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From highly graphitic to amorphous carbon dots: a critical review 
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Centre for Materials Science, School of Forensic and Investigative Sciences, 
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Tel. 01772894172, email:akelarakis@uclan.ac.uk 

Abstract 

The emergence of carbogenic nanoparticles (C-dots) as a new class of photoluminescent  

(PL) nanoemitters is directly related to their economical preparation, non-toxic nature, 

versatility and tuneability.   C-dots are typically prepared by pyrolytic or oxidative treatment 

of suitable precursors. While the surface functionalities critically affect the dispesrsibility and 

the emission intensity of C-dots in a given environment, it is the nature of the carbogenic core 

that actually imparts their intrinsic PL properties.  Depending on the synthetic approach and 

the starting materials, the structure of the carbogenic core can vary from highly graphitic all 

the way to completely amorphous. This critical review focuses on correlating the functions of 

C-dots with the graphitic or amorphous nature of their carbogenic cores. The systematic 

classification on that basis can provide insights on the origins of their intriguing 

photophysical behaviour and can contribute in realising their full potential in challenging 

applications. 

Email: akelarakis@uclan.ac.uk 
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1. Introduction 

The emergence of carbogenic nanoparticles (otherwise known as C-dots) as a new class of 

photoluminescent (PL) nanoemitters has led to worth mentioning paradoxes about the 

fascinating story of molecular carbons. First, it is the realisation that those nanoparticles are 

abundant in the planet (in the form of tiny graphitic fragments or combustion products), but 

they have gone unnoticed until recently. Chronologically, the first observation of C-dots1 falls 

close to the isolation of graphene by mechanical exfoliation2, but those ground-breaking 

advances only took place few years after the development of fullerenes3 and carbon 

nanotubes4 (CNTs).  

Second, it is the realistic perspective that those, oftentimes naturally or incidentally occurring 

nanoparticles (Figure 1), can adequately replace highly engineered semiconductor emitters 

(commonly referred as  heavy metal based quantum dots) in demanding applications where 

extensive optical absorption, excitation wavelength dependent emission, multi phonon 

excitation and upconversion are needed. While ultra-long, defect-free graphene sheets are 

ideal for electronics, the exact opposite features e.g. surface defects and fragmentation seem 

to be a precondition for PL. 

Third, systematic efforts are currently directed to the development of well-defined C-dots, at 

a time where a rigorous definition of C-dots is notably absent in the literature. The problem 

relates to their great compositional diversity in terms of elemental content and graphitization 

degree. That being said, it is surprising that structurally very dissimilar C-dots share common 

patterns in their behaviour (such as excitation dependent emission and upconversion). 

By virtue of their PL properties, C-dots are extensively explored in a broad range of 

technological applications including multicolour printing, bioimaging, optical sensors, 

photocatalysis and solar cells5-11. Compared to organic dyes and heavy metals based quantum 
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dots, they show minimal toxicity for humans and environment, low preparation cost, 

enhanced solubility in a variety of solvents and improved chemical and colloidal stability.  

The rapidly expanding body of experimental work centred on C-dots has been summarized in 

extensive reviews5-11. In those studies it appears that the terms C-dots, carbon quantum dots, 

carbon nanoparticles, carbogenic nanoparticles, quantum sized carbon dots, graphene 

quantum dots are used rather loosely in the literature. Within this somewhat confusing 

framework, this review describes the properties of C-dots with respect to the structure of their 

cores that vary from highly graphitic all the way to completely amorphous. It should be noted 

that certain synthetic approaches tend to generate a mixture of carbogenic cores with 

inhomogeneous graphitization degree. A systematic classification on that basis can promote 

our understanding on their photoactive behaviour and can contribute in further advancing 

their performance.  

2. Discussion 

2.1. Synthesis and structure 

2.1.1. Highly graphitic C-dots (gC-dots) 

Disks of single-layer graphene (refereed hereafter as Graphene Quantum dots or GQ-dots) are 

considered for the purposes of this review as a subgroup of the highly graphitic C-dots (gC-

dots). Their technological importance stems from their supreme electronic conductivity and 

structural stability, even if  graphene is broken down to the level of a few aromatic groups12.  

GQ-dots are produced via hydrothermal etching of CNTs13, high resolution electron beam 

lithography12 or oxygen plasma treatment of graphene14. The cage opening of fullerenes is a 

rather unique process where the C60–Ru attractive forces induce surface vacancies in the Ru 
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crystal to accommodate C60 particles. At elevated temperatures the embedded molecules 

undergo diffusion and aggregation to form GQ-dots15 (Figure 2a). 

