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Estimating the probability of large negative stock market returns: the case 
of food retailing and processing firms. 

 
 
 

Abstract 
 
 
Correct assessment of the risks associated with likely economic outcomes is vital for 

effective decision making.  The objective of investment in the stock market is to obtain 

positive market returns.  The risk, however, is the danger of suffering large negative market 

returns.  A variety of parametric models can be used in assessing this type of risk.  A major 

disadvantage of these techniques is that they require a specific assumption to be made about 

the nature of the statistical distribution.  Projections based on this method are conditional on 

the validity of this underlying assumption, which itself is not testable.  An alternative 

approach is to use a non-parametric methodology, based on the statistical extreme value 

theory, which provides a means for evaluating the unconditional distribution (or at least the 

tails of this distribution) beyond the historically observed values.  The methodology involves 

the calculation of the tail index, which is used to estimate the relevant exceedence 

probabilities (for different critical levels of loss) for a selection of food industry companies.  

Information about these downside risks is critically important for investment decision 

making.  In addition, the tail index estimates permit examination of the stable Paretian 

hypothesis.  

 

 
JEL classification: C10, C16, G10, G14, Q19 
Keywords: Extreme Value Theory, tail index, exceedence probabilities 
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Estimating the probability of large negative stock market returns: the case 
of food retailing and processing firms. 

 

1.  Introduction 

The volatility of stock market prices can be considerable and there is a common perception 

that volatility levels are increasing over time.  Certainly, the recent series of stock market 

crashes has brought the issue of downside risk into sharp focus.  This is particularly so for 

those investors who regularly have to liquidate their assets at short notice.  Danielsson and de 

Vries (1997) cite the example of a pension fund that must be able to pay out every period.  

Investors in this situation often favour the ‘safety first’ rule, which explicitly takes into 

account the probability of a high negative return (Roy, 1952; Bernstein, 1992). 

Downside risk is perceived to vary according to share type.  For example, one might expect 

the average level of downside risk associated with holding the shares of well established food 

processing and retailing to be lower than that for companies operating in emerging markets or 

within the new technologies sector.  On the other hand it is likely that these downside risk 

levels vary considerably across food firms.   

The potential for capital gains is one of the main attractions of holding shares or other 

financial assets.  However, as recent stock market crashes have demonstrated, all share prices 

are subject to substantial falls.  A large reduction in share prices represents a capital loss to an 

investor, which may trigger serious financial problems.  In this paper, a loss (gain) is defined 

as a drop (rise) in share value over the course of a single day’s trading, calculated by 

comparing the opening and closing prices quoted for the share in question at the beginning 

and end of the same day’s trading.  The probability of a loss exceeding a given magnitude, 

such as for example, a 30% drop in share price, can be estimated.  However, it is preferable to 

estimate the probabilities over a range of loss levels.  Various techniques can be used to 

estimate these exceedence probabilities.  Some of these techniques attempt to fit the entire 

probability distribution, while others concentrate only on the (left) tail, given that this is the 

area of most relevance.   
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The simplest method of calculating exceedence probabilities is to make use of sample 

equivalents, as in the case of non-parametric Value-at-Risk methods1.  In these methods, a 

long historical run of daily data on share price movements is used to determine the frequency 

with which a capital loss of a given size occurs.  Thus, the frequency of losses greater than 10 

per cent occurring in a sample of say 1000 could be used to calculate the probability of a loss 

greater than 10 per cent.  While this method has the advantage of requiring no assumptions to 

be made about the underlying distribution, it suffers from two serious problems.  Firstly, 

these sample equivalents will be inefficient because of their high variance, which means they 

provide unreliable estimates of the true distribution.  Secondly, since the probability 

distribution is calculated directly from a sample of historical share price movements, there is 

no way to obtain probabilities for out-of-sample losses.   

An alternative approach, which is parametric, makes use of the ‘true’ underlying distribution 

for the market returns under consideration.  The parameters of the ‘true’ distribution are 

estimated from available data and used to construct a negative returns-probability table.  The 

problem, however, with this approach is that the true underlying distribution is typically 

unknown.  Thus, to proceed with this approach one has to make an assumption about the 

nature of the underlying distribution.  For example, McCulloch (1981) fits the Cauchy 

distribution in calculating the bankruptcy probabilities of commercial banks.  However, such 

an assumption is unlikely to be validated, with the result that inferences based on the 

estimated parameters loose validity.  Clearly, the choice of the underlying distribution affects 

the results obtained, particularly when it is the tail of the distribution that is of most interest.  

Another major problem with this and other parametric approaches stems from the fact that 

they attempt to fit the entire probability distribution.  In estimating the parameters of the 

entire probability distribution from all the data available these approaches give low weighting 

to extremely large negative (or positive) returns simply because of the rarity of these returns.  

Therefore, paradoxically, the most important information is belittled.   

A third approach was suggested in the early 1990s and is based on a proposal by Du Mouchel 

(1983) to concentrate on the behaviour of the tails and thereby avoid the need to make any 

assumptions about the centre of the distribution.  The theoretical background of this approach 

is provided by the statistical theory of extreme values (see, for example Leadbetter et al., 

1983; Beirlant et al., 1996).  The main result of this theory is that it shows the limiting 

                                                            
1 Value-at-Risk analysis is normally used to assess downside risks associated with a portfolio of shares, whereas 
we are concerned with analysing single shares.  However, the principles are the same. 
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distribution of extremes (maxima or minima) can be characterised regardless of the 

underlying statistical distribution that generates the data.  Thus, instead of considering the 

entire distribution, one can fit the asymptotic limiting distribution to the tail for the purposes 

of inference.  This tool is made all the more useful by the fact that the tail can be 

characterised by single statistic, namely the ‘tail index’.  This statistic can be thought of as a 

measure of tail thickness.  Importantly, exceedence probabilities can be calculated from the 

tail index estimates.  Essentially, this amounts to calculating quantiles probabilities from the 

limiting distribution of the extreme values.  Under this approach the probable occurrence of 

extreme returns falling outside the range of the empirical data set can also be estimated.  

