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Abstract: 

In this paper, we revisit the analysis of cross-country convergence by combining spatial 

econometrics and panel quantile regressions to estimate conditional β-convergence 

models. Moreover, we use both exogenous and endogenous weight matrices. Our results 

show that indeed the effects of initial per capita income, investment rate, population 

growth and human capital on growth rates vary considerably across the estimated 

quantiles. Convergence is not a generalized phenomenon across the conditional growth 

distribution. Moreover, while using exogenous spatial weight matrices does not 

substantially alter the findings found in a-spatial models, it appears that endogenous 

weights dramatically affect the estimates of the convergence process. 
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1.   Introduction 

 

Given the persistent disparities in aggregate growth rates between countries, it should 

come as no surprise that the question of income convergence has received a lot of 

attention in the last three decades. Following the seminal contributions of Barro (1991) 

and Mankiw et al. (1992), the empirical literature on the subject tends to adopt a 

common approach that consists in regressing output growth rates on a number of 

variables using a cross-section or a panel of countries. These variables typically include 

initial per capita income, investment share, population growth and schooling as a 

measure of human capital accumulation. Then, the finding that the coefficient on initial 

level of per capita income is negative is generally interpreted as evidence of cross-

country conditional convergence. This is known as the β-convergence concept. 

However, a number of contributions have pointed out that there are substantial 

problems and pitfalls in estimating and interpreting growth regressions, such as, for 

instance, the lack of robustness of the explanatory variables (Levine and Renelt, 1992) 

or their endogeneity because of omitted variables or measurement errors (Temple, 

1998). We focus here on two other important criticisms.  

The first concerns the assumption of parameter homogeneity in the convergence 

equations, meaning that the parameters of the models are assumed to be country-

invariant. However, wide evidence for convergence clubs between countries has been 

found (Durlauf and Johnson, 1995; Durlauf, 2000). Several methods have been 

suggested to characterize parameter heterogeneity, such as regression trees (Durlauf 

and Johnson, 1995) or other forms of semi-parametric varying coefficient models 

(Desdoigts, 1999). One particular appealing method to deal with parameter 

heterogeneity is the use of quantile regression models. Indeed, when applying a quantile 

approach to convergence analysis, it is possible to use each estimated quantile to 

describe a particular segment of the conditional distribution of income growth. Hence, 

this analysis provides a more complete description of the relationship between income 

growth rate and initial level of per capita income and other variables and has potentially 

important policy implications in terms of the best ways to foster growth depending on 

the position of the country in the conditional distribution of income growth rate. Such an 
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approach to convergence has been used, among others, by Cunningham (2003), Barreto 

and Hughes (2004), Canarella and Pollard (2004), Foster (2008), Ram (2008) and 

Dufrenot et al. (2010). Note however that all these papers only apply cross-sectional 

versions of quantile regressions methods. This is unfortunate as it has been argued that 

the cross-sectional versions of the β-convergence model are affected by unmodelled 

country-specific unobserved effects on output levels so that panel versions of the model 

are preferable (Islam, 1995). By extension, panel versions of quantile regressions should 

be used in convergence models to control both for parameter heterogeneity and 

unobserved country effects.  

The second concern deals with the assumption of independence between countries. 

However, there is now wide recognition that countries are not exchangeable. Hence, 

specific econometric techniques should be adopted to account for this cross-sectional 

interdependence. In the regional science literature, a large number of papers have 

applied spatial econometrics to explicitly include spatial autocorrelation in convergence 

regressions on regional data (see Abreu et al., 2005; Ertur and Le Gallo, 2009 or Rey and 

Le Gallo, 2009 for literature reviews). The recognition that space matters and that 

spillovers are an important part of the growth process is also apparent in cross-country 

analyses. In particular, sound theoretical foundations for the inclusion of spatial 

dependence in β-convergence models is provided by Ertur and Koch (2007) who show 

how a spatial econometric specification of the β-convergence model can be obtained 

from a theoretical growth model with Arrow-Romer externalities and spatial 

externalities implying inter-country technology interdependence. They then apply their 

model to cross-country data and indeed find wide evidence for spatial autocorrelation.  

In this context, our paper contributes to the literature in two ways. On the one hand, to 

the best of our knowledge, this is the first paper that applies panel quantile regressions 

to analyse cross-country β-convergence. On the other hand, we explicitly take into 

account spatial spillovers by including a spatial lag term in our specification. While 

spatial versions of quantile regressions exist (Kostov, 2009, 2013; Su and Yang, 2011), 

they still remain scarce and none concern the issue of convergence. Moreover, not only 

do we consider exogenous weights matrices based on geographical distance, as is usual 

in the spatial econometric literature, but we also draw on recent papers that consider 

endogenous weight matrices in spatial econometric models (Kelejian and Piras, 2014).  
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In all, we intend to provide a broader and complete view of cross-country convergence 

by combining panel quantile regressions with spatial econometric considerations. Our 

approach has several advantages. First, we are able to detect the countries which, given 

their endowments, grow faster (resp. slower) than the other comparable countries: 

these countries are over-achievers (resp. under-performers). Second and as a 

consequence, our framework allows uncovering complex patterns of conditional 

convergence across the conditional distribution and the way the speed of convergence 

varies across quantiles. As we detail below, our expectation is that the speed of 

conditional convergence is significant and increases with quantiles as higher quantiles 

group the over-achievers. Third, we can provide a detailed account of the way the effects 

of the control variables (average savings, population growth and human capital) on 

income growth rate vary across quantiles. These effects may indeed be heterogeneous 

depending on the position of the countries in the conditional distribution. Hence, 

detecting precisely how they impact growth is important from a policy point of view to 

specify the relevant leverages to enhance growth. 

Our results show that indeed the effects of initial per capita income, investment rate, 

population growth and human capital on growth rates vary considerably across the 

estimated quantiles. Convergence is not a generalized phenomenon across the 

conditional growth distribution. In particular, while a mean regression implies a 

coefficient for the lagged income significant and negative equal to -0.005, we only find 

conditional convergence in the upper part of the distribution, with coefficients up to          

-0.015 for exogenous weights matrices. Moreover, while using exogenous spatial weight 

matrices does not substantially alter the findings found in a-spatial models, it appears 

that endogenous weights dramatically affects the estimates of the convergence process: 

the convergence effect appears for larger part of the distribution and is generally 

stronger. Moreover, while for the exogenous specifications, the impact of human capital 

is only significant for the upper part of the distribution; it is significant and positive for 

the whole distribution in the endogenous case. 

