effects might be mediated 

via an interaction with the 5HT system.   

Treatment of anxiety with BDZs is also influenced by sex as well as stage of oestrous 

(Kinrys & Wygant, 2005). Furthermore, lavender has been shown to potentiate 

GABA both in-vitro (Aoshima & Hamamoto, 1999) and in-vivo (Delaveau et al., 

1989). In this study, females were tested regardless of their stage in the oestrous cycle 

and further investigation is required to ascertain whether lavender’s beneficial effects 

are optimum at any particular stage of oestrous.   
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In-vivo and in-vitro studies on lavender and its components have shown it to have 

effects at a number of levels, such as on hormone, neurotransmitter, and second 

messenger systems. In addition to the neurotransmitter systems already mentioned, 

other examples of where lavender might interact include the glutamatergic system, 

responsible for excitation in the CNS (Elisabetsky et al., 1995), and histaminergic 

effects in the suprachiasmic nucleus, which is responsible for regulation of autonomic 

nervous system output (Tanida, Niijima, Shen, Nakamura, & Nagai, 2006). 

Lavender’s interactions with second messenger systems are also wide ranging and 

include  cAMP (Lis-Balchin & Hart, 1999), K+ (Peana et al., 2004), Na+, and Ca+ 

channels (Ghelardini, Galeotti, Salvatore, & Mazzanti, 1999), and nitric oxide/ cGMP 

pathways (Koto et al., 2006). Lavender and its components have also been shown to 

interact directly with membranes (Teuscher et al., 1989; Teuscher et al., 1990). In 

addition, there is evidence that the whole oil is required for lavender to exert its 

beneficial anxiolytic effects (Barocelli et al., 2004) and since whole lavender oil is a 

complex mixture its pharmacological mode of action is also likely to be complex 

(Bradley et al., 2007a; Shellie et al., 2002).     

It is therapeutically promising that lavender facilitated physiological recovery (by 

increasing HRV in a dose-response way during the recovery clip) since it is often 

after exposure to an acute stressor that anxiety develops (Matuszewich et al., 2007). 

Resilience and speed to recover from a stressor might be of importance in countering 

the onset of anxiety disorders, such as PTSD (Haglund, Nestadt, Cooper, Southwick, 

& Charney, 2007). These results could therefore, provide a role for the therapeutic 

properties of lavender in this important area of research. However, further 

investigation is needed, since there are no studies that examine the prolonged effects 

of lavender in humans. Although, in another study it was reported to still have 

positive effects on HRV for up to ten minutes following a lavender footbath (Saeki 

2000). Furthermore, these results indicate that lavender still exerted an effect on the 

parasympathetic nervous system even though linalool was no longer present in the 

bloodstream: GC/MS pilot study results indicate that the linalool component of 

lavender was no longer present in the circulatory system during the recovery film (see 

appendix 5). However, studies examining the clearance rate of intragastrically 

administered linalool from mice indicate that a significant proportion of the linalool 

remained in body tissues for up to 72 hours, or longer, following ingestion and this 

might also be the case in humans (Parke, Rahman & Walker, 1974). 
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Importantly, these results provide support for a pharmacological effect of lavender 

aside from any effects because of its hedonic quality or conditioning. By contrast, in a 

study where participants were blinded to the dermal administration of linalool, 

thought to be one of the active components of lavender, it failed to have any effect on 

self-reported mood and only affected some physiological measures related to 

activation (Heuberger et al., 2004). However, since lavender did not have the 

predicted anxiolytic effect during the anxiety film it might be the case that the odour 

of the whole oil, or one or more of the components of lavender, are required for it to 

have anxiolytic effects during very stressful situations. It is also the case in treating 

anxiety that different drugs are required to treat immediate symptoms of panic than 

the more pervasive type of anxiety seen in general anxiety disorder (Gray & 

McNaughton, 2003; Sinclair  & Nutt, 2007). 

These results indicate a need for further work to examine whether the odour is 

required for lavender to exert its anxiolytic effects during conditions of high and 

immediate anxiety. Also, whether the failure of lavender to relieve anxiety in 

response to the anxiety film-clips was because of too low a dose being used, needs to 

be examined. Alternatively, a different type of test could be used to elicit anxiety 

more similar to GAD, such as the conditioned skin response test (Garcia-Leal et al., 

2005).  

In conclusion, acute orally-administered lavender appears to have beneficial effects in 

relieving mild anxiety and speeding recovery time. Proclivity to anxiety is a poor 

predictor of cardiac health (Gorman & Sloan, 2000) and twice as many women are 

reported to suffer from anxiety than men (Kinrys & Wigant, 2005). Given its 

beneficial effects on HRV  in females, these results indicate that lavender’s anxiolytic 

and stress-relieving effects in the longer term, particularly in females, are worthy of 

further investigation. Animal studies indicate that, similar to 5HT type drugs, 

lavender’s effects potentiate over time (see Chapter 6). Future studies should also 

examine the effects of longer-term oral administration of lavender capsules on 

anxiety and wellbeing in both males and females.  
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CHAPTER 8 SUMMARY, CONCLUSIONS 
AND FUTURE DIRECTIONS   

8.1 SIGNIFICANT CONTRIBUTIONS TO THE 

KNOWLEDGE BASE   

There are three significant contributions to the knowledge base in this thesis:  

First, these studies provide a validation of the gerbil EPM in males and 

females; this model has been validated previously only in female gerbils 

(Varty et al., 2002).   

Second, the studies in gerbils have shown that both  lavender and rose 

essential oil have anxiolytic effects which potentiate over time, rather than 

disappearing following acute odour administration (Cooke & Ernst, 2000). 

Lavender’s effects were particularly apparent in females on measures related 

to risk-assessment.   

Third, lavender had a clear dose-response effect in reducing mild anxiety in 

humans at rest, when tested acutely via oral administration (although it had 

little effect on induced anxiety). The route of administration, and the fact that 

lavender had dose-response effects, indicates that lavender’s effects are not 

due to its odour properties but, more likely, are because of direct 

pharmacological effects. Again, and similar to results in gerbils, lavender’s 

anxiolytic effects in human females were more noticeable particularly during 

the anxiety task and in the recovery phase of the study.     
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8.2 PARALLELS BETWEEN ANIMAL AND HUMAN 

STUDIES   

Lavender had anxiolytic effects when tested acutely and chronically in the gerbil 

EPM and acutely in the study using human participants during the neutral film-clip. 

In contrast, lavender had only very mildly anxiolytic effects following chronic 

exposure to the odour when gerbils were tested in the BWB. It is interesting that the 

BWB might be modelling avoidance rather than the more cognitive, risk-assessment 

type, components of anxiety (see Chapter 5 section 5.4.2 and section 5.5; Gray & 

McNaughton, 2003). Anxiety is complex and, as discussed in the introduction, 

involves many different brain regions, depending on the type of anxiety experienced. 

Some examples of these brain regions include the amygdala, involved in avoidance 

and the phobic components of anxiety, and the higher cognitive regions, such as the 

septum, hippocampus, and frontal cortices, which are thought to be responsible for 

the conflicts that lead to excess worry and apprehension. In humans, during the 

anxiety film-clips, acute lavender had no anxiolytic effects in males and only very 

mildly anxiolytic effects in females. Similar to the BWB, it is possible that the 

anxiety film-clips used here also represent a more proximal type of threat leading to a 

desire to escape/avoid the films rather than the apprehension, which might have been 

experienced at the beginning of the study when watching the neutral film-clip. 

Further work is needed to examine whether lavender, both acutely and chronically, is 

more efficacious when worry-type anxiety is experienced rather than avoidance-type 

anxiety.   

Interestingly, in both humans and gerbils, lavender’s effects appeared to be more 

pronounced in females. Following both acute and prolonged testing in the gerbil EPM 

lavender’s effects were more pronounced in females, particularly on risk-assessment 

type behaviours (protected head-dips). As mentioned, risk-assessment has been 

likened to human worry. In the human study, lavender had beneficial effects on HRV 

in females but not males; HRV has been related to decreased anxiety and faster 

recovery time. Lavender might be interacting with steroid hormones such as 

oestrogen. However, there are a number of differences between male and female 

brains, such as in the serotonin, glutamatergic, and cholinergic systems, just to 

mention three systems, and there is evidence that lavender might interact with all of 
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these systems (see earlier discussions). Since more females are reported to suffer 

from anxiety than males in the human population, then lavender is certainly worthy of 

further investigation.  

8.3 POTENTIAL MECHANISMS OF ACTION   

These results indicate that lavender’s role in mediating anxiolysis might be via the 

more rostral brain structures, such as the prefrontal cortex and the septo-hippocampal 

system, involved in dealing with the approach-avoidance conflict created by the tasks 

used here (Degroot & Treit 2003). For example, in the EPM, lavender decreased risk-

assessment behaviours; these types of behaviours have been linked to the cognitive, 

forward-oriented components of anxiety, such as worry (Carobrez & Bertoglio, 2005). 

Likewise, and also arguing in favour of this hypothesis, is the fact that, in the human 

study, lavender had anxiolytic effects during the neutral film when participants might 

have been apprehensive about what would happen in the next phase. In contrast, 

during the anxiety-provoking film-clips, lavender failed to have an anxiolytic effect 

on almost all measures tested. As discussed in section 7.4, it is possible that these 

clips caused avoidance-type anxiety rather than general anxiety. Interestingly, 

although the BWB did not validate in these studies, and therefore any interpretations 

that can be made from results using this model are limited, lavender only had very 

mild effects in the BWB in contrast to the EPM. It has been suggested that the BWB 

is a model of avoidance, which is controlled more by limbic structures, such as the 

amygdala, rather than the higher limbic/prefrontal regions, which are implicated in 

apprehension and general anxiety (see sections 2.2.3; 6.4.3).  

Further evidence for lavender having an effect on the parts of the brain related to 

worry, i.e. the more frontal parts of the limbic system, comes from studies which 

show that lavender has an effect on working memory in humans (Moss et al., 2002). 

Although a wide network of brain regions are thought to be involved in working 

memory it is mainly the frontal cortex that is implicated.  Injections of anxiolytic 

drugs into, and lesions to, the hippocampus have also been shown to impair working 

memory in a similar way to lavender’s effects on working memory (McHugh, 

Niewoehner, Rawlins, & Bannerman, 2008; Gray & McNaughton, 2003). 

Furthermore, following pain, lavender enabled replacement of negative memories of 
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the pain with more positive memories i.e. that the pain was not so bad (Gedney et al., 

2004). As mentioned in the introduction (section 1.2.4.2), drugs that have an effect on 

memory are being used in trials to replace bad memories with more positive ones. For 

example, drugs such as D-cycloserine, which is a partial NMDA agonist, have been 

shown to be of use in both rodents and humans in the unlearning of old negative 

memories and in replacing them with new positive memories (Davis, Ressler et al., 

2006). At least one of lavender’s components, linalool, has a mechanism of action 

which might be via ionotropic glutamate receptors, such as NMDA (Batista et al., 

2008).   