An added advantage of the tail index is that it can be used to provide information about the 

underlying distribution of the returns data.  Thus, for example, semi-parametric estimates of 

the tail index can be used to test the stable Paretian hypothesis.   

The aim of this paper is to use tail index estimates to calculate the relevant exceedence 

probabilities (for different critical levels of loss) for a selection of food industry companies.  

Information about these downside risks is critically important for investment decision 

making.  The exceedence (or crash) probabilities estimated are compared with each other.  It 

is concluded that the companies in this sample can be broadly classified into either high risk 

or low risk types.  We also use the tail index estimates to examine the stable Paretian 

hypothesis.  The next section describes the concept of the tail index, the stable Paretian 

hypothesis and other relevant statistical concepts.  Sections 3 and 4 describe the methodology 

and data sets, respectively.  Results are presented in section 5 and conclusions are drawn in 

section 6. 

 

2. The Theoretical Concepts 

The statistical properties of financial data have long been the subject of learned discussion 

and academic research.  Over a hundred years ago Bachelier, in his Ph.D. thesis entitled 

‘Théorie de la Spéculation’ (reprinted in Cootner (1964)), formulated one of the first testable 

hypotheses on the statistical behaviour of financial data by proposing the use of the Normal 

distribution as a model for share price movements.  While most empirical studies reject the 

Normal hypothesis, many theorists are of the view that share price movements should follow 

a distribution from the stable distribution family (also called Paretian distributions), of which 
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the Normal (Gaussian) is a member.  Stable distributions possess the appealing property of 

stability-under-addition.  Given that daily, weekly, etc., returns from financial assets can be 

considered sums of independent, identically distributed (IID) share price changes it is 

expected that the limiting distribution will come from the stable distribution family.  There is 

intuitive appeal also in that the stable distributions, other than the normal, share the features 

of fat tails and high peaks (leptokurtosis) observed in financial data.   

The Normal is the most familiar stable distribution with a characteristic component, αs, equal 

to 2.  However, in empirical studies the Normal is frequently rejected as the limiting 

distribution for share price movements because of the leptokurtic nature of the observed data. 

This led Mandelbrot (1963) and Fama (1963) to propose stable Paretian distributions as the 

limiting distributions for financial market returns.  These non-normal stable distributions 

have a characteristic component 0 < αs < 2.  Under this hypothesis relative price changes 

would have no finite second and higher moments and would, therefore, only obey the 

generalised central limit law under time aggregation. 

Conventional estimation of the characteristic exponent explicitly relies on the assumption that 

the underlying distribution is stable.  Thus using this statistic for inference about the 

prevalence of a stable distribution is certainly open to criticism (DuMouchel, 1983).  The 

characteristic component could be used to test the null of Gaussian against all other Paretian 

distributions.  However, to test the IID hypothesis itself, the assumption of stability must be 

abandoned.  As DuMouchel (1983) suggests, this can be achieved by using semi-parametric 

techniques to estimate the tail index, which can be used to test between the stable and other 

candidate distributions.  The tail index is derived from extreme value theory (see Longin, 

2001 for an application of this theory) and in simple terms is a measure of the thickness of the 

tail(s) of a statistical distribution.  

It is known that in the case of the non-Gaussian stable Paretian distributions the tail index, α, 

coincides with the characteristic exponent, αs.  Therefore, an estimate of a tail index outside 

the interval (0, 2] (in the statistically significant sense) would indicate rejection of the stable 

distribution hypothesis.  In other words, if the tail index α > 2, then the stable Paretian 

hypothesis is rejected2.  Statistically the significance of the tail index is that it denotes the 

                                                            
2 Another avenue for testing the stable distribution hypothesis is to directly estimate the characteristic exponent 
for different frequencies (e.g. daily, weekly, monthly) and to exploit the stability-under-addition property of 
stable distributions, which implies that the characteristic exponents calculated at these different frequencies 
should be the same. 
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largest finite moment (in the sense that a distribution with a tail index of 5.6 will have finite 

values for its first five moments, for proof see Gumbel, 1958: 266).   

Another important use of the ‘tail index’ estimates is that they can be used to calculate 

exceedence probabilities.  The concept of the ‘tail index’ derives from the statistical theory of 

the extremes and before proceeding to the tail index calculations, it is useful to briefly review 

this theory (for more detail see Beirlant et al., 1996; Leadbetter et al., 1983, Embrechts et al. 

1999; Embrechts, 2000).  One of the basic results of the theory of extremes is to show that 

under quite general conditions the limiting behaviour of the tails of a distribution of IID 

variables follows one of only three max-stable distributions (Leadbetter et al., 1983)3.  In the 

brief exposition that follows the concepts are explained in terms of the maxima, although 

generalisation to the case of the minima is possible simply by changing the sign of the market 

returns.  

Define the order statistic Mn = max(x1, x2,..., xn) as the maximum values from a sample of 

observations {xi}.  It can be shown that with appropriate scaling the limiting distribution of 

Mn belongs to one of only three classes of distribution.  Expressed more formally, the 

limiting distribution of the tail, Pr[anM + bn ≤ x], with an and bn denoting normalising 

constants, converges to one of the following types of generalised extreme value (GEV) 

distributions: 
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where α denotes the tail index.  These three limiting distributions are actually the Fréchet 

(1.1), the Weibull (1.2) and the Gumbel (1.3) distributions.  Alternatively the above three 

                                                            
3  This result is known as the Fisher-Tippett theorem (Fisher and Tippett, 1928), although the formal 
mathematical proof was provided much later by Gnedenko (1943). 
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equations [(1.1) to (1.3)] can be concisely written in the so-called Cramer - von Mises 

representation of the GEV distributions as follows: 

G x xγ
γγ σ( ) exp( ( / ) )/= − + −1 1

. (2) 

In this formalisation, σ > 0 is a scale parameter and the three elementary types of extremal 

behaviour are characterised by γ > 0, γ < 0, and the limit in the case γ → 0.  For the first two 

types above, the shape parameters of both representations (1.1) and (1.2) are related to the 

parameters of the von Mises representation by: γ = ±1/α  (+ for (3.1) and – for (3.2)). 