 

This paper proceeds as follows. In the next section we briefly review the quantile 

approach in econometrics and show how it can be extended to panel data and/or spatial 
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data. We then present (Section 3) the data and weight matrices used in the empirical 

analysis. Section 4 outlines our estimation results. Finally Section 5 concludes.  

 

 

 

2.  Methodology 

2.1 Formulation of the general model 

The general econometric model employed in the present paper can be expressed as 

follows: 

 (1) 

In (1) above  is a (N,1) vector of the dependent variable for all cross-sectional 

observations in time t, . The (N,K) matrix  similarly contains the covariates for 

time t and  is a (N,N) cross-sectional spatial weighting matrix for time t. We also 

include a vector of individual ‘fixed effects’ ( τα  below) for each individual i. All 

coefficients are dependent on a given quantile 0 1τ< < .  Ignoring the individual effects 

τα , which make the model in equation (1) infeasible, is equivalent to a cross sectional 

quantile spatial autoregression (see Su and Yang, 2011 and Kostov, 2009, 2013) for a 

period t. However if the above formulation holds for each period t (1 t T≤ ≤ ), then we 

can combine all these equations implied by (1) for t∀  (1 t T≤ ≤ ) to obtain the following 

panel quantile spatial autoregressive formulation we employ in this paper: 

 (2) 

st  (3) 

In equation (2), ,  and X are the stacked versions of ,  and  over time and 

  is a (NT,NT) block diagonal matrix formed by the cross-sectional spatial weighting 

matrices . The block-diagonal structure excludes time-dependence. Moreover, in the 

case of a balanced panel and time-invariant spatial weighting matrices, these will be 

identical:  and . We also include a similarly stacked vector of 

individual ‘fixed effects’ ( ) yielding the panel quantile spatial autoregressive 
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formulation we employ in this paper. Equation (3) represents the linear quantile 

restriction that states that the τ th conditional quantile is zero. It is the equivalent to the 

zero-mean restriction on the residuals in a mean regression model.  

While the conventional mean regression models the mean of a dependent variable and 

basically assumes that the same relationship is applicable over the whole distribution of 

the response, the quantile regression models the conditional quantile(s) and hence 

allows different effects of the covariates over the conditional distribution. Consequently, 

estimating quantile regression over a range of quantiles allows one to model the whole 

conditional distribution. 

Consequently, with this specification, we can account for both a ‘spatial’ spillover 

process (via the spatial lag τλ ) and individual heterogeneity (via the individual effects in 

).  

2.2 Interpretation of coefficients in spatial panel quantile models 

Excluding the individual effects stacked in  would reduce our model to the ‘spatially 

autoregressive quantile regression model’ of Su and Yang (2011). Kostov (2009, 2013) 

refers to this cross sectional version as simply “spatial quantile regression”, but such a 

term could be easily confused with other quantile regression formulations in the context 

of spatially dependent data that do not involve endogeneity, but use spatially varying 

coefficients (e.g. Hallin et al., 2009; Reich et al., 2011; Lum and Gelfand, 2012; Chen et al., 

2012).  

One should nevertheless have to be careful in drawing analogies between spatial 

quantile autoregressions and mean models, since quantile models are intrinsically non-

linear. In particular, inference in the mean spatial autoregression relies on the 

computation of the partial derivatives, following LeSage and Fischer (2008). As Kostov 

(2013) noted for the spatial quantile autoregression, such a computation can be done 

similarly to the linear spatial lag model. However, the interpretation of these would be 

quite different due to the nonlinearity of the quantile regression. To clarify this, let us 

rewrite the non-panel version of (2) in the following reduced equivalent form, as in the 

mean spatial autoregression literature: 

( ) ( ) ( )1 1 1
s s i sy I W X I W I W uτ τ τ τ τ τλ β λ ψ λ− − −= − + − + −  (4) 
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Equation (4) above is the basis for formulating the average direct and indirect effects 

and it can be used to derive these in exactly the same way as this is done in the mean 

spatial literature. However, there is one important difference. The mean models are 

identified by the corresponding conditional mean restriction (as opposed to the 

conditional quantile restriction in (3) above). Viewing (4) as a linear quantile regression 

model means to associate it with a linear quantile restriction, similar to (3). However, in 

general the quantile restriction implied in this would be a different one (to the one given 

in (3)). Hence viewing (4) as a model representation produces a very different model 

from the one specified in (2). Whether one wants to do this is another story since the 

actual interpretation for these two alternative models would be quite different. 

 

The model in (2) above can be considered as both a spatially autoregressive model with 

added individual effects, or alternatively as a ‘fixed effects’ panel quantile model with an 

endogenous spatial lag. The latter is more convenient from an estimation point of view.  

Therefore our estimation strategy follows this logic: we account for the spatial lag 

endogeneity in a panel quantile regression framework. This allows us a gradual 

transition from the simpler panel quantile regression to our model. Below we briefly 

review the issues and estimators for panel quantile regression models. 

2.3 Estimation issues for panel quantile models 

Introducing individual effects to account for possible unobserved individual 

heterogeneity in quantile models leads to complications. Indeed, since the quantile 

regression is essentially a non-linear model, there is no transformation (such as the 

within transformation, time differencing, orthogonal deviations used to cancel the 

individual effects in linear models) that can eliminate the individual effects. Hence, these 

will have to be estimated directly by including individual dummies. Such a strategy can 

however lead to a version of the incidental parameter problem (when the cross-

sectional dimension increases with the sample size, i.e. N going to infinity with fixed T in 

a more usual terminology) resulting in inconsistent estimates. Rosen (2009) and 

Chernozhukov et al. (2009) study these identification issues in more detail.  

