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Using Mixtures-of-Distributions models to inform farm size selection decisions in 
representative farm modelling. 

 

Abstract 

The selection of ‘representative’ farms in farm level modelling where results are 

aggregated to the sector level is critically important if the effects of aggregation bias 

are to be reduced.  The process of selecting representative farms normally involves 

the use of cluster analysis where the decision regarding the appropriate number of 

clusters (or representative farm types) is largely subjective.  However, when the 

technique of fitting mixtures of distributions is employed as a clustering technique 

there is an objective test of the appropriate number of clusters.  This paper 

demonstrates the MDM approach to cluster analysis by classifying dairy farms in 

Northern Ireland, based on the number of cows in each farm.  The results indicate that 

four representative farms are needed, with a view to minimising aggregation bias, to 

describe the dairy sector in Northern Ireland. 

 

JEL Classification: Q12 
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Using Mixtures-of-Distributions models to inform farm size selection decisions in 

representative farm modelling. 

1. Introduction 

Aggregation bias is a common problem in farm level modelling where results are 

aggregated to the sector level (often for the purposes of policy analysis).  An 

important source of aggregation bias is the differences in resource endowments 

among farms.  While this type of aggregation bias is difficult to eliminate completely 

it can be minimised by proper selection of ‘representative’ farms (Kuyvenhoven, 

1998).  The process of selecting representative farms normally involves the use of 

cluster analysis (usually hierarchical techniques).  A difficulty for many cluster 

analysis techniques is deciding the number of clusters (or representative farm types) 

present in the data.  For almost all of these techniques this decision is subjective.  

However, when the technique of fitting mixtures of distributions is employed as a 

clustering technique there is an objective test of the appropriate number of clusters 

that is available in the form of a likelihood ratio (LR) test (Everitt, 1993).  This paper 

advocates the use of mixtures of distributions modelling as an approach to data-led 

farm size (and/or any other characteristic) selection in representative farm modelling, 

in order to help minimise problems of aggregation bias.  In demonstrating the 

technique of fitting a mixture of distribution as a clustering technique for identifying 

representative farm size clusters, this paper also transforms the stylised fact that the 

farm size population is made up of distinct farm size groups into a testable hypothesis.   

Typically, the choice of ‘representative’ farms in policy oriented farm models 

simplifies to two alternatives.  The first is to choose some average farm in terms, of 

say, size and then to assume that the other farms are linearly related to the 
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characteristics of the representative farm.  Theory suggests that in order to obtain 

consistent results for the agricultural sector it is sufficient to model only the 

representative farm and to aggregate accordingly.  The second alternative is 

appropriate where the assumption that farm aggregation is linear does not hold.  In 

this case more than one representative farm is required to represent the farm 

population adequately (and to minimise aggregation bias).  The selection of the 

number of representative farms and the characteristics upon which the selection 

should be made is an important consideration.  This paper proposes a methodology to 

test and determine the number of farm types. 

In the next section the problem of representative farm selection is further defined.  

The methodology used is described in section three.  An application of the 

methodology is presented in section four along with presentation and discussion of the 

results obtained.  Some conclusions are drawn in section five. 

 

2. Redefining the Problem of Representative Farm Selection. 

An alternative way to view the question of whether a particular farm sector is 

adequately approximated by either a single ‘representative’ farm or by multiple 

representative farms is as follows.  Is the empirical farm distribution adequately 

approximated by a single uni-modal statistical distribution or by a mixture of several 

such distributions?  If the empirical farm distribution is approximated by a single uni-

modal statistical distribution then the use of multiple representative farms is likely to 

be unnecessary.  The parameters of this single approximating statistical distribution 

can be used to derive the rules for aggregating the representative farm results to the 

sector level.  Where a mixture of distributions is required to represent the empirical 
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farm distribution then the farm structure can be viewed as consisting of several types 

of farms.  The results for the representative farms in each of these groups can be 

aggregated to obtain consistent estimates for the different farm groups.  Those can 

then be aggregated using the relative weights of the sub-samples into the total farm 

population.  The approximation of the empirical farm distribution by a single or a 

combination of several uni-modal statistical distributions can be represented in terms 

of a statistical model to be estimated.  Subsequently the choice of a number of 

distributions (i.e. number of farm types) becomes a model selection problem and can 

be resolved by standard statistical means. Once the number of the approximating 

distributions is estimated, the classification of the farms into the corresponding groups 

can be done. 

