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1. Introduction  

Many economic time series contain regular patterns associated with seasonal causes 
(biological, meteorological etc.). The presence of such periodic features in economic 
datasets, particularly agricultural ones is well recognised. Nevertheless one rarely sees 
attempts to explicitly model them. Different automatic and semi-automatic methods of 
seasonal adjustment are sometimes employed to get rid of the seasonal features present in 
the data. The justification of these practices is that the longer-term behaviour of the time 
series is the main interest. In practice, we can handle only one time series at a time with 
seasonal adjustment procedures and the presence of non-linear computations and 
identifying assumptions in these procedures, may alter the relationships that exist 
between the variables we wish to consider simultaneously in a multivariate model (Sims, 
1974; Wallis, 1974).  Recent research points out that seasonal adjustment may 
significantly alter relevant time series properties such as invertibility (Maravall, 1995), 
linearity (Ghysels et al., 1996), cointegration (Granger and Siklos, 1995) and short-run 
co-movements (Cubadda, 1999). 

Since there is convincing evidence of seasonal unit roots in common economic time 
series (Hylleberg et al. 1993), it is important to model them properly. The common 
practice of adding seasonal dummies to the set of regressors leads to misspecified models 
when seasonal unit roots are present (Abeysinghe, 1994). The analysis of seasonal 
cointegration, first proposed by Hylleberg et al. (1990), has gained interest from 
practitioners, (e.g. surveys by Franses and McAleer (1998) and Brendstrup et al. (2004)). 
It is preferable to use non-seasonally adjusted data and apply appropriate seasonal filters 
within the multivariate models we build for these series. Even with single time series, the 
seasonal adjustment procedure imposes a parametric model for the seasonal component 
that is independent from the model applied later to the non-seasonal component and can 
introduce spurious dynamics. 

Two main approaches are used in jointly modelling seasonal and non-seasonal 
components. On the one hand, a deterministic modelling of the intra-annual movements, 
on the other, the introduction of unit-roots at seasonal frequencies related to the 



 2

observation periodicity. Specification tests have been designed to distinguish situations in 
which one approach is more in concordance with the data (Canova and Hansen (1995), 
Caner (1998), Hasza and Fuller (1982), Hylleberg, Engle, Granger and Yoo (1990) inter 
alia).  

When working simultaneously with several seasonally integrated processes in a 
multivariate set-up, the researcher is confronted with the problem of seasonal 
cointegration. One must determine the presence of seasonal cointegration at each possible 
and reasonable frequency and the dimension of each cointegration space to be able to 
specify and estimate VECM with seasonal error correction terms, possibly polynomial. 
Maximum likelihood procedures for a seasonally cointegrated process have been 
developed (Lee, 1992, Johansen and Schaumburg, 1998) Procedures developed for 
cointegrated processes at frequency of zero can be extended to the case of seasonal 
cointegration (Cubbada, 2001, Ahn et al., 2004), which involves the use of a complex 
number framework and complex Brownian processes. 
 
Some have raised questions about the economic meaningfulness of the presence of 
seasonal unit roots (Sanjuán and  Dawson, 2003 referring to  Hatanaka (1996)). The main 
concern is that if two or more series are cointegrated, (otherwise they are not of much 
interest) then they exhibit a common trend. The presence of complex seasonal unit roots 
implies non-stationary seasonal patterns. In the presence of a common long-term trend 
however, the latter bounds the deviations of the seasonal patterns from a deterministic 
seasonal.  In simple words, a non-stationary seasonal should not exist because it may in 
principle deviate too much from the common trend. Such an argument is however flawed.  
First, the point Hatanaka (1996) makes, refers to the way in which evolving seasonality is 
modeled through complex unit roots, not to the plausibility of the non-stationary 
seasonality itself. The alternative of deterministic seasonality is a dubious assumption: 
 
Incidentally, a common statistical assumption, namely, “that the seasonal influence itself 
does not change so that a figure which measures the average seasonal movement for a 
considerable period may be regarded as the normal seasonal variation for any year in 
that period,” is questioned. 
(Green, 1935)  
 
To clarify we reconsider the mainstream econometrics literature within the unobserved 
components framework adopted in this paper. 
 