Probably the first and best-known approach is the proposal of Koenker (2004) who 

suggested shrinking the 'fixed effects' (via L1 penalty) to overcome the bias. The idea is 

very simple. While the introduction of individual effects increases the variability of their 
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estimates, shrinking them towards a common value (via the L1 penalty) helps reducing 

this variability. The asymptotics in this case relies on both T and N growing to infinity 

(at the same rate, so it is not applicable to short-time panels). In practice, implementing 

the ‘fixed effect’ quantile regression is relatively straightforward. The main stumbling 

block is the choice of optimal amount of shrinkage. Lamarche (2010) showed that under 

some regularity conditions, the regularised quantile estimator of Koenker (2004) is 

asymptotically unbiased. Then, choosing the amount of shrinkage that minimises the 

asymptotic variance is equivalent to minimising the average mean square error (AMSE) 

of the estimator. 

The proposal of Koenker (2004) is known as the ‘fixed effects’ (FE) approach to panel 

quantile regression and has been much more extensively studied and developed than 

any of the other alternatives. Consequently, fixed effects models have been dominating 

the quantile panel modelling literature. One should however be very careful when 

directly comparing quantile models with their linear counterparts, since direct 

generalisations are not always possible.  

 

We now briefly review some alternatives to the ‘fixed effects’ approach.  

The second most well-known estimator is probably that of Abrevaya and Dahl (2008). 

They impose a particular structure on the relationship between individual effects and 

regressors resulting in a correlated-random-effects (CRE) quantile regression model. As 

a result, they obtain a correlated random coefficients model that can be estimated 

consistently using standard quantile regression techniques. The main problem here 

from practical point of view is the need to specify the correlation structure (which may 

be far from obvious). The other issue with the Abrevaya and Dahl (2008) estimator is 

that since it uses the Chamberlain (1982) projection approach, it is only applicable to 

balanced panels. Bache et al. (2013) propose a restricted version in which, when 

specifying the correlation structure, they replace the regressors correlated with the 

individual effects by a weighted average of their time realisations, which, in the simplest 

case of unweighted averages, yields their time means and hence can be applied to 

unbalanced panels. 

It is worth noting at this point that the terminology used in the panel quantiles literature 

mimicking the linear panel modelling tradition is slightly misleading. Indeed, since all 
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quantile coefficients are in principle variable (by definition) they resemble the random 

effects in the linear model case. Therefore, technically speaking, the quantile 'fixed 

effects' are essentially shrunken random effects. Given this distinction, it would have 

been much more natural to use ‘random effects’ specification. In particular, such random 

effects formulation would arise naturally if a Bayesian modelling framework is adopted. 

As shown e.g. in Yuan and Yin (2010) if one penalises the subjects specific effects by an 

L2 (instead of L1 as in Koenker, 2004) penalty, since the L2 penalty can be expressed as 

the logdensity of a Gaussian random effects prior, this naturally leads to a Bayesian 

random effects approach. Following Yu and Moyeed (2001) the Bayesian approach to 

quantile regression uses the asymmetric Laplace (ASL) density for the error terms to 

formulate Bayesian quantile regression models. The location-scale mixture 

representation of the ASL distribution, proposed by Kotsumi and Kobayashi (2009) 

allows one to reformulate this Bayesian quantile model as an alternative conditionally 

Gaussian representation and hence apply existing sampling techniques available for 

Gaussian models (see e.g Reed and Yu, 2009). Kostov and Davidova (2013) use the 

equivalence between Laplace prior and L1 penalty (aka Bayesian lasso) to construct a 

Bayesian equivalent to the Koenker (2004) estimator, but their approach is 

computationally more demanding than that of Yuan and Yin (2010). Canay (2011) 

proposes a two-step estimator that is particularly easy to implement. However, he 

imposes the restriction that the individual effects do not change across quantiles. 

Moreover, in addition to being much more restrictive, Canay’s (2011) estimator requires 

a balanced panel dataset. 

 

In considering alternative panel quantile models, one needs to take into account the 

theoretical properties of the alternative estimators and their computational 

requirements. Here we will not discuss the former and will briefly consider the practical 

implementation issues. 

Although by far the most popular, the Koenker (2004) estimator is the most demanding 

computationally in that the search for optimal amount of shrinkage carries considerable 

computational costs. Bayesian estimation via Markov Chain Monte Carlo (MCMC) 

simulation is always computationally demanding, but workable approximations, such as 

variational inference (Waldmann and Kneib, 2014), or (integrated nested) Laplace 
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approximation (Yue and Rue, 2011) are available to reduce the computational costs. 

Finally, the CRE approach is computationally the most appealing, although it requires 

practical examination and justification of the identification assumptions and hence may 

not always be applicable to the specific estimation problem. 

 

In the first part of our empirical analysis, where we don’t allow for spatial effects, the FE 

and CRE models are estimated jointly at all considered quantiles by weighting the 

individual quantile objective functions. Equal weighting for all quantiles is used. The 

optimal amount of shrinkage for the FE model is calculated following Lamarche (2010). 

The individual effects in the CRE models are allowed to be correlated with the lagged 

income. With regard to the random effect formulation, we have implemented Bayesian 

MCMC inference using the sampling scheme suggested in Waldman et al. (2013) which 

avoids the mixing and convergence issues found by Yue and Rue (2011). We have 

implemented the variational approximation as detailed in Waldmann and Kneib (2014). 

Taking into account the endogenous spatial lag can generalise the above estimators to 

the model we consider in this paper. For simplicity we will only focus on the non-

Bayesian approaches. Harding and Lamarche (2009) plugged-in the instrumental 

variables quantile regression estimator of Chernozhukov and Hansen (2005, 2006) to 

obtain a panel quantile regression under endogeneity. Since the estimator of 

Chernozhukov and Hansen (2005, 2006) is numerically convenient (i.e. it involves 

search over one dimensional grid in the case of a single endogenous variable), is the 

basis of the implementation of Kostov (2009) and its properties for spatial quantile 

autoregressive models have been studied in Su and Yang (2011), such implementation is 

in the spirit of previous research in this area. In principle, there is nothing preventing 

one combining in the same way alternative endogeneity and panel estimators, although 

the theoretical properties of such alternative combined estimators remain to be 

established. We applied the Chernozhukov and Hansen (2005, 2006) estimator to the 

panel ‘fixed effects’ and ‘quantile’ formulation of Koenker (2004) by instrumenting the 

endogenous spatial lag by spatial lags of the exogenous variables as in Kostov (2009, 

2013) and Su and Yang (2011). However, the optimal shrinkage determination in the 

‘fixed effects’ model is computationally demanding. For this reason, we have also applied 

the control function approach (see Lee, 2007) to control for the endogeneity of the 
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spatial lags, since it avoids two sets optimisation (over the shrinkage parameter and the 

spatial lag coefficients). The results from the two alternative approaches were not 

significantly different. We only report the control function approach estimates for the 

CRE estimators. 

