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Nomenclature 

A = total area of the sail film 

Amax = area of sail film equipped with reflectivity control device 

A1 = area of sail in state two 

aS = solar radiation pressure acceleration exerted on the solar sail 

, ,x y za a a = components of the solar radiation pressure acceleration in x,y,z direction, respectively 

i= angle between the ecliptic plane and Moon’s orbital plane 

m = total mass of the solar sail 

n = unit vector along the sail normal direction 

P = solar radiation pressure 

r = position vector of the sail with respect to the barycenter of the Earth and Moon 

Sr = unit vector along the sunlight direction in the ecliptic plane 

r1 = distance from the sail to the Earth 

r2 = distance from the sail to the Moon 

S = sliding surface 

u = reflectivity rate of the sail 

 = weight matrix between the position error and velocity error in sliding surface  

 = angle measured from the Earth-Moon line to the x axis 
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 = dimensionless characteristic acceleration of the solar sail 

ȝ = ratio of the Moon’s mass to the total mass of the Earth and Moon 

ȡS = specular reflectivity coefficient 

  = positive diagonal matrix for the sliding mode control 

 = angle measured from the sunlight direction to the x axis 

E = angular velocity of the Earth rotating around the Sun 

M = angular velocity of the Moon rotating around the Earth 

 

Introduction 

Artificial Lagrange points and periodic orbits around them in the restricted three-body problem have 

attracted a great deal of attention. Solar sails provide new families of libration points inside regions 

connected to the classical libration points [1]. Similar to traditional halo orbits centered on the 

classical libration points, new orbits associated with artificial libration points are widely 

investigated. Baoyin and McInnes have investigated the periodic orbit around artificial Lagrange 

point in the Sun-Earth line [2] and periodic orbits displaced above or below the ecliptic plane of the 

Sun-Earth restricted three-body system [3]. Waters and McInnes studied periodic orbits around 

arbitrary artificial equilibrium [4]. These artificial equilibria have potential applications for future 

missions [5-7]. The Earth-Moon libration points have been a topic of great interest in recent years. 

The orbits around the collinear points are attractive because their unique positions are advantageous 

for several important applications in space mission design. In particular, periodic orbits displaced 

above the libration points in the Earth-Moon system are proposed for lunar far-side communications 

[8]. If the orbit is visible from Earth, it can be used to provide communications between the Earth 

and the lunar poles. Simo and McInnes studied the dynamics and control of the periodic orbits 

above the L2 point [9]. The results indicated that such orbits cannot be maintained without active 

control due to their instability. A hybrid of solar sail and solar electric propulsion is proposed to 

maintain the spacecraft on the orbit [10]. However, the Moon is assumed to move in the Earth’s 

orbital plane and the inclination of the Moon's orbit is not considered in previous studies. In this 

paper, the inclination of the Moon’s orbital plane to the ecliptic plane is considered to model the 

dynamics of the solar sail. Furthermore, the sail area variation or hybrid propulsion is usually 
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required to keep the solar sail on a reference displaced orbit. In this paper, a reflectivity device 

developed by JAXA is used for orbit control. JAXA developed this device for attitude control of 

IKAROS and future solar sail missions [11]. This device may provide an option for the orbit 

maintenance of the solar sail [12]. In this work, a solar sail including the reflectivity device is 

modeled and used to generate quasi-periodic and periodic orbits above the L2 libration point in the 

Earth-Moon system. The out-of-plane distance should be large enough to guarantee that both the 

lunar far-side and the equatorial regions of the Earth would be visible. Numerical analysis of 

stability and controllability of the orbits shows that the orbits are unstable but completely 

controllable with both the reflectivity rate and the sail attitude. A nonlinear sliding-mode control 

method is proposed to design the control law, leading to simpler tracking of the reference orbits. The 

results indicate that the solar sail may be maintained on the quasi-periodic orbit with only several 

percentage of the sail area equipped with the reflectivity device.  

 

Solar Sail Equipped with Reflectivity Control Devices 

Assume that part of the sail film is equipped with the Reflectivity Control Device (RCD) that can be 

switched between two different states. A part of the sunlight is specularly reflected for the state one, 

and the ratio of the reflected sunlight is defined by ȡS. The remaining sunlight is absorbed and the 

corresponding ratio is given by 1-ȡS. The diffuse reflection is not considered in this paper since the 

amount of the sunlight of the diffuse reflection is very small for a smooth surface. Furthermore, the 

resultant force due to the reflected sunlight of the diffuse reflection is also very small because the 

incident sunlight is reflected from the surface at many angles, rather than at just one angle as in the 

case of specular reflection. It should be noted that all the sunlight is absorbed for the state two. The 

sail film is either in the state one or state two, and there is no intermediate state. Thus, the switch in 

state can be easily realized by turning the power ON and OFF. 