All-organic, chemical approaches allow the synthesis of large, yet colloidal stable GQ-dots 

with excellent uniformity and tuneable dimensions16,17. The synthetic strategy relies on the 

oxidation of polyethylene dendritic precursors to create graphene moieties that are further 

stabilised against self-aggregation by attaching bulky 2,4,6-trialkyl phenyl groups to their 

edges16,17 (Figure 2b).  

Solvothermal approaches, such as the high pressure hydrothermal fragmentation of sucrose, 

afford the ring opening of the hydrolysed compounds, formation of dehydrated furfural 

compounds, followed by hydronium-catalysed polymerization and carbonization towards gC-

dots18. 

Alternatively, gC-dots were produced via laser ablation of graphite powders followed by 

HNO3 oxidation, but the resultant nanoparticles became photoactive only after surface 

passivation with amine terminated oligomers or polymers19. gC-dots consisting of 1-3 layers 

are derived by chemical oxidation and cutting of micrometer-sized  carbon fibres20, 

exfoliation and disintegration of graphitic flakes and CMTs21 and hydrothermal breakdown of 

pre-oxidised graphite sheets22.  A proposed mechanism for the chemical splitting of graphitic 

materials towards gC-dots is depicted in Figure 3a.   

Another well-explored strategy relies on the electrochemical oxidation of CNTs23 or 

graphite24-26 that serve as the working electrodes in typical electrochemical cells (Figure 3b). 

Suitable electrolytes include ultrapure water27, phosphate buffer solutions24, 

NaOH/ethanol26,27, ionic liquid-water mixtures28 and acetonitrile23.  Upon application of a 

scanning potential, extensive electrode exfoliation facilitates the release of gC-dots. 

Mechanistically, the electrooxidation has been related to the formation of hydroxyl and 
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oxygen radicals (produced by the electrolysis of the solvent) that attack the graphitic anode 

on defect and edge sites. This process allows the electrolyte to intercalate the graphitic layers, 

leading to electrode chipping and the formation of gC-dots28. 

Based on this approach green luminescent gC-dots were prepared using a graphene film as 

the working electrode, Pt wire as the counter electrode, Ag/AgCl as the reference electrode 

and a  phosphate buffer solution with pH 6.7 as the electrolyte (cycling voltammetry window 

± 3V)29. Transmission Electron Microscopy (TEM) images suggest a narrow size distribution 

of gC-dots with diameters in the range 3-5 nm (Figure 4 a,b,c), while their Atomic Force 

Microscopy (AFM) topographic heights are  lower than 2 nm consistent with  the stacking of 

1-3 graphene layers (Figure 4 d,e). The X-ray Diffraction (XRD) pattern of gC-dots (Figure 4 

f) displays a broad peak at 3.4 Å compared to 3.7 Å for the parental graphene electrode. The 

Raman spectrum of gC-dots (Figure 4 g) is dominated by two peaks centred at 1365 and 1596 

cm−1 that correspond to the D and G bands of the graphitic and amorphous carbon, 

respectively.  The G peak is associated with the E2g vibration mode of the sp2 bonded carbon 

and the D peak is assigned to the A1g (zone-edge) breathing vibration phonon that becomes 

active only in close proximity to a sp3 defect30. In a first approximation, the intensity ratio of 

the D over G band is an index of the carbon disorder; the value ID/IG=0.5 found here implies a 

high graphitization degree for the gC-dots. X-ray Photoelectron Spectroscopy (XPS) patterns 

of gC-dots are compared with the initial graphene electrode in Figure 4h. Both spectra show 

the C1s peak at 284.8 eV and the O1s peak at 532 eV, however the oxygen content is higher 

in gC-dots as a direct consequence of the electrooxidation. The deconvolution of C1s peak of 

gC-dots (Figure 4i) reveals the presence of C = C (284.8 eV), C–O (286.8 eV), C = O (287.8 

eV) and COOH (289 eV) bonds, due to hydroxyl, carbonyl and carboxylic acid groups, 

respectively. Those surface functionalities account for the remarkable colloidal stability of 

gC-dots.  
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In another approach25, alkali assisted electrochemical synthesis of gC-dots was achieved 

using graphite rods as both anode and cathode and a mixture NaOH/ethanol as the electrolyte. 

TEM images suggest that the diameters of the resultant nanoparticles fall within the range 

1.2-3.8 nm (Figure 5a). Because the sample is a mixture of nanoparticles emitting at different 

wavelengths, it shows various emission colours under a fluorescent microscope (Figure 5b).  

High Resolution TEM (HRTEM) images of gC-dots with different diameters (Figure 5 c-h) 

show that they all have lattice spacing close to 0.32 nm, consistent with the (002) facet of 

graphite. The Raman spectrum (Figure 5i) indicates an exceptionally low value for the ratio 

ID/IG, further confirming their highly graphitic structure. 

