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Abstract

Glycogen phosphorylase (GP) is a validated target for the development of new type 2 diabetes
treatments. Exploiting the Zinc docking database, we report the in silico screening of 1888 [3-
D-glucopyranose-NH-CO-R putative GP inhibitors differing only in their R groups.
CombiGlide and GOLD docking programs with different scoring functions were employed
with the best performing methods combined in a “consensus scoring” approach to ranking of
ligand binding affinities for the active site. Six selected candidates from the screening were
then synthesized and their inhibitory potency was assessed both in vitro and ex vivo. Their
inhibition constants’ values, in vitro, ranged from 5 to 377 uM while two of them were
effective at causing inactivation of GP in rat hepatocytes at low uM concentrations. The
crystal structures of GP in complex with the inhibitors were defined and provided the
structural basis for their inhibitory potency and data for further structure based design of more

potent inhibitors.



1. Introduction

Glycogen phosphorylase (GP), an enzyme that catalyzes the first step of intracellular
degradation of glycogen to Glc-1-P 1, has been an important target for the discovery of novel
hypoglycaemic agents . The efficacy of such inhibitors on blood glucose control and
hepatic glycogen balance has been confirmed from biological studies °°. The main
physiological inhibitor of GP is glucose, albeit a weak inhibitor (Ki= 2-3 mM). Inhibition of
the catalytic site of the enzyme has therefore been probed with glucose based analoguest?,
designed on the basis of information derived from the crystal structure of the T-state GPb-a-
D-glucose complex 1. These inhibitors mainly have a- and S-substitutions at the anomeric C1
atom of the glucose moiety % 1° with the S-substitutions aiming to exploit the catalytic subsite
called p-cavity, an empty space at the fp-1-C configuration lined by both polar and non-polar
groups. A key structural feature of glucose based ligands is the so called linker which
connects the glucose moiety with an R group (Scheme 1). One such linker is the -NH-CO-
group and has led to the identification of ligands in the pM range for GP inhibition when
following the general reaction scheme shown in Scheme 2 2 12, Using this linker, however,
only selected R groups have been previously studied towards exploiting the S-cavity features.
Hence in the current work we have adopted a more systematic approach and used a virtual
screening methodology to discover new —-R groups. Docking using both the Glide
(CombiGlide) ** ** and GOLD*® programs with different scoring functions was employed for
this purpose, with the final ranking of ligand potencies based on a consensus scoring approach
16 combining the best performing scoring functions based on calculations for a training set of
ligands. The diverse set of R groups for virtual screening was derived from acid chloride
(RCOCI) molecules downloaded from the Zinc docking database ’. Selected candidates from
the virtual screening were then experimentally evaluated. Absorption, distribution,

metabolism and excretion (ADME) property predictions from the QikProp program *



allowing us to select a final set of beta-D-glucopyranose-NH-CO-R ligands with drug-like
properties as a criterion for further evaluation 8 1°. Thus, we also report here the synthesis of
novel N-acyl-f-D-glucopyranosylamine type inhibitor series (S) shown in Table 1 and their
biochemical and ex vivo assessment. We have determined the crystal structures of their
complexes with GPb to analyze the molecular elements that govern molecular recognition by
the catalytic site of the enzyme with emphasis in the f-pocket environment. The common
kinetic and structural features of these compounds are that they are highly selective for GPb
and they are competitive inhibitors with respect to the substrate Glc-1-P. They bind at the
catalytic site and stabilise the T-state conformation (closed) of the 280s loop by making
several favourable contacts with residues of this loop. Furthermore, compounds were
designed to fill an empty pocket at the $-1-C configuration of glucose %, denoted as the f-

channel, with bulky non-polar groups.

Three of the best N-acyl-S-D-glucopyranosylamines inhibitors of GP have been identified in
this work (< 10 pM activity), which also have revealed promising activity in the cell in
agreement with ADME predictions. The present work constitutes the first integrated structure-
based drug design with high-throughput screening of commercially available small molecule
libraries for glycogen phosphorylase inhibitors (GPIs). It also highlights the modeling
perspective on GP and inhibitor and how calculations can support experiment in a more
rational and time-efficient approach to design of potent, drug-like GPlIs.

2. Materials and methods

2.1. Virtual Screening

2.1.1 Protein Preparation. The GPb receptor structure was prepared for modeling using the
2.15 A resolution GPb-N-4-phenylbenzoyl-2-N'-8-D-glycopyranosyl urea crystal complex
(PDB ID: 2QLN). This receptor was chosen based on its previous performance in docking

studies, its co-crystallized ligand having a bulkier R substituent which opens up the B-cavity



in regions complementary to binding of the other ligands 4. Schrodinger's ‘Protein Preparation
Wizard’** was used for the preparation with water molecules within 5 A of the ligand initially
retained, but deleted for subsequent docking. Bond orders were assigned and hydrogen atoms
added, with protonation states for basic and acidic residues based on residue pKa’s at normal
pH (7.0). However, subsequent optimization of hydroxyl groups, histidine C/N atom “flips”
and protonation states, and side chain O/N atom “flips” of Asn and GIn residues was based on
optimizing hydrogen bonding patterns, so that the final assignments were checked on visual
inspection of the protein. In particular, all final His residues were assigned as neutral, either in
a HIE or HID state. The PLP co-factor was used in its mono-anion form. Finally, the system
was softly minimized using Impref and the OPLS-AA(2005) forcefield 2! with the root-mean-
square deviation (RMSD) of heavy atoms kept within 0.3 A of the crystallographic positions.

2.1.2 Ligand Preparation The training set of 40 ligands (Table S1) was selected from
previous studies % 22 with K; values ranged from 0.35 uM to no inhibition. For consistency, a
similar protocol for preparation of both the training and screening set ligands was used. In
effect, the training set —R groups were first built as acid chlorides using Maestro and LigPrep.
The acid chlorides were then “reacted” at a 3-D-glucopyranose-NH> attachment point (-NH2)
using modules from the combinatorial screening CombiGlide program of Schrodinger * in a
manner that reflected the actual synthetic routine (Scheme 2). For the virtual screening set, the
acid chloride molecules were downloaded in pre-determined low energy conformations (any
relevant tautomers/ionization states included) from the Zinc database. To ensure that the final
ligands were ‘drug-like’, the following criteria were used as filters: the structural pattern -
C(CH=0, 0 <MW <250 amu and 0 <rotatable bonds < 4. A 1888 ligand screening set
resulted. In effect, the CombiGlide workflow provided a 3D minimized structure of a

molecule that contains a “core” (in this case D-glucose) and a defined attachment point for a



set of reagents. CombiGlide exploits the program LigPrep for this purpose with the final
structures ready to be employed in the docking studies.

2.1.3 CombiGlide Docking In the docking calculations with CombiGlide 2.6 14, the shape and
properties of the catalytic binding site were mapped onto grids with dimensions of 28.6 A x
28.6 A x 28.6 A centred on the native 2QLN ligand. Standards parameters were applied
including van der Waals scaling for non-polar atoms (by 0.8) to include modest “’induced-fit”’
effects. Positional constraints were applied on the hydroxyl (-OH) groups of glucose . Glide

standard (SP) and extra-precision (XP) modes were used.

2.1.4 GOLD Docking In the docking calculations with GOLD 5.0 *°, all atoms and their
associated residues within 10A of the ligand were used to define the active site. The
information about the ligand hydrogen-bonding interactions and conformation was encoded
into the corresponding genetics algorithms (GA) of GOLD GoldScore, ChemScore, ASP and
ChemPLP using the default GA parameters. Scaffold constraints were applied for the glucose

ring atoms with weight 1.0 A,

2.1.5 Consensus Scoring In combining the results from individual docking methods, the ranks
from the best performing scoring functions were added to give a rank-sum for each ligand,
otherwise known as a Simple Sum Rank 1°.

2.1.6 Statistical Analysis of Docking Performance For the training set, performance with
respect to recovery of the actives (top 10 inhibitors) was analyzed in a statistical manner 2427,
Since only a small fraction of a database is tested experimentally in practical VS studies, it is
important to recognize actives or leads as “early” as possible. We therefore examined several
metrics ranging from the commonly used hit rate and enrichment factor, to those that better
highlight “early recognition”. Hit-rate is the simplest metric and represented the % of actives
in the predicted top 10 ligands for a particular docking method. The EF may be defined as the

ratio of the number of actives retrieved relative to the number of database molecules tested.



An EF is often described with respect to a given percentage of the database screened. In
general, if n represents the total number of actives and N represents the total number of
molecules in the database, then if there are na actives among the Ny molecules in the first x%
of the database screened, the EF is given by Mackey and Melville 28

nﬂfNJ{%

EFm = n/N

Eq.(1)

In our case we are looking at simply recovery of na =10 actives in a set of N=40 ligands,
where x%=25% A ROC plot is conceptually similar to an enrichment plot and shows the
relationship between the true positive rate (TPR, or sensitivity) and the false positive rate
(FPR, or specificity) 2°. The Area Under the ROC curve (AU-ROC) is a common way to

summarize the overall quality of a ROC plot.
1 T
AUC = 52(1 _£) Eq.(2)
i=1

where fi is the fraction of decoys or non-actives ranked higher than the ith active. The value of
the AU-ROC varies between 0 and 1, where 1 represents a perfect ranking (all actives ranked
above the decoys) while 0.5 corresponds to a random ranking. However, EF and AU-ROC
values do not distinguish early and late performance.?* Accordingly, we also used the metric
“sum of logarithms of ranks” (SLR) which emphasizes on the "early recognition” of actives.

