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1. Introduction

Many economic time series contain regular patterns assborth seasonal causes
(biological, meteorological etc.). The presence of such perioditirEs in economic
datasets, particularly agricultural ones is well recognisedeftleeless one rarely sees
attempts to explicitly model them. Different automatic and smmomatic methods of
seasonal adjustment are sometimes employed to get rid odmnaéfeatures present in
the data. The justification of these practices is that the lgeger behaviour of the time
series is the main interest. In practice, we can handleomd@ytime series at a time with
seasonal adjustment procedures and the presence of non-linear compudations
identifying assumptions in these procedures, may alter theoredhtps that exist
between the variables we wish to consider simultaneously in aanidte model (Sims,
1974; Wallis, 1974). Recent research points out that seasonal adjustmagnt
significantly alter relevant time series properties sucmwaartibility (Maravall, 1995),
linearity (Ghysels et al., 1996), cointegration (Granger and&§ikl995) and short-run
co-movements (Cubadda, 1999).

Since there is convincing evidence of seasonal unit roots in conegumromic time
series (Hylleberg et al. 1993), it is important to model them piop&he common
practice of adding seasonal dummies to the set of regrédsadssto misspecified models
when seasonal unit roots are present (Abeysinghe, 1994). The isnaflyseasonal
cointegration, first proposed by Hylleberg et al. (1990), has gainttest from
practitioners, (e.g. surveys by Franses and McAleer (1998) amdi€rep et al. (2004)).
It is preferable to use non-seasonally adjusted data and apply @gigrgpasonal filters
within the multivariate models we build for these series. Even sitigle time series, the
seasonal adjustment procedure imposes a parametric model featdmnal component
that is independent from the model applied later to the non-seasornabro@mh and can
introduce spurious dynamics.

Two main approaches are used in jointly modelling seasonal andeasorsl
components. On the one hand, a deterministic modelling of the intra-anavainents,
on the other, the introduction of unit-roots at seasonal frequencigedrdia the



observation periodicity. Specification tests have been designeditaydish situations in
which one approach is more in concordance with the data (Canova arehHa@985),
Caner (1998), Hasza and Fuller (1982), Hylleberg, Engle, Granger anlLY@@)inter

alia).

When working simultaneously with several seasonally integratedtepses in a
multivariate set-up, the researcher is confronted with the proldénseasonal
cointegration. One must determine the presence of seasonal ctiotegt each possible

and reasonable frequency and the dimension of each cointegrationtegse@ble to
specify and estimate VECM with seasonal error correctionstepmssibly polynomial.
Maximum likelihood procedures for a seasonally cointegrated @obase been
developed (Lee, 1992, Johansen and Schaumburg, 1998) Procedures developed for
cointegrated processes at frequency of zero can be extended tcasthef seasonal
cointegration (Cubbada, 2001, Ahn et al., 2004), which involves the use of a complex
number framework and complex Brownian processes.

Some have raised questions about the economic meaningfulness of the ep@senc
seasonal unit roots (Sanjuan and Dawson, 2003 referring to Hatan@&®.(IT®e main
concern is that if two or more series are cointegrated, (otremveyy are not of much
interest) then they exhibit a common trend. The presence of cosgdsrnal unit roots
implies non-stationary seasonal patterns. In the presence of a cdomgeterm trend
however, the latter bounds the deviations of the seasonal patterns fdeterministic
seasonal. In simple words, a non-stationary seasonal should ndieedsse it may in
principle deviate too much from the common trend. Such an argument is however flawed.
First, the point Hatanaka (1996) makes, refers to the way in whichimysleasonality is
modeled through complex unit roots, not to the plausibility of the norostai
seasonality itself. The alternative of deterministic seasonalitylihious assumption:

Incidentally, a common statistical assumption, namely, “that the seasonal influence itself
does not change so that a figure which measures the average seasonal movement for a
considerable period may be regarded as the normal seasonal variation for any year in
that period,” is questioned.

(Green, 1935)

To clarify we reconsider the mainstream econometrics litexawithin the unobserved
components framework adopted in this paper.

2. Methodology

We deal with a class of models for seasonal time series imabserved components
framework, according to which each season follows specificrdigsabut is also tied to
the remaining seasons by a common disturbance. We adopt the seasafialrspdel
(Proietti, 2002) which is formulated in the time domain, as opposed tiretpgency
domain representation of conventional seasonal cointegration models.



It can be shown that this class of models nests the standard indigelifference
stationary time series case which admits the traditionadndeasition into trends and a
seasonal. In the more general case this does not need to be ttendabke adopted
model is particularly well suited for situations in which one graup of seasons behave
differently. In the latter case the constraint imposed by the tresd+ssadecomposition,
namely that the latter component has a mean of zero over a numbensgfcutive
observations equal to the seasonal period is too binding.

