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ABSTRACT
There are many Slowly Pulsating B (SPB) stars and� Dor stars in theKeplermission data set.
The light curves of these pulsating stars have been classi�ed phenomenologically into stars with
symmetric light curves and with asymmetric light curves. In the same effective temperature
ranges as the� Dor and SPB stars, there are variable stars with downward light curves that have
been conjectured to be caused by spots. Among these phenomenological classes of stars, some
show ‘frequency groups’ in their amplitude spectra that have not previously been understood.
While it has been recognized that non-linear pulsation gives rise to combination frequencies
in a Fourier description of the light curves of these stars, such combination frequencies have
been considered to be a only a minor constituent of the amplitude spectra. In this paper,
we unify the Fourier description of the light curves of these groups of stars, showing that
many of them can be understood in terms of only a few base frequencies, which we attribute
to g-mode pulsations, and combination frequencies, where sometimes a very large number
of combination frequencies dominate the amplitude spectra. The frequency groups seen in
these stars are thus tremendously simpli�ed. We show observationally that the combination
frequencies can have amplitudes greater than the base frequency amplitudes, and we show
theoretically how this arises. Thus for some� Dor and SPB stars, combination frequencies
can have the highest observed amplitudes. Among the B stars are pulsating Be stars that show
emission lines in their spectra from occasional ejection of material into a circumstellar disc.
Our analysis gives strong support to the understanding of these pulsating Be stars as rapidly
rotating SPB stars, explained entirely by g-mode pulsations.

Key words: asteroseismology – stars: emission-line, Be – stars: interiors – stars: oscillations.

1 INTRODUCTION

It is well known that Fourier analysis of non-sinusoidal light curves
gives rise to harmonics and combination frequencies that describe
the light-curve shape in terms of sinusoids. High-amplitude pul-
sations are non-linear, giving rise to signi�cant amplitudes at the
harmonics of the base frequencies. Multimode non-linear pulsation
results in interaction among the base frequencies and their harmon-
ics that give rise to sum and difference combination frequencies of
the formnfi ± mfj . Studying the relationships among the amplitudes
and phases of the Fourier components has been standard practice

� E-mail: dwkurtz@uclan.ac.uk

for RR Lyr stars and Cepheids since the pioneering work of Simon
& Lee (1981), and the study of combination frequencies and their
astrophysical implications is well established for white dwarf stars
(see e.g. Wu2001; Montgomery2005). Combination frequencies
dominate the amplitude spectra of some� Sct stars, for example
KIC 11754974 (Murphy et al.2013) and KIC 8054146 (Breger
et al. 2012; Breger & Montgomery2014), where the astrophysi-
cal implications and uses of the combination frequencies are more
uncertain than for white dwarf stars.

Among B, A and F main-sequence stars, there are two classes of
g-mode pulsators: the� Dor stars with temperatures in the range of
early to mid-F stars, and the Slowly Pulsating B (SPB) stars with
temperatures in the range of the mid- to late B stars. The light curves
of these stars have been widely discussed phenomenologically,
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Published by Oxford University Press on behalf of the Royal Astronomical Society

 at T
he Library on F

ebruary 17, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 



3016 D. W. Kurtz et al.

particularly in the era of the photometric space missionsMOST,
CoRoTandKepler. Debosscher et al. (2011) performed an auto-
mated variability analysis on about 150 000 light curves from the
Kepler Quarter 1 data, �nding many� Dor stars. Balona et al.
(2011b) visually scanned about 10 000 stars in theKepler data in
the temperature range of the� Dor stars and the coolest SPB stars
and classi�ed the light curves phenomenologically as symmetric or
asymmetric, where the asymmetric light curves show larger range at
maximum amplitude than at minimum amplitude. Tkachenko et al.
(2013) determined atmospheric parameters from high-resolution
spectra for 69 stars in theKeplerdata set that have� Dor g-mode pul-
sations. Balona et al. (2011a) similarly provided visual descriptions
of 48 B stars in theKeplerdata. Following the lead of these papers,
McNamara, Jackiewicz & McKeever (2012) classi�ed the light
curves of 252 B stars in theKepler data, describing many of the
stars as ‘Fg’, meaning that they show frequency groups in their am-
plitude spectra. Most recently Bradley et al. (2015) searched among
2768Keplerstars for� Dor stars,� Sct stars and so-called ‘hybrid’
stars that show both p- and g-mode pulsations. They adopted the
notation of Balona et al. (2011b) to describe the light curves as
‘symmetric’ and ‘asymmetric’.