The SLR metric is calculated as:

T
SLR = —;Eog (%) Eq.(3)

where ri is the rank of the ith active. The negative logarithm emphasizes early recognition.
Noting that for an ideal case, a VS method would rank all actives within the first n positions, a

theoretical maximum SLR may be calculated as:



n .
L
SLRygx= — ) log (ﬁ) Eq.(4)
i=1

This allows a normalized SLR (NSLR) to be calculated as:

NSLR = gp— Eq.(5)

This metric ranges from 0 to 1 (best achievable ranking).

2.1.7 Screening Set Analysis/Candidate Selection

a) Consensus Scoring: Based on the training set results and a statistical evaluation of the
performance of the different docking methods and their combination in consensus scoring, the
protocol employed for final re-ranking of the screening set ligands was a Simple Sum Rank 1©
30,31 of Glide-SP and GOLD-ChemPLP individual rankings. A Simple Sum Rank value of
<150 was chosen as the cut off for the “final set’ of ligands. Votes (coarse quantite voting)
received by the final set of ligands from other scoring functions/algorithms if ranked in the
top ~ 1.5% and top ~4% with these methods were considered as a criteria in selecting ligands
for synthesis; a minimum-maximum of 0-3 votes was possible, one from each of GOLD-
ChemScore, -GoldScore, ASP.

b) ADME property predictions: QikProp from Schrodinger ** was used for ADME properties
predictions allowing us to select ligands with drug-like properties as an extra criteria.'® °
Specifically, Lipinski’s rules of five 32 [ MW<500, logP <5, HBA<10, and HBD<5 ] and
Jorgensen’s rule of three ¥ [QPlogS > -5.7, QP PCaco > 22 nm/s, number of Primary
Metabolites < 7] were applied to predict oral bioavailability. Default settings were employed
for these calculations.

¢) Ligand 2D Fingerprint Calculations: For the “final set” of ligands based on Simple Sum

Rank (<150), 2D fingerprints for the unbound ligands (type: linear with atoms distinguished



by ring size, aromaticity, hydrogen bond acceptor/donor (HBA/HBD), ionization potential,
whether terminal, whether halogen and bonds distinguished by bond order) were calculated
using the related Schrodinger cheminformatics python script. Canvas similarity (Tanimoto
coefficient) and clustering of the fingerprints (average linkage method) was then computed.*
The result was grouping of the final 29 compounds into 15 families (Table S3).

2.2 Chemistry

Thin layer chromatography (TLC) was performed on Merck precoated 60F254 plates.
Reactions were monitored by TLC on silica gel, with detection by UV light (254nm) or by
charring with sulfuric acid. Flash column chromatography was performed using silica gel
(240-400 mesh, Merck). *H and *C NMR spectra were obtained at room temperature with a
Bruker 400 spectrometer at 400 and 100 MHz, respectively using chloroform-d (CDCl3) and
dimethylsulfoxide-de (DMSO-ds) with internal tetramethylsilane (TMS). Chemical shifts (o)
were given in ppm measured downfield from TMS, and spin-spin coupling constants are in
Hz. Mass spectra were obtained on a ThermoQuest Finnigan AQA Mass Spectrometer
(electrospray ionization). Optical rotations were measured using an Autopol | polarimeter.
The IR spectra were obtained with a Thermo Scientific Nicolet IR100 FTIR spectrometer.

All coupling reactions were performed under an atmosphere of oxygen-free nitrogen, and the
solvent (or solution) was vigorously deoxygenated with N2 prior to addition of catalysts. DMF
was distilled from calcium hydride and stored over 3E molecular sieves. Azide AcGlc-N3 was
prepared according to the procedures described in literature and its chemical and physical
properties were in agreement with previous data .

2.2.1 General procedure for preparation of the glucopyranosyl amine (AcGlc-NH>). After
two vacuum/Hz cycles to remove air from the reaction tube, the stirred mixture of azide
AcGlc-N3 (5.00 g, 13.4 mmol), 10% Pd/C (0.95 g) in ethyl acetate (EtOAc, 184.6 mL) was

hydrogenated at ambient pressure (balloon) and temperature (ca. 20 °C) for 24 h. The reaction
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mixture was filtered and the filtrate was concentrated in vacuum. The residue was purified by
flash column chromatography using EtOAc. The spectroscopic properties of amine AcGlc-
NH:2 were in agreement with previous data .

2.2.2 General procedure for preparation of the protected amides (AcS). To a stirred mixture
of S-D-glucopyranosyl amine (AcGlc-NH2) (1.44 mmol) in 3 ml anhydrous DMF and EtzN
(0.96 mmol) the corresponding acylating agents RCOCI (1, 2, 3, 6, 20, 21) (0.96 mmol) were
added in one portion. The reaction mixture was left for 1 hour at room temperature, then
concentrated and the residue was purified by flash chromatography to give the desired
analogues (AcS) as foams.

2.2.2.1. N-(2,3,4,6-Tetra-O-acetyl-5-D-glucopyranosyl)-4(prop-1-enyl)biphenyl amide
(AcS1). White foam, 45% vyield; Rf = 0.30 (n-hexane/EtOAc 1:1); [o]p?®> = +6 (¢ = 0.20,
CHCI3); 'H NMR (400 MHz, CDCls): § 7.69 (d, 1H, J = 15.7 Hz, CH=CH), 7.64-7.37 (m,
9H, 2Ph), 6.42 (d, 1H, Ji2= 9.4 Hz, H-1), 6.36 (d, 1H, CH=CH), 5.44-5.33 (m, 2H, H-2, NH),
5.11 (t, 1H, J = 9.6 Hz, H-3), 5.01 (t, 1H, J = 9.6 Hz, H-4), 4.35 (dd, 1H, Js6:= 4.3 Hz, Jeaeb =
12.6 Hz, H-6a), 4.11 (dd, 1H, Jse = 1.9 Hz, H-6b), 3.93-3.86 (m, 1H, H-5), 2.09, 2.06, 2.05,
2.04 (4s, 12H, 40Ac); 3C NMR (100 MHz, CDCls) 6 171.3, 170.6, 169.9, 169.6, 165.8,
143.1, 142.9, 140.1, 133.1, 128.9, 128.6, 127.8, 127.5, 127.0, 119.0, 78.5, 73.5, 72.6, 70.7,
68.1, 61.6, 20.8, 20,7, 20.6; MS (ESI) m/z: 554.21 [M+H]*. Anal. (C20H31NO1): C, 62.92; H,
5.64; N, 2.53. Found: C, 63.10; H, 5.52; N, 2.74.

2.2.2.2. N-(2,3,4,6-Tetra-O-acetyl-f-D-glucopyranosyl)-6-butyl-1,2,3,4-tetrahydronapthalene
amide (AcS2). Yellow foam, 42% yield; Rf = 0.6 (n-hexane/EtOAc 1:1); [o]p? = -8 (c = 0.20,
CHClIs); *H NMR (400 MHz, CDCls): § 6.99-6.86 (m, 3H, Ph), 6.16 (d, 1H, J12= 9.3 Hz, H-
1), 5.34-5.24 (m, 2H, H-2, NH), 5.06 (t, 1H, J = 9.6 Hz, H-3), 4.91 (t, 1H, J = 9.6 Hz, H-4),
4.32 (dd, 1H, Js6a = 4.3 Hz, Jeaen = 12.6 Hz, H-6a), 4.07 (dd, 1H, Js6» = 1.9 Hz, H-6b), 3.84-

3.79 (m, 1H, H-5), 2.73 (s, 4H, cyclohexane), 2.53 (t, 2H, J = 7.4 Hz, CH»), 2.22-2.15 (m, 2H,
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CHy), 2.07, 2.03, 2.02, 2.01 (4s, 12H, 40Ac), 1.94-1.87 (m, 2H, CHy), 1.78 (m, 4H,
cyclohexane); 3C NMR (100 MHz, CDCl3) 6 173.1, 171.0, 170.6, 169.9, 169.6, 138.1, 137.1,
134.8,129.1, 129.0, 125.5, 78.0, 73.5, 72.6, 70.5, 68.0, 61.6, 35.8, 34.5, 29.3, 29.0, 26.6, 23.2,
23.1, 20.7, 20.6, 20.5; MS (ESI) m/z: 548.63 [M+H]". Anal. (C2sH37NO1o): C, 61.41; H, 6.81;
N, 2.56. Found: C, 61.75; H, 7.14; N, 2.30.