 
2. Methodology  
 
We deal with a class of models for seasonal time series in an unobserved components 
framework, according to which each season follows specific dynamics but is also tied to 
the remaining seasons by a common disturbance. We adopt the seasonal specific model 
(Proietti, 2002) which is formulated in the time domain, as opposed to the frequency 
domain representation of conventional seasonal cointegration models.  
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It can be shown that this class of models nests the standard nonperiodic difference 
stationary time series case which admits the traditional decomposition into trends and a 
seasonal. In the more general case this does not need to be the case and the adopted 
model is particularly well suited for situations in which one or a group of seasons behave 
differently.  In the latter case the constraint imposed by the trend-seasonal decomposition, 
namely that the latter component has a mean of zero over a number of consecutive 
observations equal to the seasonal period is too binding.  
 
To illustrate the latter point take as an example maincrop potatoes prices. These are 
typically not traded when early potatoes appear in the market. Therefore the price 
dynamics in the latter period (typically one to two months) is radically different from the 
rest of the year. If the trough in this period is particularly deep it will drag down the trend 
and therefore affect the underlying growth in the series. The main idea is that when the 
information content of the seasons differs with respect to the long run behaviour of the 
series and if a subgroup is more variable (i.e. they behave more idiosyncratically), they 
should be appropriately discounted in extracting a nonperiodic signal that expresses the 
overall tendency of the series.  
To clarify this, consider the extreme situation when the value of the series in a particular 
season can be equal or around some fixed value (e.g. a structural zero), as in the 
production of some strongly seasonal product. In this case even if some events are 
observed, they hardly tell us the general dynamics of the series. The zeros can be 
interpreted as missing values and this is equivalent to setting the variance of the season to 
infinity. The multivariate extension can deal with peculiar forms of seasonal or periodic 
cointegration that characterise only a subset of seasons. Since the model is defined in the 
time domain we move away from the usual notion of seasonal cointegration, which is 
defined in the frequency domain, and consequently avoid interpretation difficulties 
related to the complex seasonal unit roots (Tanaka, 1996). 
 
In the seasonal specific model, each season evolves as a random walk, similarly to the 
evolving seasonal models (Hylleberg and Pagan, 1997). Seasonal specific models 
introduce periodic features without affecting the possibility of extracting a non-periodic 
signal, that provides an indication of the long run dynamics in the series. To illustrate the 
main idea behind the seasonal specific models let us introduce the simplest model of this 
kind, namely the seasonal specific local level model. 
It can be presented as follows: 
 

jtjtty ξµ +=  

jtjttj ηµµ +=+1,  (1) 
∗+= jttjt ηηη  

 
where T time series ty  (t= 1,2,…,T) are observed with periodicity s. The model states 
that the series are characterized by seasonally specific levels jtµ (j=1,2,…s). 

The latter evolve as random walks. They are however driven by both seasonally specific 

( ∗
jtη ) and common (tη ) disturbances. The common disturbances bound the seasonal 
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levels together. Such a representation is not new, since factor models commonly employ 
it. 
The level is observed with superimposed noise jtξ , which can also be represented as 

having an error component structure consisting of idiosyncratic and common to all 
seasons noise, similarly to the level disturbances. 
We can think of the modeling procedure in the following way. Let us systematically 
sample the series so as to build 12 ‘yearly’ time series, one for each month. Then we can 
model each individual time series as a local level (plus noise) model, which is the 
simplest unobserved components model (Harvey, 1989). All these models are however 
linked due to a common disturbance source, which will make them vary together. The 
common variation source induces common trends which can be represented via a linear 
combination of the unobserved trend components in these periodic models. Then 
obviously the remainder (i.e. the total minus the common trend weight) will form a 
weighted combination of these seasonal components that is devoid of long run dynamics. 
In this way we can obtain a decomposition into periodic (i.e. seasonal) and non-periodic 
(i.e. long-term) components. 
 
