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A unifying explanation of complex frequency spectra of Dor, SPB and
Be stars: combination frequencies and highly non-sinusoidal light curves

Donald W. Kurtzi Hiromoto Shibahasii,Simon J. Murphy?#
Timothy R. Bedding* and Dominic M. Bowmah

ABSTRACT

There are many Slowly Pulsating B (SPB) stars aridor stars in thé&eplermission data set.
The light curves of these pulsating stars have been classi ed phenomenologically into stars Wit@
symmetric light curves and with asymmetric light curves. In the same effective temperatures
ranges as the Dor and SPB stars, there are variable stars with downward light curves that have3
been conjectured to be caused by spots. Among these phenomenological classes of stars, sd"g.'ne
show ‘frequency groups’ in their amplitude spectra that have not previously been understood=
While it has been recognized that non-linear pulsation gives rise to combination frequencie§
in a Fourier description of the light curves of these stars, such combination frequencies havg
been considered to be a only a minor constituent of the amplitude spectra. In this papeé
we unify the Fourier description of the light curves of these groups of stars, showing that
many of them can be understood in terms of only a few base frequencies, which we attributé_
to g-mode pulsations, and combination frequencies, where sometimes a very large numbey
of combination frequencies dominate the amplitude spectra. The frequency groups seen iﬁ
these stars are thus tremendously simpli ed. We show observationally that the combinatiord
frequencies can have amplitudes greater than the base frequency amplitudes, and we sh@w
theoretically how this arises. Thus for someDor and SPB stars, combination frequencies 3
can have the highest observed amplitudes. Among the B stars are pulsating Be stars that sh&v
emission lines in their spectra from occasional ejection of material into a circumstellar disc@
Our analysis gives strong support to the understanding of these pulsating Be stars as rapidfy
rotating SPB stars, explained entirely by g-mode pulsations.
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2
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o

