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Estimating the probability of large negative stock market returns: the case
of food retailing and processing firms.

Abstract

Correct assessment of the risks associated wittlylileconomic outcomes is vital for
effective decision making. The objective of inveent in the stock market is to obtain
positive market returns. The risk, however, is daeger of suffering large negative market
returns. A variety of parametric models can beduseassessing this type of risk. A major
disadvantage of these techniques is that they neeguspecific assumption to be made about
the nature of the statistical distribution. Prajges based on this method are conditional on
the validity of this underlying assumption, whictself is not testable. An alternative
approach is to use a non-parametric methodologyedan the statistical extreme value
theory, which provides a means for evaluating theoaditional distribution (or at least the
tails of this distribution) beyond the historicattpserved values. The methodology involves
the calculation of the tail index, which is used d¢stimate the relevant exceedence
probabilities (for different critical levels of Issfor a selection of food industry companies.
Information about these downside risks is criticalinportant for investment decision
making. In addition, the tail index estimates péraxamination of the stable Paretian
hypothesis.

JEL classification: C10, C16, G10, G14, Q19
Keywords: Extreme Value Theory, tail index, exceaexeprobabilities



Estimating the probability of large negative stock market returns: the case
of food retailing and processing firms.

1. I ntroduction

The volatility of stock market prices can be coesatble and there is a common perception
that volatility levels are increasing over time.er@inly, the recent series of stock market
crashes has brought the issue of downside risksh#op focus. This is particularly so for
those investors who regularly have to liquidatertassets at short notice. Danielsson and de
Vries (1997) cite the example of a pension fund thast be able to pay out every period.
Investors in this situation often favour the ‘sgfdirst’ rule, which explicitly takes into
account the probability of a high negative retlRoy, 1952; Bernstein, 1992).

Downside risk is perceived to vary according torshgpe. For example, one might expect
the average level of downside risk associated alding the shares of well established food
processing and retailing to be lower than thattompanies operating in emerging markets or
within the new technologies sector. On the othardhit is likely that these downside risk

levels vary considerably across food firms.

The potential for capital gains is one of the mattractions of holding shares or other
financial assets. However, as recent stock maneshes have demonstrated, all share prices
are subject to substantial falls. A large reductioshare prices represents a capital loss to an
investor, which may trigger serious financial pesbk. In this paper, a loss (gain) is defined
as a drop (rise) in share value over the coursa single day’s trading, calculated by
comparing the opening and closing prices quotedhershare in question at the beginning
and end of the same day’s trading. The probabilitg loss exceeding a given magnitude,
such as for example, a 30% drop in share pricebearstimated. However, it is preferable to
estimate the probabilities over a range of los®lkev Various techniques can be used to
estimate these exceedence probabilities. Sombkestttechniques attempt to fit the entire
probability distribution, while others concentrately on the (left) tail, given that this is the

area of most relevance.



The simplest method of calculating exceedence pibtias is to make use of sample
equivalents, as in the case of non-parametric VattRisk methods In these methods, a
long historical run of daily data on share priceveroents is used to determine the frequency
with which a capital loss of a given size occuf$ws, the frequency of losses greater than 10
per cent occurring in a sample of say 1000 coulddsal to calculate the probability of a loss
greater than 10 per cent. While this method hasattvantage of requiring no assumptions to
be made about the underlying distribution, it st#féfom two serious problems. Firstly,
these sample equivalents will be inefficient beeanfstheir high variance, which means they
provide unreliable estimates of the true distrimti Secondly, since the probability
distribution is calculated directly from a sampfencstorical share price movements, there is

no way to obtain probabilities for out-of-sampledes.

An alternative approach, which is parametric, makss of the ‘true’ underlying distribution
for the market returns under consideration. Theupaters of the ‘true’ distribution are
estimated from available data and used to cons&ringigative returns-probability table. The
problem, however, with this approach is that thee tunderlying distribution is typically
unknown. Thus, to proceed with this approach oa® to make an assumption about the
nature of the underlying distribution. For examplcCulloch (1981) fits the Cauchy
distribution in calculating the bankruptcy probéleks of commercial banks. However, such
an assumption is unlikely to be validated, with tesult that inferences based on the
estimated parameters loose validity. Clearly,dhaice of the underlying distribution affects
the results obtained, particularly when it is thi of the distribution that is of most interest.
Another major problem with this and other paransespproaches stems from the fact that
they attempt to fit the entire probability distritmn. In estimating the parameters of the
entire probability distribution from all the dataaglable these approaches give low weighting
to extremely large negative (or positive) returimspdy because of the rarity of these returns.

Therefore, paradoxically, the most important infation is belittled.

A third approach was suggested in the early 198@8ssabased on a proposal by Du Mouchel
(1983) to concentrate on the behaviour of the taild thereby avoid the need to make any
assumptions about the centre of the distributibhe theoretical background of this approach
is provided by the statistical theory of extremduea (see, for example Leadbetétral.,
1983; Beirlantet al., 1996). The main result of this theory is thashows the limiting

! Value-at-Risk analysis is normally used to assess dowrisideassociated with a portfolio of shares, whereas
we are concerned with analysing single shares. Meryéhe principles are the same.



distribution of extremes (maxima or minima) can blearacterised regardless of the
underlying statistical distribution that generatks data. Thus, instead of considering the
entire distribution, one can fit the asymptoticitimg distribution to the tail for the purposes
of inference. This tool is made all the more ukddy the fact that the tail can be
characterised by single statistic, namely the itadex’. This statistic can be thought of as a
measure of tail thickness. Importantly, exceedgobabilities can be calculated from the
tail index estimates. Essentially, this amountsdlzulating quantiles probabilities from the
limiting distribution of the extreme values. Undhbrs approach the probable occurrence of

extreme returns falling outside the range of thpiepal data set can also be estimated.