2.1.2. Amorphous C-dots (aC-dots) 

Amorphous C-dots (aC-dots) can be derived by cracking of a non-graphitic carbon source 

following, for example, the ultrasonic treatment of a peroxidised suspension of active 

carbon31, but the most popular approaches rely on the pyrolytic treatment of carbon-rich 

molecular precursors. Those strategies are usually described  as “bottom-up”, however there 

is growing evidence to suggest that they tend to generate large carbon clusters that are filtered 

out or broken down to the nanoscale via ultrasonication, oxidation, etc.  

Within this general synthetic scheme, carbohydrates32,33, grass34, gelatine35, orange juice36, 

soy milk37, strawberry juice38, bovine albumin39, polyacrylamide40 are hydrothermally 

converted to aC-dots.  Similarly, hollow41 and silica supported42 aC-dots are prepared by 

hydrothermal carbonization protocols, while aC-dots are derived by direct pyrolysis of coffee 

grounds43 or grass44, plasma induced pyrolysis of eggs45, barbeque char46 and the plant soot47. 

 

Luminescent aC-dots with average particle size 3.5 -5.5 nm were realized by microwave 

mediated caramelization of polyethylene glycol (PEG) in the presence of water48. HRTEM 
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imaging of the aC-dots do not reveal any discernible lattice fringes and the XRD pattern 

shows a broad peak at 4.1Å, consistent with highly disordered carbon.  

In another report, hydrophilic and organophilic aC-dots were synthesized by thermal 

treatment of diethylene glycolammonium citrate and octadecylammonium citrate, 

respectively49. The TEM images of the organophilic aC-dots (Figure 6a) display 

geometrically uniform nanoparticles with average diameter 7 nm (Figure 6b). The XRD 

pattern shows two reflection peaks; one centered at 4.3 Å attributed to highly disorder carbon 

and a sharp one at 4.14 Å consistent with the inter-chain distance of densely packed alkyl 

chains (Figure 6c). 

 

2.1.3. In situ formation of functional groups 

Oftentimes, the Achilles‟s heel of the as prepared C-dots is their relatively weak PL emission, 

but this behaviour is generally improved by surface passivation. Common surface treatments 

include reflux with HNO3/H2SO4 to generate polar groups50, reduction via sodium 

borohydrate51, functionalization with PEG based amines19 or small molecules52, and coating 

with ZnO and ZnS53.   

Apart from those post-synthesis surface treatments, controlled carbonization approaches 

allow the formation of surface functionalities in situ with the synthesis of C-dots. To that end, 

the presence of an external corona seen in the inset in Figure 6a points to the self- passivation 

of aC-dots pyrolytically derived by octadecylammonium citrate49. The IR spectrum of the aC-

dots (Figure 6d) reveals characteristic absorption peaks due to the octadecyl chains tethered 

to the surface along with a strong peak at 1700 cm-1 suggestive of amide linkages49.   
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Similarly, water dispersible C-dots were prepared by controlled pyrolysis of dopamine54, 

lauryl gallate55, polyethylenimine56 or a mixture of ethanolamine and citric acid57,58. In a 

remarkably time-efficient modification of the method, microwave assisted thermal treatment 

of an aqueous solution containing PEG48 or a mixture of PEG and a saccharide59 leads rapidly 

to self-passivated colloidal aC-dots. Ultrasmall aC-dots with quantum yield up to 47% have 

been derived by 1 min pyrolysis of anhydrous citric acid in N -(ȕ -aminoethyl)-Ȗ-aminopropyl 

methyldimethoxy silane60. At the same time, sulphuric acid dehydration of the single 

molecule precursor g-butyrolactone gives rise to gC-dots61, while laser irradiation of 

suspended graphite powder in PEG, or amines also leads self-passivated luminescent C-dots 

with diamond-like structure62.  

Chemical groups generated in situ during the synthesis of C-dots can impart additional 

functionalities. For example, the gC-dots derived by hydrothermal treatment of dopamine54 

bear distinctive catechol groups on their surface, offering a sensing platform for the detection 

of Fe (III ) ions and dopamine. In another approach, the thermal treatment of a mixture of 

citric acid and ethanolamine results in the evolution of a series of photoactive materials57. At 

the initial steps of pyrolysis a crosslinked, highly viscous  polymer network is formed due to 

intermolecular condensation and the subsequent formation of a precursor material that 

exhibits strong excitation independent PL due to the presence of amide containing 

fluorophores (blue groups in Figure 7). Annealing at higher temperatures gives rise to aC-

dots that shows dual PL emission; an excitation independent mode stemming from the amide 

fluorophores and an excitation dependent mode directly related to the evolution of carbogenic 

core (black spheres in Figure 7). Because the carbogenic core is formed at the expense of the 

organic fluorophores, the amide driven mode diminishes as the pyrolysis proceeds (Figure 7). 

