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Abstract 

A triggered oxygen indicator, formulated from a combination of electrochrome, titanium 

dioxide and EDTA, was evaluated for use in food packaging.  Methylene blue was not an 

ideal electrochrome due to its slow reduction to the leuco form and fast subsequent oxidation 

by oxygen present at low concentrations, <0.5%.  Polyviologen electrochromes showed much 

faster reduction after exposure to UV light.  Thionine and 2,2’-dicyano-1,1’-

dimethylviologen dimesylate, which have more anodic reduction potentials compared to 

methylene blue, can be used to produce oxygen indicators with decreased sensitivity to 

oxygen.  These indicators can be used to detect oxygen even when levels increase up to 4.0%. 

 

1. Introduction 

Food products are often packaged in modified atmosphere (MA) packaging, involving low 

oxygen concentration to limit oxidative spoilage of the product [1-3].  As low oxygen 

concentration MA is important for determining the shelf life of the product, a means of 

identifying the integrity of the MA is required.  Oxygen indicators have been proposed to 

visually determine the integrity of the low oxygen concentration MA.  Many oxygen 

indicator devices have been proposed for inclusion into food packaging [4-10], but 

limitations due to legislation, cost and reliability have restricted their commercial use [3, 11].  

The simplest oxygen indicator system [4] uses a reducing agent to generate the colourless 

reduced species, methylene blue, which can then interact with oxygen present in the 

packaging to regenerate the original blue colour.  The reduced form reacts with atmospheric 

oxygen immediately upon formation and therefore needs to be stored in an oxygen free 

environment before it is inserted into food packaging.  A triggered system would circumvent 

the need to carefully store the reactive form prior to use. One example uses a semiconductor 

mediated UV reduction [10].  A printing ink with oxygen indicative properties has been 



suggested as a cheap method of producing an oxygen indicator suitable for food packaging 

[3].   

 

Unfortunately, the commonly used electrochromic dye, methylene blue, indicates the 

presence of oxygen at very low concentrations [3].  The redox potential of methylene blue, 

(E° 11 mV vs. NHE) is significantly below the redox potential of oxygen [12-13], therefore 

the reduced form is highly reactive to oxygen.  The oxygen indicator quickly becomes 

completely oxidised at concentrations below 0.5% oxygen.  This sensitivity may be required 

for some food packages but there are applications where higher residual oxygen levels are 

acceptable and therefore these indicators would be too sensitive.  Fruits and vegetables can be 

packed at low oxygen concentrations to reduce respiration and the associated production of 

ethylene.  These processes result in depletion of the water and nutrients of the product leading 

to loss of product weight and a wilted or shrivelled unmarketable product.  Examples of MAP 

fresh produce are avocados packed at 2–5% oxygen and chilli peppers packed at 5% oxygen.  

In India, the world’s largest fruit producer, 20–22% of fruit produce is lost due to post harvest 

spoilage [14].  There is also the concern that the oxygen indicators could alert the presence of 

oxygen prematurely which will deter customers from purchasing product that is still safe for 

consumption, thus increasing losses [11].  Furthermore, where an oxygen scavenger is 

incorporated into a package the amount of time required for the scavenger to remove residual 

oxygen could trigger the indicator prematurely.  

 

Previous work with similar semiconductor mediated reduction of electrochromic dyes [15] 

has highlighted that an electrochrome with an anodic reduction potential such as 

dichloroindophenol, (E° 228 mV vs. NHE), produces a reduced species after exposure to UV 

light, which is stable in atmospheric oxygen of up to 21%.  This paper investigates the 

incorporation of electrochromes with redox potentials between methylene blue and 

dichloroindephonol to produce oxygen indicators which have a higher tolerance to oxygen 

above 0.5% but still react with oxygen to detect its presence above a set concentration more 

suitable to food packaging.  For example, thionine is a commercially available electrochrome 

which has a redox potential of 62 mV vs. NHE [12].  