However, when compared with the results of other studies in humans (Heuberger et 

al.,2004), and likewise in rats (Cline et al., 2008), the results presented here in both 

humans and gerbils suggest effects for whole lavender oil or at least the contribution 

of other components, in addition to linalool, to lavender’s mode of action. In both the 

Heuberger study and the Cline study, linalool alone failed to exert anxiolysis, 

whereas, in the studies here, whole lavender did have an anxiolytic effect. Perhaps 

lavender’s complex mixture of chemicals might work synergistically to exert their 

effects overall, rather than on just one pathway, and it could be that the whole oil 

rather than one component is required. Interestingly, many prescribed anxiolytic 

drugs often work on more than one pathway in addition to their target pathway. For 

example, buspirone works on dopamine as well as 5HT-1A receptors and its 

metabolites also interact with alpha-2-adrenergic receptors (Leonard, 2003). Likewise, 

SSRIs are thought to work on a number of sites other than the serotonin reuptake 

transporter (Bianchi, 2008). Interestingly, these drugs also take up to two weeks to 

exert their anxiolytic effects in sufferers. This could be the case with lavender, since 

its effects in gerbils were very mild at first and potentiated over time. Similarly, in 

humans, acute effects were very mild and, in males, lavender actually increased 

sympathetic arousal in response to anxiety. Interestingly, the anxiolytic effects of 

SSRIs and buspirone take a few weeks before they become efficacious in relieving 

anxiety (Sinclair & Nutt, 2007). The fact that lavender has been shown to cause 

increases in cAMP (see section 1.4.4; Lis-Balchin & Hart, 1997, 1999) would lend 

weight to a mechanism of action via second messengers. Paradoxically, lavender had 

more pronounced anxiolytic effects in females in both humans and gerbils, arguing 

for an interaction with neurosteroids, such as oestrogens (Henley et al., 2007), or 

neurotransmitter systems that differ between males and females. Oestrogens in 
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conjunction with NMDA receptors have also been implicated with a role in 

hippocampal synaptic plasticity and memory (Mukai et al., 2006). Thus, whatever 

lavender’s mechanism of action it is probably a complex one and via numerous 

different pathways. Hence, there is plenty of scope for future work.  

8.4 FUTURE DIRECTIONS  

Before investigating potential mechanisms of action, it is important to determine 

whether, and under what circumstances, lavender and its components actually relieve 

anxiety. For example, is lavender effective in providing relief in more cognitive 

forms of anxiety, such as worry, rather than the avoidance-type of anxiety? If 

lavender is more effective in relieving anxiety in situations of apprehension and GAD, 

rather than avoidance, then using film-clips might not be the best choice of test. 

Future studies might be better advised to look at the effects of lavender on the 

conditioned skin-conductance response test, which is thought to generate anxiety that 

is more like GAD-type anxiety (Garcia-Leal et al., 2005).   

Testing lavender odour in gerbils indicated that lavender’s effects potentiated over 

time.  Do lavender’s effects also potentiate over time in humans when lavender is 

administered orally?  Longer-term studies need to be conducted to answer this 

question. The fact that it was the effects of the odour, and not oral administration, in 

gerbils might need to be taken into account in future studies in humans. However, 

that oral lavender had mildly anxiolytic effects in the human study would argue for 

lavender’s odour not being required for its anxiolytic effects, at least in a relaxing 

situation. This is also confirmed by other studies examining the effects of EOs 

administered by routes other than odour in rodents (e.g. oral rosemary, Kovar et al., 

1987; injected lavender, Umezu 2006) and humans (massage with linalool Heuberger 

et al., 2004;  oral Spanish sage, and lemon balm, Tildesley et al., 2003; Tildesley et 

al., 2005).  

However, in contrast to a relaxing low stress situation, is the odour required for 

lavender to have anxiolytic effects in more avoidance-type situations?  The fact that 
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anxiolysis was not present on self-report measures during the anxiety-provoking task 

and only very weakly present in females, on HRV measures, does not really answer 

whether the odour needs to be present to relieve anxiety in an anxiety-provoking 

situation. In the human study, the odour of lavender was controlled to prevent 

confounding influences due to odour. However, looking at real world practicalities, it 

is of some use to speculate whether the odour potentiates the pharmacological effect. 

For example if lavender has a pharmacological effect and this effect  is potentiated by 

its odour, then it would make more sense to use this route of administration and 

utilise both pharmacological and psychological routes to relieve anxiety in one 

administration, unless of course the person receiving the lavender does not like its 

odour!    

Is lavender more effective in females than males?  Results of both the gerbil and the 

human studies reported here indicate that lavender’s effects are more beneficial in 

females than males. Lavender’s beneficial effects on HRV, particularly in females, 

are interesting. As mentioned in the previous chapter, increased HRV is reflective of 

enhanced cardiovascular and psychological wellbeing and females are reported to 

suffer more from anxiety than are males. Interestingly facial expressions have been 

shown to be closely linked to cardiovascular reactivity (Lerner, Hariri, Dahl & Taylor, 

2007). Future work will involve an examination of the video footage obtained from 

the human study reported here to look for any for sex effects related to lavender dose 

on facial expressions of anxiety.   

Is there one component, or a group of components of lavender oil, that together might 

be more effective than the whole oil in relieving anxiety? A repeat study with some 

of lavender’s components is warranted to ascertain whether it is the whole oil, or just 

one, two, or a few components that are responsible for its effects. Perhaps one or two 

of lavender’s components that have not been so widely tested might be more effective 

than the whole oil, for example terpinene-4-ol, which is one of the breakdown 

products of linalool (Bickers et al., 2003).    
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8.5 LIMITATIONS  

In the human study, the fact that lavender did not relieve anxiety during the anxiety 

film might have been because of the type of task; perhaps future work could involve 

other tasks which assess different aspects of anxiety, such as worry. In addition, 

perhaps showing the anxiety film nearer to the administration time of the capsules 

might have yielded different results. However, the study was designed to test the 

effects of lavender on anxiety when it was likely to be at its maximum in the 

bloodstream of all participants; GC/MS results indicated that this was after thirty 

minutes on average, which was when the anxiety film-clips were shown.    

 A comparison of the capsules with the odour would also have been of interest as well 

as a comparison of lavender with a positive control, such as diazepam.  Additionally, 

use of the competitive GABAA receptor antagonist flumazenil would have been 

useful in identifying whether the films did elicit anxiety more akin to panic than 

apprehension.  

It is also recognized that the gerbil studies were not without limitation as the problem 

of odour preference was not addressed. However, the fact that the gerbils were naïve 

to the odours tested means that some of the problems that occur when testing odours 

in humans, such as association and expectation effects, were circumvented. Likewise, 

the use of buspirone as a positive control in the prolonged studies would have been 

desirable, but for reasons beyond the control of the author this was not possible, 

although it was the intention to include buspirone as well as diazepam.   

8.6 A FINAL WORD ABOUT ROSE OIL   

The ability of rose oil to lessen anxiety without causing sedation and to reverse the 

trend for increased anxiety in females, would suggest that it and its components are 

worthy of further testing as a potential anxiolytic medication. Future work should 

involve a full investigation of the anxiolytic properties of rose EO and its components, 

in both animal models, such as the ones used here, and in human trials, particularly 

the type used here. Especially since the BWB could be a model of avoidance rather 
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than apprehensive anxiety and the anxiety film-clips might model the former rather 

than the latter type of anxiety.  

8.7 CONCLUSIONS  

In conclusion, it has been shown that prolonged exposure to lavender EO odour has 

anxiolytic effects in the models tested here, particularly in the EPM, and these effects 

are not merely because of its pleasant odour. Results in gerbils indicate that 

lavender’s effects potentiate over time, and, since anxiety and stress are generally 

chronic conditions, studies examining the chronic effects of lavender in humans 

should be conducted. In humans, lavender had relaxing and anxiolytic effects in a 

low-anxiety situation, while, in both the gerbil and human studies described here, 

lavender’s effects were more pronounced in the females of each species rather than in 

the males. This finding might be of particular importance, since anxiety is more 

prevalent in females (Kinrys & Wigant, 2005) and warrants further investigation.   

Work is planned to continue on this valuable plant extract and perhaps in the future it, 

or its components, might prove to be a valuable and safe alternative in the search for 

drugs with fewer side-effects in the relief of mild anxiety and stress.                  
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APPENDIX 1  

TABLE 1.1 An example of the suggested ubiquitous healing 
properties of essential oils: Reputed Properties of essential 
oils from 4 internet web sites in 2007  

Essential Oils 
www.aromatherapygo
ddess.com 

www.thesoulelement.co
m  www.mnwelldir.org  

http://www.itsmyn
ature.net/html/Her
balProperties.html 

Bergamot 
Encouraging, Anti-
Depressant, Balances 

Aggression, anxiety, 
balancing, calming, 
cheering, concentration, 
confidence, creativity, 
encouraging, frustration, 
grief, memory loss, 
nervous tension, 
normalizing, stimulating, 
stress, uplifting  

Skin conditions 
associated with an oily 
complexion; soothes 
insect bites, insect 
repellent. Refreshing, 
mood-lifting; 
beneseizures nervous and 
digestive system.  

Sedating to nervous 
system, but reviving 
to the spirit. 

Cedarwood 
Calming, Comforting, 
Strengthening 

Not mentioned 

Calming, purifying 
benefit the skin and 
tissues near the surface 
of the skin; calms 
nervous tension; 
beneseizures the 
digestive system; 
supplies oxygen to 
tissues and erases DNA 
damage; cancer.  

Good for easing 
colds, flu and 
bronchitis; arthritis 
and rheumatism; a 
natural anti-
depressant and a 
sedative, good for 
nervous tension, 
stress and anxiety.  

Chamomile, 
Roman 

Not mentioned 

Calming, creativity, 
rejuvenating, relaxing. 
acne, allergies, analgesic, 
antibacterial, 
antidepressant, anti-
infectious, anti-
inflammatory, antiseptic, 
antispasmodic, black 
eyes, blisters, boils, 
bruises, burns, bursitis, 
chapped lips, chapped 
skin, chilblains, cold 
sores, colic, 
conjunctivitis, coughs, 
diarrhea, disinfectant, 
diuretic,  dry skin, 
earaches, eczema, 
fainting, febrifuge, 
fibrosis, gingivitis, hair 
loss, headaches, 
heatstroke, hiccups, 
influenza, inflamed 
joints, insect bites, 
insomnia, laryngitis, 
nausea, 
neuralgia,  psoriasis, 
rashes, rheumatism, 
rheumatoid arthritis, 
shock, sprains, sties, 
stress, 

Calming relieving 
restlessness and tension; 
cosmetically for the skin.  

Nerve sedative, 
helps menopausal 
problems. Eases 
depression, stress 
related complaints, 
insomnia and 
migraines. 
Facilitates 
meditation. 
Relaxing, and 
soothing, 

http://www.aromatherapygo
http://www.thesoulelement.co
http://www.mnwelldir.org
http://www.itsmyn
ature.net/html/Her
balProperties.html


 

III

 
sunburns,  toothaches, 
upper abdominal 
pain,  whitlows, wounds  

Cinnamon 
Stimulates creativity, 
Anti-depressant 

Aphrodisiac, energizing, 
invigorating, refreshing, 
stimulating, vitalizing, 
warming. antibacterial, 
antibiotic, anti-fungal, 
antiseptic, antispasmodic, 
antiviral, bronchitis, 
carbuncles, colds, 
cystitis, diarrhea, 
digestive,  hair loss, 
influenza, insect 
repellent, muscular 
aches, 
rheumatism,  vaginal 
infections,  warts, 
whooping cough  

Antiseptic essential oil 
with a high antioxidant 
rating. Invigorates and 
rejuvenates mind and 
body. 
. 