The PL emission of the aC-dots is quenched in the presence of 3d metal ions Cr(III) and 

Co(II) due to a selective metal෥ fluorophore complexation. 
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2.1.4. Heteroatoms and functional groups 

Besides carbon and oxygen, several heteroatoms can be introduced to C-dots, altering the 

charge distribution and the electron donating properties of the carbon atoms. To that end, N-

rich C-dots are prepared by post-synthesis doping via NH3, hydrazine or N2 treatments. 

Alternatively, the heteroatoms are incorporated to the nanoparticles directly from the starting 

materials; N-doped aC-dots are derived from soy milk37 and plant soot47. The N- doped gC-

dots derived electrolytically from graphite using tetrabutylammonium perchlorate in 

acetonitrile as electrolyte63 exhibit significant electrocatalytic activity against the oxygen 

reduction reaction (ORR). The PL signal of gC-dots with 7% N content derived 

hydrothermally by strawberry juice38 is quenched in the presence of Hg (II).  

 

Nitrogen and sulphur co-doped C-dots (N,S-C-dots) (with total heteroatom content  up to 10 

%) are realised via sulphuric acid carbonization of hair fibres64 and  hydrothermal treatment 

of  a mixture of citric acid and L- cysteine produce65 (C-dots exhibit an intriguing excitation 

independent emission), or citric acid and thiourea66. Controlled carbonization of   a mixture 

of citric acid, ethylenediamine and Mg(OH)2 leads to Mg, N- co-doped C-dots with improved 

PL intensity suitable for in vivo cell imaging67. Iron oxide doped aC-dots68 and gadolinium 

doped aC-dots69 (via pyrolysis of tris(hydroxymethyl)aminomethane,  betaine hydrochloride 

and gadopentetic acid) show great potential for multimodal  Magnetic Resonance Imaging 

(MRI) parallel to fluorescent monitoring. Boron/nitrogen co-doped C-dots (via hydrothermal 

treatment of N-(4-hydroxyphenyl)glycine and boric acid) exhibit a reversible "switching on 

and off" PL mechanism in response to the presence of protoporphyrin and carcinogenic 

dyes70. 

2.2. Properties 

2.2.1. Photoluminescence behaviour 
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An ideally ʌ- conjugated monolayer of pristine graphene has zero electronic bandgap and is 

not photoactive. However, finite sized GQ-dots and nanosized graphitic fragments exhibit 

characteristic PL properties. It is exactly this intriguing behaviour that actually allowed the 

first detection of C-dots as the fast moving fluorescent front during electrophoretic 

purification of arc-discharged soot containing single walled carbon nanotubes1. In principle, 

the PL behaviour of C-dots has been attributed to quantum confinement effects and surface 

defects. 

In semiconductors quantum confinement occurs when the crystal size approaches the exciton 

Bohr radius and implies an inverse relationship between the bandgap and the crystal size. 

Theoretical studies in GQ-dots suggest that the energy gap between the highest occupied 

molecular orbital (HUMO) and the lowest unoccupied molecular orbital (LUMO) decreases 

with the number of fused aromatic rings from 7 eV for a single benzene ring to 2eV for 20 ʌ-

conjugated aromatic rings71.  

 

A series of different sized gC-dots were synthesized by alkali assisted electrooxidation of 

graphite25 and the optical images in water (under white and UV light) are shown in Figure 8a. 

Their corresponding PL spectra, plotted in Figure 8 b, critically depend upon the size of the 

gC-dots (Figure 8c).Theoretical calculations on the size dependence of the HUMO-LUMO 

energy gap (Figure 8d), indicate that nanoparticles with diameter 1.4-2.2 nm  have gap 

energy in the visible region, in agreement with the experimental observations. Hydrogen 

plasma treatment (to eliminate the surface oxygen) leaves their PL spectra intact, thus 

confirming the prominent role of the quantum confinement to the photophysical properties in 

highly graphitic nanoparticles. 
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At the same time, several aspects of the PL behaviour in C-dots cannot be explained in terms 

of quantum confinement alone. Specifically, the PL spectra of a graphite oxide (GO) thin film 

can be deconvoluted into two Gaussian bands (Ip1 and Ip2 in Figure 9 a,b,c), indicating the 

parallel action of two distinct photophysical contributions72. Gradual chemical reduction of 

GO sheets preferentially favours the removal of oxygen atoms positioned far from a ʌ-

conjugated domain. This results in the formation of small and isolated sp2 islands, rather than 

the expansion of the pre-existing sp2 clusters (Figure 9 d). During the stepwise chemical 

reduction towards a graphene film, the relative intensity of Ip2 systematically increases with 

time and is, therefore, attributed to the intrinsic PL of graphene fragments. Moreover, Ip2 

shifts to lower wavelengths, consistent with quantum confinement effects originating from 

the non-percolated small sp2 domains. At the same time, Ip1 monotonously decreases with 

reduction time due to the gradual elimination of the surface defects.  