e

Key words: asteroseismology —stars: emission-line, Be —stars: interiors —stars: oscillations
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for RR Lyr stars and Cepheids since the pioneering work of Simon
1 INTRODUCTION & Lee (1981), and the study of combination frequencies and their
Itis well known that Fourier analysis of non-sinusoidal light curves astrophysical implications is well established for white dwarf stars
gives rise to harmonics and combination frequencies that describe(see e.g. Wi2001; Montgomen2005). Combination frequencies
the light-curve shape in terms of sinusoids. High-amplitude pul- dominate the amplitude spectra of somé&ct stars, for example
sations are non-linear, giving rise to signi cant amplitudes at the KIC 11754974 (Murphy et al2013) and KIC 8054146 (Breger
harmonics of the base frequencies. Multimode non-linear pulsation et al. 2012; Breger & Montgomerp014), where the astrophysi-
results in interaction among the base frequencies and their harmon-cal implications and uses of the combination frequencies are more
ics that give rise to sum and difference combination frequencies of uncertain than for white dwarf stars.
the formnf £ mf. Studying the relationships among the amplitudes =~ Among B, A and F main-sequence stars, there are two classes of
and phases of the Fourier components has been standard practicg-mode pulsators: the Dor stars with temperatures in the range of
early to mid-F stars, and the Slowly Pulsating B (SPB) stars with
temperatures in the range of the mid- to late B stars. The light curves
dwkurz@uclan.ac.uk of these stars have been widely discussed phenomenologically,
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particularly in the era of the photometric space missiM@ST, Another misconception is that a light curve that has larger varia-
CoRoTandKepler. Debosscher et al2011) performed an auto-  tion at minimum than maximum cannot be purely pulsational. This
mated variability analysis on about 150 000 light curves from the idea has led to interpretations of some SPB and pulsating Be star
Kepler Quarter 1 data, nding many Dor stars. Balona et al. light curves as being caused by spots, either completely or partially.
(2011b) visually scanned about 10 000 stars inKkeler data in The idea has crossed over into the visual description of the light
the temperature range of theDor stars and the coolest SPB stars curves of Dor stars such that the papers using the terminology
and classi ed the light curves phenomenologically as symmetric or ‘asymmetric’ for the non-sinusoidal pulsators only include those
asymmetric, where the asymmetric light curves show larger range atstars that show more variation at maximum light than minimum
maximum amplitude than at minimum amplitude. Tkachenko et al. light, even though there are Dor stars that do the opposite, as is
(2013) determined atmospheric parameters from high-resolution common for SPB stars. We show examples in sections below.
spectrafor 69 stars in théeplerdata set that haveDor g-mode pul- We use our own description of the light curves at some expense
sations. Balona et al2Q11a) similarly provided visual descriptions  of proliferating nomenclature. We describe stars that have non-
of 48 B stars in th&eplerdata. Following the lead of these papers, sinusoidal light curves with larger range at maximum light than
McNamara, Jackiewicz & McKeeverR(12) classi ed the light minimum light as having ‘upward’ light curves, and those that do
curves of 252 B stars in thepler data, describing many of the  the opposite as having ‘downward’ light curves. Stars previously
stars as ‘Fg’, meaning that they show frequency groups in their am- classi ed as having symmetric light curves are part of a continuum
plitude spectra. Most recently Bradley et &0(5) searched among  between these extremes. Below, we show examples of the various
2768Keplerstars for Dor stars, Sct stars and so-called ‘hybrid’  shapes of the light curves and their simple explanation in terms of
stars that show both p- and g-mode pulsations. They adopted thenon-sinusoidal pulsation in only a few pulsation modes with com-
notation of Balona et al. (2011b) to describe the light curves as bination frequencies. We nd that manyDor, SPB and pulsating
‘symmetric’ and ‘asymmetric’. Be star light curves are far simpler than has previously been under-
Many of these papers used limited data sets fi¢epler, un- stood, and we make a strong case that the only physics needed to
intentionally resulting in signi cant confusion in the description understand all of these stars is non-linear pulsation theory. There is
of the light curves. In addition to pulsation, stars may show light no need of, and no evidence for, spots.
variability caused by orbital or rotational variations. Those are typ-  The reduction that we demonstrate in the apparent complexity of
ically non-sinusoidal, hence also give rise to harmonics of the the amplitude spectra of the stars showing frequency groups is stun-
base frequencies. They do not, however, generate combinationning. Instead of hundreds of frequencies being extracted for analy-
frequencies. It is thus possible to distinguish pulsation from ro- sis, many of these stars have but a few pulsation mode frequencies
tational or orbital variability when combination frequencies are with a plethora of combination frequencies, some of which can have
present. amplitudes greater than the base frequencies. As in the cases of the
From the unprecedented time span of 4 yr of theKglplerdata p-mode pulsation in theSct stars KIC 11754974 and KIC 8054146
set, it is now clear that g modes inDor stars and SPB stars can mentioned above, the amplitude spectra of the g-mode pulsators on
be so closely spaced in frequency that data sets spanning less thathe main-sequence can be dominated by combination frequencies.
1 yr may not resolve the individual pulsation frequencies. Excellent These must be fully modelled to get to the pulsation mode fre-
examples of this are seen in theDor — Sct stars KIC 11145123  quencies that are the fundamental data of asteroseismology, and
(Kurtz et al.2014; Van Reeth et a015) and KIC 9244992 (Saio  they have the potential to provide new astrophysical information
et al.2015), and in several other examples given by Bedding et al. for main-sequence stars, as they do for pulsating white dwarf stars.
(2014) and Van Reeth et al. (2015), where the frequency spacings of Inthis paper, we explain that what previously appeared to be com-
long series of consecutive radial overtone g modes with rotational plex variability with dozens or hundreds of frequencies is a result
multiplets require up to half a year of data for full resolution. Thus of only a few base frequencies and their combination frequencies.
previous descriptions of the character dbor and SPB lightcurves  This is an important observational result that greatly simpli es our
based on relatively short data sets should be viewed with caution. understanding of the light curves ofDor, SPB and pulsating Be
The visual descriptions of light curves where pulsation modes are stars. That such strong non-linear interaction exists indicates high
not resolved and combination frequencies are not recognized haveamplitudes for the base modes in the stellar cores. It is a goal to
led to erroneous conclusions. gain asteroseismic inference from these modes by modelling them.
The presence of combination frequencies irDor and SPB
stars has been recogmze_d by many. Degroote et al. (2009) devel-2 THEORETICAL CORROBORATION
oped an automated combination frequency searcR&RoTSPB
stars. Rpics (2012) discussed in general the search for combination 21 Wi .
) . . eak non-linear system
frequencies for B, A and F main-sequence stars and problems asso-
ciated with their identi cation, while Balona (2012) gave a detailed To draw some basic characteristics of non-linear pulsation of stars,
discussion in the case ofSct stars, particularly in comparison with  let us consider a case of weakly non-linear pulsation, in which the
white dwarf stars with the purpose of eventually using the informa- eigenfrequencies are still close to those obtained by linear calcu-
tion in the combination frequencies for astrophysical inference. lation. We consider the unperturbed static equilibrium state of a
Nevertheless, as Balona (2012) pointed out, the combination fre- star and superimpose on it perturbations. To make the problem sim-
guencies have usually been considered a nuisance in the search fople, we assume that in the equilibrium state the star is spherically
pulsation mode frequencies for asteroseismology. He also statessymmetric.
that ‘combination frequencies are of much lower amplitude than = We de ne the displacement vector,
parent mode ... [frequencies] ...’. While this may be a widely &