 
3.  Data and weight matrices 

3.1 Data 

We base our analysis on the well-known Mankiw et al. (1992) specification to evaluate 

the impact of saving, population growth, human capital and location on the growth rate 

of per capita income. Our dependent variable (  in (2)) is a 5-year average of growth 

rate of per capita GDP. Following Mankiw et al. (1992), the explanatory variables (  in 

(2)) should be initial per capita GDP and proxies of average saving rate, population 

growth and average human capital.  

Specifically, the data for per-capita GDP, saving, population growth are extracted from 

the Heston et al. (2012) Penn World Table (PWT version 7.1), which contain information 

on real income, investment and population for a large number of countries. With respect 

to the control variables, we proxy population growth as the average growth of the 

working age population (15 to 64) on a basis of 5-year interval. The number of workers 

needed for the computation of this variable has been obtained as:                               

RGDPCH *POP/RGDPW, where RGDPCH is real GDP per capita computed by the chain 

method, RGDPW is real-chain GDP per worker and POP is the total population. The 

savings rate is measured as the average share of gross investment in GDP for each five-

year interval. Finally, the data on human capital is extracted from the Barro and Lee 

(2011) dataset. We use the educational attainment in secondary school for total 

population over age 15. Again, these data are available for five-year intervals.   Hence the 

data used in this study consists of 5-year averages for the per-capita GDP, saving, 

population growth and human capital measures. In the empirical specification, we use 

the lagged value for the GDP per capita as initial income measure, which in this case is 

the value for the previous 5 years. Such aggregation is a standard practice in panel data  

growth studies and have been shown to improve significance of the result in accordance 

with theoretical predictions (Krueger and Lindahl, 2001). 
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These variables are constructed for an unbalanced sample of 120 countries over the 

period 1955-2010. Hence we have t = 1…11 and N= 120. The same dataset is used in the 

spatial models. The availability of distance metrics to construct the spatial weighting 

matrices imposes further exclusions. With regard to the exogenous case, since we use 

readily available geographical information, this results in an identical sample. For the 

endogenous spatial weighting matrix however the availability of data to construct the 

spatial weighting matrices excludes 20 countries. Moreover, since the market potential 

data varies from year to year, its availability further restricts the years for which the 

exogenous models can be implemented. The countries in the dataset and the years of 

availability in both cases are displayed in Table S.1 in a supplementary appendix. 

3.2 Spatial weight matrices 

To avoid confusion below, when we mention a spatial weighting matrix, we mean the 

cross-sectional ones. Conversely, we refer to SW  in equation (2) above which is 

constructed from these cross-sectional matrices, as the ’global’ spatial weighting matrix. 

In the empirical application, we compare two categories of weight matrices: exogenous 

matrices purely based on the spatial configuration of the countries on the one hand and 

endogenous matrices based on economic characteristics on the other hand.  

With respect to exogenous weight matrices, we use three different specifications: (i) A 

binary W with 100km definition of neighbourhood (i.e. countries within 100 km of each 

other being defined as neighbours); (ii) A binary W with the neighbourhood defined as 

the 10 nearest (geographically) neighbours (iii) Finally a W with inverse squared 

(geographical) distances as weights and cut-off definition of the neighbourhood, as 

explained below. One can view the above as illustrations for three different types of 

spatial weighting matrices. We have tried several alternative representations for each of 

these three types (i.e. different definitions of neighbourhood as distance in (i) or number 

of neighbours in (ii) as well as inverse distances and alternative cut-off definitions in 

(iii)) and the estimation results are insensitive to such alternative parameterisations. All 

the presented specifications (and the omitted ones) share the common property that 

each country has at least one neighbour for each year. 

For all the cases above, we create separate W for each year in the dataset and combine 

these into a ‘global’ SW . Moreover, for the last case we apply the following cut-off rule. 
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We calculate the number of neighbours for each country and each year. For each annual 

W we then calculate an annual ‘threshold’ as the minimum weight (equivalently the 

maximum distance) for which every country has at least one neighbour for that 

particular year. This allows us to take the maximum over all annual thresholds and use 

this as cut-off, by setting all weights below this threshold to zero. The above procedure 

ensures that locally (i.e. for every separate year) each country has at least one 

neighbour). Since all exogenous weights above are calculated from geographical 

measures of proximity, the underlying ‘local’ spatial weighting matrices are time-

invariant. However due to the unbalanced nature of our panel data combining the ‘local’ 

(i.e. annual) W into a global one results in a global spatial weighting matrix replicating 

the structure of the panel data.  

With respect to endogenous weight matrices, we use data on market potential from 

Mayer (2009) for the period 1960-2003. The dataset is available at 

http://www.cepii.fr/anglaisgraph/bdd/marketpotentials.htm. Since we use 5-year 

intervals, we have used the 2003 market potential data for 2005. The market potential 

concept (labelled Market Access (MA) by Redding and Venables (2004) or Real Market 

Potential (RMP) by Head and Mayer (2004)) relates the level of factors’ income of a 

country to its export capacity. More specifically, the level of factor incomes in each 

country (since in the case considered here labour is the only factor, it means the wages) 

can be explained by a weighted sum of expenditures of all countries in the world (the 

sample). The weights are given by the bilateral trade costs calculated by export 

destination. It is this weighted sum that is termed market potential. Hence the market 

potential reflects the structure of international trade and countries with similar market 

potential face similar terms of trade defined with regard to the factor under 

consideration (i.e. labour). Increasing wages outside a country relative to its own level of 

wages would therefore increase its market potential measure. Therefore one can view 

the market potential as a trade competitiveness measure (with regard to labour in this 

instance). Using the differences amongst the countries’ market potential as distances to 

construct spatial weighting matrices defines a spillover process representing trade 

competition reflecting returns for labour, while holding returns to other factors 

constant. 

http://doi.org/10.1111/kykl.12093
http://www.cepii.fr/anglaisgraph/bdd/marketpotentials.htm


This is a post-print of Kostov, P. and J. Le Gallo (2015) Convergence: a story of quantiles 
and spillovers, Kyklos, 68(4), 552-576. The definitive version is available at 
http://doi.org/10.1111/kykl.12093 
 

 

The endogenous W is hence based on the market potential. The latter is available on 

annual basis so that the resulting spatial weights are time specific. The market potential 

based W is based on the pairwise differences in the market potentials for different 

countries and the corresponding ‘spatial’ weights are calculated as inverse distances. 