An added advantage of the tail index is that it barused to provide information about the
underlying distribution of the returns data. Thigs, example, semi-parametric estimates of

the tail index can be used to test the stable Rarbypothesis.

The aim of this paper is to use tail index estimate calculate the relevant exceedence
probabilities (for different critical levels of Issfor a selection of food industry companies.
Information about these downside risks is criticaimportant for investment decision
making. The exceedence (or crash) probabilitiisnased are compared with each other. It
is concluded that the companies in this samplebeabroadly classified into either high risk
or low risk types. We also use the tail index reates to examine the stable Paretian
hypothesis. The next section describes the conakphe tail index, the stable Paretian
hypothesis and other relevant statistical concefections 3 and 4 describe the methodology
and data sets, respectively. Results are pres@ntgzttion 5 and conclusions are drawn in
section 6.

2. The Theor etical Concepts

The statistical properties of financial data hawegl been the subject of learned discussion
and academic research. Over a hundred years agoeBa, in his Ph.D. thesis entitled
‘Théorie de la Spéculation’ (reprinted in Cootn&®4)), formulated one of the first testable
hypotheses on the statistical behaviour of findrotdda by proposing the use of the Normal
distribution as a model for share price movemem#hile most empirical studies reject the
Normal hypothesis, many theorists are of the vieat share price movements should follow

a distribution from the stable distribution fam({lgiso called Paretian distributions), of which



the Normal (Gaussian) is a member. Stable didtdbs possess the appealing property of
stability-under-addition. Given that daily, weekstc., returns from financial assets can be
considered sums of independent, identically distad (1ID) share price changes it is
expected that the limiting distribution will comein the stable distribution family. There is
intuitive appeal also in that the stable distribog, other than the normal, share the features

of fat tails and high peaks (leptokurtosis) obsémvefinancial data.

The Normal is the most familiar stable distributi@ith a characteristic component, equal

to 2. However, in empirical studies the Normalfiequently rejected as the limiting
distribution for share price movements becausé®idptokurtic nature of the observed data.
This led Mandelbrot (1963) and Fama (1963) to psepstable Paretian distributions as the
limiting distributions for financial market returnsThese non-normal stable distributions
have a characteristic component x<< 2. Under this hypothesis relative price changes
would have no finite second and higher moments andld, therefore, only obey the

generalised central limit law under time aggregatio

Conventional estimation of the characteristic exgrarexplicitly relies on the assumption that
the underlying distribution is stable. Thus usithgs statistic for inference about the
prevalence of a stable distribution is certainlemgo criticism (DuMouchel, 1983). The
characteristic component could be used to teshtiieof Gaussian against all other Paretian
distributions. However, to test the 1ID hypothesself, the assumption of stability must be
abandoned. As DuMouchel (1983) suggests, thisbeaachieved by using semi-parametric
techniques to estimate the tail index, which camused to test between the stable and other
candidate distributions. The tail index is derifedm extreme value theory (see Longin,
2001 for an application of this theory) and in sienfgrms is a measure of the thickness of the

tail(s) of a statistical distribution.

It is known that in the case of the non-GaussiablstParetian distributions the tail index,
coincides with the characteristic exponent, Therefore, an estimate of a tail index outside
the interval (0, 2] (in the statistically signifitasense) would indicate rejection of the stable
distribution hypothesis. In other words, if thel tadex o > 2, then the stable Paretian

hypothesis is rejectéd Statistically the significance of the tail indexthat it denotes the

2 Another avenue for testing the stable distributippothesis is to directly estimate the characteristioegnt
for different frequencies (e.g. daily, weekly, mdpjtand to exploit the stability-under-addition pesfy of
stable distributions, which implies that the charastierexponents calculated at these different fregiesn
should be the same.



largest finite moment (in the sense that a distidouwith a tail index of 5.6 will have finite

values for its first five moments, for proof seertel, 1958: 266).

Another important use of the ‘tail index’ estimatissthat they can be used to calculate
exceedence probabilities. The concept of theitdiéx’ derives from the statistical theory of
the extremes and before proceeding to the taikimaéculations, it is useful to briefly review
this theory (for more detail see Beirlattal., 1996; Leadbetteat al., 1983, Embrechtst al.
1999; Embrechts, 2000). One of the basic restlthetheory of extremes is to show that
under quite general conditions the limiting behaviof the tails of a distribution of 11D
variables follows one of only three max-stablerilistions (Leadbetter et al., 1983)In the
brief exposition that follows the concepts are axpd in terms of the maxima, although
generalisation to the case of the minima is posshply by changing the sign of the market

returns.