. L - . L . r,t)==rSr, (1)
held view, it is not necessarily true: combination frequencies can
have observed amplitudes greater than those of the base frequenciesyherer denotes the Lagrangian position variable of a given uid
as we show theoretically in Section 2. element which is at = r in the equilibrium state. The equation

MNRAS 450,3015-3029 (2015)
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of oscillations, which is expressed with a single variahlé then equation (4) into equation (6) leads to

divided into the linear operatdt( ) and the non-linear operators

N (=23,...) T+L()

LN ()N (L )+ 0, @ =§ N a ,a el ) C @

whereN  denotes the operator of theh order of . Retaining

) ) ) - The cross terms in the non-linear operatbr induce the com-
only the rst-order terms, we obtain the linearized equation

bination frequencies. As a consequence, the particular solution to
(r ,t) also has combination frequencies +

—+L()=0. (3 It should be noted that the associated general solution of the

t . . . . . .
inhomogeneous differential equation (7) is of the form of equation

Sincel does notinclude any operator with respect to time, the solu- (4), and it is already given as a rst-order solution. Hence, we only

tion to equation (3), de ned as (r ,t), is separated into a spatial  have to consider the particular solution.

function and a temporal function. The latter is expressed by expi A special case is the cross term of with itself. That induces

with frequency . Equation (3) turns into an eigenvalue problem the second harmonic 2. Similarly, the non-linear operat

with a set of suitable boundary conditions. The eigenfunctions form produces the third harmonic 3 through the cross term between

an orthogonal complete set, hence the linear adiabatic oscillations  and 2 or the triple term of . This is the process producing

of a star can be expressed as a non-sinusoidal light curve from a single mode.

(r.t)y="a (r)expi( t+ ) 4
2.3 Why do some combination frequencies have amplitudes

: o
where and ( r ) denotes the eigenfrequency and the eigen- greater than their base frequenciess

function of the mode indek, respectively, and and are the The second-order perturbation is of the order of the square of the
amplitude and the phase of the modé=at0. Here, the mode index linear perturbation. It should be noted here, however, that this state-
k consists of the spherical degre¢he azimuthal ordem, and the ment concerns the intrinsic amplitudes. The visibility, which is

radial ordern, and the eigenfunction (r ) is written with the highly dependent on the surface pattern of the oscillations, must be
spherical coordinates,( , )as taken into account to evaluate the actual observed amplitudes.
The non-linear operatd¥ induces cross terms of spherical har-
(r) monics, and they are described in terms of a series of spherical
= MY e+H () Y o _iie , ®) harmonics with azimuthal order that is equal to the sum of the
sin parent spherical harmonics;

whereY (, ) denotes the spherical harmonics with the spherical ¥ (, )Y (, )
degred and the azimuthal orden, and  (r) andH (r) are the