 

It has been proposed that photogenerated electron and holes pairs are induced within surface 

traps in C-dots and are stabilized by the passivation agents73. This approach is in tandem with 

the observation that PL intensity in C-dots is oftentimes responsive to external stimuli55,56. It 

has been supported that defects in graphene sheets involving sp3 carbons are structurally no 

different from carbon atoms placed on the surface of carbogenic nanoparticles and this 

similarity accounts for the fact that very different types of C-dots share common patterns to 

their PL behaviour73.  

In principle, both aC-dots and gC-dots (as well as their heteroatoms doped counterparts) 

exhibit excitation wavelength dependent emission (Figure 10); as the excitation wavelength 

increases, the emission peak is displaced to longer wavelengths and a weaker signal is 

recorded. Upconversion occurs when the emitted radiation have higher energy compared to 

the incident photons and has also been observed for both gC-dots25 and aC-dots74 (Figure 11). 
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The effect is explained in terms of sequential absorption of two or more photons and the 

formation of metastable, long lived intermediate states75. Upconversion is a non-linear optical 

phenomenon that holds great promise for diagnostics, photodynamic therapy and energy 

harvest. 

2.2.2. Non-toxic character 

By virtue of their PL nature, the cell uptake and biodistribution of C-dots can be easily 

monitored. C-dots exhibit excellent photochemical stability and multi photon excitation, 

enabling deeper in vivo imaging with minimal tissue damage76,77. In particular, gC-dots 

undergo two-photon absorption with the pulsed laser in the near infrared to cause emission in 

the visible and the absorption cross-section are comparable to the best performing 

nanoemmitters reported in the literature76. 

 

Experimental evidence suggests that gC-dots and aC-dots are preferentially localised in the 

cytoplasm rather than the cell nucleus76-79 (Figure 12). Intravenously injected gC-dots 

(derived from laser ablation and passivated with ZnS and PEG diamine) in mice for whole 

body circulation follow the urine excretion pathway, after being temporarily accumulated to 

kidneys. Following interdermal injection into the front extremity, the gC- dots were seen to 

migrate along the arm to the axillary lymph node, albeit in a somewhat slower speed 

compared to heavy metals quantum dots77.   

 

Moreover, C-dots are general non-toxic, possessing an overwhelming advantage over 

semiconductor quantum dots. For example,  when 4, 7, 10-trioxa-1,13-tridecanediamine 

(TTDDA)  passivated gC-dots were incubated79 at concentration levels below 500 mg mL-1 

with  HeLa cells for 24 h, the cell viability exceeds  90%.  Similarly, addition of gC-dots to 

the culture medium containing human kidney cells did not induce significant cytotoxicity80, 
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while no obvious organ damage was observed for mice treated with carboxylated gC-dots81. 

PEG-passivated gC-dots at high concentrations are relatively toxic to cancer cells, but this 

effect stems from the passivation agent itself rather than the carbogenic core82 (Figure 13a). 

Moreover, a series of studies indicate that incubation with aC-dots has a minimal impact to 

the viability of HeLa cells (incubation period 24h and 74 h)56,78 (Figure 13b) and to HT 29 

cells (incubation period 24 h)48. 

2.3. Energy applications 

2.3.1. Catalytic  activity 

Amorphous carbon/silica nanocomposites with a high density of sulfonic groups function as 

environmentally benign, acid solid state catalysts. In particular, sulfonated aC-dots/SiO2 

catalyse the  dimerization of a-methylstyrene83, esterification of acetic acid with n-butanol84 

and degradation of cellulose into glucose85.  

Photogenerated electrons in gold or platinum coated C-dots are trapped in the metallic 

interface and can catalyse challenging photoreductions. Specifically, gold doped aC-dots and 

gC-dots are effective catalysts for the conversion of carbon dioxide into formic acid46 and the 

photocatalytic splitting of water to hygrogen86. 