 Consider a solar sail of the total area A and mass m. At some instant of time, the area A1 is in 

state two and the remaining area in state one. The SRP acceleration exerted on the solar sail can be 

written as 

1 2S  a a a                                                                  (1) 

The SRP accelerations 1a  and 2a
 
are due to sail area A1 and A- A1, respectively.  

http://en.wikipedia.org/wiki/Angle
http://en.wikipedia.org/wiki/Specular_reflection
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 1
1 S S

PA

m
 a r n r                                                            (2) 

      21

2 1 2S S S S S

P A A

m
 

       a r n r r n n                             (3) 

The magnitude of the SRP force exerted on the sail is given by the sail characteristic acceleration ț, 

which is defined by the acceleration exerted on the solar sail when all RCDs are turned on and the 

sail normal is along the sunlight direction. It is assumed that ț is constant over the scale of the 

problem. This acceleration depends directly on the total mass per unit area of the spacecraft. Then, 

the SRP acceleration may be rewritten as 

       1 2 1
2

S S S S S S Su u
           a r n r r n n                         (4) 

where u is the ratio of the area in the state two divided by the total area, namely, u=A1/A, which is 

denoted as the reflectivity rate.  

Assume that the sail film includes small segments of the RCDs that can be actively controlled to 

switch between two states. Then, the reflectivity rate can vary continuously. If the area of the sail 

film equipped with the RCD is Amax, u can change from 0 to Amax/A continuously.   

 

Dynamical Equation 

Two references of frames are used to discuss the dynamics of the solar sail. The inertial frame OXYZ 

is defined as follows: the origin is at the mass center of the Earth. The X axis is directed along the 

intersection of the ecliptic plane and the Moon’s orbital plane. The Z axis is perpendicular to the 

ecliptic plane, and the Y axis forms a right triad with the X and Z axes. The rotating frame oxyz is 

defined as follows: The origin is at the mass center of the Earth-Moon system. The x axis is directed 

from the Earth to the Moon. The z axis is perpendicular to the Moon’s orbital plane, and the y axis 

forms a right triad with the x and z axes, as shown in Fig.1.  
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Figure 1 geometrical relationship of different planes. 

The inclination of the Moon’s orbital plane to the ecliptic plane i  varies between 4.950°-5.317° 

and the mean inclination is about 5.145°. In the Earth-Moon system, the Sun is considered moving 

through the ecliptic plane. The relative orientation of the inertial frame with respect to the rotating 

frame is described by two angles ( , i ) of the rotational sequence 2 1( ) ( )R R i   (from the 

inertial frame to the rotating frame). The transition matrix can be given by 

2 1( ) ( )iA R R                                    (5) 

The phase angle   is linearly proportional to the angular velocity of the Moon rotating around the 

Earth, namely,      0 0Mt t t t     . 

The sunlight lies in the plane of the ecliptic. The unit vector of the sunlight direction can be 

expressed in the inertial frame as 

 Tcos sin 0SI  r                              (6) 

The phase angle   is linearly proportional to the angular velocity of the Earth rotating around the 

Sun, namely,      0 0Et t t t     . 

The unit vector in the rotating frame can be expressed as 

cos cos sin cos sin

sin cos cos cos sin

sin sin

SR SI

i

i

i

   
   



 
     
  

r Ar                    (7) 

Another frame, or xr yr zr , is used to describe the direction of the sail normal. The origin of the frame 

is at the mass center of the Earth; the xr axis is directed along the sunlight; the zr axis is directed 

along the Z axis, and the yr forms a right triad with the xr and zr axes. The pitch angle Į and the clock 

angle Ȗ are used to describe the sail normal, where the pitch angle Į is measured from the sunlight 

X

Y

Z

x

y

z

Sr

 Earth

Moon

Ecliptic plane

'Moon s orbital plane
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direction to the sail normal, and the clock angle Ȗ is measured from the zr axis to the projection line 

of the sail normal in the yr zr plane. Then, the unit vector along the sail normal direction in the or xr yr 

zr frame can be given by 

 Tcos sin sin sin cosr     n                                          (8) 