Many of these papers used limited data sets fromKepler, un-
intentionally resulting in signi�cant confusion in the description
of the light curves. In addition to pulsation, stars may show light
variability caused by orbital or rotational variations. Those are typ-
ically non-sinusoidal, hence also give rise to harmonics of the
base frequencies. They do not, however, generate combination
frequencies. It is thus possible to distinguish pulsation from ro-
tational or orbital variability when combination frequencies are
present.

From the unprecedented time span of 4 yr of the fullKeplerdata
set, it is now clear that g modes in� Dor stars and SPB stars can
be so closely spaced in frequency that data sets spanning less than
1 yr may not resolve the individual pulsation frequencies. Excellent
examples of this are seen in the� Dor – � Sct stars KIC 11145123
(Kurtz et al.2014; Van Reeth et al.2015) and KIC 9244992 (Saio
et al.2015), and in several other examples given by Bedding et al.
(2014) and Van Reeth et al. (2015), where the frequency spacings of
long series of consecutive radial overtone g modes with rotational
multiplets require up to half a year of data for full resolution. Thus
previous descriptions of the character of� Dor and SPB light curves
based on relatively short data sets should be viewed with caution.
The visual descriptions of light curves where pulsation modes are
not resolved and combination frequencies are not recognized have
led to erroneous conclusions.

The presence of combination frequencies in� Dor and SPB
stars has been recognized by many. Degroote et al. (2009) devel-
oped an automated combination frequency search forCoRoTSPB
stars. Ṕapics (2012) discussed in general the search for combination
frequencies for B, A and F main-sequence stars and problems asso-
ciated with their identi�cation, while Balona (2012) gave a detailed
discussion in the case of� Sct stars, particularly in comparison with
white dwarf stars with the purpose of eventually using the informa-
tion in the combination frequencies for astrophysical inference.

Nevertheless, as Balona (2012) pointed out, the combination fre-
quencies have usually been considered a nuisance in the search for
pulsation mode frequencies for asteroseismology. He also states
that ‘combination frequencies are of much lower amplitude than
parent mode . . . [frequencies] . . . ’. While this may be a widely
held view, it is not necessarily true: combination frequencies can
have observed amplitudes greater than those of the base frequencies,
as we show theoretically in Section 2.

Another misconception is that a light curve that has larger varia-
tion at minimum than maximum cannot be purely pulsational. This
idea has led to interpretations of some SPB and pulsating Be star
light curves as being caused by spots, either completely or partially.
The idea has crossed over into the visual description of the light
curves of� Dor stars such that the papers using the terminology
‘asymmetric’ for the non-sinusoidal pulsators only include those
stars that show more variation at maximum light than minimum
light, even though there are� Dor stars that do the opposite, as is
common for SPB stars. We show examples in sections below.

We use our own description of the light curves at some expense
of proliferating nomenclature. We describe stars that have non-
sinusoidal light curves with larger range at maximum light than
minimum light as having ‘upward’ light curves, and those that do
the opposite as having ‘downward’ light curves. Stars previously
classi�ed as having symmetric light curves are part of a continuum
between these extremes. Below, we show examples of the various
shapes of the light curves and their simple explanation in terms of
non-sinusoidal pulsation in only a few pulsation modes with com-
bination frequencies. We �nd that many� Dor, SPB and pulsating
Be star light curves are far simpler than has previously been under-
stood, and we make a strong case that the only physics needed to
understand all of these stars is non-linear pulsation theory. There is
no need of, and no evidence for, spots.