Highly PL C-dots anchored to TiO2 extend the range of visible spectrum harnessed by the 

nanoparticles. Upon illumination of gC-dot/TiO2 or gC-dot/SiO2 hybrid catalysts, the 

upconverted radiation excites TiO2 or SiO2 to generate electron/hole pairs. The electron/hole 

pairs react with absorbed oxidants (O2 or OH-) to produce active oxygen radicals which 

expedite the decomposition of dyes25. The electrons are shuttled freely within the carbon 

network and are injected to TiO2 or SiO2 (the relative position of the band edge permits such 

an electron injection), inducing and stabilizing charge separation. Similarly, porous gC-
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dot/SiO2 nanocomposites show catalytic capability for photoenhanced hydrocarbon selective 

oxidation87. 

In analogy, gC-dots/Fe2O3 and gC-dots/ZnO composites88,89 exhibit enhanced photocatalytic 

activity for the degradation of toxic gas under visible light. The overall effect is attributed to 

three factors: upconversion, the excellent electron donating capability of gC-dots and the 

strong ʌ- ʌ interactions between the aromatic rings of the pollutants and the sp2 domains of 

the nanoparticles.  

Catalysts for fuel cells 

Inexpensive N-doped carbogenic nanomaterials catalyze the, otherwise slow, ORR that 

remains a major challenge for the advancement of fuel cells. The cyclic voltammograms 

(CV) for ORR at N-doped aC-dots electrodes37 (in O2 saturated KOH solution) revealed a 

cathodic reduction peak at around 0.35 V, although the effect was rather limited compared to 

standard Pt/C catalysts. At the same time, the CV at N-doped gC-dots electrodes63 show a 

ORR onset potential at -0.16 V with a reduction peak at -0.27 (Figure 14a), and the catalytic 

effect is comparable to that achieved by commercial Pt/C catalysts (Figure 14b). 

Significantly, N-doped gC-dots fully retained their catalytic activity in the presence of 

methanol, while metal based catalysts fail to so. In other words, N-doped gC-dots exhibit 

unprecedented tolerance against methanol crossover and can contribute towards the 

advancement and commercialization of fuel cells.  It is conceivable that incorporation of N 

atoms to carbogenic materials creates charged sites that enhance the adsorption of O2. The 

introduction of nitrogen not only increases the charge mobility of the graphitic lattice, but 

also lowers the energy band gap. Theoretical calculations suggest that the maximum charge 

mobility is encountered in carbon atoms with pyrrole nitrogen-containing groups at the edges 
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of graphene planes and those with pyrrole nitrogen atoms in combination with „valley‟ 

nitrogen atoms90. 

2.3.2. Solar cells 

C-dots as the sensitizer 

Owing to their unique PL properties C-dots act as sensitizers in solar cells, effectively 

replacing standard ruthenium complexes based dyes. In a proof of concept demonstration, 

colloidal stable  GQ-dots containing 168 ʌ-conjugated carbon atoms (derived via all-organic 

chemistry)    were  shown to exhibit  molar extinction coefficient İm = 1.0 × 105 M-1 cm-1, 

nearly an order of magnitude larger than the metal complexes commonly used in similar 

applications. Moreover, the absorption spectra includes the 900 nm limit, the optimal energy 

threshold that enables the thermodynamic limit of energy conversion efficiency in 

photovoltaic cells17. The GQ-dots were used to stain a nanocrystalline TiO2 film for a solar 

cell assembly where they induced a significant sensitizing effect17.  

In another study61, the gC-dots (derived by dehydration g-butyrolactone) sensitised  solar cell 

show a short-circuit current density (Jsc) of 0.53 mA cm-2 and an open-circuit voltage (Voc) of 

0.38 V with a fill factor (FF) of 0.64, for a power conversion efficiency of 0.13%. Indium tin 

oxide photoelectrodes spin-coated with aC-dots generated reasonable photocurrents, but their 

pegylated analogues resulted in twice higher intensity91. 

gC-dots as electron acceptors in organic photovoltaic cells 

In organic photovoltaic cells, GQ-dots improve the electron acceptor capability and, thereby,  

the power efficiency. To that end, a solar cell assembly of ITO/PEDOT:PSS/P3HT:GQ-

dots/Al,   (ITO, PEDOT, PSS and P3HT stand for indium tin oxide, poly(3,4-

ethylenedioxythiophene), poly(styrenesulfonate) and poly(3-hexylthiophene), respectively) 
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outperforms (more than 2 orders of magnitude improvement) its GQ-dot free analogue in 

terms of power conversion efficiency and sort-circuit current. Incorporation of GQ-dots not 

only affords extensive p-n interfaces for charge separation, but also facilitates the transport of 

charge carriers within their highly conductive infrastructure29 (Figure 15). 