It can be projected in the inertial frame as 

 T

cos sin 0

sin cos 0

0 0 1

cos cos sin sin sin sin cos cos sin sin sin cos

I r

 
 

           

 
   
  

  

n n
       (9) 

 Similarly, the unit vector can be projected in the rotating frame as  

cos (cos cos sin sin sin ) sin cos (sin cos cos sin sin ) sin sin sin cos

sin (cos cos sin sin sin ) cos cos (sin cos cos sin sin ) cos sin sin cos

sin (sin cos cos sin sin ) cos sin cos

R

i i

i i

i i

              
              

      

   
     

  

n




 
 

(10) 

The motion of the solar sail is described in the rotating frame of constant angular velocity with the 

Earth-Moon in the circular orbit, as shown in Fig. 1. The units of the problem are chosen such that 

the gravitational constant, the Earth-Moon distances, the sum of the Earth and Moon mass, and so 

the angular velocity of the corotation are all unity. The vector equation of motion for the solar sail in 

the corotating frame may be written as 

 2 M SU    r r r a                              (11) 

where   2

1 2

1 1

2
MU

r r

  
     

 
r r . 

The nondimensional equations of motion can be written as 

   3 3

1 2

3 3

1 2

3 3

1 2

1
2 1

1
2

1

x

y

y

x y x x x a
r r

y x y y y a
r r

z z z a
r r

  

 

 

 
        


 

     

 

   


 

 



              (12) 

The classical Lagrange points of the system can be obtained by letting   0U r . The 

coordinate of the L2 Lagrange point is denoted as rL2=[xL2 0 0]
T

. Let a small displacement in the 

vicinity of the L2 Lagrange point be  T   r = , such that r=rL2+ r . The dynamical 
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equations for the solar sail near the L2 libration point can be rewritten as 

       

 

2 2 2 2

2

3 3

1 2

3 3

1 2

3 3

1 2

1
2 1

1
2

1

L L L L x

L y

z

x x x x a
r r

x a
r r

a
r r

       

     

   

 
            


 

      

 

   


 

 



    (13) 

where  
2

2
2

1

2

Lr x        ,  
22

2
2 21Lr x         .  

Assume , ,    are small, the equations of motion can be linearized by retaining only the 

first-order term in a Taylor series expansion. Since rL2 is an equilibrium point of Eq. (12) when there 

is no force exerted on the spacecraft, 
2

0Lx  , 
2

0Lx  , and 

   
2 2

L2 1/2 1/2

1

1L L

x
x x

 

 


  

  
are used to simplify the linearized equation. In particular, 

the sail acceleration has been assumed constant under the small displacement from the L2 point. 

Therefore, the SRP acceleration is independent of the position of the solar sail. The linearized 

nondimensional equations of motion relative to the collinear libration point can be written as 

2

2

xx x

yy y

zz z

U a

U a

U a

  

  

 

   


  


 

 





                                 (14) 

where Uxx, Uyy, Uzz are the second-order derivatives of U with respect to x, y, z, respectively, which 

can be given by 

   
2 2

3 3

2

1

1
2 1x

L

x

Lx
U

x

 




  

 



  

   
2 2

3 3

1
1

1
yy

L Lx x
U

 

   


    

   
2 2

3 3

1

1L

z

L

z

x
U

x







 




   

The linear dynamical equation is used to design the reference orbit, which is a solution of the 

differential equation. A particular solution is introduced since it is difficult to obtain the close form 

of the general solution.  
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Reference Orbit Design 

A simple method to design the reference orbit can be described as follows: first, the expression of 

the reference orbit is given and it is substituted into the differential equations (nonlinear or 

linearized equations). Thus, the differential equations become three algebraic equations, from which 

the attitude angles ,  , and the reflectivity rate u can be numerically solved. It should be noted 

that the numerical solution for the attitude angles and the reflectivity rate is time-varying. The 

variation ranges for these variables cannot be predicted since the process is numerically conducted. 

In engineering practice, the variations of these variables require the attitude control and the 

reflectivity rate control. Most importantly, the maximum reflectivity rate is restricted by the film 

area equipped with the reflectivity control device. Therefore, constant profiles of these variables are 

preferable. In addition, an explicit relation between the size of the reference orbit and the three 

variables is useful for the orbit design. The attitude angles and the reflectivity rate are assumed 

constant to design the reference orbit.   