The reduction that we demonstrate in the apparent complexity of
the amplitude spectra of the stars showing frequency groups is stun-
ning. Instead of hundreds of frequencies being extracted for analy-
sis, many of these stars have but a few pulsation mode frequencies
with a plethora of combination frequencies, some of which can have
amplitudes greater than the base frequencies. As in the cases of the
p-mode pulsation in the� Sct stars KIC 11754974 and KIC 8054146
mentioned above, the amplitude spectra of the g-mode pulsators on
the main-sequence can be dominated by combination frequencies.
These must be fully modelled to get to the pulsation mode fre-
quencies that are the fundamental data of asteroseismology, and
they have the potential to provide new astrophysical information
for main-sequence stars, as they do for pulsating white dwarf stars.

In this paper, we explain that what previously appeared to be com-
plex variability with dozens or hundreds of frequencies is a result
of only a few base frequencies and their combination frequencies.
This is an important observational result that greatly simpli�es our
understanding of the light curves of� Dor, SPB and pulsating Be
stars. That such strong non-linear interaction exists indicates high
amplitudes for the base modes in the stellar cores. It is a goal to
gain asteroseismic inference from these modes by modelling them.

2 THEORETICAL CORROBORATION

2.1 Weak non-linear system

To draw some basic characteristics of non-linear pulsation of stars,
let us consider a case of weakly non-linear pulsation, in which the
eigenfrequencies are still close to those obtained by linear calcu-
lation. We consider the unperturbed static equilibrium state of a
star and superimpose on it perturbations. To make the problem sim-
ple, we assume that in the equilibrium state the star is spherically
symmetric.

We de�ne the displacement vector,� ,

� (r 0, t ) := r Š r 0, (1)

wherer denotes the Lagrangian position variable of a given �uid
element which is atr = r 0 in the equilibrium state. The equation
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of oscillations, which is expressed with a single variable� , is then
divided into the linear operatorL(� ) and the non-linear operators
N (k) (k = 2, 3, . . . ):

� 2�

� t2 + L(� ) + N (2)(� , � ) + N (3)(� , � , � ) + · · · = 0, (2)

whereN (k) denotes the operator of thekth order of� . Retaining
only the �rst-order terms, we obtain the linearized equation

� 2�

� t2 + L (� ) = 0. (3)

SinceL does not include any operator with respect to time, the solu-
tion to equation (3), de�ned as� (1)(r 0, t ), is separated into a spatial
function and a temporal function. The latter is expressed by exp i� t,
with frequency� . Equation (3) turns into an eigenvalue problem
with a set of suitable boundary conditions. The eigenfunctions form
an orthogonal complete set, hence the linear adiabatic oscillations
of a star can be expressed as

� (1)(r 0, t ) =
�

k

ak� (1)
k (r 0) exp i(� kt + � k), (4)

where � k and �( r 0) denotes the eigenfrequency and the eigen-
function of the mode indexk, respectively, andak and� k are the
amplitude and the phase of the mode att = 0. Here, the mode index
k consists of the spherical degreel, the azimuthal orderm, and the
radial ordern, and the eigenfunction� (1)

k (r 0) is written with the
spherical coordinates (r, � , � ) as

� (1)
k (r 0)

= 	 n,l (r )Ym
l er + Hn,l (r )

�
� Ym

l

� �
e� +

1
sin�

� Ym
l

� �
e�

�
, (5)

whereYm
l (� , � ) denotes the spherical harmonics with the spherical

degreel and the azimuthal orderm, and	 n, l (r) andHn, l (r) are the
radial eigenfunctions, with respect tor, for the displacement in the
radial direction and for that in the horizontal direction, respectively,
with the radial ordern and the spherical degreel. The character-
istics of the linear adiabatic pulsations of stars have already been
investigated in detail, as in the textbooks Unno et al. (1989) and
Aerts, Christensen-Dalsgaard & Kurtz (2010).