In another demonstration92, P3HT/ANI-gC-dots (ANI-gC-dot stands for aniline 

functionalised gC-dot) based organic solar cell show improved efficiency compared to 

P3HT/ANI-GSs (ANI-GS stands for aniline functionalised graphene sheets). The effect 

points out to  the improved morphology of the gC-dots based film that results in enhanced 

exciton migration to the donor/acceptor interface and lower internal resistance. In particular, 

gC-dots based films shows nanoscale phase separation  and fine structural elements, as 

opposed to GSs based film that displays large domains (about 100-200 nm diameter) 

indicating phase separation at a scale much larger than the diffusion length of excitons (10 

nm) (Figure 16). 

A poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester based bulk 

heterojunction solar cell, achieved improved power conversion efficiency by 12% due to the 

integration of a luminescence down-shifting layer containing gC-dots (derived 

hydrothermally and protected against self-aggregation)93. 

An  ultrasensitive, all carbon photo-detector has been constructed by selective deposition of a 

layer of GQ-dots to graphene sheets94. The remarkable photocurrent responsivity and 

detectivity observed for the all carbon detector has been attributed to the synergy of three 

parameters: the large optical absorptivity of GQ-dots, the efficient separation of 

photogenerated electron-hole pairs due to the band alignment across the GQ-dots /graphene 

sheet interface and the highly conductive channels of graphene. 

3. Conclusions 
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C-dots demonstrate  significant potential as low-cost photoluminescence nanoemitters with 

tuneable structure and functionalities. Both graphitic and amorphous of C-dots share common 

characteristics such as non-toxic nature, excitation wavelength dependent emission, 

upconversion, while their PL intensity is selectively quenched in the presence of certain 

compounds providing a platform for their detection. Moreover, aC-dots/SiO2 densely covered 

with sulfonic groups are green, solid acid catalysts, while gC-dots/SiO2 (and their TiO2,SiO2 

Fe2O3, ZnO based counterparts) exhibit enhanced photocatalytic activity for the degradation 

of toxic compounds  under visible light. Au or Pt coated aC-dots and gC-dots  function as 

electron reservoirs, catalysing challenging photoreductions. In fuel cells,  N-doped gC-dots 

are promising methanol tolerant electrocatalysts for the ORR. In solar cells, gC-dots induce 

significant sensitizing effects and they also function as electron acceptors, improving the 

power conversion efficiency.  
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Figures 

Figures 1. Cartoon demonstrating the generation of graphitic and amorphous C-dots from 

everyday activities. 

Figure 2. a) GQ-dots derived via cage opening of fullerenes: i. Adsorption of C60 molecules 

to the terraces of Ru crystals; ii. Temperature dependent growth of GQ-dots with triangular 

and hexagonal equilibrium shape; iii. and iv. Scanning Tunneling Microscope  images of the 

triangular and hexagonal GQ-dots, respectively. Reprinted with permission from Nature 

Nanotechnology (Reference 15). Copyright (2011) Macmillan Publishers Ltd. 

b) GQ-dots produced by all-organic synthesis: i. structure of QC-dots; ii. bulky moieties 

chemically attached to the edges of the dot to enhance colloidal stability;  iii. an energy-

minimized configuration of QC-dot. Reprinted with permission from Nano Lett. (Reference 

17). Copyright (2010) American Chemical Society. 

Figure 3. a)  A proposed mechanism for the production of gC-dots via oxidative splitting of a 

graphitic plane. Reprinted with permission from Nano Lett. (Reference 20). Copyright (2012) 

American Chemical Society. 

 b) A typical electrochemical cell used for the production of gC-dots. Reprinted with 

permission from J. Am. Chem. Soc. (Reference 24). Copyright (2009) American Chemical 

Society. 

Figure 4.  gC-dots derived by electrooxidation of a graphene film: a and b) TEM images, c) 

size distribution, d) AFM image on a Si substrate, e) The height profile along the line in d, f) 

XRD pattern compared to the initial graphene film, g) Raman spectrum, h) XPS spectra 

compared to the initial graphene film, i) C 1s peak compared to paternal film; the  inset refers 

to the C 1s of g C-dot. Reprinted with permission from Adv. Mater. (Reference 29). 

Copyright (2011) John Wiley & Sons, Inc. 
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Figure 5. gC-dots derived by alkali-assisted electrooxidation of graphite rod: a) TEM image, 

b) fluorescent microscopy images with an excitation wavelength of 360 nm (scale bar: 50 

mm), c–h) HRTEM images of typical nanoparticles with different diameters (scale bar: 2 

nm), i) Raman spectrum. Reprinted with permission from Angew. Chem. Int. Ed. (Reference 

25). Copyright (2010) John Wiley & Sons, Inc. 