Define the order statistic M= max(x, xo,..., %) as the maximum values from a sample of
observations {}. It can be shown that with appropriate scalihg timiting distribution of
M, belongs to one of only three classes of distrdvuti Expressed more formally, the
limiting distribution of the tail, Pr[gM + b, < x], with a and K denoting normalising
constants, converges to one of the following typégeneralised extreme value (GEV)

distributions:

B 0 x<0
Cra(¥) = {exp(—x"“ ) x>0 (1.1)

Gyo(X) = expEx ) x<0
< 1 x>0 ’ (1.2)
G3(x) = expe *) x 00 (1.3)

whereo denotes the tail index. These three limiting ribstions are actually the Fréchet
(1.1), the Weibull (1.2) and the Gumbel (1.3) disitions. Alternatively the above three

® This result is known as the Fisher-Tippett theo(Eisher and Tippett, 1928), although the formal
mathematical proof was provided much later by Gnkdg1943).



equations [(1.1) to (1.3)] can be concisely writienthe so-called Cramer - von Mises

representation of the GEV distributions as follows:

Gy() = exp- A+ yx fay V) (2)

In this formalisationg > 0 is a scale parameter and the three elemetypeg of extremal
behaviour are characterised % 0,y < 0, and the limit in the cage— 0. For the first two
types above, the shape parameters of both repatieast (1.1) and (1.2) are related to the

parameters of the von Mises representatiorybyt1l/a (+ for (3.1) and — for (3.2)).

From this classification of the extreme values, oar derive a similar classification of the
behaviour in the outer parts of the statisticalrdiation. More specifically, by denoting &

Prob[Xi < x], it follows directly from the classification @xtremes in (1.1) to (1.3) that if the
maximum of a distribution follows a GEV of typeii£ 1,2,3) then the upper tail of the

distribution is close to

—1_yQ
Wi =1-X , x=1, (3.1)
— 1 _ (_v\O
Woo =1=(=%)" 1< x<0, (3.2)
W3 =1-exp(-x) x= 0, (3.3)

More formally, the above is usually referred to @e so-called Generalised Pareto
Distribution (GPD) with the same tail shape paranet as the GEV distribution. The

Cramer - von Mises representation of the GPD ismyivy:

Wy =1-(1+yx/0) VY @

The three elementary types of tail behaviour cardéscribed as hyperbolic decline (3.1),
distributions with finite end-points (3.2) and exgatial decline (3.3). As in the GEV case



they are respectively characterisedyby 0,y < 0, and the limit in thg — O case (whergis
the inverse of the tail index). An advantage of estimating this measure ofiteiiaviour is
that allows a number of candidate ‘limiting distrilons’ to be excluded from the outset. For
example, an estimate gf significantly different from zero would imply rejgon of the
normal distribution, distributions that involve rhixes including the normal and diffusion-

jump processes.

A number of estimators have been developed for‘tdie index’ a or its reciprocaly.

However, two non-parametric estimators for the tadex stand out because of their

widespread use. The first of these is the Pickkestdnator (Pickland, 1975):4,,, which in

the case of maximum values reads:

= (C}P)-lz il

1
In2

In( Xn—m+1 - Xn—2m+1 ) . (5)

Xn—2m+l - Xn—4m+1

where (x), i=1,...,n are the returns ordered in ascendingeoehdm (the number of tail

observations to be considered) depends on therotaber of observations in the sample.

The second estimator is the Hill estimatQDrH, which is obtained by maximising the

likelihood of the relevant tail function conditidran the chosen size of the ‘tail’ (Hill, 1975).

It is computed as follows:

al o ~ 1 K
Yu=(aw) = EZ['OQ Xin-isy ~ 109X ] - (6)
=

In equation (6), the sample elements are put igateling order: x(nE x(n-1)= ... > x(n-m)

> ...2 x(1) wheremis the number of ‘tail’ observations considered.

The Hill estimator, unlike the Pickland estimatsrappropriate only where the Fréchet is the
limiting distribution of the extreme values. Hoveeythe Hill estimator is more efficient than

the Pickland in these circumstances. Some preeousrical studies have used the normal



distribution, mixed diffusion jump processes (Prei867) and discrete mixtures of normal
distributions (Kon, 1984), which lead to the choadehe Gumbel distribution as the limiting
distribution for extreme values. However, the osssbehind these choices were linked to
convenience rather than solid theoretical suppditte Paretian (fat-tailed) distributions all
lead to the Fréchet as the choice of the limitdasARCH type processes. The Fréchet
distribution has almost unanimous support as tleecehfor the limiting distribution of the
extremes in the case of financial market returnerelfiat tails prevail. Longin (1996) shows
empirically that the Fréchet is the correct chdaemarket return data. Consequently, recent

empirical research on financial market returnsdmsentrated on the Fréchet case.

There is a significant practical problem in apptyithe Hill (or the Pickland) estimator,
namely the method of determining the number of ota®ns in the tail. The problem
manifests itself in the choice of the tail length, Resolution of this problem necessarily
involves an implicit assumption about the true tadex. Given that the exact distribution
generating financial market returns data is unknawa the limiting distribution used is only
an approximation, it remains the case that estsnal¢ained will be biased (in general). If
optimal estimates are to be obtained (using the Mi®Eria) then this bias and the variance
must diminish at the same rate as the sample ems tto infinity (Danielsson and de Vries,
1997). However, the bias tends to be non-linedeims of the sample size and tail length.
Thus, the standard procedures (such as a bootstaaphot be applied. The sub-sample
bootstraps proposed by Hall(1990) and developebdmyielson et al. (1996) and Danielson
and de Vries (1997) could be used to calculateimal length of the tail. However, this

complicated procedure depends critically on a laayaple size.

3. M ethodology

The first step is to estimate point estimates ef tdil index for both positive and negative
returns for each of the six share price time serg#sg the Hill estimator (equation 6). The
Hill estimator was chosen because it is more efficthan the Pickland estimator when the
Fréchet is the limiting distribution of the tailgthe Fréchet most is likely to be the limiting

distribution of the tail given the fat-tailed nadusf financial market returns data.

