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Abstract Existing approaches to recover structure of 3D
deformable objects and camera motion parameters from an
uncalibrated images assume the object’s shape could be
modelled well by a linear subspace. These methods have
been proven effective and well suited when the deforma-
tions are relatively small, but fail to reconstruct the objects
with relatively large deformations. This paper describes a
novel approach for 3D non-rigid shape reconstruction, based
on manifold decision forest technique. The use of this tech-
nique can be justified by noting that a specific type of shape
variations might be governed by only a small number of
parameters, and therefore can be well represented in a low-
dimensional manifold. The key contributions of this work
are the use of random decision forests for the shape manifold
learning and robust metric for calculation of the re-projection
error. The learned manifold defines constraints imposed on
the reconstructed shapes. Due to a nonlinear structure of the
learned manifold, this approach is more suitable to deal with
large and complex object deformations when compared to
the linear constraints. The robust metric is applied to reduce
the effect of measurement outliers on the quality of the
reconstruction. In many practical applications outliers can-
not be completely removed and therefore the use of robust
techniques is of particular practical interest. The proposed
method is validated on 2D points sequences projected from
the 3D motion capture data for ground truth comparison and
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also on real 2D video sequences. Experiments show that the
newly proposed method provides better performance com-
pared to previously proposed ones, including the robustness
with respect to measurement noise, missing measurements
and outliers present in the data.

Keywords Deformable shape reconstruction ·
Nonlinear manifold learning · Manifold forests · Missing
data and outliers

1 Introduction

Simultaneous recovery of three-dimensional (3D) sparse fea-
ture points representing evolving non-rigid 3Dobject (simply
referred to as 3D structure or shape in the rest of the paper)
and a relative cameramotion over time from images obtained
from a single uncalibrated camera is a challenging, under-
constrained problem. The complexity of this problem can be
made apparent by realising that reconstruction of the land-
marks’ 3D positions cannot be uniquely derived based on the
knowledge of the locations of their corresponding projections
in a single image alone. This can be seen from a simple obser-
vation that any 3D point along the projection line, linking the
optical centre of the camera and the selected image point, can
be equally considered as a valid 3D landmark if no additional
information is available. In the stereovision the additional
information comes from another image of a static scene taken
from a different position, the knowledge of the correspon-
dence between feature points in both images and the known
camera motion. In that case the 3D landmarks’ reconstruc-
tion is obtained by triangulation. For the problemdescribed in
this paper not only the camera motion is not known but also,
in general, the 3D shape (represented by 3D landmarks) is
changing between successive images. This is a hard problem

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00138-016-0769-3&domain=pdf
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because, as explained in Sect. 3, the number of unknowns
defined by the 3D landmark’s coordinates and the camera
motion parameters is increasing faster than the size of the
measurement data, consisting of the corresponding 2D image
points. Therefore,whenmoremeasurements are available the
harder the problem is as the difference between number of
unknown and known is increasing. This is an example of the
so-called ill-posed problem. To solve this kind of problems
additional information need to be embedded into the problem
or/and the problem needs to be reformulated. This process is
called regularisation. The fundamental objective of the reg-
ularisation is to limit the number of feasible solutions by
introducing constrains reflecting our prior knowledge about
the problem, e.g. by forcing the solution to have a specific
form or belong to a specific subspace or a manifold. Methods
addressing deformable shape reconstruction from a monoc-
ular video differ essentially by the way such regularisation
is introduced.