The reference orbit is bounded solution of Eq. (12). Then, the objective of the reference orbit design 

is to seek the desired bounded solution of Eq. (12). Under the assumption that the solar sail moves in 

the vicinity of the L2 libration point, the linearized equation (Eq. (14)) is employed for the reference 

orbit design since it is difficult to obtain the solution of the nonlinear differential equations.  

A. Quasi-periodic and periodic Solution 

The solution depends on the SRP acceleration, which is determined by the trigonometric functions 

of   and  (time-dependent). It is difficult to derive the explicit solution without any 

simplification on the expression of the SRP acceleration. To simplify the expression, the relation 

“cosi=1” is used to describe the unit vectors of the sunlight and the sail normal direction. The 

assumption is reasonable since the inclination of the Moon’s orbital plane i is very small 

(4.950°-5.317°), cosi is very close to 1 (sini can be approximated by i). However, the expression 

cannot be further simplified by replacing sini with i. Thus, this approximation is used to solve the 

explicit solution. After simplification, the unit vectors of the sunlight direction and the sail normal 

direction may then be written approximately as 

0 0 0

0 0 0

cos( ) cos( ) cos( ) cos

sin( ) sin( ) sin( ) sin

sin sin sin sin sin sin sin sin

M E

SR M E

t t t

t t t

i i i i

        
        

   

           
                          
                 

r     

                          (15) 
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cos cos sin sin sin sin sin sin cos

cos sin cos sin sin cos sin sin cos

sin (sin cos cos sin sin ) sin cos

R

i

i

i

       
       

      

  
     
    

n      (16) 

where   is the difference between the Moon’s angular velocity around the Earth and the Earth’s 

angular velocity around the Sun. The expressions of the sunlight and the sail normal direction are 

substituted into the SRP acceleration to give  

 

 

 

2

2

2

cos cos (1 )cos cos cos sin sin sin sin sin sin cos
2

cos sin (1 )cos cos sin cos sin sin cos sin sin cos
2

cos sin sin (1 )cos sin (sin cos cos sin sin ) sin cos
2

x

y

z

a u u i

a u u i

a u i u i

            

            

           

     

      

      









(17) 

The expressions of the SRP acceleration (right-hand side of Eq. (14)) include three different 

frequencies,  , M , E . The z component of the SRP acceleration includes one time-dependent 

variable, 0Et    . The general solution of the out-of-plane component can be written as  

  0 1 2sin cost       
                         (18) 

Similarly, the SRP acceleration components include two time-dependent variables, 0Mt     

and 0t    . The general form of the solution for the in-plane motion may be written as  

 
 

0 1 2

0 1 2

cos sin sin

sin cos cos

t

t

      

      

  


  
                     (19) 

The constant coefficients in Eqs. (18) and (19) are obtained by substituting the expressions into the 

linear dynamical equations. The z component of the linear equation can be given by   

 

 

2 2

1 2 0 1 2

2

sin cos sin cos

cos sin sin (1 )cos sin (sin cos cos sin sin ) sin cos
2

E E zzU

u i u i

          
           

    

      
(20) 

Let the coefficients of the trigonometric functions of both sides equal, the relations can be obtained 

as follows: 

2

0

2 3

1 1

2 2

2 2

(1 )cos sin cos

cos sin (1 )cos sin
2

(1 )cos sin sin sin

zz

E zz

E zz

U u

U u i u i

U u i

    
     

      

  

     

    

         (21) 

Similarly, the remaining coefficients of the solution can be calculated by inserting the x and y 
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components of the solution into the linear dynamical equations.  

2 3

0 0 0
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1 1 1

2 2
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2

2 (1 )cos sin sin

2 (1 )cos sin sin cos
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xx

M M xx
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U u i
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       

        

     
    
    


       (22) 

2 3

0 0 0

2 2

1 1 1

2 2

2 2 2

2 cos (1 )cos
2

2 (1 )cos sin sin

2 (1 )cos sin sin cos

yy

yy

M M yy

U u u

U u

U u i

       

       

        

      
    

    


       (23) 

All coefficients of the solution depend on the sail attitude ,  , the sail characteristic acceleration 

ț and the reflectivity rate u. As the sail characteristic acceleration and reflectivity rate are given, the 

attitude angles will determine the solution. The maximum out-of-plane distance is determined by 

the coefficients of  , which can be calculated from Eq. (21). The expression of   indicates that 