In order to resolve the farm group classification problem the mixture of distributions 

model (MDM) is employed.  The MDM relaxes the conventional assumption that an 

observed dataset is drawn from a single homogeneous population.  Instead, it is 

assumed that the sample is drawn from an unknown mixture of distributions.  Thus, a 

different set of model parameters is valid for each of the different subpopulations of 

the dataset.  In this sense, MDMs are more flexible than conventional statistical 

modelling, which assumes that a single set of parameters describe all individuals in 

the dataset. 

The existence of latent subpopulations is a real possibility in many datasets (farm size 

datasets are a good example). These subpopulations are solely defined by their 

property of being homogeneous in the sense that a particular set of parameters holds 

for each latent class.  The latent nature of these subpopulations, where the number of 

classes and the observations belonging in each class are typically unknown, means 
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that it is not possible to directly estimate the parameter set for each subpopulation.  

Hence the aim of MDM is twofold: to 'unmix' the data into homogeneous 

subpopulations and then to estimate the parameters for each subpopulation.  

 

3. Methodology 

To illustrate the general structure of a MDM, let us denote the set of n d-dimensional 

vectors comprising the available data by x = {x1,   ,xn} (i.e. the sample contains n 

observations and d variables). It is assumed that each xi arises from a d-dimensional 

probability distribution with the following density: 
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some d-dimensional probability distribution, parameterised by kλ .  A sample of 

indicator variables z = {z1,  ,zn}, sometimes referred to as labels, can be assigned to the 

observed data.  These are defined as: zi = {zi1,   ,ziK}, where each zik assumes the value 

of 1 if xi arises from the k-th mixture component and the value 0, otherwise.  When 

the sample of indicator variables is known the problem is one of density estimation, 

where the vector of parameters to be estimated is ( )KKpp λλθ ,..,,.. 11= .  When the 

primary interest is in estimating the indicator variables the problem is one of 

(classification) cluster analysis.  

In this study the mixture approach to classification is used.  This consists of obtaining 

the maximum likelihood estimate for the parameters, θ , by using the Expectation 
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Maximisation (EM) algorithm1 of Dempster et al. (1977) and then applying the 

‘maximum a-priori’ (MAP) principle to assign a value to the indicator variables, zi.  

The MAP involves assigning each observation xi to the mixing component based on 

conditional probabilities.  This approach produces more consistent results than the 

alternative methods2. 

The EM algorithm used in the analysis consists of the following two steps, namely, 

the E(xpectation) step and the M(aximisation) step.  In the E step the conditional 

probability of zik being equal to one, estimated during the m-th iteration for all i and k 

is given by: 
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where the (bracketed) superscripts denote estimates for the parameters during the 

corresponding iteration. 

In the M step the ML estimate, )(mθ  of θ , is updated using the conditional 

probabilities, )(m
ikt , as conditional mixing weights.  This leads to maximizing: 
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1 This is the standard algorithm for estimating MDM.  Modifications of this algorithm, include the 
stochastic EM (SEM) (MacLachlan and Peel, 2000) and the classification EM (CEM) (Celeux and 
Govaert, 1992).   
2 The main alternative approach is to jointly estimate θ  and z.  In this case the indicator variables are 
used to weight the contributions of the individual observations to the log-likelihood function.  
However, the main algorithm used in this approach is the CEM algorithm, which is not expected to 
provide ML estimates for θ  and may yield inconsistent estimates of the parameters (MacLachlan and 
Peel, 2000).   



 8 

The updated expressions for the mixing proportions are given by: 
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The updating of kλ  depends on the specific parametric specification and therefore, no 

general formula can be given. 