Not mentioned 

Eucalyptus Stimulant, mental focus 

Balancing, cooling, 
invigorating, stimulating, 
acne, analgesic, animal 
bites, antibacterial, 
antibiotic, anti-fungal, 
anti-inflammatory, 
antiseptic, antispasmodic, 
antiviral, asthma, 
athlete's feet, bedbugs, 
bleeding gums, blisters, 
bronchitis, burns, 
candida, chapped 
lips,  colds, coughs, cuts, 
cystitis, dandruff, 
decongestant, deodorant, 
diabetes, diarrhea, 
disinfectant, diuretic, 
drug withdrawal, ear 
infections, earaches,   

(Radiata) suitable for 
topical use, diffusing, 
and even direct 
inhalation. Relatively 
gentle and nonirritating.  

Promotes health, 
purification and 
healing. Is a 
stimulant and aids 
memory. Also rids 
negative psychic 
energy. Balancing. 

Lavender 

Calming, Balancing, 
Strengthening, 
Stimulating, Healing, 
PMS  

Aggression, anxiety, 
balancing, calming, 
concentration, cooling, 
exhaustion, fatigue, 
hysteria, nervous tension, 
relaxing, soothing, stress; 
abrasions, abscesses, 
acne, animal bites, 
antibacterial, antibiotic, 
antidepressant, anti-
fungal, anti-
inflammatory, antiseptic, 
antispasmodic, antiviral, 
athlete's foot, bleeding, 
blisters, boils, bruises, 
burns, catarrh, chapped 
skin, chilblains, colds, 
convalescence, coughs, 
cuts, dandruff, dermatitis, 
detoxifying, diaper rash, 
diarrhoea, disinfectant, 
ear infections, fainting, 
febrifuge, frostbite, 
gingivitis, hay fever, 
headaches, heartburn, 
hiccups, immunity 

The most versatile of all 
essential oils. Highly 
regarded for the skin; 
clinically evaluated for 
its relaxing effects. It 
might be used to cleanse 
cuts, bruises, and skin 
irritations. The fragrance 
is calming, relaxing, and 
balancing -- physically 
and emotionally. Makes 
an excellent rub for 
sprains, strains, and sore 
muscles (used in carrier 
oil) and goes well mixed 
with Tea Tree Oil 
(Melaleuca). Can be 
taken internally (1 to 3 
drops in a cup of water) 
for headaches and even 
migraines. A few drops 
for a gargle works really 
peachy.  

Relieves headaches, 
migraines, insomnia, 
PMS and shock. 
Promotes peace, 
love and health. 
Dispels depression, 
brings feelings under 
conscious control. 
Lavender is 
soothing, relaxing 
and balancing. 



 

IV

 
stimulant, influenza, 
insect bites, insect 
repellent, insomnia, 
itching, laryngitis, 
lumbago, muscular 
aches, neuralgia, 
normalizes skin, 
palpitations, rashes, 
scalds, scars, scrapes, 
sedative, shock, sinusitis, 
sties, sunburns, swelling, 
tendonitis, tonic, 
toothaches, 
ulcers,  vomiting, 
whitlows, whooping 
cough, windburns, 
wounds. 

Lemon 
Clarity, Calming, 
Mental Powers 

Anxiety, balancing, 
calming, cheering, 
cooling, exhaustion, 
memory loss, refreshing, 
relaxing, stress, uplifting; 
abscesses, acne, 
antibacterial, anti-fungal, 
anti-infectious, 
antiseptic, antispasmodic, 
antiviral, arthritis, 
asthma, astringent, 
athlete's foot, bleeding, 
blisters, boils, cellulite, 
cerebral palsy, chapped 
skin, chilblains, 
circulatory stimulant, 
cold sores, constipation, 
coughs, dandruff, 
detoxifying, diarrhea, 
digestive, disinfectant, 
diuretic, fainting, 
febrifuge, fever, 
gallstones, gout, hair 
loss, hangovers, hay 
fever, headaches, 
hiccups, hot flashes, 
insect bites, insomnia, jet 
lag, kidney stones, 
laryngitis, lice,  mumps, 
muscular 
dystrophy,  normal hair, 
normal skin, normalizes 
blood pressure, oily hair, 
oily skin, osteo-arthritis, 
Parkinson's disease, 
rheumatoid arthritis, 
sedative, shock, sore 
throat, tendonitis, throat 
infections, thrush, toning, 
tonsillitis, varicose veins, 
warts, water purifier, 
water retention, 
whitlows, wrinkles  

Antiseptic-like properties 
and contains compounds 
that have been studied 
for their effects on 
immune function, 
lymphatic, circulatory, 
and digestive systems. Is 
antibacterial and might 
serve as an insect 
repellent as well as being 
beneficial for the skin. 
Diffuse or add a few 
drops to a spray bottle to 
deodorize and sterilize 
the air. Add two drops to 
soy or rice milk for 
purification or combine 
with peppermint (Mentha 
piperita) to provide a 
refreshing lift. Use for 
removing gum, oil, or 
grease spots. Add to food 
or soy or rice milk as a 
dietary supplement or 
flavoring. 

Not mentioned 

Orange, Sweet 
Relaxing, Balancing, 
Stimulating, Sensual 

Anxiety, calming, 
cheering, inspiring, 
invigorating, refreshing, 
relaxing, stress, uplifting; 
acne, antidepressant, 
antiseptic, antispasmodic, 
astringent, cellulite, 

Brings peace and 
happiness to the mind 
and body. It has been 
recognized to help a dull, 
oily complexion. Diffuse 
or apply topically on 
location, or add to food 

Not mentioned 



 

V

 
constipation, diarrhea, 
drug withdrawal, 
muscular aches, muscular 
dystrophy,  normal skin, 
oily skin, palpitations, 
Parkinson's disease, poor 
circulation, scars, 
sedative, spasm, stretch 
marks, toning, wrinkles  

or soy or rice milk as a 
dietary supplement or 
flavoring. 

Patchouli  Aphrodisiac  

Aphrodisiac, anxiety, 
calming, clearing, 
concentration, 
exhaustion, relaxing, 
self-hypnosis, soothing, 
stress; acne, antibiotic, 
antidepressant, anti-
fungal, anti-infectious, 
anti-inflammatory, 
antiseptic, astringent, 
athlete's foot, 
carminative, cellulite, 
chapped skin, 
constipation, dandruff, 
deodorant, dermatitis, 
diuretic, dry skin, 
eczema, fixative, 
ganglion, jock itch, lower 
abdominal pain, normal 
skin, oily skin, seborrhea, 
sores, thrush, wrinkles 
. 

Contains 71% 
sesquiterpenes, is very 
beneficial for the skin 
and might help prevent 
wrinkled or chapped 
skin. It is a general tonic 
and stimulant, helps the 
digestive system, fighting 
candida (yeast) 
infections, and 
beneseizures the nervous 
and glandular systems. It 
has antiseptic properties 
and helps relieve itching.  

Helps frigidity, 
nervous exhaustion 
and stress related 
complaints. Is 
appeasing, calming 
and uplifting. 

Peppermint Mental Clarity 

Concentration, cooling, 
exhaustion, invigorating, 
memory loss, refreshing, 
relaxing, revitalizing, 
stimulating; ant repellent, 
antibiotic, anti-
inflammatory, antiseptic, 
antispasmodic, 
bronchitis, carminative, 
catarrh, 
cellulite,  circulatory 
stimulant, colds, 
constipation, deodorant, 
dermatitis, digestive, 
disinfectant,  emollient, 
fainting, febrifuge, 
fibrosis, flatulence, 
gingivitis, hay fever, 
headaches, heartburn, 
heatstroke, hemorrhoids, 
indigestion, insect 
repellent, itching, jet lag, 
lumbago, mosquito 
repellent, muscular 
aches, nausea,  neuralgia, 
oily skin, osteoporosis, 
palpitations, raises blood 
pressure, rheumatoid 
arthritis, ringworm, 
scabies, sinusitis, 
sunburns,  tendonitis,  ton
ing, toothaches, upper 
abdominal pain, varicose 
veins, vomiting, water 
retention  

Contains 45% 
monoterpenes, 25% 
phenylpropanoids. It is 
one of the oldest and 
most highly regarded 
herbs for soothing 
digestion. Jean Valnet, 
M.D., studied 
peppermint's effect on 
the liver and respiratory 
systems. Other scientists 
have also researched 
peppermint's role in 
affecting impaired taste 
and smell when inhaled. 
Dr. William N. Dember 
of the University of 
Cincinnati studied 
peppermint's ability to 
improve concentration 
and mental accuracy. 
Alan Hirsch, M.D., 
studied peppermint's 
ability to directly affect 
the brain's satiety center, 
which triggers a sense of 
fullness after meals. It is 
beneficial to the sinuses 
and muscular system and 
especially useful for 
women during monthly 
cycles or menopause. 
Diffuse. Massage on the 
stomach or add to water 
or tea for supporting 
normal digestion. Apply 

Stimulant that helps 
headaches, 
migraines, mental 
fatigue, nervous 
stress and fainting. 
Affects conscious 
mind and halts 
negative thoughts. 



 

VI

 
to bottom of feet to cool 
off on a hot day. Rub on 
temples for a calming 
effect, or place several 
drops on the tongue as an 
invigorating pick-me-up. 
A wonderful flavoring 
and preservative. Avoid 
contact with eyes, mucus 
membranes, or sensitive 
skin areas. 

Rose 
Strengthens heart 
chakra, and spirit. 

Not Mentioned 

Has a beautiful fragrance 
that is intoxicating and 
aphrodisiac-like. Rose 
helps bring balance and 
harmony. It is 
stimulating and elevating 
to the mind, creating a 
sense of wellbeing. It has 
been called the Queen of 
oils for women's 
concerns, establishing 
harmony throughout the 
body no matter what life 
brings. It is also great for 
circulation and skin care. 
. 

Depression, 
impotence, 
insomnia, frigidity, 
headaches, nervous 
tension. Promotes a 
feeling of wellbeing. 
Influences love, 
peace and happiness. 
An aphrodisiac 
acting directly upon 
brain and sexual 
centers of the body. 
Help alleviate sexual 
problems of women, 
helps psychological 
impotence in men. 
Increases sperm 
count. 

Ylang-Ylang 
Balancing, Strengthens 
Spirit, Aphrodisiac, 
Magnetic 

Aggression, aphrodisiac, 
anxiety, balancing, 
calming, cooling, 
euphoric, relaxing; acne, 
antidepressant, antiseptic, 
disinfectant, hair growth, 
high blood pressure, 
insect bites, lowers blood 
pressure, normal skin, 
oily skin, sedative, shock  

Might be extremely 
effective in calming, 
balancing (the nervous 
system) and bringing 
about a sense of 
relaxation. Ylang-Ylang 
affects the glandular 
system, great for hair and 
skin, stimulates adrenal 
glands, but at the same 
time can be used for 
insomnia and pain. Has 
been known to have good 
results for impotence and 
frigidity. Taken 
internally, it has been 
said to lower blood 
pressure, alleviate 
problems with PMS, and 
ease intestinal infections. 
For depression, rub a 
drop or two beTween 
your palms and inhale 
the warm aroma.   

Eases nervous 
tension, soothes and 
inhibits anger born 
of frustration. 
Promotes peace, sex, 
and love. Calms 
anger and negative 
emotional states. 
Inclines to rest, 
comfort and sleep. 
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APPENDIX 2   

GERBIL ODOUR PILOT STUDY 

The effects of acute exposure to L. angustifolia and R. damascena on 

gerbil behaviour in the EPM and BWB.  