Including the second-order terms of equation (2), we obtain the
following equation for� (2)(r , t ):

� 2� (2)

� t2 + L
�
� (2)� = Š N (2) �

� (1), � (1)� . (6)

Since� (1)(r 0, t ) has already been independently solved, the above
equation (6) is regarded as an inhomogeneous equation for� (2)(r 0, t )
with a source termN (2)(� (1), � (1)), which originates from the
squared terms of the �rst-order free oscillations. In other words,
equation (6) is regarded as an equation for a forced oscillation in-
duced by the non-linear termN (2)(� (1), � (1)). The particular solution
to this inhomogeneous equation gives the correction to� (1)(r 0, t ).

In a similar way, the higher order solutions are considered as
forced oscillations successively induced by the non-linear terms of
the lower order solutions.

2.2 Why do the combination frequencies appear?

The operatorN (2) consists of cross terms of� (1)(r 0, t ), and it is
bilinear. Hence, the non-linear term is separated into a spatial part
and a temporal function. Substitution of the form of� (1) given by

equation (4) into equation (6) leads to

� 2�

� t2 + L (� )

= Š
�

k,k�

N (2)
�

ak� (1)
k , ak� � (1)

k�

�
ei{(� k+� k� )t+ (� k+� k� )} . (7)

The cross terms in the non-linear operatorN (2) induce the com-
bination frequencies. As a consequence, the particular solution to
� (2)(r 0, t ) also has combination frequencies� k + � k� .

It should be noted that the associated general solution of the
inhomogeneous differential equation (7) is of the form of equation
(4), and it is already given as a �rst-order solution. Hence, we only
have to consider the particular solution.

A special case is the cross term of� k with itself. That induces
the second harmonic 2�k. Similarly, the non-linear operatorN (3)

produces the third harmonic 3� k through the cross term between
� k and 2� k or the triple term of� k. This is the process producing
a non-sinusoidal light curve from a single mode.

2.3 Why do some combination frequencies have amplitudes
greater than their base frequencies?

The second-order perturbation is of the order of the square of the
linear perturbation. It should be noted here, however, that this state-
ment concerns the intrinsic amplitudes. The visibility, which is
highly dependent on the surface pattern of the oscillations, must be
taken into account to evaluate the actual observed amplitudes.

The non-linear operatorN induces cross terms of spherical har-
monics, and they are described in terms of a series of spherical
harmonics with azimuthal order that is equal to the sum of the
parent spherical harmonics;

Ym
l (� , � )Ym�

l � (� , � )

=
�

l ��

(Š1)m�
cl �� (l, Šm, l �, m�)Ym+m�

l �� (� , � ), (8)

whereck(l, Šm, l�, m�) is de�ned by

ck(l, m, l �, m�) :=
	

d
 Y m
l (� , � )� Ym�

l � (� , � )YmŠm�

k (� , � ), (9)

and l�� is in the range of [| l Š l� |, l + l� ], except the range of
[ 0, | m + m� | ]. This means that even if the �rst-order perturba-
tions associated with high degree have low observed amplitudes
and are dif�cult to detect, their products may induce low degree
components, e.g.l = 0, that are detectable.

So, it is not necessarily true that combination frequencies of
higher order perturbations have smaller observed amplitudes than
the base frequencies. Some combination frequencies can have ob-
served amplitudes greater than those of their base frequencies.

2.4 Why do some stars show downward light curves?

Superposition of two oscillations with nearly equal frequencies
leads to a beat phenomenon. With an increase in the frequency
difference, the wave pattern gradually changes. When the second
harmonic is imposed on the base frequency, the oscillation pattern
signi�cantly deviates from symmetry with respect to the zero level.
If the phase difference of these two frequencies,� k Š � k� , is nearly
zero, the wave pattern shows an ‘upward’ shape (which has previ-
ously been called ‘asymmetric’), whereas when the phase difference
is close to� , the wave pattern shows a ‘downward’ shape as shown
in Fig. 1.
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Figure 1. This simulated light curve demonstrates a combination of fre-
quencies differing by a factor of 2 with a phase difference of� induces a
‘downward’ light curve.

It has been widely considered that non-linear pulsation induces
only upward light curves and that pulsation cannot be the sole
physical cause of downward light curves. However, as demonstrated
here, pulsation induces downward light curves in some cases. The
base frequencies are driven by the� -mechanism or by convective
blocking, while the harmonic frequencies are damped by heat loss.