2.2.2.3. N-(2,3,4,6-Tetra-O-acetyl-p-D-glucopyranosyl)-4-ethoxybiphenyl amide (AcS3).
Yellow foam, 55% yield; Rf = 0.33 (n-hexane/EtOAc 1:1); [a]o?? = -6 (c = 0.20, CHCls); *H
NMR (400 MHz, DMSO-dg): 6 8.93 (d, 1H, Jinn = 9.4 Hz, NH), 7.62-7.58 (m, 4H, Ph), 7.42
(t, 2H, J =7.3 Hz, Ph), 7.32 (t, 1H, Ph), 6.99 (d, 2H, J = 8.8 Hz, Ph), 5.48 (t, 1H, J1 2= 9.3 Hz,
H-1), 5.37 (t, 1H, J = 9.5 Hz, H-3), 5.01-4.88 (m, 2H, H-2, H-4), 4.59 (s, 2H, CH>), 4.19-4.09
(m, 2H, H-6), 4.00-3.95 (m, 1H, H-5), 1.98, 1.97, 1.91, 1.84 (4s, 12H, 40Ac); 13C NMR (100
MHz, CDCls) ¢ 170.6, 169.9, 169.5, 169.2, 156.4, 140.2, 135.3, 128.8, 128.4, 127.0, 126.7,
114.8, 77.9, 73.6, 72.5, 70.0, 67.9, 67.1, 61.5, 20.7, 20.5, 20.3; MS (ESI) m/z: 558.43
[M+H]". Anal. (C2sH31NO11): C, 60.32; H, 5.60; N, 2.51. Found: C, 60.72; H, 5.26; N, 2.40.
2.2.2.4. N-(2,3,4,6-Tetra-O-acetyl-S-D-glucopyranosyl)-1-isopropyl-4(prop-1lenyl)benzene
amide (AcS6). White foam, 44% yield; Rf = 0.53 (n-hexane/EtOAc 1:1); [o]po?? = +10 (c =
0.20, CHCI3); 'H NMR (400 MHz, CDCls): 6 7.63 (d, 1H, J = 15.7 Hz, CH=CH), 7.44 (d, 2H,
J = 8.2 Hz, 0-Ph), 7.25 (d, 2H, J = 8.4 Hz, m-Ph), 6.33 (m, 2H, Ji2 = 8.5 Hz, H-1, CH=CH),
5.43-5.33 (M, 2H, H-2, NH), 5.10 (t, 1H, J = 9.4 Hz, H-3), 5.00 (t, 1H, J = 9.6 Hz, H-4), 4.34
(dd, 1H, Js6a = 4.4 Hz, Jsaer = 12.5 Hz, H-6a), 4.10 (dd, 1H, Jsn = 1.7 Hz, H-6b), 3.91-3.86
(m, 1H, H-5), 2.98-2.88 (m, 1H, CH), 2.08, 2.06, 2.04, 2.03 (4s, 12H, 40Ac), 1.29, 1.27 (2s,
6H, 2CHs); 3C NMR (100 MHz, CDCls) § 171.3, 170.6, 169.9, 169.6, 166.0, 151.6, 143.3,
131.8, 128.2, 127.0, 118.2, 78.5, 73.5, 72.7, 70.7, 68.1, 61.6, 34.1, 23.8, 20.7, 20.6, 20.5; MS
(ESI) m/z: 520.58 [M+H]". Anal. (C26H33NOuo): C, 60.11; H, 6.40; N, 2.70. Found: C, 60.51;

H, 6.15; N, 2.31.
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2.2.2.5. N-(2,3,4,6-Tetra-O-acetyl-f-D-glucopyranosyl)-1-sec-butyl-4-ethylbenzene  amide
(AcS20). Yellow foam, 41% vyield; Rf = 0.42 (n-hexane/EtOAc 3:2); [a]p?? = -2 (¢ = 0.20,
CHCI3); *H NMR (400 MHz, CDCls): 6 7.14-7.11 (m, 4H, Ph), 6.23 (dd, 1H, J1,= 9.2 Hz, H-
1), 5.32-5.17 (m, 2H, H-2, NH), 5.08-5.01 (m, 1H, H-3), 4.92-4.82 (m, 1H, H-4), 4.32 (dd,
1H, Js6a = 4.3 Hz, Jeasb = 12.5 Hz, H-6a), 4.08-4.02 (m, 1H, H-6b), 3.83-3.76 (m, 1H, H-5),
3.29-3.20 (m, 1H, CH), 2.65-2.41 (m, 4H, 2CH>), 2.08-1.85 (m, 12H, 40Ac), 1.31-1.19 (m,
6H, 2CHs); 3C NMR (100 MHz, CDCls) § 176.4, 172.1, 170.9, 170.5, 169.5, 142.6, 142.1,
127.9, 126.5, 77.9, 73.3, 72.5, 70.3, 67.9, 61.5, 45.1, 42.3, 35.7, 28.2, 21.7, 20.5, 15.4; MS
(ESI) m/z: 522.62 [M+H]*. Anal. (C26H3sNO1o): C, 59.87; H, 6.76; N, 2.69. Found: C, 60.24;
H, 6.48; N, 2.98.

2.2.2.6. N-(2,3,4,6-Tetra-O-acetyl-5-D-glucopyranosyl)-1-isobutyl-4-isopropylbenzene
(AcS21). Yellow foam, 42% yield; Rf = 0.47 (n-hexane/EtOAc 1:1); [a]o?® = +2 (c = 0.20,
CHCls); 'H NMR (400 MHz, CDCls): 6 7.13-7.04 (m, 4H, Ph), 6.25 (dd, 1H, Ji2 = 9.3 Hz,
Jin = 9.4 Hz, H-1), 5.33-5.20 (m, 2H, H-2, NH), 5.09-5.01 (m, 1H, H-3), 4.91-4.88 (t, 1H, J
= 9.6 Hz, H-4), 4.36-4.30 (m, 1H, H-6a), 4.09-4.05 (m, 1H, H-6b), 3.83-3.80 (m, 1H, H-5),
3.04-2.80 (m, 2H, CHy), 2.57-2.40 (m, 2H, 2CH), 2.08, 2.02, 2.01, 1.99 (4s, 12H, 40Ac),
1.23-1.05 (m, 9H, 3CHs); 3C NMR (100 MHz, CDCls) 6 176.3, 171.0, 170.6, 169.9, 169.6,
146.8, 136.3, 128.9, 126.4, 78.1, 73.5, 72.5, 70.4, 68.1, 61.6, 43.1, 38.8, 33.6, 24.0, 20.7, 20.6,
17.1, 17.0; MS (ESI) m/z: 536.38 [M+H]*. Anal. (C27H37NO10): C, 60.55; H, 6.96; N, 2.62.
Found: C, 60.67; H, 6.72; N, 2.84.

2.3. General procedure for the preparation of unprotected nucleosides(S). The protected
nucleosides (AcS) (1 mmol) were treated with ammonia/MeOH (saturated at 0 °C, 41.8 mL)
overnight at room temperature. The solvent was evaporated under reduced pressure to afford

pure S, in 66-81% vyields as syrups.
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2.3.1. N-(5-D-Glucopyranosyl)-4(prop-1-enyl)biphenyl amide (S1). White syrup, 80% vyield,;
Rf = 0.27 (EtOAC/MeOH 4:1); [a]o® = -26 (¢ = 0.20, MeOH); IR (KBr) 3423, 1655 cm'; H
NMR (400 MHz, DMSO-dg): ¢ 8.68 (d, 1H, Jinn = 9.2 Hz, NH), 7.76-7.30 (m, 10H, 2Ph,
CH=CH), 6.72 (d, 1H, J = 15.7 Hz, CH=CH), 5.15-4.89 (m, 2H, 2-OH, 3-OH), 4.86 (t, 1H,
Ji12= 8.9 Hz, H-1), 4.57-4.43 (m, 1H, 4-OH), 3.68-3.53 (m, 2H, H-3, H-4), 3.23-3.04 (M, 4H,
H-2, H-5, H-6); 1*C NMR (100 MHz, DMSO-ds) 6 171.5, 165.2, 141.2, 139.3, 133.9, 129.0,
128.2, 127.2, 126.6, 122.0, 79.6, 78.6, 77.5, 72.6, 69.9, 60.9; MS (ESI) m/z: 386.67 [M+H]".
Anal. (C21H23NOs): C, 65.44; H, 6.02; N, 3.63. Found: C, 65.62; H, 5.74; N, 3.99.