From this classification of the extreme values, one can derive a similar classification of the 

behaviour in the outer parts of the statistical distribution.  More specifically, by denoting W ≡ 

Prob[Xi  ≤ x], it follows directly from the classification of extremes in (1.1) to (1.3) that if the 

maximum of a distribution follows a GEV of type i (i = 1,2,3) then the upper tail of the 

distribution is close to  

W x1 1,α
α= − −

,   x ≥ 1,  (3.1) 

W x2 1, ( )α
α= − −

,   -1 ≤ x ≤ 0,  (3.2) 

W x3 1= − −exp( ),  x ≥ 0,  (3.3) 

More formally, the above is usually referred to as the so-called Generalised Pareto 

Distribution (GPD) with the same tail shape parameter α as the GEV distribution.  The  

Cramer - von Mises representation of the GPD is given by: 

W xγ
γγ σ= − + −1 1 1( / ) /

 (4) 

The three elementary types of tail behaviour can be described as hyperbolic decline (3.1), 

distributions with finite end-points (3.2) and exponential decline (3.3).  As in the GEV case 
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they are respectively characterised by γ > 0, γ < 0, and the limit in the γ → 0 case (where γ is 

the inverse of the tail index α).  An advantage of estimating this measure of tail behaviour is 

that allows a number of candidate ‘limiting distributions’ to be excluded from the outset.  For 

example, an estimate of γ significantly different from zero would imply rejection of the 

normal distribution, distributions that involve mixtures including the normal and diffusion-

jump processes. 

A number of estimators have been developed for the ‘tail index’ α or its reciprocal γ.  

However, two non-parametric estimators for the tail index stand out because of their 

widespread use.  The first of these is the Pickland estimator (Pickland, 1975), P
∧

γ , which in 

the case of maximum values reads: 
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where (xi), i=1,…,n are the returns ordered in ascending order and m (the number of tail 

observations to be considered) depends on the total number of observations in the sample. 

The second estimator is the Hill estimator, H

∧

γ , which is obtained by maximising the 

likelihood of the relevant tail function conditional on the chosen size of the ‘tail’ (Hill, 1975).  

It is computed as follows:  

 

H

∧

γ = 1)( −
∧

Hα = ]log[log
1

)(
1

)1( mn

k

i
in xx

m −
=

+− −∑ . (6) 

In equation (6), the sample elements are put in descending order: x(n) ≥ x(n-1) ≥ ... ≥ x(n-m) 

≥ ... ≥ x(1) where m is the number of ‘tail’ observations considered.  

The Hill estimator, unlike the Pickland estimator, is appropriate only where the Fréchet is the 

limiting distribution of the extreme values.  However, the Hill estimator is more efficient than 

the Pickland in these circumstances.  Some previous empirical studies have used the normal 
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distribution, mixed diffusion jump processes (Press, 1967) and discrete mixtures of normal 

distributions (Kon, 1984), which lead to the choice of the Gumbel distribution as the limiting 

distribution for extreme values.  However, the reasons behind these choices were linked to 

convenience rather than solid theoretical support.  The Paretian (fat-tailed) distributions all 

lead to the Fréchet as the choice of the limit, as do ARCH type processes.  The Fréchet 

distribution has almost unanimous support as the choice for the limiting distribution of the 

extremes in the case of financial market returns where fat tails prevail.  Longin (1996) shows 

empirically that the Fréchet is the correct choice for market return data.  Consequently, recent 

empirical research on financial market returns has concentrated on the Fréchet case. 

There is a significant practical problem in applying the Hill (or the Pickland) estimator, 

namely the method of determining the number of observations in the tail.  The problem 

manifests itself in the choice of the tail length, m.  Resolution of this problem necessarily 

involves an implicit assumption about the true tail index.  Given that the exact distribution 

generating financial market returns data is unknown and the limiting distribution used is only 

an approximation, it remains the case that estimates obtained will be biased (in general).  If 

optimal estimates are to be obtained (using the MSE criteria) then this bias and the variance 

must diminish at the same rate as the sample size tends to infinity (Danielsson and de Vries, 

1997).  However, the bias tends to be non-linear in terms of the sample size and tail length.  

Thus, the standard procedures (such as a bootstrap) can not be applied.  The sub-sample 

bootstraps proposed by Hall(1990) and developed by Danielson et al. (1996) and Danielson 

and de Vries (1997) could be used to calculate an optimal length of the tail.  However, this 

complicated procedure depends critically on a large sample size.  

 

3. Methodology 

The first step is to estimate point estimates of the tail index for both positive and negative 

returns for each of the six share price time series using the Hill estimator (equation 6).  The 

Hill estimator was chosen because it is more efficient than the Pickland estimator when the 

Fréchet is the limiting distribution of the tail and the Fréchet most is likely to be the limiting 

distribution of the tail given the fat-tailed nature of financial market returns data.  