Differences in thermal properties may cause phase differences
between these two extreme groups to differ by� , with intermediate
phases giving rise to less extreme distortion of the light curves. We
thus propose that the range of pulsational light curves in B, A and F
main-sequence stars, from upward through symmetric to downward
shapes, is a consequence of the phases of the non-linear harmonic
and combination frequencies, and that those phases are determined
by the balance between driving and damping in each individual star.

3 DATA AND ANALYSIS METHODS

We have visually examinedKeplerlight curves and amplitude spec-
tra for thousands of B, A and F main-sequence stars and selected
examples to illustrate our results. The data used for the analysis
in this paper are theKeplerquarters 0–17 (Q0–Q17) long cadence
(LC) data. TheKepler ‘quarters’ were of variable time span that
depended on operational constraints. Most quarters are close to
one-fourth of aKeplerorbital period of 372.455 d, which was the
time-scale on which the satellite was rolled to keep the solar panels
fully illuminated. Q0, Q1 and Q17 were short ‘quarters’. We do not
use any stars in this paper that fell on the failed module 3, so there
are no large gaps in our data sets.

We used the multiscale, maximum a posteriori (msMAP) pipeline
data converted to magnitudes; information on the reduction pipeline
can be found in the data release notes1 21. To optimize the search
for exoplanet transit signals, the msMAP data pipeline removes
some astrophysical signals with frequencies less than 0.1 dŠ1 (or
periods greater than 10 d). Some of the combination frequencies
that we �nd in this paper are at frequencies less than this 0.1 dŠ1

limit, and we show that these frequencies are unperturbed by the
pipeline reductions. A useful general conclusion is that while the

1 https://archive.stsci.edu/kepler/data_release.html

Table 1. Basic data for the stars presented in this paper.Teff and logg are
from Huber et al. (2014). The last column gives the section of the paper
where the star is discussed.

KIC Teff logg Kp Type Section
(K) (cgs units) (mag)

5450881 10 500± 250 4.1± 0.2 12.45 SPB 6.3
7468196 6850± 200 4.1± 0.2 13.77 � Dor 5
8113425 6900± 200 4.3± 0.1 13.86 � Dor 4
10118750 11 400± 400 3.7± 0.3 13.90 SPB 6.1
10799291 11 100± 400 4.4± 0.1 14.98 SPB 5
11971405 11 600± 400 3.7± 0.4 9.32 SPB/Be 7.1

pipeline may reduce astrophysical amplitude, it does not perturb the
frequencies.

For all stars, we visually inspected the light curve and removed
a few obvious outliers. The time span for Q0–17 data is 1470.5 d,
and for Q1–Q17 data is 1459.5 d. Typically, about 64 840 data
points comprised each data set. Table1 gives basic data for the stars
analysed in this paper.

3.1 Frequency analysis

We �rst produced a catalogue of all stars in theKepler data with
effective temperatures in theKepler Input Catalogue (KIC) above
6400 K. Our catalogue comprises light curves and amplitude spec-
tra for each quarter ofKeplerdata for each star. We have visually
studied each of these plots. For stars that we studied in more detail,
we �rst examined the entire data sets, Q0–Q17, using the interac-
tive light curve and amplitude spectrum tools in the programme
PERIOD04 (Lenz & Breger2004). We then used a Discrete Fourier
Transform (Kurtz1985) and our own least-squares and non-linear
least-squares �tting programmes to �nd the frequencies, ampli-
tudes and phases to describe the light curves. After normalizing
the entire data set to zero in the mean, we �tted a cosine func-
tion,�m = A cos(2�f (t Š t0) + � ), to the data in magnitudes, thus
de�ning our convention for the phases in this paper. Our routines
and PERIOD04 are in agreement.