The construction of a global W is implemented using a cut-off rule similarly to the 

exogenous case, i.e. selecting a global cut-off that ensures each country has at least one 

neighbour in each separate year.  

It is clear from the nature of the differences underlying the construction of this spatial 

weighting matrix that the exogeneity assumption can no longer hold. Consequently, we 

used the sum of bilateral distances and the sum of estimated bilateral trade costs for 

each pair of countries to construct instruments for the endogenous W, following the 

approach proposed by Kelejian and Piras (2014). These instrumental matrices are 

similarly calculated for each separate year and then combined together. We have also 

implemented alternative sets of instruments (only sum of bilateral distances or only 

sum of estimated bilateral trade costs based matrices) as well as inversed squared 

distances based W. These alternative specifications produce very similar results. 

Finally, we standardize all the weight matrices (both exogenous and endogenous) using 

the procedure described in Kelejian and Prucha (2010) and based on the spectral radius. 

The reason we prefer the spectral radius based procedure over the more commonly 

used standardisation using row sums is that the latter converts absolute distance-based 

interactions into relative distance-based interactions, hence changing the information 

content of the connection structure.  

 

4.  Results 

 

Before discussing the results, it is useful to recall the way in which the quantile 

regression results should be interpreted in our context of conditional β-convergence 

models. In particular, note that the word ‘conditional’ may be used for two different 

concepts. Indeed, we estimate conditional β-convergence models: compared to absolute 

β-convergence, additional control variables are added, which implies that each country 

converges to its own steady state. These are estimated in the context of conditional 

quantile regressions, i.e. conditional to the distribution of income growth rate. Then, the 
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upper conditional quantiles represent the countries which, given their endowments (i.e. 

savings, population growth, human capital and initial income), grow faster than the 

other comparable countries (i.e. faster than they should). These countries can be 

labelled as “over-achievers” (Barreto and Hugues, 2004). Once again, note that these do 

not need to be the unconditionally faster growing countries. On the contrary, lower 

conditional quantiles group the “under-performers”. Assuming that the process of 

conditional β-convergence holds, this has the following implications for our empirical 

model. In mean models, the negative sign of the lagged income is an indication of 

conditional convergence. In the quantile regression specification, the same applies, but 

we can have different patterns of conditional convergence (negative sign), non-

convergence (no effect) or divergence (positive sign) across the conditional distribution. 

Larger negative coefficient of lagged income implies faster convergence. Looking at the 

quantile distribution, since upper quantiles signify conditionally faster growing 

countries, one should expect that the latter should also converge faster. In other words 

faster growth should be associated with better catching up. Hence one would expect the 

coefficient of lagged income to be both negative and increasing in magnitude with the 

quantiles. Deviations from this expectation could be interpreted as violations of the 

assumed convergence to a single steady state dynamics. 

 

4.1 Non-spatial panel quantile models 

Before proceeding to the main panel data estimators, it would be useful to put these in 

comparative perspective. Figure 1 contains a comparison of the fixed effects quantile 

regression estimates (which is the main panel QR estimator we consider) with simple 

OLS estimates and standard quantile regression (i.e. respectively pooled versions of 

mean and quantile regressions).  

A range of quantile regression models from the 0.05th to the 0.95th quantile at 0.01 

increments are estimated. In this particular case the fixed effects and standard quantile 

regression results appear similar. This is due to the fact that the optimal shrinkage term 

applied to the fixed effects is quite large, hence shrinking them more severely towards 

zero and moving panel quantile estimates closer to the conventional quantile regression 

ones.  This similarity can be attributed to using 5 year averages which reduce the year 

on year variability in the data (more pronounced differences are observed if non-
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averaged data is used instead).  However ignoring the individual country effects leads to 

underestimation of the standard errors and the confidence intervals produced by simple 

quantile regressions are tighter than what they should be, resulting in potentially 

inefficient inference.  

[Figure 1 around here] 

 

We present results from non-spatial panel quantile models on Figure 2. We applied four 

different specification/estimation methods: 

- FE refers to the fixed effects panel quantile regression (Koenker, 2004) with optimal 

shrinkage estimated following Lamarche (2010); 

- CRE is the correlated random effects estimator of Abrevaya and Dahl (2008) amended 

following Bache et al. (2013) to allow for unbalanced panels; 

- MCMC is a Bayesian formulation with country random effects with Dirichlet process 

priors, estimated by the modified Markov Chain Monte Carlo algorithm of Waldmann et 

al. (2013). This version has been chosen because of improved convergence; 

- VA is a computational simplification of the Bayesian formulation with more restrictive 

Gaussian priors on the random effects and estimated using the variational 

approximation method of Waldmann and Kneib (2014). This provides a more restrictive 

model, but considerably reduces the computational costs.  

The FE and CRE results are obtained by jointly estimating all the considered quantiles, 

while the Bayesian formulations are estimated on a quantile by quantile basis. 

Overall, these different estimation methods produce similar results. The main difference 

resides in the confidence intervals, which are wider for the more general specifications 

and notably narrower for the more restrictive VA model. Interestingly, the MCMC model 

results agree with the VA results in the lower part of the conditional distribution, but 

converge to the FE and CRE results in the upper part. Bearing in mind that the Bayesian 

formulations impose independent random effects, this suggests that this assumption is 

more likely to be violated in the lower part of the distribution since it affects the results 

to a greater extent there. 