1  and 2  are much smaller than 0 because i is a small number. Therefore, 0  provides a 

good approximation of the out-of-plane distance. The out-of-plane distance can be maximized by an 

optimal choice of the sail pitch and clock angles, determined by 

0 0 
, 0 35.264  

                             (24) 

The coefficients, 1 1 2, ,   , will be zero by inserting 0 0   into Eqs. (22) and (23). Thus, the 

solution for the out-of-plane displacement is simplified as 

 
 
 

0 2

0 2

0 1

cos sin

sin cos

sin

t

t

t

    

    

   

 


 
  

                       (25) 

The coefficients, 0 0 0 2 2 1, , , , ,      , can be obtained by solving simultaneously Eqs. (22) and 

(23). The explicit expressions of these coefficients are given by  

 
2

0 2 2

3

4 2
cos (1 )c

2

2

4
os

yy

xx yy yy xx

U

U U U U
u u

 


  
  




 


   
    

     (26) 

 
2

0 2 2

3

4 2
cos (1 )co

2

4
s

2

xx

xx yy yy xx

U

U U U U
u u

 
  

  


 


   
    

    (27)
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2

0

(1 )cos sin

zz

u

U

   
                           (28) 

 
2

2 2

2

2 4 2
(1 )cos sin s
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n
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i

M M yy

xx yy xx M yy M M M
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i
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
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


 
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
  


 

      (29) 

 
2

2 2

2

2 4 2
(1 )cos sin s

2
n

4
iM M xx

xx yy xx M yy M M M

u
U

U U
i

U U
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

 



 

 


  

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     (30) 

 
2

1 2

2(1 )cos
cos sin

2 E zz

u u
i

U

  


 



                      (31) 

The expressions indicate that two frequencies exist in the motion in xy-plane and a different 

frequency exists in z-direction. In addition, 2 2 1, ,    are much smaller because they are 

proportional to sini. Therefore, the reference orbit is dominated by 0 0 0, ,   , which represents a 

periodic orbit displaced above the L2 libration point. The frequency of the periodic orbit is given by 

 , which is the difference between the Moon’s orbital angular velocity around the Earth and the 

Earth’s orbital angular velocity around the Sun. The motion induced by 2 2 1, ,    will introduce 

slight fluctuations superimposed on the periodic motion.  

If the inclination of the Moon’s orbital plane is set to zero ( 0i  ), the result will degenerate to the 

periodic solution discussed by Simo and McInnes [8] and McInnes [13], where the inclination of the 

Moon’s orbital plane is not considered. In this case, the periodic solution can be chosen as 

0

0

0

( ) cos

( ) sin

( )

t

t

t

  
  
 


 
 

                            (32) 

The analysis indicates that the maximum out-of-plane displacements of quasi-periodic and periodic 

orbits are similar. It is determined by the characteristic acceleration and the reflectivity rate of the 

solar sail. The maximum value can be obtained by substituting 0 0  , 0 35.264  
, and 

Uzz=3.1904 into Eq. (28): 

max 0.12064 (1 )u                            (33) 

The maximum out-of-plane displacement is linearly proportional to the characteristic acceleration.  
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B. Error Analysis  

The quasi-periodic and periodic orbits are constructed based on the linear dynamical equation. The 

linearization will take into account the system model errors. Furthermore, the design process of the 

quasi-periodic orbit and periodic orbit assumes that the inclination of the lunar orbit is small (or 

equal to zero), which will also induce some errors. Therefore, the designed SRP acceleration cannot 

completely cancel the acceleration induced by the nonlinear dynamics. It is important to verify that 

the system model error is very small compared to the nominal SRP acceleration. For a given 

reference orbit, the corresponding attitude angles and reflectivity rate can be obtained according to 

the above design process. Thus, the nominal SRP acceleration corresponding to the reference orbit, 

SRa , can be calculated from Eq. (4). The acceleration induced by the nonlinear dynamics is given 

by  

 2ND ref M ref refU    a r r r                       (34) 

Then, the absolute and relative errors between SRa  and NDa  are defined as 

AE SR ND a a a                             (35) 

SR ND

RE

SR

a



a a

a
                           (36) 