One of the issues to be resolved in applying tHeddtimator is that of choosing the optimal

value for m. Although it would be possible to ube sub-sample bootstraps proposed by

1C



Hall (1990) to calculate an optimal value for misthrocedure is not employed in this study
given insufficient size in the sample used. Indiehe Hill tail index estimator is calculated
over a range (grid) of possible values for m. &wihg Lux (1996) the values for m range
from 5% to 15%. Point estimates of the tail indexeach of the six share price data series
are estimated using the Hill estimator for valuésncequal to 15%, 12.5%, 10%, 7.5% and
5%. These tail index estimates can be used tahesstable Paretian hypothesis, which is
rejected ifa>2. However, while the estimated tail index may dreater than two, the
guestion is whether the statistic is significarghgater than two. The point estimates of the
tail index will be unreliable indicators of the ¢érwvalue for the tail index if they have a very
large variance. Consequently, we construct confidentervals for these point estimates for

the tail index for both negative and positive retur

Denotingy = 1o, wherea is the tail index angy as the Hill estimate it can be shown that

(yay)m™
1987). This property can be exploited in constngcasymptotic confidence intervals for the

is asymptotically normal with zero mean and aame ofy’ (Goldie and Smith,

estimated tail index. It follows directly from al®that sinceyg-y)m“?y = (a-oy)-m“%ay

is asymptotically distributed as N(0,1), then if denote byf the relevant confidence point
from N(0,1) (normal distribution with zero mean amdity variance) then the confidence
intervals will beay+fChiy/mY% Upper and lower confidence intervals are caledat the
95% level for each tail index point estimate. 3hii a>2, but the confidence limits fall

either side of 2 then the stable Paretian hypadheesild not be rejected.

Another important issue is whether the distributi®symmetric. Do the tail indexes of the
positive and the negative extreme returns coin@ddas expected to be the case for Paretian
distributions? If they do coincide, the positivedanegative returns can be pooled together to
allow for an improved estimate for the tail indela order to construct an appropriate test
statistic to examine symmetry, the asymptotic nditgnaf the Hill estimator can be exploited
once again. Sincg-y)m*?~ N(0,y?) and therefore yi-y)m*%y~ N(0,1). If we use + and

— superscripts to denote Hill estimates for theitaiex of the positive and negative returns
respectively, then if the true tail index is themgafor both these cases the sumn &s
indicated in equation 7) represents (asymptotigalysum of two squared normal random
variables. If it is assumed that these variabtesralependefitthe sum ) should follow chi

square distribution with 2 degrees of freedom.

4 Unfortunately, the assumption of independencetgestable.
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q=[y-NM) W1+ [(V-y)(m) A = @/a™-1)° m"+ (/a™1)7 nv ()

The chi-square test statistic calculated from @qoaf7) is used to test if the right and left
tails of the returns distribution can be treatedy®metrical. If the tails are not symmetric

then the stable Paretian hypothesis can be rejected

One of the most important features of the tail Jndethat estimates for this statistic can be
used to calculate crash probabilities, by takingaathge of the fact that a low value for the
tail index indicates a high probability of the oo®ice of an extreme event. In calculating
these crash probabilities the concept of the qglearitinction is employed. The usual

definition of the ¥ quantile x of a continuous distribution with distribution fttion F is:

Xs = F(s) (8)

where F is the inverse of the distribution function. Ither words the quantile function is
the inverse of the distribution function. It is Mo noting that the widespread Value at Risk

(VaR) measure is usually calculated as the {gsantile , as follows:
VaRy.s= FY(1-s) (9)

In this paper an alternative quantile concept isdusamely, the so-called return level.
Suppose we define:

Prob(%b) = 1k (10)

where k>0, for givenb. The above states that the lewelill be exceeded once eveky
periods. If these periods are defined as yeaen ttne would expect this level to be
exceeded only once pkryears. It is straightforward to show that thigalative definition is
equivalent to the one based on the probabilityrilistion. The quantile given by equation
(9) is identical to the"squantile calculated using equation (8) if k=1/j1&quation (9) is
used because it can be directly related to theebwrValue Theory results summarised in
equation (4) and thus enables the estimated tdéxirto be used in calculating quantile-

probability pairs.

Equation (4), or more specifically equation (3.3 the most relevant specification of

equation (4) in our case, seems to provide a daitakpression for quantile estimation.
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However, the asymptotic nature of the underlyingotly requires some additional
manipulation to account for the small sample biapatential estimators, which are directly
based on equation (3.1). Furthermore, a directiGgiipn of equation (3.1) would also
require the estimation of the normalising constarlissentially, this means fitting the whole
asymptotic distribution to the available data, vihis a considerable computational burden
(see Longin, 1996 for an overview on the distribatfitting methods). In addition, the fact
that various estimated values (tail index and twomalising constants) are combined in this
approach to calculating the quantile function egadlto serious bias due to the errors arising
from the original estimation of these values. Th@mreason for such potential bias is the
fact that the quantile functions are highly noreén in the tail index and owing to this the
standard approximations, which employ the Taylatese may perform poorly. There are
several alternative estimators proposed in thealitiee that can be used for calculating
exceedence probabilities. Danielson and de Vi897) suggested a quantile estimator that
involves a first order approximation and crucialigpends on the optimal choice of the tall
length. Given the approached used in this stugdgséimator is required that accounts for the
bias arising from the choice of tail length. Cemsently, we use the consistent large
quantiles estimator due to an earlier suggestiorDbltkers and de Haan (1989) This

estimator is specified as follows:

Xp = {[(kmv2pn) )1 - 1]/(1 = 2} Xz = Xm) + Xr2 (11)

wherek is the number of observations (in this case 250 which approximates the number
of trading days per year) amdandm are the sample size and the number of observaiions
the tail region, respectively, is the quantile, while X i=1,2, m are decreasing order
statistics (i.e. the market returns situated intthle ordered in descending order). Since eq.
(11) provides us with an expression for the quaritihction, the relevant expression for the
probabilities associated with given quantile (asy predetermined negative market returns
values) can be obtained by simply inverting thdeftawith regard to the exceedence

probability p.