This study was conducted as a feasibility study to determine whether or not to proceed 

with chronic odour exposure studies.  

Alterations to the validation methods  
(For materials and methods see chapters 4 and 5).  

Animals  

Gerbils, 30 male and 30 female obtained from a breeding stock at UCLAN (mean 

weight males 83.55g (+/- 8.80); females 71.90g (+/- 5.7)) were individually housed for 

one week prior to testing on the EPM and BWB. 

Odours  

Health Aid EOs of rose and lavender were bought from a local distributor. 

Watch glasses containing the neat odours of the oils were placed in the air conditioning 

inlets in the holding, weighing rooms. While Ambipure plug-ins (kindly supplied by Mr 

Eippe at Ambipure) were plugged into two sockets in each of the weighing and holding 

rooms. The plug-ins contained a 10% solution of EO in distilled water. This was to 

maximize any potential odour effects. 

 Procedure  

On the day of testing the gerbils were taken from the housing room, to the holding room 

and left to acclimatise for one hour. Following this  the gerbils were exposed to lavender 

odour, rose odour or no odour for one hour, weighed and placed on the EPM for 5 

minutes followed by the BWB for 5 minutes. Each condition was tested at least two 

weeks apart in order to allow any residual odour in the rooms to clear. For this pilot 
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study gerbils were tested in random order for males and females. The controls were 

tested first, this was carried out by a student (Mr. G. Normington) using this condition 

as part of his final year project, (video scoring the data from this group was carried out 

by myself). Two weeks following this lavender odour was tested using a separate set of 

gerbils, followed by the rose odour study two weeks later. The rest of the procedure 

follows that of the validation procedure. 

Data screening 

a.) EPM 

No of gerbils which had seizures in the elevated plus-maze: controls, male 4, female 3; 

lavender, male 3, females 1; rose oil males 2, females 0. 

b.) BWB  

 In the black white box controls, male 2, females 0; lavender males 0, females 1; rose oil, 

males 2, females 0.  

Results 

Lavender oil odour 

Lavender odour EPM  

Following exclusion of gerbils which had seizures or were off the EPM for longer than 

200 seconds, there was a total of 15 gerbils in the no-odour control group and 21 gerbils 

in the lavender odour group (males no odour n = 6, lavender n = 11. Females: no odour 

n = 9, lavender n = 10). Again due to the small sample sizes in each cell, analysis was 

via non parametric means. (For median and quartile ranges see Table 2.1 below). The 

Mann Whitney U test between males and females for each variable in each odour group 

revealed that percent open duration was higher in females than males (U = 2, p<0.01) 

and percent protected head-dips were lower in females than males (U = 2, p<0.01) in the 

no-odour control group. These variables were analysed separately for each sex.   

For the remaining variables which did not differ between the sexes there were 

significant decreases in total entries (U = 75, p < 0.01) percentage duration closed (U = 
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102, p < 0.05) rear frequency (U = 81, p < 0.05), immobile duration (U = 103, p < 0.05) 

locomotor duration (U = 59, p < 0.01) when gerbils were exposed to acute lavender 

odour.   

In males acute lavender caused a significant decrease in percentage protected head-dip 

(U = 15, p < 0.05) when compared with male no-odour controls. However in females 

lavender caused an increase in percent protected head-dips (U = 16, p < 0.05). 
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Appendix Table 2.1  The effects of one hour’s exposure to lavender EO odour on gerbil behaviour 
in theEPM. (Table of median inter-quartile ranges).  

Median and inter-quartile ranges 
Dependent variable Odour group 

All gerbils Males Females 

no odour 34.32, 43.66, 45.69 34.64, 44.46, 46.47 34.0 0, 40.39, 43.89 Total entries 

 
lavender 25.00, 29.88**, 36.00 14.10, 27.00, 32.94 26.00, 33.82, 44.00 

no odour 40.63, 45.71, 55.05 34.09, 40.63, 45.24 45.71, 51.85, 56.25 % open entries 

 

lavender 40.00, 50.00, 56.41 36.09, 44.74, 59.78 43.48, 51.39, 56.41 

no odour 44.95, 54.29, 59.37 54.76, 59.37, 65.91 43.75,48.15, 54.29 % closed entries 

 

lavender 43.18, 47.22, 60.00 34.67, 44.44, 61.48 43.59,48.61, 56.52 

no odour 20.10, 27.24, 35.74 12.94, 15.57, 24.19 27.72, 35.54, 42.65 % open duration 

 

lavender 22.11, 38.61, 47.35 17.48, 34.47, 47.18 35.21, 40.43, 47.35 

no odour 35.18, 44.82, 56.93 49.49, 56.93, 59.13 30.37, 42.63, 44.82 % closed duration 

 

lavender 28.80, 36.93*, 43.62 15.48, 36.12, 41.93 28.80, 38.30, 43.62 

no odour 22.09, 26.11, 36.81 23.00, 31.87, 43.03 21.32, 26.00, 35.00 Rear frequency 

 

lavender 12.17, 19.00*, 24.00 7.19, 23.00, 29.00 13.00, 18.50, 20.51 

no odour 0.00, 0.00, 0.97 0.00, 0.77, 5.66 0.00, 0.00, 0.00 Immobile duration 

 

lavender 0.00, 3.24*, 15.70 0.00, 8.77, 32.05 0.00, 1.52, 14.55 

no odour 157.48, 167.06, 173.19 133.08, 159.99, 174.10 161.03, 168.84, 172.29 Locomotor duration 

 

lavender 138.12, 147.84*, 154.87 72.79, 146.02, 155.40 141.85, 150.20, 154.87 

no odour 17.00, 25.00, 30.60 11.55, 16.50, 29.87 24.69, 25.00, 36.38 Head-dip frequency 

 

lavender 21.90, 34.00, 41.00 13.27, 25.00, 34.16 26.00, 39.00, 43.00 

no odour 9.40, 13.00, 17.38 9.45, 11.98, 17.76 9.35, 13.00, 17.00 Stetch-attend 
frequency lavender 8.85, 14.00, 20.51 5.71, 9.00, 17.00 13.37, 18.08, 21.00 

no odour 9.81, 22.22, 38.42 36.84, 47.27, 57.14 6.67, 10.53, 21.43 % protected head-dip 
frequency lavender 18.42, 22.58, 29.27 13.07, 22.50, 35.74 20.00, 25.71, 29.27 

 

Gerbils in each group: all gerbils no odour n = 15, lavender odour n = 21. Male gerbils no odour n= 6, lavender odour n= 11. Female 

gerbils no odour n = 9, lavender odour n = 10.  Levels of significance results of Mann Whitney U tests * p < 0.05, ** p < 0.01, *** p 

< 0.001. 
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Lavender Odour BWB  

The number of gerbils included in this study after removal of those which had seizures 

from the data set were, no-odour control n = 19, lavender odour n = 21 (males control n 

= 9, lavender n = 11; females control n = 10, lavender n = 10). 

An examination of each odour group for differences revealed no differences between 

males and females for any variable. Data from males and females were combined and 

analysed together. Lavender caused mobile duration white to decrease significantly (U 

= 109, p<0.05); while latency black increased almost reaching significance (U = 141, p 

< 0.055).    
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Appendix Table 2.2 The effects of acute (one hour’s exposure) to lavender EO 
odour on gerbil behaviour in the black white box. (Table of median and inter-
quartile ranges).  

Median and inter-quartile ranges. Dependent 
variable Odour group 

All gerbils Males Females  

control 1.43. 2.52, 7.86 1.48, 5.11, 7.42 1.32, 2.08, 8.29 Latency black 

  

lavender 1.92, 7.97, 9.56 2.47, 8.02, 9.59 1.92, 7.11, 9.56 

control 42.00, 47.00, 55.00 40.00, 45.00, 60.00 44.00, 49.00, 55.00 Crossing 
frequency lavender 38.00, 47.00, 56.00 35.00, 45.00, 51.00 44.00, 53.50, 59.00 

control 46.91, 51.85, 57.77 47.17, 53.14, 58.87 46.64, 49.80, 52.14 % White 
duration 

  

lavender 45.22, 52.01, 60.49 43.44, 52.01, 65.41 46.35, 51.60, 60.49 

control 24.18, 30.18, 35.89 22.14, 24.18, 32.37 25.73, 30.48, 37.11 % White 
duration 

  

lavender 24.66, 30.61, 36.90 18.57, 32.43, 37.02 25.54, 29.83, 34.83 

control 80.78, 89.02, 97.64 86.72, 96.33, 106.00 77.97, 84.29, 93.40 Mobile 
duration  
 White  lavender 67.87, 77.60, 85.96 67.04, 78.98, 84.43 67.87, 70.66, 88.36 

control 52.50, 65.00, 84.50 64.00, 82.00, 89.00 51.00, 59.50, 65.00 Exploration  
 Frequency 
white lavender 49.00, 71.00, 87.00 46.00, 70.00, 79.00 69.00, 76.00, 97.00 

control 55.00, 63.18, 69.12 56.00, 63.18, 80.86 54.04, 62.16, 66.77 Exploration 
 Duration white lavender 50.12, 59.65, 74.49 39.04, 52.32, 70.21 57.36, 63.79, 75.77 

Control 0.00, 0.00, 0.00 0.00, 0.00, 0.00 0.00, 0.00, 0.00 Immobile 
duration white 

  

lavender 0.00, 0.00, 0.00 0.00, 0.00, 0.00 0.00, 0.00, 0.00 

Gerbils in each group: all gerbils no odour n = 19, lavender odour n = 21. Male gerbils no odour n= 9, 

lavender odour n= 11. Female gerbils no odour n = 10, lavender odour n = 10.  Results of Mann Whitney 

U tests, levels of significance * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Rose oil odour  

Rose odour pilot EPM study  

The number of gerbils included in this study was controls n = 15, rose odour n = 20 

(males: controls n = 6, rose odour n =6; females: controls n = 9, rose odour n = 11).  In 

the rose odour group females entered the open arms more than males (U = 15, p < 0.01) 

and the closed arms less than males (U = 15, p < 0.01). These variables were analysed 

separately for sex each sex. Data from all other variables were combined prior to 

analysis. Overall rose oil odour caused a decrease in total entries (U = 51.5, p < 0.001) 

and locomotor duration (U = 79, p < 0.01) and an increase in immobile duration (U = 79, 

p < 0.01). In both males and females there was an increase in percent protected head-

dips (U = 12, p < 0.05 and U = 9, p < 0.001 respectively).      
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Appendix Table 2.3 The effects of one hour’s exposure to rose EO odour on gerbil behaviour in 

theEPM. (Table of median and inter-quartile ranges).  