 

Viologens are also investigated in this paper. They are electrochromic compounds which are 

pale in the oxidised form and highly coloured in the reduced form [16].  Generally, viologens 



have highly anodic redox potentials, but viologens with more cathodic reduction potentials 

are also known, e.g. 2,2’-dicyano-1,1’-dimethylviologen dimesylate (90 mV vs. NHE) [17].   

 

The viologens can be produced as polymers by condensation polymerisation of 4,4’-

bipyridine and an alkyl dihalide or ditosylate.  Polyviologens retain the redox properties of 

the viologen parent compounds but are less susceptible to possible migration within food 

packaging [18-19].   

 

2. Material and methods  

Poly(butylviologen dibromide) and poly(p-xylylviologen dibromide) were synthesised as in 

[18-19], 2,2’-dicyano-1,1’-dimethylviologen dimesylate was synthesised as in [17].  Titanium 

dioxide was obtained from Degussa (P25 Aerosil).  All other materials were obtained from 

Aldrich.   

 

Oxygen indicators were produced using general formula set out by Mills and Lee [10].  These 

inks were then printed onto a polypropylene substrate by simple draw down printing using a 

K-bar.   

 

Methylene blue based oxygen indicator 

A 2% (w/v) solution of methylene blue was prepared by dissolving methylene blue (1.03 g) 

in deionised water and then making up to 50 ml.  This solution (0.25 g) was then mixed with 

Degussa P25 titanium dioxide (0.25 g) and sodium EDTA (0.25 g) in 5% (w/v) HEC solution 

(10 ml).  The ink was sonicated for 30 seconds.  Isopropanol (1 g) was added to the solution 

immediately before printing. 

 

Thionine based oxygen indicator 

A 2% (w/v) solution of thionine was prepared by dissolving thionine (0.20 g) in deionised 

water up to 10 ml.  This solution (0.26 g) was then mixed with titanium dioxide (0.25 g) and 

sodium EDTA (0.25 g) in 5% (w/v) HEC solution (10 ml).  The ink was sonicated for 30 

seconds.  Isopropanol (1 g) was added to the solution immediately before printing.  

 

2,2’-dicyano-1,1’-dimethyl-4,4’-dipyridinium dimesylate based indicator 



2,2’-dicyano-1,1’-dimethyl-4,4’-dipyridinium dimesylate (0.25 g), Degussa P25 titanium 

dioxide (0.25 g) and sodium EDTA (0.25 g) were mixed into a 5% (w/v) HEC aqueous 

solution (10 g).  The solution was sonicated for 30 seconds.  Isopropanol (1 g) was added 

immediately before printing.   

 

Poly(butylviologen dibromide)/EDTA/HEC 

Degussa P25 titanium dioxide (0.25g), sodium EDTA (0.25g) and poly(butylviologen 

dibromide) (0.25g) were dissolved in 5% (w/v) HEC in deionised water (10ml).  The solution 

was sonicated for 30 seconds.  Isopropanol (1 g) was added immediately before printing.   

 

Poly(p-xylylviologen dibromide)/EDTA/HEC 

Degussa P25 titanium dioxide (0.25g), sodium EDTA (0.25g) and poly(p-xylylviologen 

dibromide) (0.25g) were dissolved in 5% (w/v) hydroxyethylcellulose (HEC) in deionised 

water (10ml).  The sample was sonicated for 30 seconds.  Isopropanol (1 g) was added 

immediately before printing.   