® De Haan et al. (1994) proposed an alternativenastir. Our choice of estimator has been determiyed
practical considerations such as desirable stlgiroperties and ease of implementation.



4, The Data Set

The data set is made up of daily stock prices fofad-related companies traded on North
American stock exchanges. Several important facteere considered in selecting these
companies. First, due to the asymptotic nature¢hefunderlying theory, preference was
given to those stocks for which reasonably longetiseries was available. Better known
companies were preferred mainly because of betfermation availability. Portfolio based
stocks such as investment funds were omitted inuawf operating firms. The following
food processing companies were chosen: Afton FoadigLimited (AFF.TO), Del Monte
Foods Company (DLM), Dole Food Company Inc. (DOKJjaft Foods Inc. (KFT), Vita
Food Products Inc. (VSF), and Safeway Inc. (SWYhe symbols in the brackets are the so-
called ticker symbols for these stocks. Aftorrégsled on the Toronto Stock Exchange (TSE),
Vita quotations are from AMEX, while all the othexe from the New York Stock Exchange
(NYSE). The data used is historical daily datanfr@ommodity Systems, Inc. (CSl). The
last observation in each data set was the 12 ARNB2. The earliest observation varied for
each firm providing a range of different sampleesijzranging from several thousand to
several hundreds observations. The larger dat sete those of Dole (beginning 31
January 1985), Safeway (from 26 April 1990). la tase of Afton the data series began on
31 May 1994, for Vita the data set began on 9 M2§71 The smaller samples were those of
Del Monte (beginning 5 February 1999,) and Krafbifi 13 June 2001). The available data
contains opening, closing, high and low quotatiassvell as volume traded. In order to rule
out phenomena resulting from thin trading, all #tecks selected are traded in significant

volumes.

The return variable used in this analysis is thgafdhmic return based on the difference
between the opening and the closing values onaheglay. An alternative approach is to
calculate returns using the difference betweenctbsing values of two consecutive days.
The latter includes a period of non-trading thatyrhave distorting effects, which can be
avoided if returns are calculated on the basis sihgle continuous day of trading, so as to
focus entirely on market phenomena. It is wellwnahat weekend effects (e.g. markets
closing on Friday and reopening on Monday compaecethe other weekdays) can create
distortions, which may lead to the incorrect ramcttof the 1ID hypothesis tested in this
paper. During periods of continuous trading thatiomal arrival of new information is

reflected in market prices. However, during a @erof non-trading (say overnight) there is

an accumulation of information, which may lead tsualden shift in market prices when the

14



market re-opens (see Sullivanal. 1998). Note that it is possible in principletttfzese two
different types of information (continuous ovee tinading period, and accumulated over the
period of non-trading) may lead to different inhdrgrice dynamics. Since the stable
distributions are characterised by the propertgtability-under aggregation, the mixing of
two potentially different processes could violdies tproperty even if the stable hypothesis is
a valid one for both the continuous and the accatiari cases, because of the mentioned
weekend effects. It is therefore appropriate te aut such a possibility from the very outset
of the study. Moreover such shifts may createusigps fat-tailed character in the data. This
would impact on the estimated tail index and ultehaon the estimates of the exceedence

probabilities. It may also lead to spurious reg@tof the stable Paretian hypotheses.

Most studies calculating tail indices concentrateegchange rates and stock market indices
where zero returns are relatively rare. In the adsedividual company shares considered
here, there is significant number of zero daily keareturns even when the shares are traded
in considerable volumes. Consequently, some adprdtto the data set is necessary. This
adjustment consists of conflating the zero obsewatinto a single observation, which
reduces the total sample to a smaller ‘effectsaghple to which the conventional criteria for
determination of the appropriate tail size can jygliad. Note, however, that this additional
manipulation is only used in estimating the tadex, because it corrects the distortionary
effect of numerous zero returns on the relative suess of tail size (as percentage of the
estimation sample). When estimating the quantitability pairs (i.e the exceedence

probabilities), the full available sample is used.

5. Results

The point estimates for the tail index are preseénn table 1. The symbols, + and —, are
used to denote the positive and negative returestfie right and the left tail). A feature of
the estimates of the tail index, presented in Tdhlés the degree of uniformity, which
suggests that the estimates are not highly seasitivthe choice of the size of the tail.
Exceptions to this uniformity are the tail indexiesmtes for companies such as Kraft and Del
Monte estimated at the lower (5%) tail sizes. Hesvesample size for these firms is smaller
than for the other firms and at the 5% tail size sample size is further reduced. Therefore,
it is to be expected that with a relatively low riaem of tail observations the estimation of the

tail index may be inefficient. At the other endtbe scale, tail estimates based on larger
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(15%) tail size may include to many observationsmirthe centre of the statistical
distribution. Thus, to some extent, the 10% an8%.tail sizes may provide more
representative, and therefore, more reliable estisnaf the tail index for this specific sample

of company shares.