2.3.2. N-(p-D-Glucopyranosyl)-6-butyl-1,2,3,4-tetrahydronapthalene amide (S2). Yellow
syrup, 76% vyield; Rf = 0.28 (EtOAc/MeOH 4:1); [a]p?? = -36 (c = 0.20, MeOH); IR (KBr)
3453, 1654 cm*; 'H NMR (400 MHz, DMSO-ds): 6 8.29 (d, 1H, Jinn = 9.2 Hz, NH), 6.95-
6.85 (m, 3H, Ph), 5.01-4.79 (m, 3H, 2-OH, 3-OH , 4-OH), 4.70 (t, 1H, J1» = 9.0 Hz, H-1),
4.47 (t, 1H, Js-on6 = 4.8 Hz, 6-OH), 3.65-3.03 (m, 6H, H-2, H-3, H-4, H-5, H-6), 2.66 (m, 4H,
2CHy), 2.12-2.07 (m, 2H, CHy), 1.75-1.71 (m, 8H, cyclohexane); *C NMR (100 MHz,
DMSO-de) 0 172.3, 138.6, 136.2, 133.7, 128.7, 125.5, 79.4, 78.4, 77.5, 72.4, 69.9, 60.9, 34.8,
34.2, 28.7, 28.4, 26.7, 22.8, 22.5; MS (ESI) m/z: 380.71 [M+H]*. Anal. (C20H2sNOs): C,
63.31; H, 7.70; N, 3.69. Found: C, 63.61; H, 8.01; N, 3.31.

2.3.3. N-(p-D-Glucopyranosyl)-4-ethoxybiphenyl amide (S3). Yellow syrup, 68% vyield; Rf =
0.25 (EtOAC/MeOH 4:1); [o]o? = +2 (c = 0.20, MeOH); IR (KBr) 3399, 1655 cm™; 'H NMR
(400 MHz, DMSO-ds): 6 8.67 (d, 1H, Jinn = 9.1 Hz, NH), 7.67-6.98 (m, 9H, 2Ph), 5.15-4.90
(m, 3H, 2-OH, 3-OH, 4-OH), 4.81 (t, 1H, J1.2 = 8.8 Hz, H-1), 4.56 (s, 2H, CH2), 4.52 (d, 1H,
Js-on6 = 5.3 Hz, 6-OH), 3.65 (dd, 1H, Jeaeb = 11.4, J56a = 4.3 Hz, H-6a), 3.50-3.39 (m, 1H, H-
6b), 3.23-3.07 (M, 4H, H-2, H-3, H-4, H-5); 3C NMR (100 MHz, DMSO-ds) & 168.0, 157.3,

139.7, 133.1, 128.8, 127.7, 126.7, 126.2, 115.1, 79.4, 78.7, 77.3, 72.1, 69.9, 66.7, 60.9; MS
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(ESI) m/z: 390.38 [M+H]". Anal. (C20H23NOy): C, 61.69; H, 5.95; N, 3.60. Found: C, 61.33;
H, 6.09; N, 3.77.

2.3.4. N-(B-D-Glucopyranosyl)-1-isopropyl-4(prop-1lenyl)benzene amide (S6). White syrup,
78% vyield; Rf = 0.32 (EtOAc/MeOH 4:1); [a]o? = +1 (c = 0.20, MeOH); IR (KBr) 3343,
1663 cm™; 'H NMR (400 MHz, DMSO-de): 6 8.56 (d, 1H, Jinn = 9.2 Hz, NH), 7.49-7.26 (m,
5H, Ph, CH=CH), 6.70-6.60 (m, 2H, H-1, CH=CH), 5.05-4.79 (m, 4H, H-2, H-3, H-4, 2-OH),
452 (t, 1H, Jsons = 5.9 Hz, 6-OH), 3.70-3.37 (M, 2H, H-6, 4-OH), 3.27-3.14 (m, 2H, CH, H-
5), 1.46 (d, 3H, J = 15.7 Hz, CHa3), 1.23 (d, 3H, J = 12.5 Hz, CH3); **C NMR (100 MHz,
DMSO-de) 0 171.4, 165.3, 150.2, 132.4, 127.6, 126.9, 121.0, 78.5, 77.5, 72.6, 69.9, 60.9,
33.3, 23.6, 22.5; MS (ESI) m/z: 352.51 [M+H]*. Anal. (C1sH2sNOs): C, 61.52; H, 7.17; N,
3.99. Found: C, 61.69; H, 6.77; N, 4.19.

2.3.5. N-(p-D-Glucopyranosyl)-1-sec-butyl-4-ethylbenzene amide (S20). Yellow syrup, 66%
yield; Rf = 0.5 (EtOAc/MeOH 4:1); [o]o? = -2 (¢ = 0.20, MeOH); IR (KBr) 3436, 1655 cm™;
IH NMR (400 MHz, DMSO-ds):  9.35 (d, 2H, J = 8.2 Hz, 0-Ph), 7.41 (d, 2H, J = 8.2 Hz, m-
Ph), 7.34-7.29 (m, 2H, 2-OH, 3-OH), 6.17-5.98 (m, 4H, H-1, H-2, H-3, H-6a), 5.88-5.76 (m,
2H, H-4, H-6b), 5.64-5.47 (m, 5H, 2CHz, H-5), 3.00 (m, 7H, 2CHs, CH); 3C NMR (100
MHz, DMSO-ds) 6 171.2, 143.8, 141.0, 127.4, 126.4, 79.4, 78.3, 77.4, 72.3, 70.0, 60.9, 43.7,
35.0, 27.5, 21.4, 15.4; MS (ESI) m/z: 354.36 [M+H]*. Anal. (C1gH27NOs): C, 61.17; H, 7.70;
N, 3.96. Found: C, 61.57; H, 7.34; N, 3.58.

2.3.6. N-(p-D-Glucopyranosyl)-1-isobutyl-4-isopropylbenzene (S21). Yellow syrup, 81%
yield; Rf = 0.41 (EtOAc/MeOH 4:1); [o]p?? = +2 (c = 0.20, MeOH); IR (KBr) 3349, 1654 cmv”
L 14 NMR (400 MHz, DMSO-de): J 8.40-8.33 (m, 1H, NH), 7.13-7.04 (m, 4H, Ph), 4.74-
4.63 (m, 1H, H-1), 3.68-3.54 (m, 1H, H-2), 3.25-3.00 (m, 5H, H-3, H-4, H-5, H-6), 2.94-2.70
(m, 3H, CHz, CH), 2.44-2.34 (m, 1H, CH), 1.72, 1.15, 1.13 (3s, 9H, 3CHs); 3C NMR (100

MHz, DMSO-ds) 0 175.7, 171.5, 145.8, 137.3, 128.8, 126.0, 79.6, 78.5, 77.5, 72.5, 70.0, 60.9,
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33.0, 24.0, 22.5, 16.9; MS (ESI) m/z: 368.62 [M+H]*. Anal. (C10H2sNOs): C, 62.11; H, 7.96;
N, 3.81. Found: C, 62.25; H, 7.67; N, 3.44.

2.4 Protein purification and kinetic measurements

Rabbit skeletal muscle glycogen phosphorylase b was isolated, purified recrystallized and
assayed as described previously 3. Kinetic studies were performed at 30° C in the direction of
glycogen synthesis by measuring the inorganic phosphate released in the reaction as reported
previously *. The enzyme (5 pg/ml) was assayed in a buffer of 30 mM imidazole/HCI (pH
6.8) containing 60 mM KCI, 0.6 mM EDTA, and 0.6 mM dithiothreitol using constant
concentrations of glycogen (0.2% w/v), AMP (1 mM), and various concentrations of Glc-1-P
(2, 4, 6, 10 and 20 mM) and inhibitors. Enzyme and glycogen were preincubated for 15 min at
30°C before initiating the reaction with Glc-I-P. Initial velocities were calculated from the
pseudo-first order rate constants. For the calculation and statistical evaluation of the kinetic
and binding parameters, the non-linear regression program GRAFIT was used *’.

2.5 Protein crystallography

Crystallographic binding studies were performed by diffusion of a solution of the C-5 halogen
substituted glucopyranosyl nucleosides in the crystallization media of preformed GPb
crystals. GPb crystals were grown in the tetragonal lattice, space group P432:2, under
conditions similar to those described previously 3. These crystals were soaked in a 5 mM
inhibitor solution in a buffer of 10 mM Sodium N,N-Bis(2-hydroxyethyl)-2-
aminoethanesulfonic (pH 6.7) containing 0.1 mM EDTA, and 0.02 % w/v sodium azide at
room temperature for 2 hours prior to data collection. X-ray diffraction data were collected
using synchrotron radiation on station ID911-2 at MAX-Lab Synchrotron Radiation Source in
Lund, Sweden or for the GPb-S6 complex on an Oxford Diffraction SuperNova X-ray system
using a 135 mm CCD detector at room temperature. Crystal orientation, integration of

reflections, inter-frame scaling, partial reflection summation, and data reduction was

16



performed by the program Mosflm 3. For scaling and merging of intensities the program
SCALA of CCP4 Suite “° was used. Crystallographic refinement of the complexes was
performed by maximum-likelihood methods using REFMAC #°. The starting model employed
for the refinement of the complexes was the structure of the native T state GPb complex
determined at 1.9 A resolution (Leonidas et al., unpublished results). Ligand models were
constructed using the PRODRG server #! and they were fitted to the electron density maps
after adjustment of their torsion angles. Alternate cycles of manual rebuilding with the
molecular graphic program COOT “° and refinement with REFMAC *° improved the quality
of the models. A summary of the data processing and refinement statistics for the inhibitor
complex structures is given in Table 6. The stereochemistry of the protein residues was
validated by MolProbity #2. Hydrogen bonds and van der Waals interactions were calculated
with the program CONTACT as implemented in CCP4 “° applying a distance cut off 3.3 A
and 4.0 A, respectively. Figures were prepared with PyMol *3. The coordinates of the new
structures have been deposited with the RCSB Protein Data Bank (http://www.rcsb.org/pdb)
with codes presented in Table 6.