Median and inter-quartile ranges Dependent 

variable 
Odour group 

All gerbils Males Females 

control  34.32, 43.66, 45.69 34.64, 44.46, 46.47 34.00, 40.39, 43.89 Total entries 

  
rose  17.00, 22.00, 25.00 16.00, 17.00, 24.00 21.00, 23.00, 25.00 

control  40.63, 45.71, 55.05 34.09, 40.63, 45.24 45.71, 51.85, 56.25 % open entries 

  

rose  30.00, 43.70, 53.36 23.81, 25.00, 37.50 44.50, 46.43, 55.27 

control  44.95, 54.29, 59.37 54.76, 59.37, 65.91 43.75, 48.15, 54.29 % closed 

entries 

  

rose  46.64, 56.30, 70.00 62.50, 75.00, 76.19 44.73, 53.57, 55.50 

control  20.10, 27.24, 35.74 12.94, 15.57, 24.19 27.72, 35.54, 42.65 %  duration 

open 

  

rose  14.43, 26.89, 39.85 9.27, 17.67, 25.64 26.43, 30.91, 40.45 

control  35.18, 44.82, 56.93 49.49, 56.93, 59.13 30.37, 42.63, 44.82 % duration 

closed 

  

rose  37.23, 44.60, 52.48 39.01, 46.75, 63.33 32.98, 39.40, 48.85 

control  22.09, 26.11, 36.81 23.00, 31.87, 43.03 21.32, 26.00, 35.00 Rear 

frequency  

  

rose  21.95, 28.28, 34.50 23.00, 28.00, 33.00 22.45, 28.56, 34.50 

control  0.00, 0.00, 0.97 0.00, 0.77, 5.66 0.00, 0.00, 0.00 Immobile 

duration 

  

rose  0.00, 8.21, 26.97 0.00, 11.47, 30.17 0.52, 5.08, 17.68 

control  157.48, 167.06, 173.19 133.08, 159.99, 174.10 161.03, 168.84, 172.29 Locomotor 

duration rose  113.96, 133.69, 155.34 113.54, 115.97, 149.19 127.69, 135.84, 155.34 

control  17.00, 25.00, 30.60 11.55, 16.50, 29.87 24.69, 25.00, 36.38 Head-dip 

frequency rose  8.00, 22.00, 28.25 6.44, 10.00, 19.00 22.00, 23.00, 28.56 

control  9.40, 13.00, 17.38 9.45, 11.98, 17.76 9.35, 13.00, 17.00 Stretch- attend 

frequency rose  10.61, 15.93, 25.00 14.00, 22.00, 34.00 10.61, 15.87, 18.00 

control  9.81, 22.22, 38.42 36.84, 47.27, 57.14 6.67, 10.53, 21.43 % protected 

headdip  rose  100.00, 100.00, 107.14 100.00, 100.00, 100.00 100.00, 100.00, 119.64 

Gerbils in each group: all gerbils no odour n = 15, rose odour n = 20. Male gerbils no odour n= 6, 

lavender odour n= 6. Female gerbils no odour n = 9, lavender odour n = 11.  Levels of significance results 

of Mann Whitney U tests * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Rose odour pilot BWB study   

Included in the rose BWB pilot were controls n=19, rose odour n = 20 (males: control n 

= 9, rose n = 9; females: controls n= 10, rose odour n = 11).  There were no differences 

between males and females therefore data from both males and females were combined. 

Overall rose oil caused a decrease in time spent in the white compartment (U = 125, p < 

0.05) and a decrease in locomotor activity (mobile duration white U = 86, p < 0.01).   



 

XVI

 
Appendix Table 2.4 The effects of acute (one hour’s exposure) to rose EO odour on 
gerbil behaviour in the black white box. (Table of median and inter-quartile 
ranges).  

Median and inter-quartile ranges Dependent 
variable 

Odour 
group All gerbils Males Females 

1.43, 2.52, 7.86 1.48, 5.11, 7.42 1.32, 2.08, 8.29 Latency  
 black 

control 
rose 1.21, 2.03, 4.37 1.43, 1.93, 5.61 1.19, 2.14, 2.96 

42.00, 47.00, 55.00 40.00, 45.00, 60.00 44.00, 49.00, 55.00 Total 
 entries 

control 
rose 31.00, 34.00, 55.00 34.00, 51.00, 59.00 28.00, 32.00, 36.00 

46.91, 51.85, 57.77 47.17, 53.14, 58.87 46.64, 49.80, 52.14 % White 
 Duration 

control 
rose 36.90, 45.30, 52.44 30.54, 42.40, 50.81 41.63, 46.79, 58.63 

24.18, 30.18, 35.89 22.14, 24.18, 32.37 25.73, 30.48, 37.11 % Black 
 Duration 

control 
rose 24.23, 34.39, 41.08 28.22, 34.38, 42.61 19.27, 34.39, 38.19 

80.78, 89.02, 97.64 86.72, 96.33, 106.00 77.97, 84.29, 93.40 Mobile 
duration 
white  

control 
rose 52.72, 70.96, 81.29 43.10, 70.70, 74.92 58.81, 71.97, 88.87 

52.50, 65.00, 84.50 64.00, 82.00, 89.00 51.00, 59.50, 65.00 Exploration  
 Frequency 
white 

control 
rose 53.00, 64.00, 76.00 58.00, 70.00, 83.00 53.00, 62.00, 68.50 

55.00, 63.18, 69.12 56.00, 63.18, 80.86 54.04, 62.16, 66.77 Exploration  
 Duration 
white 

control 
rose 48.53, 65.21, 74.50 47.22, 55.45, 69.60 54.01, 67.78, 77.20 

0.00, 0.00, 0.00 0.00, 0.00, 0.00 0.00, 0.00, 0.00 Immobile 
duration 
 white 

control 
rose 0.00, 0.00, 0.30 0.00, 0.00, 0.00 0.00, 0.00, 1.37 

 

Gerbils in each group: all gerbils no odour n = 19, rose odour n = 20. Male gerbils no odour n= 9, 

lavender odour n= 9. Female gerbils no odour n = 10, lavender odour n = 11.  Levels of significance 

results of Mann Whitney U tests * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Conclusions  

Lavender caused mild anxiolysis and sedation particularly in male gerbils. This was 

evidenced by decreases in the time spent in the close arm in all gerbils and decreased 

percentage protected head-dips in all male gerbils in the EPM. While there were 

decreases in any kind of movement in the BWB reflecting sedation and an almost 

significant increase in the time taken to escape to the black compartment indicative of 

decreased anxiety. Interestingly females appeared more anxious following acute 

lavender exposure, as the EPM risk-assessment behaviour, protected head-dips, 

increased in female gerbils. While these effects were anxioytic they were also very 

different to diazepam’s and buspirone’s effects in both models  (see Gerbil validation 

chapter, chapter 4). Although possibly lavenders effects could be compared to diazepam 

which at the lowest concentration had an effect on exploration only (head-dips increased)  

In contrast to lavender, rose oil appeared to increase anxiety, causing an increase in 

protected head-dips in both males and females in response to the EPM and a decrease in 

time spent in the white compartment in the BWB.   

Since these were both pleasant odours with very different effects acutely it was decided 

to proceed with the chronic study to examine the effects of prolonged exposure to 

lavender to answer the question do lavender’s anxiolytic effects fade as habituation to 

the odour takes place or do they increase? Since rose oils profile was so different 

following acute exposure it was decided that this would be a second odour to use, in 

case any long term effects were due to the pleasant odour.                  
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APPENDIX 3   

FILM PILOT STUDY  

Aim to validate the use of two film-clips for use as anxiety/ fear mood elicitors for use 

in laboratory based studies of anxiety.   

Materials and methods  

Design  

The target population was taken from the staff and student population at UCLAN. For 

practical reasons film-clips for the selection of clips to use in the study were viewed in 

groups rather than on an individual basis.   

Participants  

17 male and 17 female healthy students within the age range 18-24 with a mean age of 

20.7 +/- 0.19 SEM for males and 22.9 +/- 0.67 SEM for females. Ethical approval was 

obtained from the Department of Psychology ethics committee. Participants were fully 

briefed, gave written informed consent and were free to withdraw at anytime, the study 

was conducted in accordance with the declaration of Helsinki.  

Questionnaires  

The questionnaire employed by Gross and Levenson for film selection was used here 

along with the PANAS (Tellegen and Watson) (for questionnaire used see appendix to 

this section; and for permissions to use the questionnaires).   

Physiological Measures  

In addition some participants, those who volunteered also wore portable blood pressure 

monitors to assess blood pressure and heart-rate pre and post each film-clip viewing. 
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Film-clips  

Film-clips were edited and created following recommendations in the cited papers.   

Millers crossing (Kaviani et al., 1999) 

Silence of the Lambs (Gross & Levenson, 1995) 

The Hitcher (Stalk et al., 2005) 

Shining (Gross and Levenson, 1995) 

Open water, self selected. Scenes selected 

Laurel and Hardy (Light hearted relief film)  

Millers crossing   

Clip length: 4' 30'': edited 1:0:0 – 1:04:31 minutes (Kaviani, Gray, Checkley, Veena, & 

Wilson, 1999)   

Silence of the Lambs   

Clip length:        3'29"  

The clip was edited following Gross and Levenson’s instructions as follows:   

Advance to the first frame of the film in which the words “A STRONG HEART 

DEMME PRODUCTION" appear.   

Reset the timer to 00:00:00:00 (hours: minutes: seconds: frames). Begin the clip at 

01:40:16:29.  At this point, a dirt road and trees are in the forefront and a mint green 

trailer is in the background.  

Stop recording at 01:43:44:23.  At this point, the profile of a dark-haired woman is 

visible.  There is a metal wire hanging from the ceiling that appears to almost (but not 

quite) touch her nose and chin.   

Begin recording at 01:46:36:24.  At this point, hands holding a gun are moving rapidly 

into the scene from the right of the screen.  In the background, there is dirty yellow 

wallpaper.  
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End the clip at 01:46:38:19.  At this point, the dark-haired woman has her back to the 

yellow wallpaper, and has pointed her gun between the upper-middle and the upper-

right hand portions of the screen.  Her right hand obscures most of the left half of her  

face and we hear her exclaim as the lights go out.  (Gross and Levenson, 1995).   

Hitcher   

Clip length: 3' 30'' minutes (Stark, Schienle, Sarlo, Palomba, Walter, & Vaitl 2005)  

The Shining  

Clip length: 1'22"  

Edited following Gross and Levenson’s instructions:  

Advance to the first frame of the film, which shows a body of  

water surrounded by mountains.  Reset the timer to 00:00:00:00 (hours: minutes: 

seconds: frames). 

Begin the clip at 00:56:51:15.  At this point, a boy's hands are visible (one flat on the 

floor and the other in a fist).  There are toy trucks and cars on a red, brown, and orange 

carpet. End the clip at 00:58:12:18.  At this point, an open door with a key in the lock is 

visible, and one full second has passed since the boy has said "Mom, are you in 

there?"  (Gross and Levenson, 1995).  

Open Water  

Clip Length: 9': scenes were selected to create a mini film depicting a couple being left 

behind by the boat, stranded out at sea and drifting with the tide, and finally being 

attacked fatally by sharks. All blood and gore were edited out in order to prevent 

elicitation of emotions related to disgust. 

Open Water was edited as follows:  

33:3- 34:07 minute’s boat leaving 

34:43 – 35:26 stranded together in sea 

52:34-54:30 fell asleep, separated alone in water 
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57:50 – 59:04 shark 

01:09:25 – 1:10:15 shark bites Daniel 

01:11:53 – 1:12:26 calming Daniel down 

01:14:05 – 01:15:50 storm – not much visible apart from circling sharks when 

lightening illuminates water, sounds of thunder. In addition the sound track was also 

edited to make the mini film more coherent. (Editing for this clip was in house (Adam 

Palmer Psychology AV technician).   

Laurel and Hardy   

10 minutes light relief film taken from ‘Towed in a hole’ 1932 (see appendix)  

Neutral film   

Nature Watch: 30 minutes TV documentary program.    