The above is illustrated by rewriting (1) in state space form, which is given below1: 
 

tttt xy ξµ += '  
∗

+ ++= tttt i ηηµµ 1  (2) 

( ) Ν=∗
tVar η  

 
where the vector [ ]0,...0,1,0,...,0'=tx  selects the season. Evidently stt xx −= . Moreover the 
seasonally specific levels are stacked together in the sx1 vector [ ]',...., 11 ttt µµµ = , i is an 
sx1 vector of ones, and the seasonally specific disturbances, as well as the noise 
component are similarly stacked in row vectors. Typically the covariance matrix Ν will 
be diagonal, although specifications allowing for correlated idiosyncratic disturbances are 
possible. We use the state space form representation since it allows for convenient 
estimation via the Kalman filter. The Kalman filter is a recursive algorithm for Gaussian 
and conditionally Gaussian state space form models which allows for maximum 
likelihood estimation since it can be used to construct the log-likelihood via the 
prediction error decomposition (Harvey, 1989). 
 
Since the seasonally specific models can be viewed as structural time series models 
(Harvey, 1989) fitted to the periodic time series, it is straightforward to generalize the 
simple seasonally specific local level model in (2) above to include other unobserved 
components. Initial fitting of a structural time series model with a seasonal component 
can be used as a starting point in specifying the appropriate seasonally specific model. 
Similar to the unobserved components literature, it often will appear that a reasonable 
choice is the seasonally specific counterpart of the basic structural model (Harvey, 1989), 

                                                 
1 The state space form representation is not unique (Harvey, 1989). We present the form used in the 
estimation process. Furthermore the state space form representation used follows Koopman et al. (1999) 
rather than Harvey(1989).  
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namely the seasonally specific local trend model. It is a modest extension to the local 
level model in allowing for (a possibly stochastic) slope component.  Assuming that the 
noise does not have any idiosyncratic component2, its state space form is: 
 

tttt xy ξµ += '  ( )2,0~ ξσξ NIDt  
∗

+ +++= ttttt i ηηβµµ 1  ( )ηη Ν∗ ,0~ NIDt  (3) 
∗

+ ++= tttt i ννββ 1  ( )νν Ν∗ ,0~ NIDt  
 
The model presented in (3) has too many sources of variation and for identification 
reasons needs some restriction to be imposed. It has been shown (Proietti, 2004) that 
homogeneity (i.e ην Ν=Ν q  for some positive scalar q) is sufficient to provide unique 

decomposition into periodic and non-periodic components. Furthermore, one may notice 
that a positive (i.e. nonzero) variance for the slope component implies an I(2) process. 
When both q and the common slope variance are zero, the model reduces to a 
deterministic slope model, which implies an I(1) process with deterministic drift. The 
multivariate extensions are straightforward within the line of the seemingly unrelated 
time series equations for each of the univariate time series. The only additional 
parameters necessary for multivariate seasonally specific models are correlation 
coefficients for the contemporaneous correlation between the disturbances of the 
individual time series. 
 

ktktktkt xy ξµ += '   
∗

+ +++= ktktktktkt i ηηβµµ 1   (4) 
∗

+ ++= ktktktkt i ννββ 1   
 
with  

( )2,0~ ξσξ kkt NID  

( )2,0~ ηση kkt NID  

( )ηη kkt NID Ν∗ ,0~  

( )2,0~ νσν kkt NID   

( )νν kkt NID Ν∗ ,0~  
and the symmetric kxk matrices3 ξΘ , ηΘ , νΘ  collecting the contemporaneous 

correlations between the corresponding non-periodic disturbances. Similarly the 
correlations between the different seasonally specific disturbances will be collected in the 
s  symmetric kxk matrices j*ηΘ  and  j*νΘ  (j=, 1,…s). If homogeneity is imposed across 

the individual time series the matrices j*νΘ  become superficial. 