2.6 Ex vivo experiments

Hepatocytes were isolated from male Wistar rats, 200-300g body wt (obtained from Harlan
UK, Ltd) by collagenase perfusion 4. Procedures conformed to Home Office Regulations and
were approved by Newecastle University Ethical Committee. Hepatocytes were suspended in
Minimum Essential Medium (MEM) with 5% calf serum and seeded in multi-well plates at a
density of 6 x 10* cells / cm?. After cell attachment the medium was replaced by serum-free
MEM containing 5 mM glucose, 10 nM dexamethasone, 1 nM insulin and the hepatocytes
were cultured for 24 h. For determination of the effects of the GP inhibitors on conversion of
GPa to GPb, the compounds or glucose (to a final concentration of 25 mM) were added to the

medium 1 h after the change of medium and the incubations were continued for a further 30
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min. Incubations with 5 mM or 25 mM glucose were also done in the additional presence of
5-thioglucose (9 mM), a hexokinase inhibitor, that prevents the elevation in glucose 6-P at 25
mM glucose #°. The monolayers were snap frozen in liquid nitrogen and the activity of GPa
was determined by coupling glycogen phosphorylase to the glucose 6-phosphate
dehydrogenase reaction as described previously #°.  GPa activity in cells incubated with the
GP inhibitors or with 25 mM glucose was expressed as percentage of the corresponding
controls containing 5mM glucose (without or with 5-thioglucose). Results are Means £ SEM
for 5 hepatocyte preparations. Statistical analysis was by the paired t-test.

3. Results

3.1. Virtual Screening

3.1.1 Training Set Results To evaluate the performance of CombiGlide and GOLD with
different scoring functions for the task at hand, a training set of ligands was employed with
known inhibitory constants, each of these ligands containing a —-NH-CO- group at the C1
anomeric position, but included ligands with extended linkers (e.9. -NHCONHCO-) so as to
increase training set size as well as the spread of experimental binding affinities (Table S1).
The performances were evaluated with respect to the recovery of active molecules, which we
defined as those with Ki’s < 10 uM (10 ligands within a set of 40) and is reported in Table 2.
Statistical performance metrics used were hit-rate, efficiency factor (EF), receiver operator
characteristic (ROC) plots and (normalized) sum of the log ranks ((N)SLR), as described in
the Experimental Section. Docking algorithms/scoring functions tested comprised Glide-SP
and —XP; GOLD with -ChemScore, -ChemPLP, and -GoldScore and -ASP (two knowledge-
based scoring functions). The best scoring functions were combined in a consensus scoring
approach to ranking of ligand binding affinities ®. Each of the six scoring functions has

strengths and weaknesses. To increase the success rate in virtual screening, it may therefore
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be beneficial to use several scoring functions and apply “consensus scoring” for which a
considerable reduction of false positives has previously been reported 6%,

Although all scoring methods performed reasonably well, Glide-SP and GOLD-ChemPLP
scores were found to be the most robust (Table 2). Hit rates of 70% (Gold-ChemPLP) and
80% (Glide-SP) for recovery of actives were obtained and enrichment factor (EF) values of
2.8 (Gold-ChemPLP) and 3.2 (Glide-SP). For both of these methods, AU-ROC values > 0.9
were obtained, while (N)SLR “early enrichment” values of ~ 0.9 reflect the excellent early
recovery of actives. Combining Glide-SP and COLD-ChemPLP in consensus scoring using a
Simple Sum Rank 1 reproduces the best hit rate and EF values (from Glide-SP) of 80% and
3.2, respectively; the best AU-ROC value of 0.92 (from Gold-ChemPLP); while the (N)SLR
value (0.91) is similar to the best value of 0.92 obtained from Gold-ChemPLP. The method
also produces the best correlation (R? = 0.46) between the predicted and actual ligand ranking
of binding affinities.

3.1.2 Screening Set Results The five docking algorithms/scoring functions Glide-SP, GOLD-
ChemPLP, -ChemScore, -ASP and —-GoldScore were used. Glide-XP was the weakest
performer for the training set, and given its computational expense for screening of 1888
ligands, its inclusion was not warranted. Re-ranking of predicted ligand potencies was via
consensus scoring involving a Simple Sum Rank of results from Glide-SP and Gold-
ChemPLP. Ligands with a Simple Sum Rank <150 (29 ligands) were chosen for further
evaluation with their structures shown in Table S2. The docking/consensus scoring results are
shown in Tables 3 (ligands synthesized) and S3 (all 29 ligands). Ligands are listed as SN,
where the S represents Screening Set ligand and the N is the overall rank of the ligand with S1
having the best (lowest) Simple Sum Rank and S29 the worst (highest).

3.1.3 Prioritization of Ligands for Synthesis & Biological Evaluation The final set of 29

ligands were clustered into groups based on 2D fingerprints (c.f. Experimental Section; Table
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S3). Criteria used to select ligands from the clusters were the Simple Sum Rank, coarse
quantile votes ¢ from the other scoring functions, and ADME properties (Tables 3 and S3)
considering Lipinksi’s ‘rule of five’ 32 and Jorgensen’s ‘rule of three’ 3. Ultimately, the six
ligands shown in Table 1 were chosen due to availability and therefore synthetic viability. In
terms of recovery of actives, 50% of the six molecules synthesized were found to be actives
(Ki’s < 10 uM as defined for by our initial training set).

3.2. Chemistry

The approach towards the preparation of the target N-(5-D-glucopyranosyl) amides S with
various aralkyl and aralkenyl moieties, involved the cross-coupling reaction of the primary
glucopyranosylamine AcGlc-NH:z with a diverse set of commercially available acyl chlorides
RCOCI (Scheme 2). As starting material was selected the per-O-acetylated p-D-
glucopyranosyl azide (AcGlc-N3)**, which upon catalytic hydrogenation in the presence of
palladium-on-carbon (Pd/C) led to the desired p-D-glucosylamine (AcGlc-NHz). A direct
acylation of D-glucopyranosylamine (AcGlc-NH2) with the appropriate acid chlorides
(1,2,3,6,20,21) using triethylamine (EtsN) as base and N,N-dimethylformamide (DMF) as
solvent, resulted in the protected N-acyl-5-D-glycosylamines (AcS), in reasonable to moderate
yields (41-55%). This acylation reaction was stereospecific producing the S-anomers only,
within 1 hour at room temperature. In the final step, removal of all the protecting groups of
the amido-derivatives (AcS) with saturated methanolic ammonia, furnished the target
analogues S1,52,53,56,520 and S21, in good yields (66-81%).

All compounds gave satisfactory analytical and spectroscopic data, which were in full
accordance with their depicted structure. In the *H NMR spectra of compounds (AcS) and (S),
the H-1 protons appeared as doublets (Ji12 > 8.5 Hz), indicating a g configuration of the
anomeric linkage. In the IR spectrum of glucosylamine (AcGlc-NHz), the presence of the

amino absorption band at 3467-3267 cm™ and the simultaneous absence of the azido group
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absorption band at 2119 cm™ confirmed the proposed structure, while the ester carbonyl
functions featured at 1753 cm™. Derivatives (S) gave in their IR spectra the characteristic
bands of both the amide bond and the C=0 stretch between 3343-3453 cm™ and 1654-1663
cm?, respectively.

3.3 Biochemical assessment

To validate our synthesized compounds we tested their inhibitory potency on Kkinetics
experiments with rabbit muscle glycogen phosphorylase b (GPb) in the direction of glycogen
synthesis. Human liver GPb and rabbit muscle GPb active sites are identical in amino-acid
sequence and structural architecture and hence active site ligands tested against rabbit muscle
GPb are expected to be potent against human liver glycogen phosphorylase as well. The
inhibition constants are shown in Table 1. All compounds displayed competitive inhibition
with respect to the substrate Glc-1-P, at constant concentrations of glycogen and AMP. The
most potent are compounds S1 (Ki=5.14 uM) and S6 (Ki=4.98 uM) followed closely by S3
(Ki=8.25 pM). From the inhibition constant values (Table 1) it seems that compounds S2, S21
and S20 that have a certain degree of freedom in the linker that connects the Glc-NHCO
group to the aromatic rings are worse inhibitors than those that have a linker with a more rigid
geometry which directs the position of the phenyl rings.