 

As a method to analyse the oxygen indicator formulations at low oxygen concentrations, 

modified atmosphere (MA) pouches were produced.  Pouches were prepared from laminates 

of polyethylene and Camclear
 
plastic films.  Polyethylene was used to enable heat-sealing of 

the pouches; Camclear gave the pouches a low oxygen transmission rate (OTR).  The pouch 

was then MA packed using a Multivac instrument which firstly, evacuated the atmosphere to 

1-5 mbar and secondly, admitted nitrogen to 750 mbar.  The low OTR, of the Camclear layer, 

meant the pouches could be created oxygen free, and oxygen increased passively by 

migration through the Camclear laminate over a period of time.  Using this method the 

performance of the indicators could be investigated in an environment as close to the final 

food MA packaging application as possible.  Oxygen indicator films, made with different 

electrochromes, were printed using a No. 2 K-bar onto a white polypropylene film and MA 

packed within the pouches.  Effectively, this gave some control over the concentration of 

oxygen the indicators were exposed to.  Accurate oxygen concentrations were obtained using 

an Oxysense instrument and an Oxydot within the pouch.  Oxysense measured 

fluorescence decay to accurately determine oxygen concentrations [20].  The oxygen 

indicators were then activated with UV light from a Natgraph UV rig, which used a medium 

pressure mercury arc lamp, and a conveyer speed of 20 metres per minute, which supplied 



370 mJ cm
-3

 energy.  The major emission is at 365 nm.  The colour intensity of the indicators 

was monitored over a period of time by transmission reflectance measured using an Ocean 

optics UV-vis spectrometer between 400 and 900 nm.   

 

3. Results and discussion 

3.1 Reduction of polyviologen compared to methylene blue based indicators 

 

Poly(p-xylylviologen dibromide) was used to compare the effectiveness of the polyviologens 

with methylene blue.  The samples were activated simultaneously using the Natgraph UV rig, 

and therefore show the same degree of UV exposure, seen in Figure 1.  A dark purple colour 

was generated for the polyviologen based system, which lasted less than 30 seconds before 

bleaching back to the clear transparent film, suggestive of oxidation by air.   

 

 

 

Figure 1: Comparison between methylene blue (c, d) and poly(p-xylylviologen dibromide) 

(a, b) based oxygen indicators, before (a, c) and immediately after (b, d) exposure to UV 

light. 

 

Although there is still a distinct colour change for the methylene blue system, the poly(p-

xylylviologen dibromide) based indicator was seen to reduce much more efficiently.  The 

colour change, from pale yellow to dark purple for poly(p-xylylviologen dibromide), was also 

much more visually impressive than dark blue to pale blue for methylene blue.  Compared to 

methylene blue, polyviologen based oxygen indicators required less UV irradiation to 

develop an intense colour change.  Methylene blue based indicators required significantly 



more exposure to UV light, equal to 4 passes under the Natgraph UV rig to completely bleach 

the colour.  As the films were open to air, the oxidation of the reduced electrochrome is 

occurring after UV activation, and a high rate of oxidation could be responsible for the 

limited colour change seen for methylene blue.  However, comparison of the redox potentials 

for methylene blue (11 mV vs. NHE) and poly(p-xylylviologen dibromide) (-165 mV vs. 

NHE) suggests that the reduced species of the latter is more readily oxidised [12].  As a clear 

colour change can be seen for poly(p-xylylviologen dibromide), fast oxidation is unlikely to 

be the cause of limited reduction of methylene blue, as in Figure 1.  The limited colour 

contrast of the methylene blue indicator is also a product of its strong coloured species being 

the oxidised form.  In the methylene blue system, the indicator is blue when oxidised and a 

large proportion of the electrochrome needs to be reduced to the leuco form for the indicator 

to appear clear.  This therefore requires extended UV exposure to mediate the reduction of 

large quantities of the electrochrome.  The polyviologens on the other hand, are colourless in 

the oxidised form and any reduction of the electrochrome results in the generation of a 

distinct colour change.  Only a small fraction of polyviologen needs to be reduced for a 

distinct colour change to occur.  However, the more polyviologen reduced the more intense 

the colour change would be, and the more electrochrome in the reduced state available to 

react with oxygen.   

 

Trials of the indicators based on poly(p-xylylviologen dibromide) and methylene blue 

showed that they are sensitive to very low oxygen concentrations and respond to the presence 

of oxygen at 0.5%.  These indicators are therefore unsuitable for applications where higher 

oxygen concentrations are tolerable or an oxygen scavenger is used.   