9T0Z ‘LT Areniga4 uo Areiqi] ay y81o°sfeulnolpioixo:sesuw//:dnyuol) papeojumoq

radial eigenfunctions, with respectitdfor the displacement in the (1) ¢ (. Sml m)y G ®)
radial direction and for that in the horizontal direction, respectively,
with the radial orden and the spherical degréeThe character- wherec (I, Sm, |, m) is de ned by
istics of the linear adiabatic pulsations of stars have already been
investigated in detail, as in the textbooks Unno et 8889) and c(ml,m)== dY (, )Y (, )Y ¢, ) 9)
Aerts, Christensen-Dalsgaard & Kurtz (2010).
Including the second-order terms of equation (2), we obtain the and| is in the range of [I S | |, | + | ], except the range of
following equation for  (r,t): [0, |m+ m|]. This means that even if the rst-order perturba-
tions associated with high degree have low observed amplitudes
+L =3N ' ) (6) and are dif cult to detect, their products may induce low degree
t components, e.¢.= 0, that are detectable.

So, it is not necessarily true that combination frequencies of
higher order perturbations have smaller observed amplitudes than
the base frequencies. Some combination frequencies can have ob-
served amplitudes greater than those of their base frequencies.

Since (r ,t) has already been independently solved, the above

equation (6) is regarded as an inhomogeneous equation fgr , t)

with a source termN ( , ), which originates from the

squared terms of the rst-order free oscillations. In other words,

equation (6) is regarded as an equation for a forced oscillation in-

duced by the non-lineartersh ( , ). The particular solution 2.4 Why do some stars show downward light curves?

to this inhomogeneous equation gives the correctior tér ,t). - —_ . .
In a similar way, the higher order solutions are considered as Superposition of two oscillations with nearly equal frequencies

forced oscillations successively induced by the non-linear terms of Egds o a tl)qeat phenomenon. V;/'th”an rl]ncreasevl\?h the t:requencyc/j
the lower order solutions. ifference, the wave pattern gradually changes. en the secon

harmonic is imposed on the base frequency, the oscillation pattern
signi cantly deviates from symmetry with respect to the zero level.
If the phase difference of these two frequenciesS | is nearly

inati i 2
2.2 Why do the combination frequencies appear” zero, the wave pattern shows an ‘upward’ shape (which has previ-

The operatoN  consists of cross terms of (r ,t), and it is ously been called ‘asymmetric’), whereas when the phase difference
bilinear. Hence, the non-linear term is separated into a spatial partis close to , the wave pattern shows a ‘downward’ shape as shown
and a temporal function. Substitution of the form of given by in Fig. 1.

MNRAS 450,3015-3029 (2015)
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frequencies.

For all stars, we visually inspected the light curve and removed
a few obvious outliers. The time span for Q0-17 data is 1470.5 d,
and for Q1-Q17 data is 1459.5 d. Typically, about 64 840 data
points comprised each data set. Tabigves basic data for the stars
analysed in this paper.

It has been yvidely considered that non-_linear pulsation induces 3 1 Frequency analysis
only upward light curves and that pulsation cannot be the sole
physical cause of downward light curves. However, as demonstratedWe rst produced a catalogue of all stars in tKepler data with
here, pulsation induces downward light curves in some cases. Theeffective temperatures in tt¢epler Input Catalogue (KIC) above
base frequencies are driven by thenechanism or by convective ~ 6400 K. Our catalogue comprises light curves and amplitude spec-
blocking, while the harmonic frequencies are damped by heat loss. tra for each quarter dfeplerdata for each star. We have visually
Differences in thermal properties may cause phase diﬁerencesstudied each of these p|0tS. For stars that we studied in more detail,
between these two extreme groups to differ hyvith intermediate ~~ We rst examined the entire data sets, Q0-Q17, using the interac-
phases giving rise to less extreme distortion of the light curves. We tive light curve and amplitude spectrum tools in the programme
thus propose that the range of pulsational light curves in B, A and F PERIODO04 (Lenz & Brege2004). We then used a Discrete Fourier
main-sequence stars, from upward through symmetric to downward Transform (Kurtz1985) and our own least-squares and non-linear
shapes, is a consequence of the phases of the non-linear harmoniteast-squares tting programmes to nd the frequencies, ampli-
and combination frequencies, and that those phases are determinetfdes and phases to describe the light curves. After normalizing
by the balance between driving and damping in each individual star. the entire data set to zero in the mean, we tted a cosine func-
tion,m = Acos(2f (tSt)+ ), tothedatain magnitudes,thus
de ning our convention for the phases in this paper. Our routines
3 DATA AND ANALYSIS METHODS and PERIODO04 are in agreement.
Our procedure was to identify ‘base frequencies’ in the ampli-