To illustrate the latter point take as an example maincropgestgprices. These are
typically not traded when early potatoes appear in the mafkeirefore the price
dynamics in the latter period (typically one to two monthsadaally different from the
rest of the year. If the trough in this period is particulddgp it will drag down the trend
and therefore affect the underlying growth in the series. The iea is that when the
information content of the seasons differs with respect to the lomgpehaviour of the
series and if a subgroup is more variable (i.e. they behave thosgncratically), they
should be appropriately discounted in extracting a nonperiodic signaxpeesses the
overall tendency of the series.

To clarify this, consider the extreme situation when the valukeo$eries in a particular
season can be equal or around some fixed value (e.g. a structuwgl ae in the
production of some strongly seasonal product. In this case even if @oenés are
observed, they hardly tell us the general dynamics of the sdies.zeros can be
interpreted as missing values and this is equivalent to settingtia@ce of the season to
infinity. The multivariate extension can deal with peculiar feroh seasonal or periodic
cointegration that characterise only a subset of seasons. Simoedkeis defined in the
time domain we move away from the usual notion of seasonal coimegrahich is
defined in the frequency domain, and consequently avoid interpretationultigsc
related to the complex seasonal unit roots (Tanaka, 1996).

In the seasonal specific model, each season evolves as a random walk, sortiherly
evolving seasonal models (Hylleberg and Pagan, 1997). Seasonal specific models
introduce periodic features without affecting the possibility of extrgainon-periodic
signal, that provides an indication of the long run dynamics in the series. Ta@ibubte
main idea behind the seasonal specific models let us introduce the simplest mioidel of t
kind, namely the seasonal specific local level model.

It can be presented as follows:

Vi = Hj +<i
Hjra = Hij Tt (1)
17t :,7t+,7|j:t|

whereT time seriesy, (t= 1,2,...7T) are observed with periodicity The model states
that the series are characterized by seasonally specific ley€js1,2,..5).

The latter evolve as random walks. They are however driven by easiorsally specific

(’7th) and common f;) disturbances. The common disturbances bound the seasonal



levels together. Such a representation is not new, since factorsnooseionly employ

it.

The level is observed with superimposed nofge which can also be represented as
having an error component structure consisting of idiosyncratic and @onton all
seasons noise, similarly to the level disturbances.

We can think of the modeling procedure in the following way. Let steratically
sample the series so as to build 12 ‘yearly’ time series,@neath month. Then we can
model each individual time series as a local level (plus noisg)ein which is the
simplest unobserved components model (Harvey, 1989). All these moediswmever
linked due to a common disturbance source, which will make themtogeyher. The
common variation source induces common trends which can be repregaenéelihear
combination of the unobserved trend components in these periodic models. Then
obviously the remainder (i.e. the total minus the common trend weightform a
weighted combination of these seasonal components that is devoid of lahghaumics.

In this way we can obtain a decomposition into periodic (i.e. seasamaljon-periodic
(i.e. long-term) components.

The above is illustrated by rewriting (1) in state space form, whidlrés gpelow:

Vi =% + &
Uiy = My +i0, +’7tD (2)
VarQ]tD)z N

where the vectopq‘:[o,...,o;l,o,...o] selects the season. Evidently=x,_.. Moreover the
seasonally specific levels are stacked together ithevector g, = [uy,....t4 |, 1 iS an

sx1 vector of ones, and the seasonally specific disturbances, asasvélie noise
component are similarly stacked in row vectors. Typically theugamce matrixN will
be diagonal, although specifications allowing for correlated idicsyic disturbances are
possible. We use the state space form representation sindews dbr convenient
estimation via the Kalman filter. The Kalman filter is auesive algorithm for Gaussian
and conditionally Gaussian state space form models which allowsnédimum
likelihood estimation since it can be used to construct the logHadi via the
prediction error decomposition (Harvey, 1989).

Since the seasonally specific models can be viewed as sélutitne series models
(Harvey, 1989) fitted to the periodic time series, it is gldiorward to generalize the
simple seasonally specific local level model in (2) above ttudgiecother unobserved
components. Initial fitting of a structural time series modih e seasonal component
can be used as a starting point in specifying the appropriatenséigsspecific model.