Our procedure was to identify ‘base frequencies’ in the ampli-
tude spectrum from which to generate the combination frequen-
cies. Those were then optimized by �tting them simultaneously
by non-linear least-squares to the data. For reasons of space and
presentation, we do not tabulate the individual frequency uncer-
tainties. Those depend on the signal-to-noise ratio (Montgomery &
O’Donoghue1999) and are in general of the order of 10Š7–10Š6 dŠ1.
This is signi�cantly less than the resolution of the Fourier peaks of
R � 1/�T = 0.0007 dŠ1, where T= 1460 d is the time span of the
data, but the frequencies are much better determined than the reso-
lution of the data set, so long as there are no unresolved frequencies.
We discuss both cases in the sections below.

Importantly, following the determination of the base frequencies,
we did not extract large numbers of peaks in the amplitude spectra,
then test whether peaks were combination of the base frequencies. It
is so clear from �rst inspection that the amplitude spectra of many
� Dor and SPB stars are dominated by combination frequencies
that we selected just a few base frequencies and thencalculated
the frequencies of the combination terms and �tted that calculated
set of frequencies by least-squares to the data. The success of that
procedure in accounting for most of the variance in the data sets is
apparent in the sections below and justi�es the method.

Of course, because of the nature of combination frequen-
cies, other sets of base frequencies chosen from the combination
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Main-sequence gravity mode pulsators3019

Figure 2. A section of the light curve of KIC 8113425 spanning 100 d show-
ing the strongly non-linear ‘upward’ light variations. The time is relative to
BJD 2455000. Almost all of the variation in the light curve is explained by
the non-linear interaction of only four g modes.

frequencies can produce the same set of frequencies to be �tted
to the data. Hence, the identi�cation of base frequencies with an
astrophysical cause is open to interpretation. We hypothesize in this
paper that all of the chosen base frequencies arise from g-mode
pulsations. Other interpretations, should they arise, do not change
the mathematical �t of the chosen cosinusoids to the data.

4 THE � DOR STAR KIC 8113425

Frequency groups were noted in someKeplerstars by McNamara
et al. (2012) following the terminology of Balona et al. (2011b),
which we adopt. Our own examination of the light curves and
amplitude spectra of thousands ofKepler B, A and F stars shows
that manyKepler� Dor and SPB stars have such frequency groups
with a wide variety of characteristics, as has been noted by others.
For example, some illustration of this can also be seen in �g. 2 of
Tkachenko et al. (2013) who studied 69� Dor stars in theKepler
data set.

These frequency groups may arise from different causes, but
many of the stars showing them have only a few non-linear pul-
sation modes with amplitude spectra that are dominated by com-
bination frequency peaks. We illustrate this with an extreme case:
KIC 8113425 is a� Dor star with an upward light curve, which is
shown in Fig.2 with a 100-d section of the light curve. The strongly
non-linear pulsations can be seen clearly. This star previously was
listed as an ‘asymmetric’ light-curve star that shows ‘evidence of
migrating star-spots’ according to Balona et al. (2011b). We argue
here that the star has no spots; that suggestion came from a sim-
ple visual inspection of a short section of the light curve with no
frequency analysis.

KIC 8113425 was observed byKeplerin LC in all quarters from
Q1 to Q17. No other published observations or data are available.
Fig. 3 shows an amplitude spectrum of the Q1–17Kepler data
out to a frequency of 2 dŠ1 where it can be seen that there are
many frequency groups, which we label fg0, fg1, etc. In a close
examination of the amplitude spectrum, frequency groups up to fg11
can be seen, showing the presence of very high order combination
frequencies.

We chose KIC 8113425 to discuss the understanding of the fre-
quency groups because it shows so many groups which are well-
separated in frequency. It appears to be complex and to be an extreme
example of the frequency group phenomenon, yet the apparent com-
plexity lies almost entirely in the combination frequencies – we have
�tted most of the variance with only four base frequencies. Table2
lists those four base frequencies and 39 combination frequencies
with terms up to order 2
 that were �tted to produce the amplitude
spectrum of the residuals shown in the middle panel of Fig.3.