 

                                                 
2 This assumption is employed in the empirical application. 
3 These are defined simply as storage devices. Upper or lower triangular matrices, stacked vectors or a list 
of correlation coefficients can be used instead.  
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One may note that the correlation matricesj*ηΘ have the same rank as the covariance 

matrices corresponding to the seasonal components. Therefore inference about common 
seasonal features can be based directly on the rank of the seasonal correlation matrices 

j*ηΘ . Rank restrictions in a state space form model are in principle testable using 

standard LM tests. Such an inference is simple in bivariate systems, since seasonal 
cointegration reduces to the simple requirement that for some j the idiosyncratic 
disturbances are perfectly correlated (i.e. the correlation coefficients are 1± ). Then there 
is a common single source of seasonal specific disturbances in season j and there exists a 
linear combination that contains no idiosyncratic features corresponding to those seasons. 
In this case the non-periodic component that can be extracted from that linear 
combination will depend solely on that season. In the homoscedastic case (when 

sk I2
∗=Ν ηη σ  where sI  is an sxs unit matrix, i.e. when the disturbance variance is common 

across the seasons) perfect correlation amongst the seasonally specific disturbances of the 
k  series implies that the series are seasonally cointegrated (i.e. there exist a  linear 
combination that only displays deterministic seasonality). Similarly perfect correlation 
amongst some seasonal disturbances, but not amongst others means that there is seasonal 
cointegration only at some frequencies. 
In addition to the convenience of specifying the seasonal component in the time domain, 
another advantage of the class of models is that the unit root framework, which is 
superimposed in conventional modeling (after unit root testing, which may not be 
consistent with the later modeling) is part of the model itself. The presence of unit roots 
in an unobserved components framework is equivalent to positive variance components, 
which is a testable assumption within the modeling procedure. In general a bootstrap 
score test that is equivalent to the locally best invariant test can be constructed (Koopman 
et al., 1999: 46). The latter is known to be asymptotically pivotal (Tanaka, 1996, Chapter 
10.7).  
Common trends and common features in unobserved components frameworks simply 
mean that the disturbance matrices driving these trends or other features (e.g. seasonality) 
have less than full rank. Such restrictions are easily modeled and tested.  Different non-
stationary components (and thus multiple sources of variability) can be accommodated in 
this framework without the need for complex units roots used in the conventional 
seasonality literature. 
 
3. Data 
 
UK wheat and barley monthly prices obtained from the Eurostat NewCronos database  
for the period January 1969 to March 2004 are used to demonstrate the methodological 
approach4. It is well known that these two price series follow similar dynamics. It is thus 
expected that they will have common trends (i.e. will be co-integrated).  It should also be 
reasonable to expect that the cointegration property will hold for all seasonal frequencies. 
A visual inspection of the plots of the wheat and barley prices confirms these 
expectations. The other important property of these series is the presence of unit roots at 
the seasonal frequencies.  Since the issue of seasonal unit roots is not essential in this 

                                                 
4 DEFRA updates its price databases in April each year. Eurostat receives this data and makes it available.  
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framework5, we will omit it here. Nevertheless the results from an extensive set of such 
tests is available upon request. Given the seasonal unit roots, a question arises whether 
these two series are fully co-integrated (i.e. co-integrated at all seasonal frequencies). 
 
4. Results 
 
We estimate the homogeneous version of model (4). Although this is a restricted form of 
the more general model presented earlier, it is easy to interpret in the conventional sense 
of co-integration. The Ox (Doornik, 2001) version of the SsfPack routines (Koopman et 
al., 1999) for state space form models manipulation and estimation is used. 
The variance estimates are presented in table 1. 
 
Table 1 Variance estimates (*10^6) with their standard errors 
 Wheat Barley 
 Variance SE Variance SE 
Level 106,960 (53,043.97) 91,607 (43,781.07) 
slope 1.5E-199 (0.00000) 0 (0.00000) 
Irregular 4,790 (1,757.97) 1,943.9 (921.79) 
Seasonal 655.94 (384.21) 748.34 (412.30) 
 
The main issue of interest in this model are the correlation coefficients of the 
disturbances which are presented in table 2. 
 