Similar to the unobserved components literature, it often will apibedra reasonable
choice is the seasonally specific counterpart of the basictstal model (Harvey, 1989),

! The state space form representation is not un{élaevey, 1989). We present the form used in the
estimation process. Furthermore the state space fepresentation used follows Koopman et al. (1999)
rather than Harvey(1989).



namely the seasonally specific local trend model. It is a maddshsion to the local
level model in allowing for (a possibly stochastic) slope compon@ssuming that the
noise does not have any idiosyncratic compdnéststate space form is:

Yo =% p +& & ~Nip(o,a?)
Pt = e * B+ +ge ne=~ NID(O,N,7) 3
B = B +ivy +th:| VtD"' NlD(O,Nv)

The model presented in (3) has too many sources of variation andefdification
reasons needs some restriction to be imposed. It has been showrti,(R@0d) that
homogeneity (i.eN, =gN,, for some positive scala) is sufficient to provide unique

decomposition into periodic and non-periodic components. Furthermore, one may notic
that a positive (i.e. nonzero) variance for the slope component inguli&®) process.
When bothqg and the common slope variance are zero, the model reduces to a
deterministic slope model, which implies an 1(1) process wéterministic drift. The
multivariate extensions are straightforward within the linghaf seemingly unrelated
time series equations for each of the univariate time sefies. only additional
parameters necessary for multivariate seasonally specifidelsy are correlation
coefficients for the contemporaneous correlation between the bfistes of the
individual time series.

Vit = Xkt Mt * Skt
His1 = Hie + B 17k +’7l|<:|t 4)

_ - 0
B = B H Vi Vg

with

& ~ NID(0, 0% )

Mt ~ NID(O,JEU)

7k ~NID(O,N,, )

Vi ~ NlD(o,akzv)

Vie ~ NID(O,N,, )

and the symmetrickxk matriced s, ©,, 0, collecting the contemporaneous
correlations between the corresponding non-periodic disturbanceslaryinthe

correlations between the different seasonally specific distuelsamitl be collected in the
s symmetrickxk matrices®,.; and ©,; (j=, 1,...9. If homogeneity is imposed across

the individual time series the matrices.; become superficial.

2 This assumption is employed in the empirical agion.
® These are defined simply as storage devices. Upgewver triangular matrices, stacked vectors lista
of correlation coefficients can be used instead.



One may note that the correlation matriegs have the same rank as the covariance

matrices corresponding to the seasonal components. Therefore infabentecommon
seasonal features can be based directly on the rank of the seawoelation matrices
O, - Rank restrictions in a state space form model are in printgsible using

standard LM tests. Such an inference is simple in bivariatersgstsince seasonal
cointegration reduces to the simple requirement that for sprtiee idiosyncratic
disturbances are perfectly correlated (i.e. the correlatiofficdenats are+1). Then there
is a common single source of seasonal specific disturbancessiongand there exists a
linear combination that contains no idiosyncratic features corresgptalthose seasons.
In this case the non-periodic component that can be extracted framlimear
combination will depend solely on that season. In the homoscedastic(whea

Ny, = ,?DIS where 1 is ansxs unit matrix, i.e. when the disturbance variance is common

across the seasons) perfect correlation amongst the seaspeailic disturbances of the
k series implies that the series are seasonally cointdg(aée there exist a linear
combination that only displays deterministic seasonality). Silyilaerfect correlation
amongst some seasonal disturbances, but not amongst others metesehatseasonal
cointegration only at some frequencies.

In addition to the convenience of specifying the seasonal componitet iime domain,
another advantage of the class of models is that the unit rooevii@ia which is
superimposed in conventional modeling (after unit root testing, which mo& be
consistent with the later modeling) is part of the model it3él€ presence of unit roots
in an unobserved components framework is equivalent to positive variamgmigents,
which is a testable assumption within the modeling procedure. lergjea bootstrap
score test that is equivalent to the locally best invarighicen be constructed (Koopman
et al., 1999: 46). The latter is known to be asymptotically pivotal eari®96, Chapter
10.7).

Common trends and common features in unobserved components frameworks simply
mean that the disturbance matrices driving these trends or egterds (e.g. seasonality)
have less than full rank. Such restrictions are easily moadelédested. Different non-
stationary components (and thus multiple sources of variabilitypeatcommodated in
this framework without the need for complex units roots used in ¢meeational
seasonality literature.

3. Data

UK wheat and barley monthly prices obtained from the EurostatOdewos database
for the period January 1969 to March 2004 are used to demonstrate the nogficatiol
approach It is well known that these two price series follow similgnamics. It is thus

expected that they will have common trends (i.e. will be co-intiedjra It should also be
reasonable to expect that the cointegration property will hold feealonal frequencies.
A visual inspection of the plots of the wheat and barley prices romnfithese

expectations. The other important property of these series isébenge of unit roots at
the seasonal frequencies. Since the issue of seasonal uniisrootsessential in this

* DEFRA updates its price databases in April eacr.yurostat receives this data and makes it dlaila



framework, we will omit it here. Nevertheless the results from anresite set of such
tests is available upon request. Given the seasonal unit roots, @mj@estes whether
these two series are fully co-integrated (i.e. co-integrated seadlonal frequencies).