 

3.2 Sensitivity to oxygen 

To decrease the sensitivity of the oxygen indicator to oxygen, electrochromes with more 

anodic redox potentials were identified.  The electrochromes thionine (62 mV vs. NHE) and 

2,2’-dicyano-1,1’-dimethyl-4,4’-dipyridinium dimesylate (90 mV vs. NHE) were 

incorporated into oxygen indicator formulations and investigated for their sensitivity to 

oxygen.  As a comparison, indicators produced with methylene blue and poly(butylviologen 

dibromide) were included.  

 



The transmission spectra of the oxygen indicators as the oxygen concentration was increased 

are seen in Figure 2(a-d).  The initial reflectance transmission spectrum of the inks before 

activation was measured using an Ocean Optics device, and referred to as “ref” in the graphs.  

The indicators were then placed in a Camclear and polyethylene laminate pouch, with an 

OxyDot indicator dot and then MA packaged to 0% oxygen.  The indicators were activated 

using a Natgraph UV rig.  To ensure no subsequent photoreduction occurred, the indicator 

was stored in a dark place and left for oxygen to gradually migrate into the package.  The 

indicators were evaluated at oxygen concentrations of 0.00, 1.16, 2.45 and 4.00%, measured 

over a period of 5 days.   

 

Methylene blue was seen to display the presence of oxygen at low oxygen concentrations, in 

this case, below 1.16%, shown in the UV-vis spectra plotted in Figure 2(a).  Also, the 

indicator based on poly(butylviologen dibromide) was also seen to detect oxygen at below 

1.16% oxygen concentration, shown by UV-vis spectra in Figure 2(b).  This is indicated by 

an increase in transmission as the reduced form of poly(butylviologen dibromide) is oxidised 

by oxygen back to its colourless form.  This study investigated how the indicators interacted 

with oxygen at relatively higher oxygen concentrations and as such, the exact oxygen 

concentration at which either the methylene blue or poly(butylviologen dibromide) indicated 

the presence of oxygen was not determined. 
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Figure 2 (a): UV-vis spectra of methylene blue ink formulation in MAP pouch over range of 

oxygen concentrations, from 0.00% to 4.00%. 
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Figure 2(b): UV-vis spectra of poly(butylviologen dibromide) ink formulation in MAP 

pouch over range of oxygen concentrations, from 0.00% to 4.00%. 

 

With the thionine based indicator, the concentration of oxygen needed to be higher before the 

dye changed to the oxidised form.  In this case, the reduced colourless state was still present 

at 1.16 and 2.45% oxygen as seen in the UV-vis spectra plotted in Figure 2 (c).  The colour 

eventually returned by 4.00% oxygen. 
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Figure 2 (c): UV-vis spectra of thionine ink formulation in MAP pouch over range of oxygen 

concentrations, from 0.00% to 4.00% 

 

The 2,2’-dicyano-1,1’-dimethyl-4,4’-dipyridinium dimesylate based ink showed an even 

higher tolerance to oxygen, as shown in  Figure 2 (d).  The coloured reduced state persisted at 

much higher oxygen concentrations, as can be seen by the low transmission compared to the 

reference.  A strong colouration still remained at 4.00% oxygen within the MA pouch.  

Although there was a gradual increase in transmission, i.e. gradual oxidative bleaching, in the 

UV-vis spectra, even at 4.00% oxygen there was a clear visual difference from the reference, 

and therefore the electrochrome had not been completely oxidised.  The experiment was 

terminated by rupturing the pouch, and the 2,2’-dicyano-1,1’-dimethyl-4, 4’-dipyridinium 

dimesylate oxygen indicator was seen to revert back to its original clear film within 30 

minutes. 

 



 

 

Figure 2 (d): UV-vis spectra of 2,2’-dicyano-1,1’-dimethyl-4,4’-dipyridinium dimesylate ink 

formulation in MAP pouch over range of oxygen concentrations, from 0.00% to 4.00%. 