Procedure  

Participants from undergraduate classes were asked to take part in the film validation 

study and offered popcorn and Fanta, a soft fizzy drink, following viewing of the film-

clips, as an incentive to take part. Clips were projected onto a projector screen via a lap 

top using MS PowerPoint. Following completion of the initial screening questionnaire, 

participants who volunteered to wear the blood pressure monitor put it on their non 

dominant arm and took a reading. After which participants were allowed to habituate to 

the environment while being instructed to fill in the questionnaire after each film-clip 

and asked to complete the questionnaire according to how they were feeling at that 

moment in time and to take a blood pressure reading as soon as they were instructed to, 

following viewing of the clip. Participants were also asked if they minded waiting until 

the final clip (Laurel and Hardy) to eat their popcorn and drink their Fanta, all 

participants complied with these instructions.  After this all participants took a blood 

pressure reading which was recorded and then watched the first clip.     
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Data analysis  

Following the method developed by Gross and Levenson (1995) to select suitable film-

clips to elicit their stated target emotions, questionnaire data were analysed for intensity 

of the target emotion, in this case anxiety and fear and discreteness, that is the purity of 

the target emotion elicited by the film-clip, did it create pure anxiety and fear or a 

mixture of anxiety and disgust.   

Intensity was determined by looking at the mean scores, for the emotions of anxiety, 

fear and also of negative affect, elicited by each film. This data were taken from 

participants’ questionnaire data from the five film-clips.   

Additionally the film which elicited the most fear in each individual participant and the 

film which elicited the most anxiety in each participant was tallied to determine which 

films created the most intense anxiety and fear overall.   

Results  

For mean and standard error results of intensity of anxiety, fear, negative and positive 
affect see Tables 3.1, 3.2 and 3.3.                   
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Appendix Table 3.1 Measurement of the intensity of anxiety and fear emotions by 
selected films using Gross and Levenson’s screening questionnaire. Data are 
presented as means and standard errors of total sample.   

Dependent 
variable 

Millers crossing Hitcher 
Silence of the 
lambs 

Shinning Open water 

Anger 

  
2.23 (+/-0.39) 1.35 (+/0.33) 0.53(+/-0.18) 0.38 (+/0.22) 0.56 (+/-0.18) 

Anxiety 

  

3.00 (+/-0.36) 2.56 (+/0.40) 3.41(+/-0.41) 2.62 (+/0.41) 3.79 (+/-0.44) 

Confusion 

  

1.67 (+/-0.44) 1.5 (+/-0.39) 1.21(+/-0.33) 1.88 (+/0.40) 1.79 (+/-0.36) 

Contempt 

  

1.59 (+/-0.35) 1.82 (+/0.40) 0.82 (+/0.27) 0.79 (+/0.29) 0.68 (+/-0.24) 

Disgust 

  

2.65 (+/-0.41) 2.26 (+/0.44) 2.00 (+/0.41) 0.68 (+/0.28) 0.71 (+/-0.26) 

Fear 

  

1.62 (+/-.32) 1.91 (+/0.35) 2.65 (+/0.39) 2.18 (+/0.37) 3.47 (+/-0.47) 

Guilt 

  

1.09 (+/-0.33) 0.44 (+/0.22) 0.47 (+/0.20) 0.44 (+/0.24) 0.74 (+/-0.29) 

Sadness 

  

3.09 (+/-0.45) 1.38(+/-0.35) 0.85 (+/0.24) 0.50 (+/0.24) 1.76 (+/-0.45) 

Shame 

  

1.53 (+/-0.42) 0.88(+/-0.31) 0.38 (+/0.16) 0.35 (+/0.19) 0.68 (+/-0.25) 

Negative 
affect 

14.38 (+/- 3.00) 13.47 (+/-2.55) 15.03(+/-2.49) 11.88(+/-2.10) 19.03(+/- 2.88) 

 

Sample size n = 34                   
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Appendix Table 3.2 Measurement in male participants of elicitation of anxiety and 
fear emotions by selected films using Gross and Levenson’s screening 
questionnaire.  

Dependent 
variable 

Millers crossing Hitcher Silence of the 
lambs 

Shinning Open water 

Anger 

  
2.71(+/-0.57) 2.00(+/-0.54) 0.47(+/-0.24) 0.18 (+/0.13) 0.59(+/-0.29) 

Anxiety 

  

2.88(+/-0.49) 2.41(+/-0.63) 3.41(+/-0.59) 2.06 (+/-0.57) 3.47(+/- 0.64) 

Confusion 

  

1.76(+/-0.71) 2.12(+/-0.67) 1.47(+/-0.56) 2.53 (+/- 0.71) 2.12(+/0.57) 

Contempt 

  

1.47(+/-0.52) 1.88(+/-0.57) 1.06(+/-0.44) 0.76 (+/-0.43) 1.12 (+/-0.41) 

Disgust 

  

3.06(+/-0.65) 2.29(+/-0.55) 1.41(+/-0.42) 0.76 (+/-0.44) 0.82 (+/-0.41) 

Fear 

  

1.35(+/-0.44) 1.71(+/-0.49) 2.41(+/-0.54) 2.06 (+/-0.49) 3.35 (+/-0.63) 

Guilt 

  

1.06(+/-0.39) 0.41(+/-0.26) 0.65(+/-0.36) 0.47 (+/-0.36) 0.71 (+/-0.44) 

Sadness 

  

3.18(+/-0.71) 1.41(+/-0.54) 0.71(+/- 0.35) 0.59 (+/-0.44) 1.88 (+/-0.69) 

Shame 

  

1.76(+/-0.63) 0.77(+/-0.44) 
0.35(+/- 0.26) 

 

0.41 (+/-0.35) 0.65 (+/-0.39) 

Negative affect 16.06 (+/- 4.97) 12.76 (+/-3.91) 14.35 (+/-3.88) 10.76(+/-3.43) 16(+/-4.23) 

 

Sex = male n =17                   
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Appendix Table 3.3 Measurement in female participants of elicitation of anxiety 
and fear emotions by selected films using Gross and Levenson’s screening 
questionnaire.   

 
Millers crossing Hitcher Silence of the 

lambs 
Shinning Open water 

Anger 

  
1.76(+/-0.52) 0.71(+/-0.32) 0.59(+/0.26) 0.59(+/-0.42) 0.53(+/-0.23) 

Anxiety 

  

3.12(+/-0.54) 2.71(+/-0.51) 3.41(+/0.59) 3.18(+/-0.56) 4.12(+/-0.62) 

Confusion 

  

1.59(+/-0.54) 0.88(+/-0.35) 0.94(+/0.35) 1.24(+/-0.34) 1.47(+/-0.45) 

Contempt 

  

1.71(+/-0.48) 1.76(+/-0.58) 0.59(+/-0.3) 0.82(+/-0.4) 0.24(+/-0.24) 

Disgust 

  

2.24(+/-0.49) 2.23(+/-0.72) 2.59(+/-0.7) 0.59(+/-0.34) 0.59(+/-0.32) 

Fear 

  

1.88(+/-0.46) 2.12(+/-0.49) 2.88(+/-0.6) 2.29(+/-0.57) 3.59(+/-0.71) 

Guilt 

  

1.12(+/-0.55) 0.47(+/-0.37) 0.29(+/-0.19) 0.41(+/-0.31) 0.76(+/-0.39) 

Sadness 

  

3.00(+/-0.57) 1.35(+/-0.46) 1.00(+/-0.34) 0.41(+/-0.2) 1.65(+/-0.59) 

Shame 

  

1.29(+/-0.56) 1.00(+/-0.45) 0.41(+/-0.21) 0.29(+/-0.17) 0.71(+/-0.33) 

Negative 
affect 

12.71 (+/-3.49) 14.18(+/-3.41) 15.72 (+/- 3.23) 13(+/-2.49) 22.06(+/3.09) 

 

Sex = female n = 17                 
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The intensity of the fear and anxiety experienced  was highest for Open Water followed 

by Silence of the Lambs and elicited scores for anxiety of  (3.79 (+/-0.44) and 3.41(+/-0.41) 

respectively)  and fear (3.47 (+/-0.47) and 2.65 (+/0.39) respectively) target while being 

relatively low on all other negative emotions such as sadness, disgust and confusion.  

To determine the discreteness of the intensity to which subjects report feeling the target 

emotion more intensely than all other target emotions, data from the five films were 

compared by tally chart across subjects for the film which had elicited the target 

emotion more intensely than other non target emotions of both anxiety and fear. Open 

Water gave the highest values for fear with (17 participants reporting it as the most 

fearful film-clip of the five) followed by Silence of the Lambs (8 participants reported 

that it was the most fear eliciting film-clip). For anxiety Open water created the most 

anxiety (15 participants reported it as the most anxiety eliciting film-clip) again 

followed by Silence of the Lambs (13 reported it as the most anxiety eliciting film-clip). 

Thus Open water followed by Silence of the Lambs clearly elicited the target emotions 

more intensely than any of the other measured emotions.   

On the pleasant – unpleasant scale Open water again gave the lowest mean score of 

3.082 compared with the highest of 6.88 for Millers Crossing.  

Furthermore, PANAS scores for negative and positive effect, when standardised as Z 

scores between each film for each participant gave the highest NA and ZNA scores for 

Open Water, although interestingly Open water followed by Silence of the Lambs also 

gave the highest PA scores, this is possibly because many participants scored high on 

the interest factor which forms part of the positive affect scale.  

Conclusion  

Thus, from these results the two film-clips to be used in the main study will be Open 

water and Silence of the Lambs, permission for use of these film-clips was granted from 

the licensing organizations for each film (see appendix 4 section 3).     
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APPENDIX 4      

Appendix Figure 1 RECRUITMENT POSTER     

  

Appendix Figure 1 Recruitment poster                
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2 PARTICIPATION PACK AND RECRUITMENT 
ADVERTS   

Participant briefing information  

The aim of the study is to look at the effects of an EO on mood, and involves taking 

capsules which contain either the EO or sunflower oil. Following this you will be asked 

to watch a series of film-clips while various physiological and psychological measures 

are taken. The study will take approximately one hour, but please allow longer in case it 

over runs (90 minutes).   

It is  very important that if you have any  allergies to perfumes, soap, EOs, food 

additives or sunflower oil; or any health conditions such as epilepsy, heart problems or 

pregnancy; or are taking any prescribed or unprescribed medication, that you tell 

Belinda Hornby immediately. Likewise if you are a smoker then you might not be able 

to take part in this study, please tell Belinda immediately.  

Since many food additives contain EOs, it is important for you to keep a record of what 

you eat for 24 hours prior to the study (on the enclosed diary) and also carry out as 

closely as possible the instruction included in this pack.  

You will be asked to under take a patch test a few days prior to the study, to screen for 

any potential allergies to the capsules. A patch test involves rubbing the contents of a 

capsule on your lower inner forearm and rubbing it in and then observing any reactions 

for 20 minutes. If you are allergic to it then there might be some discomfort/ itching, or 

even hay fever type symptoms. If you are allergic to the contents of the capsule then 

please inform Belinda immediately.  

During the study you will be asked to watch a selection of film-clips from commercially 

available films (permission has been granted by the licence holders of these films for 

use in this study) some of these are thriller/ horror type films. While watching these 

film-clips a number of physiological recordings will be taken, including ECG, GSR, 

EMG, blood pressure and a small camera will be placed in the laboratory to record your 

facial responses to the films. In addition before and after watching the clips you will be 

asked to complete various psychological instruments including questionnaires and 

saliva samples might also be taken for later cortisol analysis. All data collected will be 
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anonymised and will only be viewed by myself (Belinda Hornby) and possibly my 

supervisor (Dr Stephen Brown) and possibly other researchers with a legitimate interest 

in the study.  