So far we have considered estimating a mixture model for the purposes of classifying 

the observations into a pre-defined number of distributions (sub-samples or clusters).  

However, the number of clusters is typically unknown.  Choosing the appropriate 

number of mixing distributions (clusters) is essentially a model selection problem.  A 

popular criterion in model selection problems is the Bayesian Information Criterion 

(BIC) (Schwartz, 1978).   

 BICmK  = -2 Lmk +vmKlnn       (5) 

where m is any model (thus m denotes the choice of the parametric distributions g(.)3) 

with K components, L is the (maximised) log-likelihood and v is the number of free 

parameters in the model.  If the choice of g(.) is taken for granted, then (5) suggests a 

strategy of consecutive estimation of (m, K) models for K=1,2,   until BIC increases.  

It is clear that if (m, K) and (m, K+1) provide essentially the same fit then the BIC for 

(m, K) will be smaller, since it has less free parameters.  In this way the BIC allows 

the homogeneity of the subpopulations of farms to be directly tested.  The consecutive 

estimation strategy also ensures against the danger of over-fitting the statistical model 

(1).   

                                                 
3 Or any combination thereof. In other words one may consider cases in which different groups of 
farms follow different parametric distributions. 
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The BIC is based on an asymptotic approximation of the integrated log-likelihood, 

valid under some regularity conditions.  In spite of the fact that these regularity 

conditions are usually violated in mixture models, it has been proven that the BIC is 

consistent and efficient (e.g. Frealey and Raftery, 1998).  The BIC is, however, 

essentially a criterion to choose a model specification and does not take into account 

the ability of a mixture model to provide evidence about the clustering nature of the 

data.  In order to do this, the likelihood of the complete data (i.e. in a BIC-like context 

this means the Integrated Completed Likelihood (ICL)) must be considered.  Using 

the MAP principle to approximate the unknown indicator variable, the ICL can be 

expressed (Biernacki et al. 2000) as BIC with an additional entropy penalty term as 

follows: 

ICLmK = -2BICmK -2 ik

n

i

K

k
ik tz∑∑

= =1 1

ln  (6) 

In testing the possible range of values for K, the criteria proposed by Bosdogan (1993) 

is applied in searching over the range from 1 to the smallest integer not exceeding n0.3.  

The ICL information criteria can be used to choose a suitable model from amongst a 

wide range of mixing distributions.  For example, if 4 different types of parametric 

(m) distributions are considered, then the number of models to choose from is 

(n0.3x4).  When all combinations of the different distributions are made possible, then 

a model implying say 7 different classes might contain, for example, a mixture of 2 

normal distributions, 3 gamma distributions and 2 t-distributions.  Clearly, the range 

of possibilities in this context widens tremendously.  However, the model is much 

more tractable when the MDM is restricted to a single type of parametric distribution 

type (i.e. when all parametric distributions g(.) belong to the same type).   
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In this case with regard to the classification of farms is would seem sensible to choose 

a single parametric distribution for use in the mixture of distributions model, which is 

consistent with any distributional assumptions imposed on the data during second 

stage modelling.  With regard to how many characteristics are necessary to efficiently 

perform such a classification (i.e. the choice of d) it again would seem desirable to 

keep the number of characteristics to a minimum, otherwise the likelihood of 

contrived correlation in second stage analysis is increased.  Ideally, the assumptions 

made in classifying farm types should not contradict the other assumptions used in 

subsequent stages of analysis. 

An alternative selection criterion is the Normalised Entropy Criterion (NEC) (Celeux 

and Soromenho, 1996) which measures the ability of the mixture model to provide 

well-separated clusters.  In doing so however, the NEC is essentially devoted to 

choosing the number of mixture components K, but not the model form m.  

Consequently, this criterion is not used here, but it is listed for completeness given 

that it may be useful when the number of components is of a primary interest. 