With only a single exception (the negative retuimisAfton at the 5% tail size), the point

estimates of the tail index for the eight firms greater than 2. However, before rejecting
the 1ID hypothesis, it is important to examine ®&% confidence intervals for the point

estimates of the tail index. The 95% confidenderirals for the point estimates of the tail
index are presented in Table 2. Again, with onlsirgle exception, the results in Table 2
indicate that the lower limits of the 95% confideniatervals for the tail index estimates
exceed two. Therefore, the 1ID hypothesis is tegat the 95% level of significance. This

result suggests that the 11D hypothesis is inadiegics characterising these market prices.

Using equation (7) the hypothesis that tail indiaes identical for the upper and the lower
tails of the statistical distributions of the markeice returns can be tested. The results from
these tests are presented in table 3. Jhielues represent the calculated chi-square, while
the Probg) values represent the corresponding probabilityttis value from the Chi square
distribution with 2 degrees of freedom. The chiae test results presented in Table 3
indicate that, with exception of the cases of tet8il size for Afton and Del Monte, the null
cannot be rejected at 95% level of confidence. él@w, the discriminative power of the chi
square test used here may be %owNote that the confidence intervals for the tadex
estimate for the lower and upper tails (presentadble 2) rarely overlap. Furthermore, with
only a few exceptions (likely due to small samplés® estimates for the left and the right tail
index differ in the same direction when estimatedroa range of tail sizes (see Table 1).
This systematic deviation probably indicates th assumption of independence used in
constructing they statistic does not hold. Consequently, the laeff aght tail indices are

treated separately despite the chi-square tedtsesu

The primary aim of the paper is to demonstrate ube of the tail index in calculating
exceedence probabilities for the selected marksttagturns. These probabilities can be
calculated by inverting equation (11) with regaydtte probabilityp (i.e. solving forp). The

exceedence probability is then calculated for prerdaened loss levels. These exceedence

® This means that while rejecting the null meansation of the assumption for identical tail indicésilure to
reject it may be due to other unspecified reasémsther words if the tail indices are identidake null must to
hold. The fact that it holds however does not nemly mean that the indices are identical.
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probabilities are presented in table 4 for différtail sizes and negative returns ranging from
0.15 to 0.40. The probabilities in table 4 arawat probabilities which denote the number
of times a negative return exceeding the levelcagid is likely to occur within the period of
one year. Thus, for example, the exceedence pititpatt 10% tail size for negative return
of 40% for Del Monte is approximately 0.25. Baéligathis means that for Del Monte shares
(asymptotically, i.e. in the long run) negative lganarket returns are expected to exceed
40% on average 0.25 times per year or once evergads (=1/0.25). Clearly, the result
changes when the exceedence probability calcultted the tail index estimated at a
different tail size is used. Therefore, therensartainty about which exceedence probability
to use when making financial decisions. Nevertfgl¢hese calculations do provide useful
information. Note that when only the 12.5%, 10%l &h5% tail sizes are considered the
values for the exceedence probabilities are moke.alAs indicated earlier, it is likely that
the other tail sizes produce rather biased resuitsa situation where the consequence of a
loss is high, a more conservative approach maybeured and investors may prefer to rely

on estimates based on larger tail sizes.

The range of the exceedence probability estimat#ssa the firms in the sample is
considerable. When only the 12.5%, 10% and 7.5Psiizes are considered the exceedence
probabilities for a 40% loss range from 0.033 (Kr&d 0.6 (Afton). This means the expected
frequency of a single occurrence of a 40% fallhare price for these firms is between 1.5
and 30 years. Averaging the highest and loweseedence probabilities for each firm
estimated from the 12.5%, 10% and 7.5% tail sindgcates that a 40% drop in share price
over a single day of trading can be expected tamoa ‘average’ (for these firms) about

every four to six years.

Huisman et al. (2001) propose a complex procedoat é¢ssentially can be viewed as a
weighted average of tail indices (exceedence piibtied) calculated from different sizes of
the tail region, which eliminates the ad-hoc chsigenerated by estimating the exceedence
probability over a range of tail sizes. Howevevere where a single estimate of an
exceedence probability is produced, most usersisfibformation will want to know the
associated confidence intervals for the statidiaséd on the upper and the lower values of
the tail index). Thus, an advantage of the sinapleroach of providing estimates for a range
of tail sizes is that the range of estimates thémsecan be viewed as proxy confidence

intervals.



The exceedence probabilities calculated in thispapovide an estimate of the likelihood of
sudden falls in share price, as well as providingeasure of the volatility of the different
shares considered. The results in Table 4 sugiestthe six firms can be grouped
(provisionally) into two groups. The first group made up of Dole, Kraft and Safeway.
Based on the results obtained in this paper, theesbrices of these firms (in comparison to
the others) appear to be less volatile and lesdylito suffer large and sudden declines. The
second group includes Afton, Del Monte, and Vildne share prices of these firms appear to
be more volatile compared to those of the firsugrolt is useful to compare and contrast the

firms classification in these two groups.

One noticeable difference between the two groupkasall the representatives of the more
stable group of stocks are traded on NYSE (seeeTallwhile the most volatile stock is
Afton, which is traded in Toronto. This raises tpessibility that the institutional
characteristics of the different stock exchangesaar important influence on volatility. It
may be that the registration requirements of tffferdint stock exchanges act to segment the
stock market. Alternatively, the operation of it breaker’ and ‘trading halt’” mechanism
may differ across stock exchanges. Further, metaildd research that is beyond the scope
of this paper is required to investigate whetheséhfactors influence share price volatility.
It is probable that the most important differenegneen the two groups is in their levels of
turnover (see Table 5). The average turnover @figione is measures in $billions, while the
average turnover of group two is measured in $om#li This provides a clear suggestion that
the level of a firm’s turnover influences sharecprvolatility. Other than to acknowledge the
fact that food processing firms are found in botbugs, there is little to be gained from

examining the relationship between the firms’ basgtype and stock volatility.