We limit our discussion here to combination frequencies with
terms to order 2
and amplitudes greater than 1 mmag so that we

Figure 3. Top: an amplitude spectrum of theKepler Q1–17 data for
KIC 8113425 out to 2 dŠ1. There are no p-mode pulsations at higher fre-
quencies up to the Nyquist frequency. The frequency groups are labelled up
to fg4, but can be seen to extend further; at least 11 groups can be seen in the
amplitude spectrum of this star. The middle panel shows on the same scale
an amplitude spectrum of the residuals after pre-whitening the four pulsa-
tions frequencies and 39 combination frequencies with terms up to order 2

given in Table 2, and with amplitudes greater than 1 mmag; the inclusion of
combination frequencies with amplitudes less than 1 mmag removes more
peaks. Higher order combination frequencies explain the higher frequency
groups. The reduction in variance is stunning. The four base frequencies
from frequency group 1 (fg1) are shown and labelled in the bottom panel.
We propose that those represent g-mode pulsations.

have a manageable number of frequencies from which to discuss
the details. A �t of combination frequencies with terms up to order
5
 with no lower limit on amplitude yields over 500 combination
frequencies and reduces the variance in the amplitude spectrum of
the residuals further. Obviously, to explain the highest frequency
groups would need even higher order combination frequencies. As
Pápics (2012) warned, with higher order �ts of combination fre-
quencies, the number of �tted peaks can become large with respect
to the number of independent Fourier peaks in the amplitude spec-
trum. Thus in future detailed studies of these stars with frequency
groups, care will need to be taken with high-order �ts to avoid
combination frequencies that occur only by coincidence. With the
large amplitudes and low number of combination frequencies we
use here, such chance coincidences are not a problem.

4.1 The phases

The asymmetry of the light curve is described through the combi-
nation frequencies, but the contribution of each frequency to that
description differs. Three factors are important in determining the
asymmetry described by each combination. We explain them here
for KIC 8113425, where the upward light curve shows high max-
ima and shallow minima, but the description could also be applied
to a downward light curve with low maxima and deep minima,
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Table 2. A least-squares �t of the four pulsation mode frequencies of
KIC 8113425 and their combination frequencies with terms up to order
2
 having amplitudes greater than 1 mmag. There are 43 identi�ed
frequencies, including the four base frequencies. The zero-point of
the time-scale is BJD 2455694.25.

Labels Frequency Amplitude Phase
(dŠ1) (mmag) (rad)

±0.03

fg0

Š
 1 + 2
 3 Š 
 4 0.003 055 1.87 Š 1.612± 0.014

 1 Š 
 2 Š 
 3 + 
 4 0.008 108 4.18 Š 1.757± 0.007

Š
 2 + 
 3 0.011 163 1.20 1.088± 0.025
Š
 3 + 
 4 0.028 150 3.71 Š 1.073± 0.008
Š
 1 + 
 3 0.031 206 2.42 1.997± 0.012
Š
 1 + 
 4 0.059 356 4.32 0.874± 0.007

Š2
 1 + 
 3 + 
 4 0.090 562 1.37 Š 0.033± 0.021

fg1

2
 1 Š 
 3 0.398 853 3.66 1.299± 0.008
2
 1 Š 
 2 0.410 016 1.02 2.107± 0.030


 2 + 
 3 Š 
 4 0.421 951 1.04 2.913± 0.029

 1 0.430 058 14.55 0.742± 0.002

 2 0.450 101 10.09 Š 0.449± 0.003


 1 Š 
 3 + 
 4 0.458 209 1.95 Š 2.793± 0.015

 3 0.461 264 7.75 Š 1.995± 0.004

Š
 1 + 
 2 + 
 3 0.481 307 1.73 1.891± 0.017

 4 0.489 414 13.14 Š 3.136± 0.002

Š
 2 + 
 3 + 
 4 0.500 577 1.57 Š 0.331± 0.019
Š
 1 + 
 2 + 
 4 0.509 457 1.47 Š 2.478± 0.021
Š
 1 + 
 3 + 
 4 0.520 620 1.51 2.294± 0.020