Data 

In this paper MDM techniques are used to classify dairy farms in Northern Ireland, 

based on the number of cows in each farm.  The data for 5275 farms for 2000 was 

obtained from the Agricultural Census, which is carried out annually in Northern 

Ireland. 
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4.   Application and Results 

The analysis carried out is based on the assumption that the model generating the data 

is a mixture of normal distributions (restricting the m domain of potential candidate 

models).  This is an arbitrary assumption, but if the classification of farms produced 

from the analysis is subsequently used in a linear programming study that assumes 

normal distributions then at least the assumption is consistent.  In this application for 

purely illustrative purposes only one characteristic variable (i.e. d=1) is considered, 

namely, the number of dairy cows on each farm.  Although, this is a simplistic 

approach it does serve to demonstrate the application of the MDM approach 

advocated in this paper.  Normally, the choice of the number of variables, d, to 

include in the analysis should take in to account the purpose for which this 

classification is to be used. 

The range of values for K was chosen based on the criteria proposed by Bosdogan 

(1993), which suggests searching over the range from 1 to the smallest integer not 

exceeding n0.3 (which for n=5275 is 13).  In this study, the EM algorithm is applied 

using both the BIC and the ICL criteria to chose the appropriate model.  The normal 

distributions mixed are allowed to have different variances.  The classification of each 

observation to any of the latent classes is carried out using the MAP principle. 

The classification results based on the BIC criteria are given in Table 1, while the 

results based on the ICL criteria are given in Table 2.  In each case the number of sub-

groups are indicated in the first column, with the percentage of total farms in each 

sub-group indicated in the second column and the mean number of cows per farm in 

each sub-group indicated in the third column.  It can be seen from these results given 

in Table 1 that the BIC criterion identifies six types of dairy farms according to their 
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size (measured in terms of herd number).  The results presented in Table 2 indicate 

that the ICL criterion identifies five subgroups. 

 

Table 1 BIC results 

Sub-Groups Weight Mean 

1 0.559003 14.34694 

2 0.365583 56.88165 

3 0.06875 113.2626 

4 0.006474 171.3461 

5 0.003986 225.6 

6 0.00019 453.0 

 

Table 2 ICL results 

Sub-Groups Weight Mean 

1 0.592038 17.33333 

2 0.313555 56.88166 

3 0.089479 111.2348 

4 0.004739 223.6 

5 0.00019 453.0 

 

The final sub-group derived under both methods (with 453 cows) consists of a single 

farm.  Reducing the sensitivity of the algorithm would reduce the number of sub-
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groups to four using ICL and five using BIC.  However, the quality of the density 

estimation worsens as a result.  It is perhaps more practical to simply accept that there 

are 4 types (using ICL criterion) of dairy farms in Northern Ireland.  An alternative 

approach is to curtail the dataset prior to the analysis by omitting extreme 

observations. 

 

5.  Conclusions 

This paper demonstrates the potential use of the MDM in deriving model-based 

classification of farms.  The main advantage of the proposed MDM approach as a 

method of cluster analysis is that it allows for a robust selection of the number of farm 

types (clusters) using transparent statistics based model selection criteria.  Most 

methods of cluster analysis require subjective decisions to be made regarding the 

number of clusters.  This paper demonstrates the MDM approach to cluster analysis 

by classifying dairy farms in Northern Ireland, based on the number of cows in each 

farm.  The results indicate that four representative farms are needed, with a view to 

minimising aggregation bias, to describe the dairy sector in Northern Ireland. 

The model-led application of farm classifications is of particular relevance to policy 

evaluation problems.  Different policy measures impact on different farm 

characteristics and when evaluating the likely effect of such measures it is advisable 

to classify farms according to these characteristics.  In this way the possibility for 

large errors stemming from aggregation of heterogeneous populations is avoided.   

The use of the MDM in economic research is not novel.  Most previous studies focus 

exclusively on the density estimation applications of the MDM.  The idea of using 
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MDM for cluster analysis has been around for some time, but published applications 

of the technique are difficult to find.  This paper helps fill that gap in the literature.
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