The convergence effects (i.e. coefficient of lagged income) are shown on Figure 2a. In 

general, we only find conditional convergence (i.e. a negative coefficient) in the upper 

part of the distribution. This finding is consistent with Cunningham (2003), Barreto and 
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Hughes (2004) and Canarella and Pollard (2004). In the lower part of the distribution 

the lagged income coefficient is not statistically significant, which indicates non-

convergence, but importantly does not exhibit divergence. Since the lagged income 

coefficient is in general decreasing (i.e. increasing in magnitude) with the quantile, when 

countries are converging the catching up countries are converging faster. However, the 

presence of non-converging countries (at the lower quantiles) is consistent with the 

phenomenon of convergence clubs.  

 

[Figure 2 around here] 

 

With respect to the control variables, first note that the effect of average savings (Figure 

2b) is positive, as expected. This effect does not appear to be varying with quantiles with 

the possible exception of the lower tail where it appears to be larger. Intuitively, this 

makes sense because it means that larger investment in physical capital share leads to 

higher growth. Note that Barreto and Hughes (2004) find that the importance of 

investment share increases with quantiles and interpret this as a failure for 

underperformers to convert relative investment into economic growth. It is also at odds 

with the findings of Canarella and Pollard (2004) who only find significant coefficients 

for lower and higher quantiles. We do not confirm these results when using panel 

quantile techniques rather than cross-sectional ones. 

The effect of (working) population growth (Figure 2c) is positive, but decreasing with 

quantile and becoming statistically insignificant in the upper part of the distribution. 

Hence, increasing workforce contributes to economic growth but up to a certain point. 

For conditionally slower growing economies this effect is larger and it reduces and 

totally disappears for faster growing ones. Labour intensive growth is therefore more 

beneficial to conditionally slower growing economies. For faster growth it is the quality 

(see next result) rather than the quantity of the workforce that accelerates growth. 

Finally, a somewhat unexpected result is that the effect of the human capital on growth 

(Figure 2d) is insignificant except in the extreme upper tail of the conditional 

distribution where it is positive (as it is to be expected). This means that only the fastest 

growing (conditionally) economies are indeed able to translate investment in human 

capital in higher economic growth. Moreover, in the upper tail, the effect is increasing 
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with quantile, so that the conditionally fastest growing countries are able to exploit 

human capital more effectively to further economic convergence. Again, this result does 

not follow that of Barreto and Hughes (2004) who found that the importance of 

secondary school attainment reaches a peak between the 30th percentile and the median 

and then drops for higher percentiles. It is however closer to Canarella and Pollard 

(2004) who found that the estimates for human capital increase with quantiles and are 

not significant for lower quantiles.  

 

4.2 Spatial panel quantile models 

When comparing spatial models (or spatial and nonspatial ones), one uses the partial 

derivatives (see LeSage and Fischer, 2008). More specifically, since the partial 

derivatives vary with each observation, the average total impacts are useful in 

comparing such models. In linear spatial quantile models, the relationship assumes a 

linear functional form and hence the average total impacts can be computed in the same 

way as for the linear mean models (Kostov, 2013). Hereafter we will refer to these 

comparable effects (i.e. the average total quantile effects from the spatial models, as well 

as the coefficients from the nonspatial ones) simply as ‘effects’. 

Figure 3 shows a comparison between the effects from a non-spatial (FE) and the 

average total quantile impacts from spatial exogenous spatial weighting matrix 

estimators. The choice of estimators from each class is based on popularity (for the non-

spatial) and realisticness (for the spatial one). The exogenous (case (iii) in section 3.2) 

and endogenous spatial weighting matrices model specifications were discussed above. 

The main purpose of Figure 3 is to provide an overall comparative perspective on the 

way results change with specification. It appears that using different versions of spatial 

and non-spatial panel quantile regression estimators does not change the qualitative 

conclusions drawn from such a comparison. The main conclusion is that the exogenous 

spatial specification results are broadly speaking compatible with the non-spatial model 

results. In general terms, these two sets of estimators produce comparable results and 

lead to similar conclusion. The main qualitative difference concerns the effect of human 

capital. While the non-spatial estimation only discovers positive effect of human capital 

in the extreme right (upper) tail of the conditional growth distribution, the spatial 

estimation locates such positive effects in larger part of the upper tail (approximately 
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after the 0.85th quantile). Therefore accounting for potential (exogenous) growth 

spillovers leads to a more widespread effect of human capital.  

 

[Figure 3 around here] 

 

The endogenous spatial model formulations however produce drastically different 

results. Figure 4 shows the estimated average total impacts form a range of spatial panel 

quantile models. We present results for one endogenous and the three exogenous spatial 

weighting matrix specifications, as discussed in section 3.2. Further results (on 

additional specifications) are available upon request.  

It is important to note that the quantile impacts for spatial quantile autoregressions can 

only be compared qualitatively, rather than quantitatively. To understand this, consider 

equation (2). The conditional quantiles (3) are specified with regard to all covariates, 

including the spatial lag, i.e. they are also conditional on the assumed spatial spillover 

process. In other words faster growing economies in this case are the ones that grow 

faster given not only their endowments, but also the nature of the assumed spillover 

process. 

In general terms, the total impacts from the presented (and omitted) exogenous 

specifications are similar and lead to the same conclusions. The other general difference 

is that as it is to be expected the confidence intervals for the endogenous spatial 

weighting matrix specification are considerably wider, accounting for the additional 

uncertainty embodied in the model. We now consider the differences between the 

endogenous and the exogenous cases on a variable-by-variable basis. 

First, with respect to convergence, although the convergence effect in the endogenous 

specification is stronger (i.e. larger in magnitude) than in the exogenous specifications 

and its confidence intervals are much wider (Figure 4a), the qualitative conclusions are 

similar. Both types of specification show insignificant impact in the lower part of the 

growth distribution and significant negative impact in the upper part of the distribution. 

This implies only a partial conditional convergence (for the faster growing economies, 

but not for all). Further differences are worth noting. Indeed, in spite of the wider 

confidence intervals, the endogenous specification uncovers convergence effects in 

larger part of the distribution (these appear at around the 0.4th quantile as opposed to 
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the 0.5th for the exogenous specification). Coupled with the larger magnitude of these 

one may say that endogenous spillovers imply ‘more’ convergence. Also, generally 

speaking in both specifications, convergence effects increase with quantile (which is to 

be expected). In terms of magnitude the endogenously derived convergence impacts are 

larger implying higher rates of convergence that those obtained from exogenous 

specifications. 