The methods proposed for dealing with this problem
can be categorised, by the type of the regularisation tech-
nique used, into three major classes: The low-rank shape
models [22], shape trajectory approaches [2,14,15], and
template-based methods [17,27,39]. In all these methods
the regularisation is achieved by reduction in the problem
dimensionality. For example, in the low-rank models, the
rank is defined by the number of elementary ”shape’s build-
ing blocks” or basis shapes from which the reconstructed
shape is constructed. In principle, higher rank increases the
flexibility of the model, leading to possibly more accurate
reconstructions, but at the cost of the method increased sus-
ceptibility to the observation noise. Low-rank shape was
firstly introduced in [6], where the factorisation algorithm is
adopted to solve deformable shape reconstruction problem.
As a time-varying object usually cannot arbitrarily deform,
the idea of this model is to represent a deformable shape as
a linear combination of basis shapes. Due to its simplicity,
shape basis model has been widely used to tackle the prob-
lem of Non-Rigid Structure fromMotion (NRSfM) [1,4,42].
However, the shape bases are different in each sequence, thus
need to be estimated for every sequence. Besides, for rela-
tively complex deformable shapes, a large number of bases
are required to fit the model. Considering those drawbacks,
a trajectory-based algorithm was proposed in [2] exploiting
a duality theorem in 3D structure representation which mod-
els independent 3D point trajectories. The main advantage
of this representation is that the basis trajectories can be pre-
defined, thus removing a large number of unknowns from
the estimation problem. Template-based reconstruction is an
alternativemethodwhich usually relies on a known reference
frame and works well especially for inextensible surfaces.
Since this is still an ill-conditioned problem [21], the most
commonly used constraints in the reconstruction involve pre-
serving Geodesic distances as the surface deforms and thus

regularise the problem by solving either convex optimisation
problem [7,29] or in closed-form sets of quadratic equa-
tions [19,30]. The existing 3D reconstruction technologies
have been successfully used in many different areas, ranging
from medical imaging and biometrics to computer gaming
and film production. A variant of that methodology, mostly
dealing with static scenes, called simultaneous localisation
and mapping (SLAM) is used for robot navigation where
reconstruction is used to build a 3D representation of the
environment and the camera pose estimation is equivalent to
robot positioning in that environment [12,20].

However most of the existing approaches are restricted
by the fact that they try to explain the complex deformations
using a linear model. Tomove away from the linear represen-
tations of deformable shapes, recent methods have integrated
the manifold learning algorithm [28] to regularise the shape
reconstruction problem by constraining the shapes as to be
well represented by the learned manifold. In simple terms, a
manifold can be thought of as a smooth surface/curve embed-
ded in a relevant multi-dimensional space. The advantage of
using amanifold constraint, if such constraint adequately rep-
resents properties of the reconstructed objects, is a compact
representation leading to robust regularisation. If for exam-
ple, for a hypothetical problem, it is known that a valid shape
could be accurately represented by points on a curve, the
manifold method would effectively have the dimensionality
of one, whereas the linear method would still require, possi-
bly high-dimensional subspaces, to accuratelymodel all turns
and twists of the curve. In this case, there is also no guaran-
tee that the reconstructed object would belong to that curve.
Rabaud and Belongie firstly claimed in their work [24] that
the possible 3D shapes of an objectmay not lie in a linear low-
dimensional manifold. Based on a low-rank shapemodel, the
work assumed that shapes lie on a d-dimensional manifold,
and every neighbourhood of shape approximately lies on a
d-dimensional linear subspace. In order to minimise the cost
functionwhich consists of the reprojection error and smooth-
ing terms. The initial values are calculated by Rigid Shape
Chain also introduced in [24], with sequences clustered into
several rigid shapes. After initialisation, the optimisation on
the shapes is performed using two criteria: the cost func-
tion and the shape manifold dimensionality constraint for
which the locally smooth manifold learning technique has
been used. Later they proposed a method focusing on a
globally linear manifold and use shape embedding as ini-
tialisation [25]. Similarly, the work in [45] attempts to learn
the 3D reconstruction of human motion with an assumption
that human poses lie in a union of subspaces.

Other manifold-based methods were inspired by the
basis trajectory model. Gotardo and Martinez demonstrated
the “kernel trick” which used for nonlinear dimensionality
reduction [31] can also be applied to standard NRSfM prob-
lem [15]. Recently Hamsici et al. [16] modelled the shape
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coefficients in a manifold feature space. This method has
ability to recover shapes from a newly observed image. The
mapping is learned from the corresponding 2Dmeasurement
data of upcoming reconstructed shapes, rather than a fixed set
of trajectory bases. They introduced rotation-invariant ker-
nels (RIK) to provide similarity measure for two 3D shapes
based on their 2D projections. The problem still remains
though that the 2D observations can be completely different
when the images are taken from different view angles. Sim-
ilarly because of different depths, similar 2D images may
not represent similar 3D shapes. In comparison, [15] defines
a nonlinear model while [16] models 3D shapes in a linear
space; [15] uses point trajectory bases as input data for build-
ing a kernel function while [16] uses shapes directly from 2D
images.