One of the issues to be resolved in applying the Hill estimator is that of choosing the optimal 

value for m.  Although it would be possible to use the sub-sample bootstraps proposed by 
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Hall (1990) to calculate an optimal value for m, this procedure is not employed in this study 

given insufficient size in the sample used.  Instead, the Hill tail index estimator is calculated 

over a range (grid) of possible values for m.  Following Lux (1996) the values for m range 

from 5% to 15%.  Point estimates of the tail index for each of the six share price data series 

are estimated using the Hill estimator for values of m equal to 15%, 12.5%, 10%, 7.5% and 

5%.  These tail index estimates can be used to test the stable Paretian hypothesis, which is 

rejected if α>2.  However, while the estimated tail index may be greater than two, the 

question is whether the statistic is significantly greater than two.  The point estimates of the 

tail index will be unreliable indicators of the true value for the tail index if they have a very 

large variance.  Consequently, we construct confidence intervals for these point estimates for 

the tail index for both negative and positive returns. 

Denoting γ = 1/α , where α is the tail index and γH as the Hill estimate it can be shown that  

(γH-γ)m1/2 is asymptotically normal with zero mean and a variance of γ2 (Goldie and Smith, 

1987).  This property can be exploited in constructing asymptotic confidence intervals for the 

estimated tail index.  It follows directly from above that since (γH-γ)m1/2/γ = (α-αH)*m
1/2/αH   

is asymptotically distributed as N(0,1), then if we denote by f the relevant confidence point 

from N(0,1) (normal distribution with zero mean and unity variance) then  the confidence 

intervals will be αH±f∗αH/m1/2. Upper and lower confidence intervals are calculated at the 

95% level for each tail index  point estimate.  Thus, if α>2, but the confidence limits fall 

either side of 2 then the stable Paretian hypothesis could not be rejected. 

Another important issue is whether the distribution is symmetric.  Do the tail indexes of the 

positive and the negative extreme returns coincide, as is expected to be the case for Paretian 

distributions?  If they do coincide, the positive and negative returns can be pooled together to 

allow for an improved estimate for the tail index.  In order to construct an appropriate test 

statistic to examine symmetry, the asymptotic normality of the Hill estimator can be exploited 

once again.   Since (γH-γ)m1/2 ~ N(0, γ2)  and therefore  (γH-γ)m1/2/γ ~ N(0, 1).  If we use + and 

– superscripts to denote Hill estimates for the tail index of the positive and negative returns 

respectively, then if the true tail index is the same for both these cases the sum (q, as 

indicated in equation 7) represents (asymptotically) a sum of two squared normal random 

variables.  If it is assumed that these variables are independent4, the sum (q) should follow chi 

square distribution with 2 degrees of freedom.  

                                                            
4 Unfortunately, the assumption of independence is not testable.  
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q = [(γ+-γ)(m+)1/2 /γ)]2 +  [(γ--γ)(m-)1/2 /γ]2  = (α/α+-1)2 m+ + (α/α−-1)2 m- (7) 

The chi-square test statistic calculated from equation (7) is used to test if the right and left 

tails of the returns distribution can be treated as symmetrical.  If the tails are not symmetric 

then the stable Paretian hypothesis can be rejected. 

One of the most important features of the tail index is that estimates for this statistic can be 

used to calculate crash probabilities, by taking advantage of the fact that a low value for the 

tail index indicates a high probability of the occurrence of an extreme event.  In calculating 

these crash probabilities the concept of the quantile function is employed.  The usual 

definition of the sth quantile xs of a continuous distribution with distribution function F is: 

xs = F-1(s)  (8) 

where F-1 is the inverse of the distribution function.  In other words the quantile function is 

the inverse of the distribution function.  It is worth noting that the widespread Value at Risk  

(VaR) measure is usually calculated as the (1-s)th quantile , as follows:  

VaR1-s = F-1(1-s) (9) 

In this paper an alternative quantile concept is used namely, the so-called return level. 

Suppose we define:  

Prob(Xk>b) = 1/k (10) 

where k>0, for given b. The above states that the level b will be exceeded once every k 

periods.  If these periods are defined as years, then one would expect this level to be 

exceeded only once per k years.  It is straightforward to show that this alternative definition is 

equivalent to the one based on the probability distribution.  The quantile given by equation 

(9) is identical to the sth quantile calculated using equation (8) if k=1/(1-s). Equation (9) is 

used because it can be directly related to the Extreme Value Theory results summarised in 

equation (4) and thus enables the estimated tail index to be used in calculating quantile-

probability pairs.   

Equation (4), or more specifically equation (3.1) as the most relevant specification of 

equation (4) in our case, seems to provide a suitable expression for quantile estimation.  
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However, the asymptotic nature of the underlying theory requires some additional 

manipulation to account for the small sample bias of potential estimators, which are directly 

based on equation (3.1).  Furthermore, a direct application of equation (3.1) would also 

require the estimation of the normalising constants.  Essentially, this means fitting the whole 

asymptotic distribution to the available data, which is a considerable computational burden 

(see Longin, 1996 for an overview on the distribution fitting methods).  In addition, the fact 

that various estimated values (tail index and two normalising constants) are combined in this 

approach to calculating the quantile function can lead to serious bias due to the errors arising 

from the original estimation of these values. The main reason for such potential bias is the 

fact that the quantile functions are highly non-linear in the tail index and owing to this the 

standard approximations, which employ the Taylor series, may perform poorly.  There are 

several alternative estimators proposed in the literature that can be used for calculating 

exceedence probabilities.  Danielson and de Vries (1997) suggested a quantile estimator that 

involves a first order approximation and crucially, depends on the optimal choice of the tail 

length.  Given the approached used in this study, an estimator is required that accounts for the 

bias arising from the choice of tail length.   Consequently, we use the consistent large 

quantiles estimator due to an earlier suggestion by Dekkers and de Haan (1989)5.  This 

estimator is specified as follows: 

xp = {[( km/2pn)γH - 1]/(1 – 2 γH)}( Xm/2 - Xm) + Xm/2  (11) 

where k is the number of observations (in this case k = 250 which approximates the number 

of trading days per year) and n and m are the sample size and the number of observations in 

the tail region, respectively. xp is the quantile, while Xi , i=1,2,  m  are decreasing order 

statistics (i.e. the market returns situated in the tail, ordered in descending order).  Since eq. 