Given the solar sail parameters, the coefficients of the solutions associated to the quasi-periodic 

and periodic orbits can be calculated from Eqs. (21) to (23). Table 1 gives the parameters of two 

examples, one for a quasi-periodic orbit and the other for a periodic orbit above the L2 point in the 

Earth-Moon system. Figure 3 shows the relative and absolute errors, where the absolute and 

relative errors are less than 4.1×10
-4

 for a periodic orbit and 6.1% for a quasi-periodic orbit. The 

errors almost double for the periodic orbit since the assumption of i=0 introduces extra errors 

compared to the quasi-periodic case. The solar sail cannot stay on the reference orbit even it is 

placed exactly on the orbit due to the system model errors and the instability of the relative motion 

in the vicinity of the L2 point. Therefore, active control is necessary to maintain the solar sail on the 

orbit.  

 

 



13 

 

Table 1 Parameters of quasi-periodic and periodic orbits 

 Į (°) Ȗ (°) ț u Ȅ Ș ȗ 

 

Quasi-periodic 

 

35.26 

 

0 

 

0.01 

 

0.05 

ȟ0=1.9239×10-4 

ȟ1=0 

ȟ2=1.8994×10-5 

Ș0=-3.7613×10-3 

Ș1=0 

Ș2=2.4356×10-4 

ȗ0=1.1461×10-3 

ȗ1=-1.5136×10-4 

ȗ2=0 

Periodic 35.26 0 0.01 0.15 1.8757×10-4 -3.6663×10-3 1.0255×10-3 

 

 

     (a) relative error of the quasi-periodic orbit  (b) absolute error of the quasi-periodic orbit 

 

(c) relative error of the periodic orbit        (d) absolute error of the periodic orbit 

Figure 2 Relative and absolute errors for two reference orbits 

Nonlinear Sliding-mode Control 

The sliding mode control is one of the most important approaches dealing with model uncertainty. 

An active control is required to keep the solar sail in the vicinity of the Libration point. Modeling 

errors have strong adverse effects on nonlinear control systems. Also, the sliding mode controller 

design provides a systematic approach to the problem of maintaining stability and consistent 

performance in the case of modeling imprecision [14]. A sliding surface should be defined and the 

control will force the trajectory to converge to the sliding surface when the system trajectory has 

reached the surface. Ideally, once intercepted, the switched control maintains the trajectory on the 

surface for subsequent time. The sliding surface is defined as 

 ref ref    S r r r r                           (37) 

The reference trajectory has been defined as the periodic or quasi-periodic orbit in the above section. 
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In the rotating frame, the corresponding position, velocity and acceleration of the reference 

trajectory can be given by  

 
 
 

2L

ref

x t

t

t






 
 

  
 
 

r 㸪

 
 
 

ref

t

t

t





 
   
  



 


r 㸪

 
 
 

ref

t

t

t





 
   
  



 


r               (38) 

Lyapunov method is used to determine the stability of the system. A generalized Lyapunov function, 

which characterizes the motion of the state trajectory to the sliding surface, is defined in terms of the 

sliding surface. For each chosen switched control structure, the control law is designed so that the 

derivative of the Lyapunov function is negative definite, thus guaranteeing the motion of the state 

trajectory to the surface. The Lyapunov function is chosen to be  

1

2

TV  S S                                     (39) 

The derivative of the Lyapunov function can be given by 

   
    2

T T

ref ref

T

ref s M ref

V

U

      
        

    

   

S S S r r r r

S r r a r r r


             (40) 

The SRP acceleration is used to stabilize the system. To guarantee the negativity of the derivative, 

the solar radiation acceleration is designed as 

     12 signS M ref refU           a r + r + r S r r               (41) 

Then, the derivative of the Lyapunov function can be rewritten as 

 signTV   S S                            (42) 

Thus, the derivative of the Lyapunov function is negative and the system is asymptotically stable. 

The required SRP acceleration for the stabilizing system is given by Eq. (41), which is achieved by 

adjusting the pitch and clock angles of the sail attitude, with respect to the sunlight and the 

reflectivity rate of the sail film. Therefore, the actual control variables are the attitude angles and the 

reflectivity rate. However, the explicit expressions of the control variables cannot be given since the 

SRP acceleration is a nonlinear function of the three parameters. The next step is to calculate the 

control variables for a given control acceleration.  