4. Reaults

We estimate the homogeneous version of model (4). Although thiestracted form of
the more general model presented earlier, it is easy teieteén the conventional sense
of co-integration. The Ox (Doornik, 2001) version of the SsfPack routinespfianet
al., 1999) for state space form models manipulation and estimation is used.

The variance estimates are presented in table 1.

Table 1 Variance estimates (*1076) with their standard errors

Wheat Barley

Variance SE Varianc&E
Level 106,960 (53,043.97) 91,607 (43,781.07)
slope 1.5E-199 (0.00000) 0 (0.00000
Irregular 4,790 (1,757.97) 1,943.9 (921.79
Seasonal 655.94 (384.21) 748.34 (412.30

The main issue of interest in this model are the correlatiorfficdeats of the
disturbances which are presented in table 2.

Table 2 Correlation coefficients of model disturbances

Correlation coefficient SE
Level 0.7503777 (0.04524)
Slope 0.9999993 (0.00000)
Irregular -0.9999976 (0.26594)
N1 0.9999991 (0.15506)
N2 0.9999993 (0.15236)
N3 0.9999983 (0.15266)
N4 0.9999994 (0.09967)
N5 0.9999991 (0.13535)
N6 0.9999984 (0.19873)
N7 -0.5418890 (0.54275)
N8 -0.9999990 (0.15124)
N9 -0.9999990 (0.12286)
N10 0.9999989 (0.13968)
N11 0.9999994 (0.11148)
N12 0.9999989 (0.15415)

® Canova and Hansen’s (1995) extension of the KBSSd seasonal frequencies and the generalisation
due to Caner (1998) are explicitly formulated ashserved components models. Nevertheless, the latte
are not fully compatible with the models considenede.



Most of the disturbance components are perfectly correlatedeapested in the case of
full cointegration. Since the slope variance is virtually zero {gbke 1) thus ruling out
the 1(2) possibility, the slopes correlation of one basicallyecefthe stationary slopes.
The perfect correlation of the error terms suggests lamg-te-movement (conventional
econometric model only contain error term disturbances).

The striking feature of the results is the possible lackubbifseasonal co-integration.
What is even more surprising however is that only a single month,iduésponsible for
this lack of cointegration. In the conventional seasonal cointegration models, sscift a r
is infeasible, since they are defined in the frequency, rdtherin the time domain, as in
the current model. Strictly speaking the correlation coeffid@nguly has a very large
standard error and is not statistically different from —1. Its wallyslarge standard error
however suggest a possibility for prevailing co-movement of thewheéat and barley
prices with occasional deviations from this pattern. The |&tge error term causes a
relatively big standard error in the error term correlationl, also lack of co-movement
in the levels.

It is interesting to enquire what causes this lack of co-iateyr, and to what extent this
is due to the properties of the model specification. The currenfispBon imposes the
strong restriction of homogeneity of the seasonal disturbantehvis unrealistic for
price time series. Nevertheless, relaxing this assump®snl{s available upon request)
does not reduce the July standard error or improve the residuals diagnostics.
Furthermore, it is clear that in the current model settinggitieof levels co-movement is
due to the unusually variable July component. It is possible to tesiiec slope
correlation coefficient to 1, which results in an estimate of -0.990%87292) for the
July disturbances correlation (full results available from ttteas upon request). This
confirms that the July seasonal disturbances cause the lack obdinllegration between
wheat and barley prices.

The residuals of the current model (as well as its hetetastie version) exhibit strong
serial correlation. It is possible to incorporate correlateduats in the modeling context
(see Proietti, 2004). For price data which is characterizedttong volatility (aka
stochastic volatility) however explicitly modeling the latter may ttebba@lternative.

5. Conclusions

Seasonal features in econometric models are often ignored tedtsaplistically. This
paper applies a unifying unobserved components approach to modeling seasonalit
wheat and barley prices in the UK. Our results reveal atthough, broadly speaking,
these two time series are co-integrated, they may not nabessave together in July.
Such a result is consistent with the main uses of wheat (foodpanhely (feed). The
guality of the wheat harvest defines what proportion of wheat caenagdx for its main
purpose and is thus reallocated to feed use. The latter is diedtrilyutable to the
specific harvest and makes its way through prices immedibe&dbyre the harvest when
its quality can be actually ascertained. In case of weatlsededeviations from the
expected harvest quality, food wheat and feed barley prices maybjeted to different
disturbances. Since the latter are relatively rare, usingegggrd data or models that
disallow such a possibility (such as the conventional seasonal cotrdegnaodels)



would belittle the influence of such shocks. They would normally apgeawutliers in
the modelling context.
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