0. Conclusions

This paper demonstrates the utilisation of the ephof the tail index in testing whether the
stable Paretian hypothesis is the true underlyirafeh generating market returns for a
selection of food firms and in calculating exceesteprobabilities for given critical levels of

loss (or share price decline).

In empirical terms, testing the stable Paretianollygsis is equivalent to testing the 11D

hypothesis. Our results based on a selection ofl firms unequivocally reject this
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hypothesis. Nevertheless this does not in anyeseanply market inefficiency, since the
semi-martingale form of the ‘efficient markets hytpesis’ still holds. The rejection of the
stable Paretian hypothesis in this paper agredsth findings of Lux (1996) following an
examination of leading German stocks. Indeedetherging picture from recent literature is
that, despite initial appearances, the distribiohstock returns are not characterised by the

stable laws.

An important advantage of the tail index is thatah be used in calculating extreme quantiles
and associated probabilities for share price mowsnevhich means the risks of a large
decline (of a given magnitude) in a share’s prie@ be estimated. Such information is
extremely important for investors, particularly skeoinvestors who may have to liquidate
their assets at short notice. The analysis caaigdn this paper indicates that a 40% drop in
share price over a single day of trading can beebgal to occur on average about every four
to six years in the case of the firms consider&tie analysis indicated that the food firms
considered could be divided into two groups based tlie exceedence probabilities
calculated. One group included firms where theliifood of a large decline in share price
was greater than that of the other group. An eratiun of the characteristics of the firms in
each group revealed that the levels of turnovertlier firms in the group with the greater
likelihood of a large decline in share price weoasiderably lower when compared to those

of the firms in the other group.

The method of using tail index estimates to obtexteedence probabilities has been
demonstrated in this paper using company stockisctuld be used to assess the risk of
holding any market asset. Indeed, we see no reakprihe procedure should not be used to
assess the risk associated with trading in agualltcommodities. While it is possible to
manage the price risk associated with some agui@iltcommodities through hedging
strategies, there are many agricultural commodftiesvhich this is not possible. For these
commodities good knowledge of the downside riskholding these commodities is all the
more important. The storability of many agricuéticommodities means that farmers have
the option of delaying sale when they believe wiogy improve. The risk in doing so is
that prices may fall, thus we believe that estingathe tail index of agricultural commodity
price distributions with a view to calculating erdence probabilities may provide farmers

with valuable information for decision making pusgs.

All food firms need to operate within the limitati® of cash flow constraints. Because of this

a sudden extreme loss ensuing from the fall inghee of some market asset they are

1¢



currently holding, may compromise their financibllées to meet cash outflows. In such a
situation the calculation of the exceedence prdib@lsi associated with this critical level of
loss may dramatically improve risk management prestwith regard to decisions about

whether or not to hold certain market assets.
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Table 1. Point Estimates of thetail index, a.

Size of the tail (%) Total Effective 15 12.5 10 7.5
Sample  sample
afton+ 1288 357 2.4576 3.0515 3.7484 4.0676 4.0894
afton- 1288 323 22479 27311 25977 2.4630 1.8633
del monte+ 889 378 2.3402 29194 2.8570 2.5818 3.1436
del monte- 889 401 2.8694 3.3070 3.2839 4.6705 6.9572
dole+ 4436 1911 2.8212 2.9004 3.0291 3.2024 3.3518
dole- 4436 1958 2.6234 2.7709 2.8461 3.0074 3.1102
kraft+ 292 145 5.2253 4.6748 4.3556 3.4057 3.0995
kraft- 292 126 3.2410 3.3533 3.7801 3.7355 4.4710Q
safeway+ 3101 1375 3.1848 3.1873 3.3269 3.4766 3.8183
safeway- 3101 1385 2.9121 3.0530 2.9969 3.1101 3.3114
vita+ 828 181 2.6648 2.8378 3.2566 3.0535 2.9606
vita- 828 190 3.7077 3.4534 3.2687 4.6273 3.6073
Table 2. The 95% confidenceintervalsfor thetail index point estimates
Tail size (%) 15 12.5 10 7.5 5

afton+
afton-

del monte+
del monte-

dole+
dole-

kraft+
kraft-

safeway+
safeway-

vita+
vita-

(2.36842,2.54681)2.93046,3.17261)3.58262,3.91418)3.85665,4.27854)3.82968,4.34916

(2.16185,2.33404)2.61703,2.84517)2.47518,2.72029)2.32964,2.59646)1.73678,1.98982

(2.25858,2.42192) (2.80757,3.0312)(2.73431,2.97969) (2.45313,2.7104)2.94987,3.3372]
(2.77201,2.96685)3.18443,3.42953) (3.14678,3.4211) (4.44622,4.8947) (6.5406,7.37383

(2.77854,2.86391)2.85229,2.94843)2.97299,3.08525)3.13386,3.27089)3.26396,3.4396 2

(2.5842,2.66261)2.72558,2.81628)2.79406,2.89816)2.94368,3.07103)3.02956,3.1908¢

(4.90331,5.54725)4.35737,4.99221)4.02198,4.68928)3.09983,3.71166)2.74733,3.4516¢
(3.02842,3.45363)3.10736,3.59922)3.47640,4.08379)3.37683,4.09425)3.96304,4.97903