 

Thionine showed a greater stability to oxygen compared to methylene blue and 

poly(butylviologen dibromide).  2,2’-dicyano-1,1’-dimethyl-4,4’-dipyridinium dimesylate 

showed the highest stability to oxidation, compared to all other electrochromes investigated.  

This is due to the anodic E° redox potential for this viologen compound, 90 mV [17], 

compared with poly(butylviologen dibromide), -229 mV, methylene blue, 11 mV, and 

thionine, 63 mV (vs. NHE) [12].   

 

It can also be seen from the spectra of the 2,2’-dicyano-1,1’-dimethyl-4,4’-dipyridinium 

dimesylate indicator, in Figure 2 (d), that there is a possibility for this colorimetric indicator 

formulation to be used as a quantitative oxygen indicator, as there is a gradual increase in 

transmission with increasing oxygen concentration. 

 

Other dyes could be used to fine tune an oxygen indicator with different oxygen 

concentration thresholds, so an indicator would be available for MA packaging with a variety 



of specific oxygen concentrations.  Indicators with different oxygen thresholds could be 

incorporated together to produce a novel quasi-quantitative indicator, i.e. a methylene blue, 

thionine and 2,2’-dicyano-1,1’-dimethyl-4,4’-dipyridinium dimesylate combined indicator 

would show different colouration as the oxygen concentration increased from 0.0–4.0%.   

 

4. Conclusions  

 

Electrochromic dyes can form reduced species that have a different colour to the oxidised 

form.  The reduced species can react with molecular oxygen to regenerate the oxidised 

electrochromes and therefore can be useful as oxygen indicators.  Different electrochromes 

were formulated into an oxygen indicator that was triggered by UV light by mediated 

reduction via EDTA and titanium dioxide.    The oxygen indicator based on poly(p-

xylylviologen dibromide) was more efficient in the trigger step compared to methylene blue, 

determined by colour contrast after activation.  This is because polyviologens are colourless 

in the oxidised state and deeply coloured in the reduced state.  This facilitates the appearance 

of colour contrast during the reduction step as all the electrochrome in the system does not 

need to be reduced for a colour appearance to occur.  For methylene blue a greater proportion 

of the dye needs to be reduced to achieve a perceivable colour change to the human eye.  This 

is currently a problem for indicators based on methylene blue as the reduction process 

requires a long exposure time to UV light.  Polyviologens, such as poly(p-xylylviologen 

dibromide), can therefore be used in the Strathclyde system when food products are sensitive 

to UV exposure associated with the photoreduction step.   

 

As the oxygen indicator detects oxygen by the reduced electrochrome reacting with oxygen, 

the reactivity of the electrochrome to oxidation can be used as a means of controlling the 

sensitivity of the indicator to oxygen.  Generally, the more cathodic the reduction potential of 

the electrochrome, the more reactive the reduced species is to oxidation.  Conversely the 

more anodic the reduction potential of the electrochrome, the less reactive the reduced 

species will be to oxidation by molecular oxygen.  As long as the redox potential of the 

electrochrome is more cathodic than the redox potential of oxygen this can be used to 

produce an oxygen indicator with a decreased sensitivity to oxygen.   

 



Two electrochromes were identified with relatively anodic redox potentials, thionine and the 

viologen 2,2’-dicyano-1,1’-dimethyl-4,4’-dipyridinium dimesylate.  These electrochromes 

were incorporated into an oxygen indicator formulation [10] and their interaction with 

oxygen at low concentrations was analysed.  The reduced form of thionine was seen to persist 

until the oxygen concentration exceeded 2.25% oxygen.  The reduced form of 2,2’-dicyano-

1,1’-dimethyl-4,4’-dipyridinium dimesylate was seen to persist above 4.00% oxygen, but the 

intensity of the colour was seen to gradually decrease between 1.16 and 4.00%.  These 

indicator formulations could therefore be used to detect oxygen when concentrations above 

0.5% are acceptable.   
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