:Nefha\iﬁ wsualg/ ex?rglrfde;ge':rhght. curves and arrt1plltudedspelc-t OLude spectrum from which to generate the combination frequen-
rafor thousands ot b, A an main-sequence stars and Selecletos 1hose were then optimized by tting them simultaneously

examples to illustrate our results. The data used for the analysisby non-linear least-
in this paper are thiepler quarters 0-17 (Q0-Q17) long cadence presentation, we do not tabulate the individual frequency uncer-

((jLC) dgta;. TheKepIetr_‘quaIlrters’ twe."i of|\>|/ar|ta1ble tltme span :hat ¢ tainties. Those depend on the signal-to-noise ratio (Montgomery &
epended on operational constraints. Most quarters are close OO’DonoghueLQQQ) and areingeneral of the orderoi 18610 d

qne-four:h of d(ﬁplher;rbital ﬁgriod of 3|I72d.455kd’ W?Ch V\I/as the | This is signi cantly less than the resolution of the Fourier peaks of
time-scale on which the satellite was rolled to keep the solar panelsy 1, 1= 0007 g ,where T= 1460 d is the time span of the

fully illuminated. Q0, Q1 and Q17 were short ‘quarters’. We do not data, but the frequencies are much better determined than the reso-

use any stars in th.'s paper that fell on the failed module 3, so there lution of the data set, so long as there are no unresolved frequencies.
are no large gaps In our data Sets. . .. We discuss both cases in the sections below.

We used the multlsca!e, ma>.<!mum a POSte”O” (msMAP) p"?e"r_‘e Importantly, following the determination of the base frequencies,
data converteq to magnitudes; information on the reductlon Pipeline o 4ig not extract large numbers of peaks in the amplitude spectra,
can be found in the_da_ta release notes. To optimize the search then test whether peaks were combination of the base frequencies. It
for exoplanet transit signals, the msMAP data pipeline removes is so clear from rst inspection that the amplitude spectra of many

some astrophysical signals with frequencies Ie§s than G 1a . Dor and SPB stars are dominated by combination frequencies
periods gre&_“er Fhan 10 d). Some of the_ combination fr_equenuesthat we selected just a few base frequencies and ¢héulated
t_ha_t we nd in this paper are at frequenples less than this 0.1 d the frequencies of the combination terms and tted that calculated
I|r_n|t,_and we s_how that these frequencies are un_perturbed_ by theset of frequencies by least-squares to the data. The success of that
pipeline reductions. A useful general conclusion is that while the procedure in accounting for most of the variance in the data sets is
apparent in the sections below and justi es the method.
Of course, because of the nature of combination frequen-
https://archive.stsci.edu/kepler/data_release.html cies, other sets of base frequencies chosen from the combination

squares to the data. For reasons of space and

MNRAS 450,3015-3029 (2015)
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frequencies can produce the same set of frequencies to be tted ‘
to the data. Hence, the identi cation of base frequencies with an 0.0 05 1.0 15 2.0
astrophysical cause is open to interpretation. We hypothesize in this frequency d”

paper that all of the chosen base frequencies arise from g-mode., 16 ‘ T
pulsations. Other interpretations, should they arise, do not changeé 12
the mathematical t of the chosen cosinusoids to the data.

amplitude
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0.300 0.375 0.450 0.525 0.600
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Frequency groups were noted in soKepler stars by McNamara

et al. (2012) following the terminology of Balona et a20(1b),
which we adopt. Our own examination of the light curves and
amplitude spectra of thousandsképler B, A and F stars shows
that manyKepler Dor and SPB stars have such frequency groups
with a wide variety of characteristics, as has been noted by others.
For example, some illustration of this can also be seen in g. 2 of
Tkachenko et al.2013) who studied 69 Dor stars in theKepler

data set.