The study itself will take between one hour and ninety minutes, for taking the time to 

take part if you are a psychology student you will be rewarded with 8 Course credits.  

If at any time during the study you no longer wish to participate then please tell Belinda 

immediately and once you have been disconnected from the physiological recording 

equipment you will be allowed to leave and your data will not be saved. 

If you find the film-clips in any way disturbing and feel the need to discuss this with 

someone then please contact the student counsellors on Tel: 01772 892572 or email 

CRecep@uclan.ac.uk. Or alternatively contact your general practitioner. Likewise 

should any other problems arise as a result of your participation in this study, please 

contact either of the aforementioned or Belinda Hornby email: bfhornby@uclan.ac.uk   

or Tel: 01772 893737. Thank you for agreeing to take part in this study.                             
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Final Study participant diet instruction sheet  

Thank you for volunteering to take part in this study, for psychology students please 

bring your participation points paper work to the study and then the points can be 

awarded for taking part.  

The aim of this study is to examine the effects of a commonly used food additive and 

EO on various physiological and psychological parameters in a laboratory setting. On 

arrival at the laboratory, various physiological and psychological measures will be taken 

and you will be asked if you have managed to keep to the diet restrictions. Next you will 

be asked to swallow four capsules containing either one of two doses of the additive or a 

placebo.  

During the study you will be asked to watch a series of film-clips while being connected 

to a series of physiological transducers designed to measure blood pressure, heart-rate 

(ECG) galavanomic skin response and eye blink rate. You will also be asked to 

complete two questionnaires at various intervals, saliva samples will be taken for later 

cortisol analysis and you will be asked to take part in a computer based task.   

Since the study is about naturally derived food additives it is important that you follow 

strict dietary guide lines for the twenty four hours preceding the study. Please follow the 

following instructions very closely, thank you.   

Please refrain from alcohol, tea coffee, tobacco,  fruit and vegetables products for at 

least 24 hours prior to the study and if possible it would be preferable to avoid them for 

a couple of days before hand if you can, if not do not worry the last 24 hours are the 

most important. Please avoid any scented teas or fruit drinks too.  Drink plenty of water.   

Foods which you can eat are, for example: potatoes, such as chips, baked boiled or fried 

rice, preferably white; white bread, lentils, pulses and dried beans, roasted nuts, soya, 

plain crisps, digestive biscuits, fresh unprocessed meat, eggs, dairy or fish based foods. 

Meals such as fish and chips, without the mushy peas, porridge, egg on toast, non-

coloured cheese on toast, cornflakes, chicken and chips, peanut butter, salted peanuts, 

sugar but not honey. A meal plan for the day before would be porridge or corn flakes 

with sugar on them and milk, egg or cheese on toast and a glass of milk or water, or 

almond milk, followed by a ham and or cheese sandwich at lunchtime with 
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mightonnaise if required (no pepper) and fish or steak or steak pie or butter pie and 

chips for tea, toast and milk for supper.  

Please avoid any food containing additives and food colourings such as sweets, 

coloured cheeses, and fish with breadcrumbs on it, such as fish fingers, chewing gum.  

The day before the study please refrain from juices, fruits, sweets, curries, anything with 

a strong flavour. Likewise, processed foods such as sausages, burgers pizzas, also those 

which contain flavourings or additives such as those found in EOs.  

Also, for two days please refrain from the use of perfumes, deodorants, shampoos, 

antiperspirants and cleaning products in contact with the skin and use only simple 

unscented soap (I can provide this if you have difficulty finding it). If at all possible try 

to avoid the use of cosmetics.   

It would be helpful if you could keep a food and perfume/ shampoo/ soap exposure, 

cleaning products in contact with the skin diary for the next two days (see attached 

sheet).  

Do not worry if something on the list is unavoidable, just record it and let me know that 

you have been exposed to it.  

The most important time to refrain from these things is for the last twelve hours prior to 

the study.  

For the meal before the study please eat only a light meal containing no fruit and 

vegetables, for example white bread toast and a boiled egg, or a cheese sandwich 

without any salad, or fish and chips with no vinegar, or peas, gravy is ok.        
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Food / Additive Diary 

Please list any products, their commercial name and the manufacturers name which you 

have eaten or been exposed to in the last 24 hours.  

Food Cosmetics/ soaps/ 
perfumes/hair care 
products etc. 

Household cleaning 
products in contact with 
the skin 

                                                                                   



    

XXXIII   

Participation Consent form and participant details  

Please complete as much of the information below as possible and bring this form to the 
experiment with you. Thankyou.   

Name: 
Age:     Sex:  

 Please answer the following questions:  

 Have you read and adhered to the diet instruction sheet?   

Have you made an appointment for a patch test at least three days prior to your study 
appointment time? (Contact Belinda: bfhornby@uclan.ac.uk   Tel: 01772 893737)     

Do you have any allergies:  Yes/ No.   

If so, what are you allergic to?  

Is there any likelihood that you might be pregnant? Yes/No  

For female participants: when was the date of you last period?  

 When is the expected date of your next period?   

Are you taking any form of contraceptive drug, implants or the pill?   

If so could you indicate which sort for example:  progesterone only, high oestrogen?  

Do you have any health conditions such as epilepsy or heart condition which could 
prevent you from taking part in this study or interfere with the physiological recording?  

Are you left or right handed?   L / R.  

Have you read the diet sheet?  

Is there any reason why you will find it difficult or will not be able to follow the 
instructions?  

As part of the study I will want to take height, weight and body fat measurements, and 
saliva samples using a salivette (a cotton swab placed under the tongue and then stored 
in a sealed tube for later analysis). In addition I will also want to take various on-line 
recordings of ECG, GSR, eye blinks and blood pressure measurements, this data will be 
entirely confidential and  will only be seen by me, the experimentor, and once collected 
will be totally anonymised.  

Have you been patch tested?  Yes/ No                          Date:  
If you still consent to participate in this study please sign and date below.   

Signature:      Date:  
Patch test results:     Date:  
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To be completed during the study:  

Date of study  

Participant number:  

Height (cm):  

Weight (Kg):   

Stage of ooestrous (if female):   

% Body fat content:  

% Body water content   

% Lean mass                                  
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3 PERMISSION TO USE THE FILM-CLIPS AND 

QUESTIONNAIRES   

i).  Permission to use the Positive and Negative Affect Scales (PANAS)  

INVOICE NO.  N/A 
Federal Tax I.D. 53-0205890 

Date:  November 17, 2005 
      
IF THE TERMS STATED BELOW ARE 
ACCEPTABLE, PLEASE SIGN AND RETURN 
ONE COPY TO APA.  RETAIN ONE COPY 
FOR YOUR RECORDS.  PLEASE NOTE THAT 
PERMISSION IS NOT OFFICIAL UNTIL APA 
RECEIVES THE COUNTERSIGNED FORM 
AND ANY APPLICABLE FEES.         

Belinda Fay Hornby, Senior Psychology Technician APA 
Permissions Office  
Department of Psychology 750 First 
Street, NE 
University of Central Lancashire Washington, 
DC 20002-4242 
Preston 202-336-
5541  
UNITED KINGDOM 

IN 
MAKING 
PAYMENT 
REFER TO 
THE 
ABOVE 
INVOICE 
NUMBER  

Request is for the following APA-copyrighted material:    Appendix, page 1070, from 
JOURNAL OF PERSONALITY AND SOCIAL PSYCHOLOGY, 1988, 54, 1063-
1070_________________________________________________________________   

For the following use:   (Print use only)  PhD 
Study_______________________________________________________________  

File:  Hornby, Belinda Fay (author)  
Permission is granted for the nonexclusive use of APA-copyrighted material specified on the attached 
request contingent upon fulfillment of the conditions indicated below:    

X 

 

A fee of $ 0 shall be paid to APA on or before publication.             

This fee is based on

 

 waived____   
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X 

 
The reproduced material must include a full bibliographic citation and the 
following notice:      
Copyright  1988 by the American Psychological Association.  Reprinted 
with permission.

    
X 

 
You must obtain the author’s (or, in the case of multiple authorship, one 
author’s) permission.  APA’s permission is subject to the condition that the 
author of the cited material does not object to your usage.     

 

A complimentary copy of the work shall be sent to the APA 
Permissions Office upon publication.    

X 

 

Other/Comments:  It is noted that author permission has been 
obtained.  

This agreement constitutes permission to reprint only for the purposes specified on the attached 
request and does not apply to subsequent uses nor any form of electronic use.  Permission applies 
solely to publication and distribution in the English language throughout the world, unless 
otherwise stated.  No changes, additions, or deletions to the material other than any authorized in 
this correspondence shall be made without prior written consent by APA.  This permission does not 
include permission to use any copyrighted matter obtained by APA or the author(s) from other 
sources that might be incorporated in the material.  It is the responsibility of the applicant to obtain 
permission from such other sources.  

ACCEPTED AND AGREED TO BY:  PERMISSION GRANTED ON 
ABOVE TERMS:        

 

 Applicant      for the American Psychological 
Association          

November 17, 2005  

  

     November 17, 
2005_________________________________ 
Date       Date   

 I wish to cancel my request for permission at this time.                    
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The Positive and Negative Affect Scales (PANAS)   

Watson, D., Clark, L. A., & Tellegen, A. (1988b). Development and validation of brief 
measures of 
positive and negative affect: The PANAS Scales. Journal of Personality and Social Psychology, 
47, 1063–1070.   

Please tick the appropriate box as an indicator of how you feel just now:   

1. very 
slightly or 
not at all 

2. a little 3. 
moderately 

4. quite a 
bit 

5. very 
much 

alert      
excited      
determined      
proud      
attentive      
inspired      
enthusiastic

      

interested      
strong      
afraid      
upset      
guilty      
jittery      
distressed      
nervous      
hostile      
ashamed      
irritable      
scared      
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Post-film questionnaire   

The following questions refer to how you felt while watching the film.  

0               1        2       3         4            5              6             7              8 
not at all /                    somewhat/                                     extremely/ a                                                                                                                       
none                               some                                              great deal    

Using the scale above, please indicate the greatest amount of EACH emotion you 
experienced while watching the film.  

___ amusement  
_____ anger 
_____ anxiety 
_____ confusion 
_____ contempt 
_____ disgust 
____ embarrassment 
_____ fear 
_____ guilt 
_____ happiness 
_____ interest 
_____ joy  
_____ love 
_____ pride 
_____ sadness 
_____ shame 
_____ surprise 
_____ unhappiness 
_____ afraid 
_____ upset 
_____jittery 
_____ distressed 
_____ nervous 
_____ hostile 
_____ashamed 
_____ irritable 
_____ scared 
_____ alert 
_____ strong 
_____ excited 
_____ determined 
_____ proud 
_____ attentive 
_____ inspired 
_____enthousiastic 
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Did you feel any other emotion during the film? O No O Yes  

If so, what was the emotion? ______________________  

How much of this emotion did you feel? _____     

Please use the following pleasantness scale to rate the feelings you had during the 
film.  Circle your answer:  

0  1  2  3  4  5  6  7  8  

unpleasant        pleasant    

Had you seen this film before? O No O Yes 
Did you close your eyes or look away during any scenes? O No O Yes  

ii). Permission to use the film-clips   

Open water   

Dear Belinda,   

Permission is granted provided that the clip is going to be shown only 
as part of the PHD project in the UK and that the footage shall be as 
specified by you in previous emails.   