The problem becomes more difficult when the observa-
tions are incomplete. Most algorithms assume that all feature
points are detected in all images. This is unlikely to hap-
pen in practice as some of the feature points will not be
detected in all images. This could be because of the fea-
ture point detection problems or because some parts of the
3D object may not be visible from all the camera positions,
which means some of the entries in the measurement matrix
may be unknown. The methods addressing this problem can
be divided into three categories: imputation, alternation and
nonlinear optimisation. The problem was firstly addressed
by filling the missing entries using complete subset of the
data in rigid [36] and non-rigid reconstruction problem [44].
These imputation algorithms are simple but cannot handle
well real data, which often tend to be very noisy. To over-
come this, the alternation algorithms solve the problem based
on a closed-form solution using a rank constraint imposed
on the measurement matrix without estimating the missing
values in advance [18,23]. The idea is to iteratively update
the motion and shape in terms of observed measurements.
Another commonly used method for addressing the missing
data problem is to employ nonlinear minimisation of suitably
designed cost function. The measurements can be gradually
refined to produce jointly optimal 3D structures and camera
motion. This is known as bundle adjustment which has been
studied formany years [38]. Themajor benefit of this method
is that the additional constraints can be effectively included
in the cost function, though the inherently high number of
degrees of freedom may lead to failure of obtaining reliable
reconstruction results.

Despite many years of research, one significant problem
still remains, the most existing approaches cannot cope well
with outliers. Earlier work suggested that outliers have to
be removed before doing any further processing [8]. Vidal
et al. presented a geometrical algorithm for 3D motion seg-
mentation which dealt with the data by using RANSAC to
detect the outliers [40]. The outliers are usually caused by
matching errors between two frames, and this may severely

affect the trajectory methods because the trajectories passing
through the feature points do not belong to any of the tra-
jectory spaces. Additionally, most methods have been using
least-square estimator, which is well known not to be robust
to outliers. Simply removing the outliers in advance may not
be feasible in practice, especially when real-time processing
is required. Developing robust estimations is necessary for
obtaining reliable solutions. The work in [13] presented a
rank-constrained factorisation algorithm that effectively cal-
culates a low-rank approximation of a measurement matrix
in the presence of the data outliers. The problem is solved by
replacing squared residual error function by L1 norm which
is often used to reduce sensitivity of the model.

Figure 1 provides an overview of the proposed recon-
struction system. In this paper, it is assumed that the feature
points have been detected in the images and the 2D point
correspondences are provided as input to the reconstruction
algorithms. Although the paper is focused on the solution of
the reconstruction problem,when both points and their corre-
spondences are given, the imperfection in both point position
and correspondence estimation are indirectly addressed by
introduction of a robust metric. The reminder of the paper
is organised as follows: Sect. 2 highlights the novel con-
tributions of the paper. Section 3 describes the problem of
deformable shape reconstruction and presents the notation
used throughout the paper. Section 4 introduces the generic
concept of the manifold forest. Subsequently Sect. 5 pro-
vides detailed description of the proposed manifold forest
implementation aiding the shape reconstruction. In both these
sections, an effort has been made to explain advantages
of using manifold forest in shape reconstruction. Section 6
describes a novel robust approach dealing with missing data
and outliers. Finally, Sects. 7 and 8 present experimental
results and conclusions.

2 Novelty

Although the problem of deformable shape and motion
recovery has been studied for many years, one of the severe
limitations of themost existing approaches is that theymainly
address the problem of small deformations. The main reason
for their failure when recovering objects with large, complex
deformations can be attributed to the reliance on a linear
shape model. This paper focuses on modelling nonlinear
deformable objectswith large complex deformations, such as
deformable cloth. In this case, most existing methods based
on linear space are no longer suitable.