(11) provides us with an expression for the quantile function, the relevant expression for the 

probabilities associated with given quantile  (i.e. any predetermined negative market returns 

values) can be obtained by simply inverting the latter with regard to the exceedence 

probability p.  

 

                                                            
5 De Haan et al. (1994) proposed an alternative estimator. Our choice of estimator has been determined by 
practical considerations such as desirable statistical properties and ease of implementation.  
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4. The Data Set 

The data set is made up of daily stock prices for six food-related companies traded on North 

American stock exchanges.  Several important factors were considered in selecting these 

companies.  First, due to the asymptotic nature of the underlying theory, preference was 

given to those stocks for which reasonably long time series was available.  Better known 

companies were preferred mainly because of better information availability.  Portfolio based 

stocks such as investment funds were omitted in favour of operating firms.  The following 

food processing companies were chosen: Afton Food Group Limited (AFF.TO), Del Monte 

Foods Company (DLM), Dole Food Company Inc. (DOL), Kraft Foods Inc. (KFT), Vita 

Food Products Inc. (VSF), and Safeway Inc. (SWY).  The symbols in the brackets are the so-

called ticker symbols for these stocks.  Afton is traded on the Toronto Stock Exchange (TSE), 

Vita quotations are from AMEX, while all the others are from the New York Stock Exchange 

(NYSE).  The data used is historical daily data from Commodity Systems, Inc. (CSI).  The 

last observation in each data set was the 12 August 2002.  The earliest observation varied for 

each firm providing a range of different sample sizes, ranging from several thousand to 

several hundreds observations.  The larger data sets were those of Dole (beginning 31 

January 1985), Safeway (from 26 April 1990).  In the case of Afton the data series began on 

31 May 1994, for Vita the data set began on 9 May 1997.  The smaller samples were those of 

Del Monte (beginning 5 February 1999,) and Kraft (from 13 June 2001).  The available data 

contains opening, closing, high and low quotations as well as volume traded.  In order to rule 

out phenomena resulting from thin trading, all the stocks selected are traded in significant 

volumes.  

The return variable used in this analysis is the logarithmic return based on the difference 

between the opening and the closing values on the same day.  An alternative approach is to 

calculate returns using the difference between the closing values of two consecutive days.  

The latter includes a period of non-trading that may have distorting effects, which can be 

avoided if returns are calculated on the basis of a single continuous day of trading, so as to 

focus entirely on market phenomena.  It is well known that weekend effects (e.g. markets 

closing on Friday and reopening on Monday compared to the other weekdays) can create 

distortions, which may lead to the incorrect rejection of the IID hypothesis tested in this 

paper.  During periods of continuous trading the continual arrival of new information is 

reflected in market prices.  However, during a period of non-trading (say overnight) there is 

an accumulation of information, which may lead to a sudden shift in market prices when the 
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market re-opens (see Sullivan et al. 1998).  Note that it is possible in principle that these two 

different types of information  (continuous over the trading period, and accumulated over the 

period of non-trading) may lead to different inherent price dynamics. Since the stable 

distributions are characterised by the property of stability-under aggregation, the mixing of 

two potentially different processes could violate this property even if the stable hypothesis is 

a valid one for both the continuous and the accumulation cases, because of the mentioned 

weekend effects. It is therefore appropriate to rule out such a possibility from the very outset 

of the study.  Moreover such shifts may create a spurious fat-tailed character in the data.  This 

would impact on the estimated tail index and ultimately on the estimates of the exceedence 

probabilities.  It may also lead to spurious rejection of the stable Paretian hypotheses.  

Most studies calculating tail indices concentrate on exchange rates and stock market indices 

where zero returns are relatively rare. In the case of individual company shares considered 

here, there is significant number of zero daily market returns even when the shares are traded 

in considerable volumes.  Consequently, some adjustment to the data set is necessary.  This 

adjustment consists of conflating the zero observations into a single observation, which 

reduces the total sample to a smaller  ‘effective’ sample to which the conventional criteria for 

determination of the appropriate tail size can be applied.  Note, however, that this additional 

manipulation is only used in estimating the tail index, because it corrects the distortionary 

effect of numerous zero returns on the relative measures of tail size (as percentage of the 

estimation sample). When estimating the quantile-probability pairs (i.e the exceedence 

probabilities), the full available sample is used.  

 

5. Results 

The point estimates  for the tail index are presented in table 1.  The symbols, + and –, are 

used to denote the positive and negative returns (i.e. the right and the left tail).  A feature of 

the estimates of the tail index, presented in Table 1, is the degree of uniformity, which 

suggests that the estimates are not highly sensitive to the choice of the size of the tail.  

Exceptions to this uniformity are the tail index estimates for companies such as Kraft and Del 

Monte estimated at the lower (5%) tail sizes.  However, sample size for these firms is smaller 

than for the other firms and at the 5% tail size the sample size is further reduced.  Therefore, 

it is to be expected that with a relatively low number of tail observations the estimation of the 

tail index may be inefficient.  At the other end of the scale, tail estimates based on larger 
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(15%) tail size may include to many observations from the centre of the statistical 

distribution.  Thus, to some extent, the 10% and 7.5% tail sizes may provide more 

representative, and therefore, more reliable estimates of the tail index for this specific sample 

of company shares.  