fg2

2
 1 0.860 117 2.42 Š 1.921± 0.012

 1 + 
 2 0.880 159 1.21 Š 2.729± 0.025

2
 1 Š 
 3 + 
 4 0.888 267 1.91 1.134± 0.016

 1 + 
 3 0.891 322 4.79 1.129± 0.006

 1 + 
 4 0.919 473 7.39 0.647± 0.004

2
 3 0.922 528 2.16 Š 2.381± 0.014

 1 Š 
 3 + 2
 4 0.947 623 1.29 Š 2.936± 0.023


 3 + 
 4 0.950 678 6.48 Š 2.749± 0.005
2
 4 0.978 828 4.10 Š 3.036± 0.007

Š
 1 + 2
 3 + 
 4 0.981 884 1.01 2.974± 0.029
Š
 1 + 
 3 + 2
 4 1.010 034 1.63 2.264± 0.018

fg3

2
 1 + 
 3 1.321 381 1.50 Š 1.083± 0.020
2
 1 + 
 4 1.349 531 1.64 Š 1.520± 0.018

 1 + 2
 3 1.352 586 1.02 2.184± 0.029


 1 + 
 2 + 
 4 1.369 574 1.02 Š 2.624± 0.029
2
 1 Š 
 3 + 2
 4 1.377 681 1.15 1.409± 0.026

 1 + 
 3 + 
 4 1.380 736 3.33 1.522± 0.009

 2 + 
 3 + 
 4 1.400 779 1.45 0.119± 0.021


 1 + 2
 4 1.408 887 1.88 0.814± 0.016
2
 3 + 
 4 1.411 942 1.04 Š 1.284± 0.029

 3 + 2
 4 1.440 092 1.07 Š 1.964± 0.028

fg4

2
 1 + 
 3 + 
 4 1.810 795 1.87 Š 0.920± 0.016

 1 + 2
 3 + 
 4 1.842 000 1.61 2.097± 0.018

 1 + 
 3 + 2
 4 1.870 151 1.94 1.606± 0.015

Figure 4. Top: Keplerobservations of KIC 8113425. Bottom: an arti�cial
light curve (black) constructed with a single frequency [red= cos(2�x)] and
its harmonic [blue= 0.5 cos(2× 2� x)]. The relative phase of the harmonic
is zero, so it reinforces the maxima and suppresses the minima, leading to
an ‘upward’ light curve. Similarities with the observations in the top panel
are already evident after including only one combination term.

or any intermediate shape light curve. The discussion can thus be
generalized from this speci�c example.

The �rst important factor is the combination frequency. In order
to describe sharp and high maxima, the combination frequency must
be higher than the base frequency. The second factor is the phase.
To describe high maxima in the light curve, the combinations need a
relative phase close to zero. The relative phase,2 � r, of a combination
frequency is de�ned as

� r = � obs Š � calc = � obs Š (n� i + m� j ), (10)

where� obs is the observed phase of the combination frequency, and
� calc is a phase calculated from the base frequencies, which in this
case is for the combination
 = n
 i + m
 j . A relative phase of
zero means the maximum of the combination frequency coincides
with the maxima of the base frequencies, and this maximum is then
reinforced. An example is shown in Fig.4. Finally, the third factor is
amplitude. Combinations with low amplitudes have little relevance
to the shape of the light curve.

The contribution each combination frequency makes to the de-
scription of the asymmetry can be shown in aphasor(a contraction
of ‘phase vector’) diagram, Fig.5. Here, the amplitude and relative
phase of each combination are shown on a polar plot. The conven-
tions chosen dictate the orientation of the phasor diagram; here we
have chosen cosines to �t the luminosity variation, so that points
that lie to the right of centre correspond to combination frequen-
cies describing ‘upward’ asymmetry. Similarly, points to the left of
centre belong to combinations describing ‘downward’ asymmetry.
Since KIC 8113425 has a strong upward asymmetry, we see points
of high amplitude in the right part of the diagram.

2 We calculated the relative phases with a cosine function applied to the lu-
minosity variations so that upward light curves have combination frequency
phases in the positivex-direction in the phasor plots, whereas, for purposes
of pre-whitening in the frequency analysis where logarithms are preferred,
the phases in the tables are for magnitude variations. There is thus a� rad
shift in each phase in the tables that was used to calculate the phases in the
phasor plots.
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