Table 2 Correlation coefficients of model disturbances 
 Correlation coefficient SE 
Level 0.7503777 (0.04524) 
Slope 0.9999993 (0.00000) 
Irregular -0.9999976 (0.26594) 
N1 0.9999991 (0.15506) 
N2 0.9999993 (0.15236) 
N3 0.9999983 (0.15266) 
N4 0.9999994 (0.09967) 
N5 0.9999991 (0.13535) 
N6 0.9999984 (0.19873) 
N7 -0.5418890 (0.54275) 
N8 -0.9999990 (0.15124) 
N9 -0.9999990 (0.12286) 
N10 0.9999989 (0.13968) 
N11 0.9999994 (0.11148) 
N12 0.9999989 (0.15415) 
 

                                                 
5 Canova and Hansen’s (1995) extension of the KPSS test to seasonal frequencies and the generalisation 
due to Caner (1998) are explicitly formulated as unobserved components models. Nevertheless, the latter 
are not fully compatible with the models considered here. 
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Most of the disturbance components are perfectly correlated, as is expected in the case of 
full cointegration. Since the slope variance is virtually zero (see table 1) thus ruling out 
the I(2) possibility, the slopes correlation of one basically reflect the stationary slopes. 
The perfect correlation of the error terms suggests long-term co-movement (conventional 
econometric model only contain error term disturbances). 
The striking feature of the results is the possible lack of full seasonal co-integration. 
What is even more surprising however is that only a single month, July, is responsible for 
this lack of cointegration. In the conventional seasonal cointegration models, such a result 
is infeasible, since they are defined in the frequency, rather than in the time domain, as in 
the current model.  Strictly speaking the correlation coefficient for July has a very large 
standard error and is not statistically different from –1. Its unusually large standard error 
however suggest a possibility for prevailing co-movement of the July wheat and barley 
prices with occasional deviations from this pattern.  The latter large error term causes a 
relatively big standard error in the error term correlation, and also lack of co-movement 
in the levels.  
It is interesting to enquire what causes this lack of co-integration, and to what extent this 
is due to the properties of the model specification. The current specification imposes the 
strong restriction of homogeneity of the seasonal disturbance, which is unrealistic for 
price time series.  Nevertheless, relaxing this assumption (results available upon request) 
does not reduce the July standard error or improve the residuals diagnostics.  
Furthermore, it is clear that in the current model setting the lack of levels co-movement is 
due to the unusually variable July component. It is possible to restrict the slope 
correlation coefficient to 1, which results in an estimate of -0.99992 (0.87292) for the 
July disturbances correlation (full results available from the authors upon request). This 
confirms that the July seasonal disturbances cause the lack of full co-integration between 
wheat and barley prices. 
 
The residuals of the current model (as well as its heteroscedastic version) exhibit strong 
serial correlation. It is possible to incorporate correlated residuals in the modeling context 
(see Proietti, 2004). For price data which is characterized by strong volatility (aka 
stochastic volatility) however explicitly modeling the latter may a better alternative. 
 
5. Conclusions 
 
Seasonal features in econometric models are often ignored or treated simplistically. This 
paper applies a unifying unobserved components approach to modeling seasonality to 
wheat and barley prices in the UK. Our results reveal that although, broadly speaking, 
these two time series are co-integrated, they may not necessarily move together in July. 
Such a result is consistent with the main uses of wheat (food) and barley (feed). The 
quality of the wheat harvest defines what proportion of wheat cannot be used for its main 
purpose and is thus reallocated to feed use. The latter is directly attributable to the 
specific harvest and makes its way through prices immediately before the harvest when 
its quality can be actually ascertained. In case of weather-related deviations from the 
expected harvest quality, food wheat and feed barley prices may be subjected to different 
disturbances. Since the latter are relatively rare, using aggregated data or models that 
disallow such a possibility (such as the conventional seasonal cointegration models) 
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would belittle the influence of such shocks. They would normally appear as outliers in 
the modelling context. 
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