With only a single exception (the negative returns for Afton at the 5% tail size), the point 

estimates of the tail index for the eight firms are greater than 2.  However, before rejecting 

the IID hypothesis, it is important to examine the 95% confidence intervals for the point 

estimates of the tail index.  The 95% confidence intervals for the point estimates of the tail 

index are presented in Table 2.  Again, with only a single exception, the results in Table 2 

indicate that the lower limits of the 95% confidence intervals for the tail index estimates 

exceed two.  Therefore, the IID hypothesis is rejected at the 95% level of significance.  This 

result suggests that the IID hypothesis is inadequate for characterising these market prices. 

Using equation (7) the hypothesis that tail indices are identical for the upper and the lower 

tails of the statistical distributions of the market price returns can be tested.  The results from 

these tests are presented in table 3.  The q values represent the calculated chi-square, while 

the Prob(q) values represent the corresponding probability for this value from the  Chi square 

distribution with 2 degrees of freedom.  The chi-square test results presented in Table 3 

indicate that, with exception of the cases of the 5% tail size for Afton and Del Monte, the null 

cannot be rejected at 95% level of confidence.  However, the discriminative power of the chi 

square test used here may be low6.  Note that the confidence intervals for the tail index 

estimate for the lower and upper tails (presented in table 2) rarely overlap.  Furthermore, with 

only a few exceptions (likely due to small samples), the estimates for the left and the right tail 

index differ in the same direction when estimated over a range of tail sizes (see Table 1).  

This systematic deviation probably indicates that the assumption of independence used in 

constructing the q statistic does not hold.  Consequently, the left and right tail indices are 

treated separately despite the chi-square test results.  

The primary aim of the paper is to demonstrate the use of the tail index in calculating 

exceedence probabilities for the selected market asset returns.   These probabilities can be 

calculated by inverting equation (11) with regard to the probability p (i.e. solving for p).  The 

exceedence probability is then calculated for predetermined loss levels.  These exceedence 

                                                            
6 This means that while rejecting the null means violation of the assumption for identical tail indices, failure to 
reject it may be due to other unspecified reasons.  In other words if the tail indices are identical, the null must to 
hold. The fact that it holds however does not necessarily mean that the indices are identical. 
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probabilities are presented in table 4 for different tail sizes and negative returns ranging from 

0.15 to 0.40.   The probabilities in table 4 are annual probabilities which denote the number 

of times a negative return exceeding the level indicated is likely to occur within the period of 

one year.  Thus, for example, the exceedence probability at 10% tail size for negative return 

of 40% for Del Monte is approximately 0.25.  Basically, this means that for Del Monte shares 

(asymptotically, i.e. in the long run) negative daily market returns are expected to exceed 

40% on average 0.25 times per year or once every 4 years (=1/0.25).  Clearly, the result 

changes when the exceedence probability calculated from the tail index estimated at a 

different tail size is used.  Therefore, there is uncertainty about which exceedence probability 

to use when making financial decisions.  Nevertheless, these calculations do provide useful 

information.  Note that when only the 12.5%, 10% and 7.5% tail sizes are considered the 

values for the exceedence probabilities are more alike.  As indicated earlier, it is likely that 

the other tail sizes produce rather biased results.  In a situation where the consequence of a 

loss is high, a more conservative approach may be favoured and investors may prefer to rely 

on estimates based on larger tail sizes. 

The range of the exceedence probability estimates across the firms in the sample is 

considerable.  When only the 12.5%, 10% and 7.5% tail sizes are considered the exceedence 

probabilities for a 40% loss range from 0.033 (Kraft) to 0.6 (Afton).  This means the expected 

frequency of a single occurrence of a 40% fall in share price for these firms is between 1.5 

and 30 years.  Averaging the highest and lowest exceedence probabilities for each firm 

estimated from the 12.5%, 10% and 7.5% tail sizes indicates that a 40% drop in share price 

over a single day of trading can be expected to occur on ‘average’ (for these firms) about 

every four to six years. 

Huisman et al. (2001) propose a complex procedure that essentially can be viewed as a 

weighted average of tail indices (exceedence probabilities) calculated from different sizes of 

the tail region, which eliminates the ad-hoc choices generated by estimating the exceedence 

probability over a range of tail sizes.  However, even where a single estimate of an 

exceedence probability is produced, most users of this information will want to know the 

associated confidence intervals for the statistic (based on the upper and the lower values of 

the tail index).  Thus, an advantage of the simple approach of providing estimates for a range 

of tail sizes is that the range of estimates themselves can be viewed as proxy confidence 

intervals.  
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The exceedence probabilities calculated in this paper provide an estimate of the likelihood of 

sudden falls in share price, as well as providing a measure of the volatility of the different 

shares considered.  The results in Table 4 suggest that the six firms can be grouped 

(provisionally) into two groups.  The first group is made up of Dole, Kraft and Safeway.  

Based on the results obtained in this paper, the share prices of these firms (in comparison to 

the others) appear to be less volatile and less likely to suffer large and sudden declines.  The 

second group includes Afton, Del Monte, and Vita.  The share prices of these firms appear to 

be more volatile compared to those of the first group.  It is useful to compare and contrast the 

firms classification in these two groups.  

One noticeable difference between the two groups is that all the representatives of the more 

stable group of stocks are traded on NYSE (see Table 5), while the most volatile stock is 

Afton, which is traded in Toronto.  This raises the possibility that the institutional 

characteristics of the different stock exchanges are an important influence on volatility.  It 

may be that the registration requirements of the different stock exchanges act to segment the 

stock market.  Alternatively, the operation of ‘circuit breaker’ and ‘trading halt’ mechanism 

may differ across stock exchanges.  Further, more detailed research that is beyond the scope 

of this paper is required to investigate whether these factors influence share price volatility.  