3.3 Cellular evaluation

GP ligands that stabilise the T-state promote conversion of GPa to GPb in hepatocytes
because the T-state is a better substrate for dephosphorylation by phosphorylase phosphatase,
whereas compounds that stabilise the R-state have the converse effect and promote
conversion of GPb to GPa 6. We compared the effects of S1, S2, S3 and S6 with 25 mM
glucose on depletion of GPa during a 30 min incubation of the hepatocytes (Table 4). The
effects of 25 mM glucose were also tested in the presence of the hexokinase inhibitor, 5-

thioglucose, to prevent the elevation in glucose 6-P caused by 25mM glucose.*®* Glucose (25
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mM) lowered GPa by 36% in the absence of inhibitor and by 21% in the presence of the
hexokinase inhibitor, in agreement with previous findings that glucose inactivates GPa
through the combined effects of glucose and the elevated glucose 6-P #°. S1 and S3 caused
significant lowering of GPa at concentrations of 2 uM (11-15%) and at 20 pM (17-20%),
showing that these compounds mimic the effect of elevated glucose at low micromolar
concentrations, and also that their effect is comparable to the inhibition caused by glucose in
the presence of the hexokinase inhibitor. S2 and S6 had no significant effect (Table 4).

3.4 Structural studies

Towards elucidating the structural basis of inhibition and most importantly the differences in
the inhibition constants, we have determined the crystal structures of the six selected
inhibitors in complex with GPb. All inhibitors were found bound at the active site with their
atoms well defined within the electron density maps (Fig. 1). The anchor point for each of the
inhibitors appears to be the glucose moiety which is engaged in hydrogen bond (Table 5) and
van der Waals interactions almost identical to those that have observed for glucose and in
other glucose containing inhibitors X 2 1% 47 Inhibitors S1 and S3 (the most potent) bind very
similar with the R group in the B-pocket participating in van der Waals interactions with
residues Glu88, Asnl133, Tyr280, Asn282, Asp283, Phe286, Arg292, His341, and Glu385
(Fig 2). The introduction of ether oxygen in the linker (S3) instead of methyl did not seem to
affect the binding as this oxygen is not involved in any hydrogen bond interactions with
protein residues in the vicinity (Fig 2). Meanwhile the van der Waals interactions of this
oxygen in the S3 complex are similar to those of the corresponding carbon in the S1 complex.
Inhibitors S6, S20 and S21 bind similar to each other, within the B-pocket, but remarkably
different from S1 and S3. Their R groups are closer to the location of the 280s loop in the free
GPb structure than S1 and S3. The distance between the benzene rings of S6, S20, and S21

are those of S1 and S3 is approximately 1.6, 1.8 and 2.6 A in the respective complexes.

22



However, the methyl groups of S6, and S21, and the ethyl group of S20 on the benzyl group
are all in the same location (within a radius of 0.5 A) involved in similar van der Walls
interactions with residues Tyr280, Asn282, Phe285, His341, and Ala383 (Fig 2). The methyl
group in the linkers of S20 and S21 point towards the same direction and participates in van
der Waals interactions with side chain atoms of Leul36 and Asp339. Inhibitor S2 binds
similarly to S1 but the linker follows a different route to place the tetrahydro-naphtalene
group in the place where the two benzyl rings of S1 and S3 bind, participating in similar van
der Waals interactions with protein residues. The differences in the conformation of the linker
observed are probably imposed by the architecture of the fB-pocket in the protein and its
hydrophobic characteristics that attract the R group of all six inhibitors. Thus, since the R
group is attracted at this location the linker is rearranged (according to its stereochemistry) to
allow the binding.

All six inhibitors upon binding induce a significant conformational change of the 280s loop
(residues 280-288) is observed when comparing the complex structures to the unliganded
(Fig. 3). Thus, it seems that the presence of the R group of the two inhibitors induces the
movement of this loop away from the active site making space for the inhibitor. Thus the
atoms from residues 282-287 upon superposition onto the corresponding ones of the
unliganded GPb structure show an rms displacement of 1.5, 1.2, 2.0, 2.2, 1.2 and 2.2 A for the
S1, S2, S3, S6, S20 and S21 complexes, respectively. From the above values it is evident that
S2 and S20 cause the smaller disturbance to the 280s loop. Comparing the conformational
change of the 280s loop induced by the binding of the inhibitors it seems that S1, S2 and S20
trigger a mere displacement of the 280s loop while the rest of the inhibitors cause also more
significant conformational changes. Briefly, in the S3, S6, and S21 complexes Asp283 and
Asn284 shift away from the ligand to avoid clashes with the R group, with concomitant shifts

of the other residues of the 280s loop. More specifically, Asn284 flips 180° and is positioned
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between the phenyl rings of Phe285 and Tyr613, two residues that constitute the inhibitor site
at the entrance of the catalytic site in GPb, resulting in its disruption. This rearrangement of
the 280s loop is in the direction of the R to T allosteric conversion and has been also observed
in other GPb ligand complexes with bulky benzoyl moieties 480,

4. Discussion and Conclusions

The structural studies offer an explanation for the differences in the inhibitory potency of the
six inhibitors. Thus, since all six inhibitors are involved in the same hydrogen bond
interactions (direct and water mediated) our attention shifted to the van der Waals interactions
of the ligands. The virtual screening was performed with the goal to maximize the non-polar
interactions of the R group within the B-pocket of the active site. The two most potent
inhibitors S1 and S6 that display similar potency form the same number of van der Waals
interactions with the protein (100) while the third best (S3) participates in slightly fewer (91)
and thus has a slight increased K;j value. This pattern is repeated with the other two inhibitors,
S2 and S21 that engage in 78 and 71 van der Waals interactions with the protein and have K;
values of 48.7 and 75.3 uM, respectively. The only exception to this pattern is S20 that forms
71 non-polar interactions like S21 but has a K; value five times bigger than S21 (Table 1). The
main difference in the binding of these two inhibitors is the conformational change they
induce on the 280s loop. Thus, the binding of S20 causes a more severe rearrangement of the
loop than the one caused by the binding of S21. This is pronounced by the shifts of Asp283
and Asn284 described above, and this probably has energy cost that increases the K; value of
S20 with respect to that of S21.

A structural comparison with the GPb - N-4-phenylbenzoyl-2-N'-f-D-glycopyranosyl urea
complex “° (PDB id: 2gln), the inhibitor (Ki=3.7 uM ) used as a scaffold for modelling
reveals that S1 and S3 bind very similar with this compound. However, both S1 and S3 lack

the second carbonyl oxygen in the linker of the scaffold compound and thus are not involved
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in any of the additional water-mediated of the scaffold compound and Gly134, Gly135,
Gly137, and Asp283. These interactions probably are responsible for the slightly better
inhibitory potency of the scaffold compound with respect to S1 and S3.

S1 and S3 are effective at causing inactivation of GPa in hepatocytes at low micromolar
concentrations. The magnitude of the inhibition is smaller than for 25 mM glucose which is
mediated in part through the raised concentration of glucose 6-P*, but it is comparable to the
effect of 25 mM glucose in the presence of the hexokinase inhibitor which blocks glucose
phosphorylation and the elevation in glucose 6-P.

The current synthetic scheme/combinatorial protocols were for glucose-NHCO-R ligands,
where by default the —R group was connected to the -NHCO- via a carbon. We now plan to
extend our screening approach to glucose analogues with a more extended linker such as —
NHCONH- since compounds with this linked have shown high potency “°. In conclusion, the
results of the present work, which is the first high-throughput structure-guided screening of
commercially available small chemical entities databases for GPIs reported, show that this

approach can generate potent drug-like GPIs that are effective both in vitro and ex vivo.

Acknowledgments: This project was implemented under the "ARISTEIA" Action of the
"Operational Programme Education and Lifelong Learning" and is co-funded by the European
Social Fund (ESF) and National Resources. This work was supported in part by the
Postgraduate Programmes ‘‘Biotechnology-Quality assessment in Nutrition and the
Environment”, ““Application of Molecular Biology-Molecular Genetics-Molecular Markers”,
Department of Biochemistry and Biotechnology, University of Thessaly. Work at the
Synchrotron Radiation Sources, MAX-lab, Lund, Sweden and EMBL Hamburg Outstation,
Germany, was supported from the European Community's Seventh Framework Programme

(FP7/2007-2013) under BioStruct-X (grant agreement N°283570).

25



Supporting Information Available: Tables of the virtual screening results.

References

1. Oikonomakos, N. G. Curr. Protein. Pept. Sci. 2002, 3, 561.

2. Somsak, L.; Czifrak, K.; Toth, M.; Bokor, E.; Chrysina, E. D.; Alexacou, K. M.;
Hayes, J. M.; Tiraidis, C.; Lazoura, E.; Leonidas, D. D.; Zographos, S. E.; Oikonomakos, N.
G. Curr Med Chem 2008, 15, 2933.

Oikonomakos, N. G.; Somsak, L. Curr. Opin. Investig. Drugs 2008, 9, 379.

Hayes, J. M.; Leonidas, D. D. Mini Rev. Med. Chem. 2010, 10, 1156.

Agius, L. Mini Rev. Med. Chem. 2010, 10, 1175.

Treadway, J. L.; Mendys, P.; Hoover, D. J. Expert Opin. Investig. Drugs 2001, 10,
39.

Agius, L. Best Pract. Res. Clin. Endocrinol. Metab. 2007, 21, 587.