These frequency groups may arise from different causes, but
many of the stars showing them have only a few non-linear pul-
sation modes with amplitude spectra that are dominated by com-
bination frequency peaks. We illustrate this with an extreme case:
KIC 8113425 is a Dor star with an upward light curve, which is
shown in Fig2 with a 100-d section of the light curve. The strongly
non-linear pulsations can be seen clearly. This star previously was

listed as an ‘asymmetric’ light-curve star that shows ‘evidence of the details. A t of combination frequencies with terms up to order

migrating star-spots’ according to Balona et 011b). We argue 5 with no lower limit on amplitude yields over 500 combination

here that the star has no spots; that suggestion came from a sim- . . . .
. . . : . . frequencies and reduces the variance in the amplitude spectrum of
ple visual inspection of a short section of the light curve with no

. the residuals further. Obviously, to explain the highest frequency
frequency analysis.

KIC 8113425 was observed li§eplerin LC in all quarters from groups would need even higher order combination frequencies. As
. - . Papics (2012) warned, with higher order ts of combination fre-
Q1 to Q17. No other published observations or data are available. . .
Fig. 3 shows an amplitude spectrum of the Q1-K@pler data guencies, the number of tted peaks can become large with respect
ou%to a frequenc o‘; 2 4 whpere it can be seen th;)t there are to the number of independent Fourier peaks in the amplitude spec-
many frequgncy gyroups uwhich we label g0, fgl, etc. In a close trum. Thus in future detailed studies of these stars with frequency

examination of the amplitude spectrum, frequency groups uptofgll groups, care will neegl to be taken with hlgh-.orc.ier s to ?VO'd
can be seen, showing the presence of very high order combinationcombmatlon frequencies that occur only by coincidence. With the

- large amplitudes and low number of combination frequencies we
frequencies.

We chose KIC 8113425 to discuss the understanding of the fre- use here, such chance coincidences are not a problem.
guency groups because it shows so many groups which are well-
separated in frequency. Itappearsto be complex and to be an extrem(i 1 The phases
example of the frequency group phenomenon, yet the apparentcom- P
plexity lies almost entirely in the combination frequencies —we have The asymmetry of the light curve is described through the combi-
tted most of the variance with only four base frequencies. Table nation frequencies, but the contribution of each frequency to that
lists those four base frequencies and 39 combination frequenciesdescription differs. Three factors are important in determining the
with terms up to order 2that were tted to produce the amplitude  asymmetry described by each combination. We explain them here
spectrum of the residuals shown in the middle panel of Eig. for KIC 8113425, where the upward light curve shows high max-
We limit our discussion here to combination frequencies with ima and shallow minima, but the description could also be applied
terms to order 2 and amplitudes greater than 1 mmag so that we to a downward light curve with low maxima and deep minima,

have a manageable number of frequencies from which to discuss

MNRAS 450,3015-3029 (2015)
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or any intermediate shape light curve. The discussion can thus be
generalized from this speci ¢ example.

The rstimportant factor is the combination frequency. In order
to describe sharp and high maxima, the combination frequency must
be higher than the base frequency. The second factor is the phase.
To describe high maxima in the light curve, the combinations need a
relative phase close to zero. The relative ptiasgpfa combination
frequency is de ned as

= S = S (n +m ), (10)

where  isthe observed phase of the combination frequency, and
is a phase calculated from the base frequencies, which in this

case is for the combination= n + m . A relative phase of
zero means the maximum of the combination frequency coincides
with the maxima of the base frequencies, and this maximum is then
reinforced. An example is shown in Fig. Finally, the third factor is
amplitude. Combinations with low amplitudes have little relevance
to the shape of the light curve.

The contribution each combination frequency makes to the de-
scription of the asymmetry can be shown ipteasor(a contraction
of ‘phase vector’) diagram, Fi¢. Here, the amplitude and relative
phase of each combination are shown on a polar plot. The conven-
tions chosen dictate the orientation of the phasor diagram; here we
have chosen cosines to t the luminosity variation, so that points
that lie to the right of centre correspond to combination frequen-
cies describing ‘upward’ asymmetry. Similarly, points to the left of
centre belong to combinations describing ‘downward’ asymmetry.
Since KIC 8113425 has a strong upward asymmetry, we see points
of high amplitude in the right part of the diagram.
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