It is probable that the most important difference between the two groups is in their levels of 

turnover (see Table 5).  The average turnover of group one is measures in $billions, while the 

average turnover of group two is measured in $millions.  This provides a clear suggestion that 

the level of a firm’s turnover influences share price volatility.  Other than to acknowledge the 

fact that food processing firms are found in both groups, there is little to be gained from 

examining the relationship between the firms’ business type and stock volatility. 

 

6. Conclusions 

This paper demonstrates the utilisation of the concept of the tail index in testing whether the 

stable Paretian hypothesis is the true underlying model generating market returns for a 

selection of food firms and in calculating exceedence probabilities for given critical levels of 

loss (or share price decline).    

In empirical terms, testing the stable Paretian hypothesis is equivalent to testing the IID 

hypothesis.  Our results based on a selection of food firms unequivocally reject this 
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hypothesis.  Nevertheless this does not in any sense imply market inefficiency, since the 

semi-martingale form of the ‘efficient markets hypothesis’ still holds.  The rejection of the 

stable Paretian hypothesis in this paper agrees with the findings of Lux (1996) following an 

examination of leading German stocks.  Indeed, the emerging picture from recent literature is 

that, despite initial appearances, the distributions of stock returns are not characterised by the 

stable laws.   

An important advantage of the tail index is that it can be used in calculating extreme quantiles 

and associated probabilities for share price movements, which means the risks of a large 

decline (of a given magnitude) in a share’s price can be estimated.  Such information is 

extremely important for investors, particularly those investors who may have to liquidate 

their assets at short notice.  The analysis carried out in this paper indicates that a 40% drop in 

share price over a single day of trading can be expected to occur on average about every four 

to six years in the case of the firms considered.  The analysis indicated that the food firms 

considered could be divided into two groups based on the exceedence probabilities 

calculated.  One group included firms where the likelihood of a large decline in share price 

was greater than that of the other group.  An examination of the characteristics of the firms in 

each group revealed that the levels of turnover for the firms in the group with the greater 

likelihood of a large decline in share price were considerably lower when compared to those 

of the firms in the other group. 

The method of using tail index estimates to obtain exceedence probabilities has been 

demonstrated in this paper using company stocks, but could be used to assess the risk of 

holding any market asset.  Indeed, we see no reason why the procedure should not be used to 

assess the risk associated with trading in agricultural commodities.  While it is possible to 

manage the price risk associated with some agricultural commodities through hedging 

strategies, there are many agricultural commodities for which this is not possible.  For these 

commodities good knowledge of the downside risk of holding these commodities is all the 

more important.  The storability of many agricultural commodities means that farmers have 

the option of delaying sale when they believe prices may improve.  The risk in doing so is 

that prices may fall, thus we believe that estimating the tail index of agricultural commodity 

price distributions with a view to calculating exceedence probabilities may provide farmers 

with valuable information for decision making purposes. 

All food firms need to operate within the limitations of cash flow constraints.  Because of this 

a sudden extreme loss ensuing from the fall in the price of some market asset they are 
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currently holding, may compromise their financial abilities to meet cash outflows.  In such a 

situation the calculation of the exceedence probabilities associated with this critical level of 

loss may dramatically improve risk management practices with regard to decisions about 

whether or not to hold certain market assets. 
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Table 1. Point Estimates of the tail index, αααα. 

Size of the tail (%) Total 
Sample 

Effective 
sample 

15 12.5 10 7.5 5 

        
afton+ 1288 357 2.4576 3.0515 3.7484 4.0676 4.0894 
afton- 1288 323 2.2479 2.7311 2.5977 2.4630 1.8633 

        
del monte+ 889 378 2.3402 2.9194 2.8570 2.5818 3.1436 
del monte- 889 401 2.8694 3.3070 3.2839 4.6705 6.9572 

        
dole+ 4436 1911 2.8212 2.9004 3.0291 3.2024 3.3518 
dole- 4436 1958 2.6234 2.7709 2.8461 3.0074 3.1102 

        
kraft+ 292 145 5.2253 4.6748 4.3556 3.4057 3.0995 
kraft- 292 126 3.2410 3.3533 3.7801 3.7355 4.4710 

        
safeway+ 3101 1375 3.1848 3.1873 3.3269 3.4766 3.8183 
safeway- 3101 1385 2.9121 3.0530 2.9969 3.1101 3.3114 

        
vita+ 828 181 2.6648 2.8378 3.2566 3.0535 2.9606 
vita- 828 190 3.7077 3.4534 3.2687 4.6273 3.6073 

 
 

Table 2. The 95% confidence intervals for the tail index point estimates 

Tail size (%) 15 12.5 10 7.5 5 
      

afton+ (2.36842,2.54681) (2.93046,3.17261) (3.58262,3.91418) (3.85665,4.27854) (3.82968,4.34916) 

afton- (2.16185,2.33404) (2.61703,2.84517) (2.47518,2.72029) (2.32964,2.59646) (1.73678,1.98982) 

      

del monte+ (2.25858,2.42192) (2.80757,3.0312) (2.73431,2.97969) (2.45313,2.7104) (2.94987,3.33727) 

del monte- (2.77201,2.96685) 3.18443,3.42953) (3.14678,3.4211) (4.44622,4.8947) (6.5406,7.37383) 

      

dole+ (2.77854,2.86391) (2.85229,2.94843) (2.97299,3.08525) (3.13386,3.27089) (3.26396,3.43962) 

dole- (2.5842,2.66261) (2.72558,2.81628) (2.79406,2.89816) (2.94368,3.07103) (3.02956,3.19086) 

      

kraft+ (4.90331,5.54725) (4.35737,4.99221) (4.02198,4.68928) (3.09983,3.71166) (2.74733,3.45166) 

kraft- (3.02842,3.45363) (3.10736,3.59922) (3.47640,4.08379) (3.37683,4.09425) (3.96304,4.97903) 