 

[Figure 4 around here] 

 

Second, with regard to savings (Figure 4b) both specifications show positive impacts, as 

expected. There seems to be difference in the size of the impacts in that the 

endogenously defined impact of investment shares are larger, but for the lower part of 

the distribution up to the 0.2th quantile where they are smaller. Hence endogenous 

spillovers lead to larger impact of investment by (endogenously) amplifying their impact 

relative to the lack of such endogenous mechanism. However this amplification 

(multiplier effect) only happens after a relative threshold in the conditional growth rate 

is reached (there is a jump in the impact at around the 0.2th quantile). Therefore, we are 

able to recover evidence for potential investment ‘traps’. 

Third, the workforce impacts (Figure 4c) are similar for both types of specification. 

Owing to the wider confidence intervals in the endogenous case, these impacts are only 

significant between roughly the 0.25th and the 0.4th quantile (as opposed to most of the 

lower part of the growth distributions in the exogenous case).  

Finally, it is with regard to the total impact of human capital (Figure 4d) where the 

difference between the endogenous and exogenous specification is striking. Note that 

the issue of measures of human capital and their potential effect is a subject to some 

controversy in the cross-country growth literature. The nature of the adopted proxies 

has been criticised (see e.g. Gemmell, 1996). The significance of this measure has also 

been shown to depend on sample and functional form choices. Previous studies have 

found either insignificant effects of human capital proxies (e.g. Benhabib and Spiegel, 

1994) or negative effects (e.g. Islam, 1995; Caselli et al. 1996). The inconsistency in the 

previous results for human capital effect have been explained by the deployment of 

inappropriate assumptions about constant coefficient and linearity (Krueger and 

http://doi.org/10.1111/kykl.12093


This is a post-print of Kostov, P. and J. Le Gallo (2015) Convergence: a story of quantiles 
and spillovers, Kyklos, 68(4), 552-576. The definitive version is available at 
http://doi.org/10.1111/kykl.12093 
 

 

Lindahl, 2001) or measurement and functional form issues (Delgado et al.,2014). While 

for the exogenous specification the impact of human capital is only significantly positive 

in the upper tail (beyond the 0.85th quantile), the impacts from the endogenous 

specification are positive across the whole distribution and considerably larger than 

those in the exogenous case. There appears to be an increase in the impacts in the upper 

tail implying that faster growing economies manage to better utilise their human capital. 

Recently Delgado et al. (2014) using non-parametric tests failed to discover significant 

effect of different human capital measure (years of schooling) but find strong evidence is 

support of human capital quality effects. One has to be careful in drawing parallels since 

their approach is univariate and focused on mean effects but our results appear to 

confirm such a conjecture. In particular the results from the non-spatial and the 

exogenous spatial weighting matrix model confirm the insignificance of the human 

capital measure for most of the conditional distribution, but the upward trend in the 

upper tail does suggest role for the quality of human capital. Its significance alongside 

the whole conditional distribution in the endogenous spillovers model on the other hand 

strongly supports the quality explanation. Since our endogenous spillovers specification 

is defined by wages (as factor income determining the market potential and ultimately 

the distance metric) if we assume that returns to labour are related to its quality, then 

our spillover specification implicitly  includes the quality of human capital and hence 

one could expect it to be significant. The inability of the existing human capital measure 

to capture its quality, which is theoretically the driving force of the growth process, is a 

recurrent issue in the growth literature (see e.g Pritchett, 2001). Quality is hence a 

possible (and credible) explanation for these differences.  Indeed, since the endogenous 

spatial weighting matrices are based on wage differences, they implicitly allow for 

interdependence between growth outcomes based on differences in labour returns, 

which is an implicit measure of labour quality.  

 

5.  Conclusion  

 

This paper applies a spatial panel quantile regression models to the issue of conditional 

β-convergence. While previous analyses have taken into consideration spatial spillovers 

or have looked into the conditional growth distribution using quantile regression 
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methods on cross-sectional data, we are the first to combine together both spatial 

spillovers and panel quantile analysis. This combination allows for deeper insights into 

the cross-country convergence process.  

Our analysis shows that the nature and strength of the effects do not depend on this 

whether one assumes or not the presence of spillover effects, but on the nature of these 

spillovers. Assuming endogenous spillovers dramatically affects the estimates of the 

convergence process. Furthermore, the effect of human capital differs considerably 

between endogenous and exogenous spillover specifications. Our results suggest that 

the effect of human capital probably depends on its quality and the nature of the 

economy. We find evidence of conditional convergence amongst approximately half of 

the conditional growth distribution, while the rest do not demonstrate convergence. 

Interestingly we find no evidence for growth divergence. 

Our specification does not include time dynamics. For this reason we cannot deduce 

whether they do not converge because they have already reached the steady state, or 

simply they are moving to a different steady state (club convergence). However the lack 

of non-convergence (positive lagged income effect) is quite important. It implies that 

even if there is club convergence, the different steady states are not entirely 

independent, but related since countries converging to a different steady state do not 

move away from the main one. 
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Figures 
 
Figure 1. Comparison of the main estimator with conventional estimators 
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Notes:  
QR - quantile regression  
OLS - linear model  
FEQR - fixed effects quantile regression  
Dotted lines (and shaded area for the QR estimator) show the corresponding confidence intervals 
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Figure 2 Results from non-spatial panel quantile models 

 
Notes:  
FE - fixed effects quantile regression 
VA – random effects quantile regression estimated via variational approximation  
CRE – correlated random effects  
MCMC – random effects quantile regression estimated via Markov Chain Monte Carlo 
Dotted lines (and shaded area for the FE estimator) show the corresponding confidence intervals 
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Figure 3. Comparison of spatial and non-spatial panel quantile models 

 
 
Notes:  
FE - fixed effects quantile regression (non-spatial model) 
Exogenous W–  Spatial model with exogenous spatial weighting matrix 
Endogenous W - Spatial model with endogenous spatial weighting matrix. 
The spatial models results present the total average quantile effects. 
Dotted lines (and shaded area for the FE estimator) show the corresponding confidence intervals 
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Figure 4. Spatial panel quantile model results 