(3.12791,3.24178)3.12482,3.24977) (3.2542,3.3997)3.38874,3.56452)3.69983,3.9368¢
(2.86026,2.96385)2.99349,3.11247)2.93157,3.06214)3.03186,3.18833)3.20939,3.4134

(2.52366,2.80600)2.67241,3.00321)3.04298,3.47023)2.81958,3.28738)2.67635,3.24494
(3.51545,3.90001)3.25725,3.64963)3.06107,3.47629)4.28797,4.96671)3.28332,3.9313¢
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Table 3. Chi sguare tests for identical left and right tails
of the statistical distributions for market returns
and their significance levels

Tail size (%) 15 12.5 10 7.5 5
afton

ql 0.18486 0.24036 2.1999 3.2677 6.1810
Prob(q)2 0.08829 0.11324 0.66711 0.80483 0.95452
del monte

q 1.1536 0.3553 0.35174 5.6543 7.6071
Prob(q) 0.43832 0.16277 0.16127 0.94082 0.97771
Dole

q 0.75741 0.24844 0.37107 0.28212 0.26688
Prob(q) 0.31525 0.11681 0.16934 0.13156 0.12492
Kraft

q 2.0185 0.74561 0.10597 0.032395 0.36239
Prob(q) 0.6355 0.3112 0.051605 0.016067 0.16573
safeway

q 0.81802 0.15684 0.74474 0.63484 0.69364
Prob(q) 0.33569 0.075426 0.3109 0.27197 0.29307
vita

q 1.3554 0.38244 0.000106 1.0776 0.14777
Prob(q) 0.49221 0.17405 5.31E-05 0.41657 0.071223

Note 1. qis the chi-square test statistic.

Note 2. Prolqf) denotes the significance levels of the null ttregre is no
difference between the tail indexes. If Pgb0.95 then the null
hypothesis is rejected.



Table4

Annual Exceedence probabilitiesfor different tail sizes

Tail size (%)

Afton

Del Monte

Dole

Kraft

Safeway

Vita

Loss (%)
0.15
0.20
0.25
0.30
0.35
0.40

0.15
0.20
0.25
0.30
0.35
0.40

0.15
0.20
0.25
0.30
0.35
0.40

0.15
0.20
0.25
0.30
0.35
0.40

0.15
0.20
0.25
0.30
0.35
0.40

0.15
0.20
0.25
0.30
0.35
0.40

15

2.20810
1.99570
1.82710
1.68990
1.57600
1.47990

1.23710
0.94315
0.76808
0.65184
0.56898
0.50689

0.75826
0.58363
0.47803
0.40724
0.35644
0.31820

0.28414
0.21424
0.17334
0.14648
0.12747
0.11330

0.79095
0.52023
0.39183
0.31682
0.26761
0.23281

1.10890
0.68560
0.50185
0.39908
0.33339
0.28775

12.5

2.31920
1.38130
0.99523
0.78455
0.65179
0.56040

0.83061
0.61325
0.49021
0.41099
0.35567
0.31484

0.56924
0.43392
0.35334
0.29985
0.26172
0.23316

0.20020
0.15013
0.12108
0.10210
0.08872
0.07877

0.63977
0.41538
0.31095
0.25054
0.21113
0.18338

1.02270
0.63830
0.46915
0.37394
0.31285
0.27029

10

1.95200
1.30170
0.98647
0.80027
0.67726
0.58989

0.68852
0.50508
0.40228
0.33648
0.29072
0.25704

0.41305
0.31185
0.25251
0.21348
0.18584
0.16523

0.14086
0.10493
0.08430
0.07090
0.06150
0.05453

0.58259
0.37852
0.28346
0.22843
0.19252
0.16723

0.90805
0.55574
0.40501
0.32129
0.26799
0.23105

7.5

1.47840
1.12150
0.91069
0.77136
0.67238
0.59838

0.21920
0.14813
0.11299
0.09202
0.07807
0.06812

0.26742
0.19914
0.15996
0.13453
0.11668
0.10346

0.08751
0.06478
0.05186
0.04352
0.03769
0.03338

0.51231
0.33221
0.24856

0.2002
0.16867
0.14648

1.62570
0.17313
0.040868
0.093229
0.06459
0.049853

5

0.91372
0.85113
0.79866
0.75399
0.71549
0.87387

0.06399
0.04052
0.02997
0.02398
0.02011
0.01740

0.18518
0.13649
0.10900
0.09133
0.07900
0.06991

0.06028
0.04423
0.03523
0.02947
0.02547
0.02252

0.32654
0.20399
0.15007
0.11972
0.10024
0.086668

0.79308
0.39656
0.26803
0.20438
0.16637
0.14108
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Tableb5. Firm Characteristics.
Company | Group | Turnover® Business Type Stock
Market?
Afton 2 Can$31m Franchises TSX
Del Monte 2 $1,300m Food Processing  NYSE
Dole 1 $4,500m Food Processing  NYSE
Kraft 1 $33,800m Food Processing  NYSE
Safeway 1 $34,000m Food Retailing NYSE
Vita 2 $22m Food Processing AMEX
Note 1.  The turnover figures for each firm are give US dollars, except in the case of Afton where

the figure is in Canadian dollars.

Note 2.

exchange and AMEX represents the Chicago stockehark

TSX indicates the Toronto stock exchanghilevNYSE indicates the New York stock