      

safeway+ (3.12791,3.24178) (3.12482,3.24977) (3.2542,3.3997) (3.38874,3.56452) (3.69983,3.93686) 

safeway- (2.86026,2.96385) (2.99349,3.11247) (2.93157,3.06214) (3.03186,3.18833) (3.20939,3.41343) 

      

vita+ (2.52366,2.80600) (2.67241,3.00321) (3.04298,3.47023) (2.81958,3.28738) (2.67635,3.24494) 

vita- (3.51545,3.90001) (3.25725,3.64963) (3.06107,3.47629) (4.28797,4.96671) (3.28332,3.93136) 
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Table 3.  Chi square tests for identical left and right tails 
of the statistical distributions for market returns 
and their significance levels 

Tail size (%) 15 12.5 10 7.5 5 
      

afton      
q1 0.18486 0.24036 2.1999 3.2677 6.1810 
Prob(q)2 0.08829 0.11324 0.66711 0.80483 0.95452 

      
del monte      
q 1.1536 0.3553 0.35174 5.6543 7.6071 
Prob(q) 0.43832 0.16277 0.16127 0.94082 0.97771 

      
Dole      
q 0.75741 0.24844 0.37107 0.28212 0.26688 
Prob(q) 0.31525 0.11681 0.16934 0.13156 0.12492 

      
Kraft      
q 2.0185 0.74561 0.10597 0.032395 0.36239 
Prob(q) 0.6355 0.3112 0.051605 0.016067 0.16573 

      
safeway      
q 0.81802 0.15684 0.74474 0.63484 0.69364 
Prob(q) 0.33569 0.075426 0.3109 0.27197 0.29307 

      
vita      
q 1.3554 0.38244 0.000106 1.0776 0.14777 
Prob(q) 0.49221 0.17405 5.31E-05 0.41657 0.071223 

Note 1. q is the chi-square test statistic. 

Note 2. Prob(q) denotes the significance levels of the null that there is no 
difference between the tail indexes.  If Prob(q)>0.95 then the null 
hypothesis is rejected. 



 26

Table 4 Annual Exceedence probabilities for different tail sizes  

Tail size (%) 15 12.5 10 7.5 5 
 Loss (%)      

Afton 0.15 2.20810 2.31920 1.95200 1.47840 0.91372 
 0.20 1.99570 1.38130 1.30170 1.12150 0.85113 
 0.25 1.82710 0.99523 0.98647 0.91069 0.79866 
 0.30 1.68990 0.78455 0.80027 0.77136 0.75399 
 0.35 1.57600 0.65179 0.67726 0.67238 0.71549 
 0.40 1.47990 0.56040 0.58989 0.59838 0.87387 
       

Del Monte 0.15 1.23710 0.83061 0.68852 0.21920 0.06399 
 0.20 0.94315 0.61325 0.50508 0.14813 0.04052 

 0.25 0.76808 0.49021 0.40228 0.11299 0.02997 
 0.30 0.65184 0.41099 0.33648 0.09202 0.02398 
 0.35 0.56898 0.35567 0.29072 0.07807 0.02011 
 0.40 0.50689 0.31484 0.25704 0.06812 0.01740 
       

Dole 0.15 0.75826 0.56924 0.41305 0.26742 0.18518 
 0.20 0.58363 0.43392 0.31185 0.19914 0.13649 
 0.25 0.47803 0.35334 0.25251 0.15996 0.10900 
 0.30 0.40724 0.29985 0.21348 0.13453 0.09133 

 0.35 0.35644 0.26172 0.18584 0.11668 0.07900 
 0.40 0.31820 0.23316 0.16523 0.10346 0.06991 
       

Kraft 0.15 0.28414 0.20020 0.14086 0.08751 0.06028 
 0.20 0.21424 0.15013 0.10493 0.06478 0.04423 
 0.25 0.17334 0.12108 0.08430 0.05186 0.03523 
 0.30 0.14648 0.10210 0.07090 0.04352 0.02947 

 0.35 0.12747 0.08872 0.06150 0.03769 0.02547 
 0.40 0.11330 0.07877 0.05453 0.03338 0.02252 
       
       

Safeway 0.15 0.79095 0.63977 0.58259 0.51231 0.32654 
 0.20 0.52023 0.41538 0.37852 0.33221 0.20399 
 0.25 0.39183 0.31095 0.28346 0.24856 0.15007 

 0.30 0.31682 0.25054 0.22843 0.2002 0.11972 
 0.35 0.26761 0.21113 0.19252 0.16867 0.10024 
 0.40 0.23281 0.18338 0.16723 0.14648 0.086668 
       

Vita 0.15 1.10890 1.02270 0.90805 1.62570 0.79308 
 0.20 0.68560 0.63830 0.55574 0.17313 0.39656 
 0.25 0.50185 0.46915 0.40501 0.040868 0.26803 
 0.30 0.39908 0.37394 0.32129 0.093229 0.20438 

 0.35 0.33339 0.31285 0.26799 0.06459 0.16637 
 0.40 0.28775 0.27029 0.23105 0.049853 0.14108 
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 Table 5. Firm Characteristics. 

Company Group Turnover1 Business Type Stock 
Market2 

Afton 2 Can$31m Franchises TSX 

Del Monte 2 $1,300m Food Processing NYSE 

Dole 1 $4,500m Food Processing NYSE 

Kraft 1 $33,800m Food Processing NYSE 

Safeway 1 $34,000m Food Retailing NYSE 

Vita 2 $22m Food Processing AMEX 

Note 1. The turnover figures for each firm are given in US dollars, except in the case of Afton where 
the figure is in Canadian dollars. 

Note 2. TSX indicates the Toronto stock exchange, while NYSE indicates the New York stock 
exchange and AMEX represents the Chicago stock market. 

 