 
 
Notes:  
Endogenous W - Spatial model with endogenous spatial weighting matrix. 
Binary 100 km distance W–  Spatial model with a binary spatial weighting matrix based on 100 km definition of 
neighbourhood. 
Binary 10  nearest neighbours W – Spatial model with a binary spatial weighting matrix based on the 10  nearest 
neighbours. 
Inverse squared distance weights with global cut-off – Spatial model with spatial weighting matrix 
constructed from inverse squared distance weights by applying a global cut-off. 
The estimates refer to the total average quantile effects. 
Dotted lines (and shaded area for the endogenous specification) show the corresponding confidence intervals 
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Appendix 1 

 

Table S.1. Countries in the dataset and years of availability 

 

Country Years of availability 
 Non-spatial models  and 

Spatial models  

with exogenous W 

Spatial models  

with endogenous W 

Afghanistan 1975-2010 1980-1985 

Albania 1975-2010 1990-2005 

Algeria 1965-2010 1980-1995 

Argentina 1955-2010 1985-2000 

Armenia 2000-2010 - 

Australia 1955-2010 1980-2000 

Austria 1955-2010 1980-2005 

Bahrain 1975-2010 - 

Bangladesh 1965-2010 1980-1995 

Barbados 1965-2010 1980-1995 

Belgium 1955-2010 - 

Belize 1975-2010 - 

Benin 1965-2010 1980-1980 

Bolivia 1955-2010 1980-2000 

Botswana 1965-2010 - 

Brazil 1955-2010 1990-2005 

Bulgaria 1975-2010 1980-2005 

Burundi 1965-2010 1980-1990 

Cambodia 1975-2010 1995-2000 

Cameroon 1965-2010 1980-2000 

Canada 1955-2010 1980-2000 

Central African 

Republic 

1965-2010 

- 

Chile 1960-2010 1980-2000 

Colombia 1955-2010 1980-2000 

Costa Rica 1955-2010 1985-2000 

Croatia 2000-2010 1995-2005 

Cuba 1975-2010 1980-1985 

Cyprus 1955-2010 1980-2005 

Czech Republic 1995-2010 1995-2005 

Denmark 1955-2010 1980-2005 

Ecuador 1960-2010 1980-2005 

Egypt 1955-2010 1980-1995 

El Salvador 1955-2010 1980-1995 

Estonia 1995-2010 2000-2005 
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Fiji 1965-2010 1980-1990 

Finland 1955-2010 1980-2000 

France 1955-2010 1980-2005 

Gabon 1965-2010 1980-1995 

Ghana 1960-2010 1980-2005 

Greece 1960-2010 1980-1995 

Guatemala 1955-2010 1980-1995 

Guyana 1980-2010 - 

Haiti 1965-2010 1980-1995 

Honduras 1955-2010 1985-1995 

Hungary 1975-2010 1980-2000 

Iceland 1955-2010 1980-1995 

India 1955-2010 1980-2005 

Indonesia 1965-2010 1980-2005 

Iraq 1975-2010 1980-1985 

Ireland 1955-2010 1980-2000 

Israel 1955-2010 1980-2005 

Italy 1955-2010 1980-2005 

Jamaica 1960-2010 1980-1990 

Japan 1955-2010 1980-2000 

Jordan 1960-2010 1980-2005 

Kazakhstan 2000-2010 2000-2005 

Kenya 1955-2010 1980-2005 

Kuwait 2000-2010 2000-2000 

Kyrgyzstan 2000-2010 2000-2005 

Latvia 2000-2010 2000-2005 

Lesotho 1965-2010 - 

Liberia 1975-2010 1985-1985 

Lithuania 2000-2010 2000-2005 

Luxembourg 1955-2010 - 

Malawi 1960-2010 1980-2000 

Malaysia 1960-2010 1980-2005 

Maldives 1975-2010 - 

Mali 1965-2010 - 

Malta 1975-2010 1980-2005 

Mauritania 1965-2010 - 

Mauritius 1955-2010 1980-2000 

Mexico 1955-2010 1980-2000 

Mongolia 1975-2010 1990-2000 

Morocco 1955-2919 1980-2005 

Mozambique 1965-2010 1990-2000 

Namibia 1965-2010 - 

Nepal 1965-2010 1990-1990 

Netherlands 1955-2010 1980-2005 
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New Zealand 1955-2010 1980-1995 

Nicaragua 1955-2010 1980-1985 

Niger 1965-2010 2000-2005 

Norway 1955-2010 1980-2000 

Pakistan 1955-2010 1980-1990 

Panama 1955-2010 1980-2000 

Papua New Guinea 1965-2010 1980-1985 

Paraguay 1960-2010 - 

Peru 1955-2010 1985-1995 

Philippines 1955-2010 1980-2005 

Poland 1975-2010 1980-2000 

Portugal 1955-2010 1980-2005 

Qatar 1995-2010 2000-2005 

Rwanda 1965-2010 1985-1985 

Saudi Arabia 1995-2010 - 

Senegal 1965-2010 1980-2000 

Sierra Leone 1970-2010 - 

Singapore 1965-2010 1980-2005 

Slovenia 1995-2010 1995-2000 

South Africa 1955-2010 1980-2005 

Spain 1955-2010 1980-2005 

Sri Lanka 1955-2010 1980-2000 

Sudan 1975-2010 - 

Swaziland 1975-2010 - 

Sweden 1960-2010 1980-2000 

Switzerland 1955-2010 2000-2000 

Taiwan 1960-2010 1980-1995 

Tajikistan 2000-2010 - 

Thailand 1955-2010 1990-2000 

Togo 1965-2010 1980-1980 

Tonga 1985-2010 1985-2005 

Tunisia 1970-2010 1980-2005 

Turkey 1955-2010 1980-2000 

Uganda 1955-2010 1985-2000 

Ukraine 1955-2010 2000-2005 

United Arab Emirates 1995-2010 - 

United Kingdom 1955-2010 1980-2005 

Uruguay 1955-2010 1980-2005 

Venezuela 1955-2010 1980-1995 

Yemen 1995-2010 2000-2005 

Zambia 1960-2010 1980-1990 

Zimbabwe 1960-2010 1980-1995 
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