Please call when you receive this message.   

Kind regards   

Guy Avshalom              
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Silence of the Lambs   

Belinda -   

As long as the Clip is only used in your experiment on the University Campus and the 
Clip is never copied to any other medium and never distributed in any way, MGM has 
no objection to your use of the Clip in the manner listed below.    

Best,  
Felicia Davis  
Coordinator - Clip+Still Licensing  
MGM Consumer Products  
310.449.3572 PH  
310.449.3277 FX   
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4. RECRUITMENT POSTER TO TAKE PART IN THE 

FILM SELECTION STUDY   

Do you like watching films, can you spare 45 
minutes to watch a few film-clips and answer a short 
questionnaire? 
Are you aged between 18 and 25?   

Please contact: Belinda Hornby Darwin room 338 ext 3737.  

Alternatively meet at Darwin Room 035 on the 
ground floor any lunchtime, between 1pm and 2pm 
this week (November21-26th) and please bring along 
all your friends.      
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APPENDIX 5   

INVESTIGATION OF THE SYSTEMIC ABSORPTION 

RATE OF ORALLY DOSED LAVENDER CAPSULES   

Introduction   

The aim was to obtain an estimate of when orally-administered lavender essential oil 

reached the bloodstream in an average participant. Linalool, one of the major 

components of lavender, was used as the marker for lavender. The verification of 

linalool in the blood was identified using gas chromatography and mass spectrometry 

(GC/MS). The peak concentration of linalool in the blood samples was estimated by the 

peak area of the linalool peaks to the area of a constant amount of internal standard 

added to each sample, as an estimate of the quantity of linalool reaching the 

bloodstream.   

Methods 

Participants  

Three healthy female undergraduate students aged between 18 and 28 years, who had 

abstained from tea, coffee, fruit and vegetables,  wearing cosmetics or perfumes for at 

least 24 hours prior to the study and fasted on the day of the study, following advice 

from Professor Gerhard Buchbauer, University of Vienna, Austria (personal 

communication via email). Diet diaries, height, weight and body fat content were all 

assessed on arrival at the laboratory. Ethical approval was obtained from the Universtiy 

of Central Lancashire, School of Psychology ethics committee. Participants were fully 

briefed, gave written informed consent and were free to withdraw at anytime, the study 

was conducted in accordance with the declaration of Helsinki and approval was also 

gained from the University insurers. Written informed consent was obtained from the 

participants prior to taking part in the study.   
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Location  

Faculty of health clinical skills lab, which provided hospital type beds for participants to 

recline on. To help them relax participants  watched  a film, provided by one of the 

participants, while they had blood taken2.  

Capsules  

Lavender capsules were produced by Power Health according to the author’s directions: 

50 µL lavender oil in 150 µL of sunflower oil encapsulated in a gelatin capsule. 

Capsules were expected to take approximately 30 minutes to digest (personal 

communication Vicki McIvor, MD Power Health).   

Venipuncture equipment  

Venflon cannulas (pink), 5 ml syringes, 17 gauge needles, tourniquet, were kindly 

supplied by the Faculty of Health, UCLAN. Heparin tubes: Bector and Dickinson. 

Saline syringes, dressings, sterets, adaptors for tubes: Southern syringe Ltd.  

GC/MS   

Solid phase microextraction (SPME), 100

 

coated with polydimethylsiloxane (PDMS), 

(Sigma Aldrich) 10ml SPME vials Sigma Aldrich, (pre-pierced with a hypodermic 

needle, in house). Internal standard: nondecane. GC/MS: Perkin Elmer Turbo mass, 

column: SGE, BPX5(non polar) bonded phase fused silica; 0.22mm I.D.; 25m length; 

0.25

 

film thickness; injector 50oC, splitless. Carrier: Helium.  Injector 250 OC, 

Detector 250 OC. Column 50 OC, 2 minutes; 5 OC / minute to 100 OC; 20 OC/ minute to 

250 OC for 0.5 minutes.   

                                                

 

2 Acknowledgement: I would like to thank Angela Edmonds, clinical skills tutor, Matt clinical skills 
technician, and Robin (surname) clinical skills manger for their help and support in this study for 
allowing me to use their laboratory. Also Jim Donelly and Richard McCabe for their  help and support 
with the GC/MS work 
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Appendix Figure 2 Perkin Elmer Turbomass GC/MS  

Procedure  

On arrival at the laboratory participants were directed to a waiting room until required 

for the study and asked to fill in the pro-forma to include details of the contents of food 

eaten in the last 12 hours and time eaten; any health problems and details of medication.   

Participants were also assured that all data would remain confidential and anonymous 

and that they could drop out of the study at any point. Measures of weight, height, and 

body fat content were recorded and then they were assigned to a bed. Cannulas were 

inserted in to the antecubital fossa and the time zero blood sample taken. After this 

participants were given either two (100 l), four (200 l ) or six (300 l) lavender 

capsules and a glass of water. Blood was taken 5, 10, 15, 30, 45, 60, 90 and 120 minutes 

following capsule administration. 5ml of saline was introduced into the cannula 

following the 30 minute and the 90 minute blood sample. This was to prevent clotting 

and allow enough time for the saline to disperse prior to the next sample being taken, so 

that the sample was not diluted. This procedure followed the advice given by the local 

haematology clinician, Dr Flaherty at the Royal Preston Hospital, Black Bull Lane, 

Preston. Blood samples were inverted 10-12 times immediately after taking each sample 

in order to prevent clotting, and then frozen ready for analysis.   
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Analysis of blood  

Blood was analysed using SPME to extract the lavender components from the blood 

following the method of Boyle et al., (Boyle, McLean, Brandon, Pass, Davies, 2002): 

50µL of blood and 1µL of an internal standard, nondecane (stock solution 2µL in 5mls 

of distilled water) was placed into the SPME vial (10ml) which had been pre-punctured 

with a hypodermic needle to facilitate insertion of the SPME into the vial to a depth of 

1.5cm above the base.   

The vial and SPME were placed into a carbon bath at 55 O C, for exactly 10minutes, the 

SPME was supported with a clamp at the same height each time. Following this the 

SPME was inserted into the GC/MS injector and the adsorbed volatiles were analysed, 

following the method of Jäger, Buchbauer, Jirovetz, and Fritzer, (1992) which was 

adapted for optimum use in our laboratory. The  method used was as follows: GC/MS: 

Perkin Elmer Turbo mass; column: SGE, BPX5(non polar) bonded phase fused silica; 

0.22mm I.D.; 25m length; 0.25  film thickness: injector 50oC, splitless. Carrier: Helium;  

injector 250 OC, detector 250 OC. column 50 O C, 2 minutes; 5 O C / minute to 100 O C; 

20 O C/ minute to 250 OC for 0.5 minutes.  The position of the peak expected for linalool 

following GC/MS had previously been determined using blood spiked with these two 

analytes.  

   

Appendix Figure 3. Carbon bath for warming essential oils to 55 o C prior to and 
during solid phase microextraction.  
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Results  

The values obtained with the participant who only took two capsules (100 l) were too 
small to detect.     

Body fat and weight data from participants who took the 200 and 300 l doses :  

200 l:  

Height 1.55m 

Weight 65.6Kg 

Body fat 38.4% 

Lean 40.4Kg  

300 l  

Height 1.65m 

Weight 65.6kg 

Body fat 29.7% 

Lean 46.1%   

Appendix table 5.1 Linalool integrated peak area expressed as a percentage of the 
internal standard peak area.              

Lavender concentration Time 
(minutes) 200 l 300 l 
5 0.14 13.59 
10 0.53 165.2 

15 10.74 Missing data 
30 197.76 103.17 
45 0.15 145.85 
60 1.88 0.14 
90 0.71 Missing data 
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Discussion  

From the results the components of lavender appear to be at a maximum in the 

bloodstream at 30 minutes in the 200 l dose and between 10 and 45 minutes at the 300 

l dose. As this pilot study is just an estimate the time when the lavender will reach a 

peak in the bloodstream of the average participant, then the anxiety film-clip will be 

pitched after 30 minutes. Thirty  minutes also co-incides with the manufacturer’s advice 

on the digestibility of the capsules too. However, for the actual study lower doses of 100 

and 200 L will be used and the effects on anxiety will be measured after 30 minutes. 

Thus allowing the lavender time to reach the bloodstream and any organs that it  might 

exert its effects upon.  
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Informed consent letter   

Pilot study: Assessment of the rate absorption into the bloodstream, of orally 
ingested lavender oil capsules.   

Dear Participant:  

As outlined in the title, the aim of this pilot study is to assess the time taken for lavender 
oil to get into the bloodstream when ingested in capsular form. The lavender oil 
capsules are made from gelatin and contain lavender oil which is diluted in sun flower 
oil.  

If you agree to take part in this study you will be asked to swallow not more than 10 
lavender oil capsules and possibly have a cannula inserted into a vein in your non 
dominant lower arm. This procedure is commonly used in many different circumstances 
to take blood samples or insert drips into people’s arms. I have undertaken special 
training to carry out this procedure it should cause minimal discomfort.    

Seven small blood samples (5mL) will be taken over a one and a half hour time period 
via the cannula, not more than 100ml (0.1L) of blood will be taken. The study will last 
approximately 1.5hours, during which time you will have to remain in the laboratory 
while the cannula is still in place.  

It is very important that you are in good health and have no allergies to soap, perfumes, 
flavours or fragrances for example lavender, linalool, or linalyl-acetate. It is also 
important that your non dominant hand has no bruising or damage to it. If you have had 
a mastectomy in the past or any condition or operation which might have affected your 
lymph glands in this arm it is not advisable to take blood from this arm, therefore please 
tell the experimenter about this immediately.  Similarly, please make the 
experimenter aware of any health conditions that you might be experiencing.  

If at any point you wish to withdraw from this study please make the experimenter 
aware of this then the cannula can be removed. There is no obligation to take part 
in or complete the study should it become uncomfortable.  

Thank you for volunteering to take part in this pilot study. In the event of any 
unforeseen problems occurring after the procedure please contact Belinda Hornby on 
(01772) 893737, or alternatively seek medical advice from your GP.   

Signed……………………………….                        Date;……………………        
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Diet restriction Instructions  

Please refrain from tea coffee and tobacco products for at least 12 hours prior to the 
study if possible it would be preferable to avoid them for a couple of days before hand.   

Drink plenty of water.   

Try to avoid any scented teas or fruit drinks too.   

The day before the study please could you refrain from juices, fruits, sweets, curries, 
anything with a strong flavour. Likewise processed foods such as sausages, burgers also 
contain flavouring additives such as those found in EOs.  

Also, for two days please could you refrain from the use of perfumes and deodorants 
and use only simple unscented soap products. If at all possible try to avoid the use of 
cosmetics.   

It would be helpful if you could keep a food and perfume/ shampoo/ soap exposure 
diary for the next two days.  

Do not worry if something on the list is unavoidable, just record it and let me know that 
you have been exposed to it.  

The most important time to refrain from these things is for the last twelve hours prior to 
the study.  

For the night before the study please could you fast after your supper and not eat 
breakfast until after the study.  

I will provide tea, coffee and sandwiches once I have taken the blood. 
Let me know your preferences for food and drink.               
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