Figure 6. aC-dots derived by thermal treatment of octadecylammonium citrate salt: a) TEM 

images, b) size distribution, c) XRD pattern d) I.R. spectrum. Reprinted with permission from 

Small (Reference 49). Copyright (2008) John Wiley & Sons, Inc. 

Figure 7. Progressive evolution of a series of photoactive spices based on controlled 

pyrolysis of a mixture of CA and ethanolamine. Reprinted with permission from J. Am. 

Chem. Soc. (Reference 57). Copyright (2012) American Chemical Society. 

Figure 8. a) Typical sized gC-dots (derived from alkali assisted electrooxidation) optical 

images illuminated under white (left; daylight lamp) and UV light (right; 365 nm), b) PL 

spectra of typical sized gC-dots: the red, black, green, and blue lines are the PL spectra for 

blue-, green-, yellow-, and red-emission gC-dots, respectively, c) relationship between the 

gC-dot size and the PL properties, d) HOMO–LUMO gap dependence on the size of the 

graphitene fragment. Reprinted with permission from Angew. Chem. Int. Ed. (Reference 25). 

Copyright (2010) John Wiley & Sons, Inc.  

Figure 9. Deconvolution of PL spectra of GO at various reduction times tred: a) tred=0 min b) 

tred=75 min, c) tred =180 min). d) schematic depiction of the evolution of sp2 islands via 

chemical reduction of GO. Reprinted with permission from Angew. Chem. Int. Ed. 

(Reference 72). Copyright (2012) John Wiley & Sons, Inc. 

 Figure 10.   The excitation wavelength dependent PL spectra of aqueous dispersions of:  a) 

gC-dots (via electrooxidation of a graphene film) Reprinted with permission from Adv. 

Mater. (Reference 29). Copyright (2011) John Wiley & Sons, Inc. b) aC-dots (via pyrolytic 
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treatment of crude biomass). The excitation wavelength was varied from 350 to 600 nm with 

a fixed increment of 25 nm. Reprinted with permission from Green Chem. (Reference 44). 

Copyright (2012) Royal Society of Chemistry 

Figure 11. Upconversion PL spectra of aqueous dispersions of: a) gC-dots (via alkali assisted 

electrooxidation). Reprinted with permission from Angew. Chem. Int. Ed. (Reference 25). 

Copyright (2010) John Wiley & Sons, Inc.  b) aC-dots (vis ultrasonic treatment of glucose). 

Reprinted with permission from Carbon (Reference 74). Copyright (2011) Elsevier.  

Figure 12. Two-photon luminescence image of human breast cancer MCF-7 cells with 

internalized C-dots. Reprinted with permission from J. Am. Chem. Soc (Reference 76). 

Copyright (2007) American Chemical Society. 

Figure 13. Viability of:  a) Human cancer cells  incubated with PEG1500- passivated gC-dots 

(black columns) compared to the passivation agent PEG1500 (white columns). Reprinted with 

permission from J. Phys. Chem. C (Reference 82). Copyright (2009) American Chemical 

Society. b) HeLa cells incubated for 24 h with polyethylenimine derived aC-dots. Reprinted 

with permission from Carbon (Reference 56), Copyright (2013) Elsevier. 

Figure 14. Cyclic voltamogramms (reference electrode Ag/AgCl) for Oxygen Reduction 

Reaction of: a) N-doped gC-dots and b) commercial Pt/C electrodes in N2 and O2 saturated 

0.1M KOH and O2 saturated 3M in CH3OH. Reprinted with permission from J. Am. Chem. 

Soc. (Reference 63). Copyright (2012) American Chemical Society. 

Figure 15. Schematic a) and energy band b) diagrams of the 

ITO/PEDOT:PSS/P3HT:GQDs/Al device. c) J – V characteristic curves for the 

ITO/PEDOT:PSS/P3HT/Al, ITO/PEDOT:PSS/P3HT:GQDs/Al and ITO/PEDOT:PSS/P3HT: 

GQDs/Al devices after annealing at 140 ° C for 10 min, single log scale. Reprinted with 

permission from Adv. Mater. (Reference 29) Copyright (2011) John Wiley & Sons, Inc. 
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Figure 16. AFM images of: a) P3HT/ANI-gC-dots; b) P3HT/ANI- gC-dots; c) MEH-

PPV/MB- gC-dots; d) J-V curves of the photovoltaic devices based on ANI-gC-dots with 

different nanoparticle content compared to the best performing  ANI-GS based counterpart 

annealed at 160 oC for 10 min, in AM 1.5G 100 mW illumination. Reprinted with permission 

from J. Am. Chem. Soc. (Reference 92). Copyright (2011) American Chemical Society. 
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