Kurukulasuriya, R.; Link, J. T.; Madar, D. J.; Pei, Z.; Richards, S. J.; Rohde, J. J.;
Souers Al SzczepankleWICZ B. G. Curr. Med. Chem. 2003, 10, 123.

9. Kurukulasurlya R.; Link, J. T.; Madar, D. J.; Pei, Z.; Rohde, J. J.; Richards, S. J.;
Souers, A. J.; Szczepankiewicz, B. G. Curr. Med. Chem. 2003, 10, 99.

10. Somsak, L. Comptes Rendus Chimie 2011, 14, 211.

11. Martin, J. L.; Veluraja, K.; Ross, K.; Johnson, L. N.; Fleet, G. W. J.; Ramsden, N. G.;
Bruce, I.; Orchard, M. G.; Oikonomakos, N. G.; Papageorgiou, A. C.; Leonidas, D. D.;
Tsitoura, H. S. Biochemistry (USA) 1991, 30, 10101.

12. Oikonomakos, N. G.; Somsak, L. Curr Opin Investig Drugs 2008, 9, 379.

13. Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J.; Mainz, D.
T.; Repasky, M. P.; Knoll, E. H.; Shelley, M.; Perry, J. K.; Shaw, D. E.; Francis, P.; Shenkin,
P.S.JMed Chem 2004, 47, 17309.

14. :

15.  Jones, G.; Willett, P.; Glen, R. C. J. Mol. Biol. 1995, 245, 43.

16. Feher, M. Drug Discov Today 2006, 11, 421.

17. Irwin, J. J.; Shoichet, B. K. J Chem Inf Model 2005, 45, 177.

18.  Van de Waterbeemd, H. Expert Opin Drug Metab Toxicol 2005, 1, 1.

19.  Thompson, T. N. Curr Drug Metab 2000, 1, 215.

20. Papageorgiou, A. C.; Oikonomakos, N. G.; Leonidas, D. D.; Bernet, B.; Beer, D.;
Vasella, A. Biochem. J. 1991, 274, 329.

21. Kaminski, G. A.; Friesner, R. A.; Tirado-Rives, J.; Jorgensen, W. L. J Phys Chem B
2001, 105, 6474.

22. Somsak, L.; Kovacs, L.; Toth, M.; Osz, E.; Szilagyi, L.; Gyorgydeak, Z.; Dinya, Z.;
Docsa, T.; Toth, B.; Gergely, P. J Med Chem 2001, 44, 2843.

23. Benltifa, M.; Hayes, J. M.; Vidal, S.; Gueyrard, D.; Goekjian, P. G.; Praly, J.-P.;
Kizilis, G.; Tiraidis, C.; Alexacou, K. M.; Chrysina, E. D.; Zographos, S. E.; Leonidas, D. D.;
Archontis, G.; Oikonomakos, N. G. Bioorg. Med. Chem. 2009, 17, 7368.

24.  Truchon, J. F.; Bayly, C. I. J. Chem. Inf. Model. 2007, 47, 488.

25. Zhao, W.; Hevener, K. E.; White, S. W.; Lee, R. E.; Boyett, J. M. BMC
Bioinformatics 2009, 10.

26. Sheridan, R. P. J. Chem. Inf. Model. 2008, 48, 426.

27.  Swamidass, S. J.; Azencott, C. A.; Daily, K.; Baldi, P. Bioinformatics 2010, 26, 1348.
28. Mackey, M. D.; Melville, J. L. J. Chem. Inf. Model. 2009, 49, 1154.

29. Fawcett, T. Pattern Recogn. Lett. 2006, 27, 861.

ONB OO AW

26



30. Charifson, P. S.; Corkery, J. J.; Murcko, M. A.; Walters, W. P. J. Med. Chem. 1999,
42, 5100.

31. Clark, R. D.; Strizhev, A.; Leonard, J. M.; Blake, J. F.; Matthew, J. B. J. Mol. Graph.
Model. 2002, 20, 281.

32. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Advanced Drug Delivery
Reviews 2001, 46, 3.

33.  Jorgensen, W. L.; Duffy, E. M. Advanced Drug Delivery Reviews 2002, 54, 355.

34.  Tropper, F. D.; Andersson, F. O.; Braun, S.; Roy, R. Synthesis-Stuttgart 1992, 618.
35. Jarrahpour, A.; Alvand, P. Iran.J. Sci. Tech. Trans. a-Sci. 2007, 31, 17.

36.  Tsirkone, V. G.; Tsoukala, E.; Lamprakis, C.; Manta, S.; Hayes, J. M.; Skamnaki, V.
T.; Drakou, C.; Zographos, S. E.; Komiotis, D.; Leonidas, D. D. Bioorg. Med. Chem. 2010,
18, 3413.

37. Leatherbarrow, R. J. Erithacus Software Ltd. Staines, U.K. 1998.

38.  Alexacou, K. M.; Tenchiu Deleanu, A. C.; Chrysina, E. D.; Charavgi, M. D.; Kostas,
I. D.; Zographos, S. E.; Oikonomakos, N. G.; Leonidas, D. D. Bioorg. Med. Chem. 2010, 18,
7911.

39. Leslie, A. G. W.; Powell, H. R. In Evolving Methods for Macromolecular
Crystallography; Read, R. J., Sussman, J. ., Eds.; Springer, 2007; Vol. 245, 41.

40. CCP4. Acta Crystallogr. 1994, D 50, 760.

41.  Schuttelkopf, A. W.; van Aalten, D. M. F. Acta Crystallogr. D. Biol. Crystallogr.
2004, 60, 1355.

42.  Chen, V. B.; Arendall, W. B., 3rd; Headd, J. J.; Keedy, D. A.; Immormino, R. M.;
Kapral, G. J.; Murray, L. W.; Richardson, J. S.; Richardson, D. C. Acta Crystallogr. D. Biol.
Crystallogr. 2010, 66, 12.

43. DeLano, W. L.: Sa Carlos, CA, USA, 2002.

44.  Tudhope, S. J.; Wang, C. C.; Petrie, J. L.; Potts, L.; Malcomson, F.; Kieswich, J.;
Yagoob, M. M.; Arden, C.; Hampson, L. J.; Agius, L. Diabetes 2012, 61, 49.

45.  Aiston, S.; Green, A.; Mukhtar, M.; Agius, L. Biochem. J. 2004, 377, 195.

46.  Aiston, S.; Hampson, L.; Gomez-Foix, A. M.; Guinovart, J. J.; Agius, L. J Biol Chem
2001, 276, 23858.

47. Kantsadi, A. L.; Hayes, J. M.; Manta, S.; Skamnaki, V. T.; Kiritsis, C.; Psarra, A. M.;
Koutsogiannis, Z.; Dimopoulou, A.; Theofanous, S.; Nikoleousakos, N.; Zoumpoulakis, P.;
Kontou, M.; Papadopoulos, G.; Zographos, S. E.; Komiotis, D.; Leonidas, D. D.
ChemMedChem 2012, 7, 722.

48. Oikonomakos, N. G.; Kosmopoulou, M.; Zographos, S. E.; Leonidas, D. D.; Chrysina,
E. D.; Somsak, L.; Nagy, V.; Praly, J. P.; Docsa, T.; Toth, B.; Gergely, P. Eur. J. Biochem.
2002, 269, 1684.

49. Nagy, V.; Felfoldi, N.; Konya, B.; Praly, J. P.; Docsa, T.; Gergely, P.; Chrysina, E. D.;
Tiraidis, C.; Kosmopoulou, M. N.; Alexacou, K. M.; Konstantakaki, M.; Leonidas, D. D.;
Zographos, S. E.; Oikonomakos, N. G.; Kozmon, S.; Tvaroska, I.; Somsak, L. Bioorg. Med.
Chem. 2012, 20, 1801.

50. Kantsadi, A. L.; Manta, S.; Psarra, A. M.; Dimopoulou, A.; Kiritsis, C.;
Parmenopoulou, V.; Skamnaki, V. T.; Zoumpoulakis, P.; Zographos, S. E.; Leonidas, D. D.;
Komiotis, D. Eur. J. Med. Chem. 2012, 54, 740.