The required SRP acceleration for a quasi-periodic solution of the nonlinear dynamical  

 



15 

 

equation can be given by 

 0 2S M ref ref refU   a r + r + r                       (43) 

The reference control variables are denoted as      0 0, ,t t u t  . Assume that the errors of the 

sail relative to the reference orbit are small. Thus, the control variables are also in the vicinity of the 

reference values. The SRP acceleration can be linearized as   

0 00

0 00

0 00

0
S S S

S S

u u u uu u

u
u    

    

  
  

 
 

  
   

  
a a a

a a              (44) 

The control law can be represented by the differences from the reference values of the control 

variables given by 

 
1

0
S S S

S S
u

u




 


 
              

a a a
a a                 (45) 

For a quasi-periodic reference orbit, the solution associated to the linearized equation can provide a 

reasonable control law. For a periodic reference orbit, the control law may make the system unstable 

due to the error model in 0Sa . In this case, the nonlinear Eq. (44) is used to obtain the control law. 

The explicit solution of Eq. (44) cannot be obtained analytically. With the solution of Eq. (45) as the 

initial guess, the accurate numerical solution of Eq. (44) can be obtained by using a simple Newton 

iteration process.        

Numerical Simulations 

In the following simulations, the nonlinear dynamical equation is used for the numerical integration. 

The geometrical relationship is employed to calculate the sunlight direction [Eqs. (7) and (10)]. The 

control law is generated by solving the nonlinear algebraic equation defined by Eq. (44). A 

quasi-periodic orbit and a periodic orbit above the L2 libration point in the Earth-Moon system are 

expressed as reference orbits. The simulation parameters are given in Table 2. The maximum 

displacements of the periodic and quasi-periodic orbits are 0.0060769 and 0.0065171, respectively. 

This allows the spacecraft to view both the lunar far-side and the equatorial regions of the Earth. The 

reflectivity rate for the reference orbits are selected to guarantee that the control law is achievable. 

Also, there is no negative value for the reflectivity rate appearing in the control law. The initial 

position errors of the spacecraft with respect to the reference orbits are 1e-4 nondimensional unit in 
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x,y, and z directions.  

Table 2 parameters for simulation 

     Į (°) Ȗ(°) ț u 

Quasi -periodic diag([50,50,50]) diag([2e-4, 2e-4, 2e-4]) 35.26 0 0.073 0.26 

Periodic diag([10000,10000,10000]) diag([0.01,0.01,0.01]) 35.26 0 0.068 0.31 

 

Figure 3 gives the controlled orbit in the Earth-Moon rotating frame for the two cases, respectively. 

Figure 4 gives the time histories of the control variables for the two cases, respectively. For the 

nonlinear dynamical equation, a periodic or quasi-periodic solution does not exist if the attitude and 

the reflectivity rate remain constant. For each point on the reference orbit, the pitch angle, the clock 

angle and reflectivity rate [Eq. (11)] can be solved to satisfy the nonlinear dynamical equation. The 

reference values of the attitude and reflectivity parameters based on the linear dynamical equation 

provide very good approximations for the solution of the nonlinear dynamical equation. The results 

show that the control variables converge to the solution of the nonlinear dynamical equation when 

the controlled orbits converge to the reference orbit.   

For the quasi-periodic orbit, the maximum pitch and clock angles are a little less than those of the 

periodic orbit. This means that the cost for the attitude control is more for the periodic orbit. In 

addition, the reflectivity parameter of the quasi-periodic orbit is less than 0.26, whereas it is about 

0.44 for the periodic orbit. This means that more reflectivity control devices are required to keep the 

solar sail in the periodic orbit. For a given solar sail, the quasi-periodic orbit is advantageous over 

the periodic orbit in maximum out-of-plane displacement and reflectivity control device 

requirement.   
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(a) quasi-periodic orbit                             (b) periodic orbit 

Figure 3 Controlled orbits above L2 libration point in Earth-Moon system 

     

(a) quasi-periodic orbit                          (b) periodic orbit 

Figure 4 time histories of the control variables 

Conclusion 

Based on the assumption that the inclination of the lunar orbit to the ecliptic plane is small, a new 

family of new quasi-periodic orbits above the libration point in the Earth-Moon system is proposed 

for lunar far-side telecommunications. This family of orbits is closer to the natural solution of the 

nonlinear dynamical equation than the periodic orbits. Less effort is required to maintain the solar 

sail on the quasi-periodic orbit than on the periodic orbit. Therefore, the quasi-periodic orbit is 

advantageous over the periodic orbit with respect to the control effort.     
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