27



TABLES

Tablel. The chemical structures of the inhibitors studied with the K; values for each

inhibitor.
Compound Chemical Structure Ki (uM)
S1 5.14 £ 0.77
S2 HO 48.68 £ 4.49
%
HO
on T\/\%
S3 o Q 8.25+0.77
e )
HO
HO NH
i O
S6 HO Me 4.98.+0.58
HO
HO NH
OH X
S20 HO 376.87 + 17.04
HO
HO NH \\\O/
OH 2
me
S21 HO Me 75.29 £ 6.96
/&/ me me
HO
HO NH
OH
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Table 2. Statistical results for ranking of training set ligand binding affinities from individual
scoring functions and after consensus scoring with a Simple Sum Rank of Glide-SP and

GOLD-ChemPLP.2

Statistical XP Chemscore  Goldscore ASP ChemPLP SP Simple Sum

Metric Rank
SP+ChemPLP

Hit Rate 50 50 60 50 70 80 80

(%)

E.F. 2.0 2.0 2.4 2.0 2.8 3.2 3.2

AU-ROC 0.67 0.71 0.86 0.84 0.92 0.91 0.92

(N)SLR 0.60 0.67 0.82 0.81 0.92 0.89 0.91

R? 0.02 0.13 0.20 0.14 0.31 0.28 0.46

Ranking of 3,4,5,6,9,14, 1,3,6,7,8,13,2 1,2,4,6,89,12 1,2,456,11,13 1,234,5,79,1 1,2,35,7,8,9, 1,2,35,6,7,8,10,
actives 17,26,29,37  1,22,26,29 ,16,17,18 ,16,19,22 1,1417 10,15,16 14,17

4 Statistical metrics calculated as described in text. R2 represents the correlation between the predicted and actual
ranking of training set ligands using the different methods.
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Table 3. Docking/consensus scoring and ADME results for the ligands shown in Table 1.2

S . N Jorgensen’s Rule of Three &
- Lipinski’s Rule of Five & Violations (V) Violations (V)
Vot
code Rank Rank |Simple otes NUM NUM
Ligand Glide- | GOLD- | Sum o | RMSD*® : : log P Num.
(Acid sp |lchempLrl rank 127 MW | H-bond | H-bond (olw) Caco-2 | logS | jo
Ichloride) donors |acceptors \Y perm. Metab \Y
[(4%)° (<500) (<5) (>22nmis) | (>-5.7) | o)
=3 | (=10
S1 133434881 1 1 2 3(3) ] 0.364 | 385.4 5 * 0851 | O 80.2 -3.704 5 0
S2 ]11631072] 10 8 18 | 1(2) | 0.934 ] 3795 5 * 0208 | O 95.1 -2.926 9* 1
S3  ]26470275] 18 5 23 13(3) | 1505 | 3894 5 8* -0.082 | 0 50.9 -2.385 7 1
S6 26470293 17 54 71 1(2) | 1.707 | 3514 4 * 029 | O 98.5 -3.08 6 0
S20 ]11629160] 106 16 122 11(1) ] 0.910 | 3534 5 * -0.162 | 0 89.0 -2.343 8 1
S21 ]11629207] 78 65 143 1 0(1) | 0.654 | 367.4 5 7* 0.01 0 76.7 -2.168 9* 1
Range
95% 130 - -2.0to <25 poor; | -6.5t0
Known i i i i 705 |20-2001 0.0-6.0 6.5 ~ |>500great| 0.5 18 | -
Drugs®

2 See text for full details. Violations of rules highlighted in italics, while those values outside the range of 95% of know drugs are

highlighted with an asterisk (*). ® Coarse quantile votes (maximum of 3) received by ligands if ranked in the top ~1.5% and 4%(in
parentheses) of screened database using the other docking methods/scoring functions (GOLD-ChemScore, -GoldScore and —ASP).
‘RMSD is the difference between Glide-SP and GOLD-ChemPLP ligand poses (heavy atoms) in-place.® QikProp 3.3 User Manual.
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Table 4. Effects of glucose analogues on GPa depletion in hepatocytes.

Compound Concentration used GPa (% control)
Glucose 25 mM 64.1+4.4**
5-thioglucose 9mM 106.2 +4.0
Glucose - 5-thioglucose 25 mM -9 mM 78.7+£29**
mixture

S1 2 uM 89.4+£2.1**
S1 20 uM 83.3+£2.0**
S2 2 uM 93.0+4.8
S2 20 uM 100 +6.6
S3 2 uM 845+6.3*
S3 20 uM 80.3+3.1**
S6 2 uM 105+ 11.5
S6 20 uM 106 +7.8

Hepatocytes were incubated in MEM containing 5mM and the analogues indicated (at 2 or 20 M) or
with 25 mM glucose without or with hexokinase inhibitor (5-thioglucose). After 30 min, hepatocytes
were snap frozen for determination of GPa in the cell extracts. GPa is expressed as percentage of the
respective controls with 5 mM glucose without or with 9 mM 5-thioglucose. Means £ SEM (n=5).

* P <0.05; ** P <0.005, effect of analogue or 25 mM glucose relative to the respective control
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Table 5. Potential hydrogen bond interactions of inhibitors with GPb residues in the crystal.
Numbers shown are distances in A.

" Inhibitor  Protinatom _ Distanced)
atom Sl S2 S3 S6 S20 S21
o2 Tyr573 OH 3.2 31 31 - 31 3.2

Glu672 OE1 3.2 3.2 31 31 3.0 31

Water 2.6 2.6 2.7 2.7 3.2 2.8

Water - 2.8 2.9 - 2.8 2.7

o3 Glu672 OE1 2.8 2.8 2.8 2.6 2.8 2.8
Ala673 N 33 33 33 - 33 -

Ser674 N 3.0 3.0 3.1 3.1 3.0 2.9

Gly675 N 3.2 31 33 3.0 31 3.0

o4 Gly675 N 2.8 2.9 2.8 2.8 2.9 2.9

Water 2.7 2.7 2.6 2.6 2.6 2.7

o6’ His377 ND1 2.7 2.7 2.6 2.6 2.7 2.8

Asn484 OD1 2.7 2.8 2.9 2.9 2.8 2.7

03 Leul36 N 3.0 - 3.0 3.0 3.2 -
Water 2.8 2.8 3.0 3.1 2.6 -

Water - - 3.2 2.9 - 2.7

N1 His377 O - 2.9 - - - 33
Water - - 2.8 - - -

Total 13 14 16 12 14 13
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Table 6: Summary of the diffraction data processing and refinement statistics for the GPb

complexes
GPb complex S1 S2 S3 S6 S20 S21
Data collection and processing statistics
Resolution (A) 28.83-1.99 23.94-1.90 23.94-2.00 1823-245 23.82-1.85 23.89-2.15
Outermost shell (&)  2.10-1.99 2.00-1.90 2.11-2.00 2.58 —2.45 1.95-1.85 2.27-215
Reflections 169449 254758 104316 72136 216184 242135
measured (17599) (36440) (15051) (10932) (30152) (33396)

Unique reflections® 63559 (6924)

Multiplicity® 2.7(25)
Reymml 0.094 (0.451)
Completeness (%) 94.2 (71.3)
<I/ol > [ 6.2 (2.2)
Refinement statistics

Reryst® 0.165 (0.264)

Rires [ 0.189 (0.307)

No of solvent 223
molecules

r.m.s. deviation from ideality

in bond lengths 0.008
(A)

in angles (°) 1.2
Average B factor (A?)
Protein atoms 36.3
Solvent molecules 37.4
Ligand atoms 38.3
PDB entry 4MHS

75897 (10836)
3.4 (3.4)
0.055 (0.365)
98.1(97.1)

132 (3.2)

0.161 (0.242)
0.188 (0.254)

265

0.007

1.2

31.3
34.8
23.6

4M16

52566 (7918)
2.0 (L.9)
0.073 (0.347)
79.7 (83.1)

7.6 2.7)

0.162 (0.241)
0.200 (0.289)

295

0.009

1.2

31.0
36.2
231

4MHO

33056 (4997)
2.2(2.2)
0.099 (0.531)
91.4 (95.6)

6.3 (1.8)

0.187 (0.256)
0.234 (0.271)

113

0.005

1.0

36.7
28.7
27.1

4MIC

82325 (11899)
2.6 (2.5)
0.056 (0.414)
98.5 (98.8)

10.2 (2.3)

0.161 (0.271)
0.190 (0.286)

301

0.009

13

32.8
37.4
29.6

4MI9

52824 (7533)
4.6 (4.4)
0.103 (0.452)
98.4 (97.3)

8.8 (3.3)

0.163 (0.237)
0.203 (0.298)

208

0.009

13

38.9
37.7
32.6

4MI3

&/alues in parentheses are for the outermost shell.
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LEGENDS FOR FIGURES AND SCHEMES

Scheme 1: (a) glucose based analogues with a- and B-substitutions at the anomeric C1 atom. (b)
glucose based analogues with linker which connects the glucose moiety with an R group. The —

NHCO- linker was investigated in this work.

Scheme 2: (i) Hz, 10% Pd/C, EtOAc, 20 °C, 24 hours; (ii) DMF, RCOCI, Et3N; (iii) ammonia/MeOH.

Figure 1. The REFMAC 2Fq-F. electron density maps of bound ligands contoured at 1.0 ¢ before the
incorporation of the ligand models in the refinement process. The final refinemend models of S1, S2,
S3, S6, S20, and S21 are shown.

Figure 2. Stereo diagrams of the binding of S1 (a), S2 (b), S3 (c), S6 (d), S20 (e), and S21 (f) at the
active site of GPb. Hydrogen bonds are shown as dashed lines and water molecules as black spheres
labeled W.

Figure 3. Stereo diagram of the superposition of the six GPb ligand complexes (white) at the active

site of the free GPb (black). S1 (a), S2 (b), S3 (c), S6 (d), S20 (e), and S21 ().
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