Contrary to other techniques using manifold in the shape
reconstruction, our manifold is learned based on the 3D
shapes rather than on 2D observations. The proposed imple-
mentation is based on the manifold forest method described
in [11]. Themain advantage of usingmanifold forest as com-
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Fig. 1 The pipeline of a complete 3D objects reconstruction system

pared for example to standard diffusion maps [9] is the fact
that in the manifold forest the neighbourhood topology is
learned from the forests data clustering rather than being
defined by the Euclidean distance. To the best of authors’
knowledge, random forests technique has never been applied
in the context of non-rigid shape reconstruction using. The
idea of integrating nonlinear manifold-based approaches into
3D deformable reconstruction was firstly introduced by the
authors in [34], where the shape prior is introduced in the
form of the diffusion maps. In that work, the structure of data
is estimated using Euclidean distances between pairs of data
items, whereas the method proposed in this paper learns the
structure from the data, based on random forests techniques.

This paper updates and extends the work in [33] with the
following fourmain differences: (a) Themethod presented in
this paper has an additional step in the algorithm, solving the
problemwhen some elements of the measurement matrix are
missing; (b)Considering themajority of algorithms are based
on minimising squared residual of an error function which
makes them sensitive to outliers, another improvement is to
reduce the effect of outliers by replacing the L2 estimator by
robust M-estimator [26]; (c) A modification of the method
is described when only a relatively small number of train-
ing shapes is available. This was firstly introduced by the
authors in [32] but without random forests manifold learn-
ing technique; (d) More comprehensive set of experiments is
presented in the experimental section.

3 Basic formulation

Throughout this paper, vectors and matrices are denoted as
lower- and upper-case bold letters, whereas sets are repre-

sented by calligraphic letters. We assume that 2D points
(features) are obtained from F frames under an ortho-
graphic camera projection model. The problem consists of
the recovery of shapes S = {S1,S2, . . . SF } and camera
rotations R = {R1,R2, . . . ,RF } from 2D observations
Y = {Y1,Y2, . . . ,YF }, thus can be formulated as the 2D
reprojection error minimisation problem:

argmin
R,S

F∑

t=1

‖Yt − P · Rt · St‖2 (1)

where, P represents orthographic camera projection matrix,
Yt is a 2×Pmatrix of detected 2D feature points’ coordinates
in the t th image, and St ∈R

3×P contains coordinates of P
3D points describing shape represented in the t th frame, ‖·‖
indicates Frobenius norm. The camera translation has been
eliminated by expressing 2D observations Y with respect to
the data points centroid calculated in each observed image.

The goal is to recover camera orientations R and the
concatenated time-varying shapes S, based only on the 2D
measurementY . It is an under-constrained problem since the
shape and motion are both changing with time. The number
of unknown variables (3F + 3FP) is higher than the size
of observed data (2FP). To deal with this, a low-rank shape
model has proved to be successful as shown in [37], where
the shape St is represented as a linear combination of K
unknown but fixed basis shapes B = {B1,B2, . . .BK }:

St =
K∑

l=1

θtlBl (2)

where K � F, P . The deformation coefficients θtl are
adjustable over time t . This low-rank shape model can be
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obtained by performing singular value decomposition (SVD)
of the measurement matrix Y, for which the measurement
matrix can be decomposed and represented by poseR, basis
shapes B and time-varying coefficients θtl, and it can be
rearranged as:

Y =
⎡

⎢⎣
θ11R1· · ·θ1KR1

...
. . .

...

θF1RF· · ·θFKRF

⎤

⎥⎦

⎡

⎢⎣
−B1−

...

−BK−

⎤

⎥⎦ = MB (3)

Since basis shapes B ∈ R
3K×P and M ∈ R

2F×3K , the rank
of the measurement matrix Y is 3K at most, in the absence
of noise. The matricesM and B are computed by factorising
the measurement matrix Y. The solution is not unique and
is defined up to an ambiguity matrix Q ∈ R

3K×3K . Accord-
ing to [41], the limitation of the closed-form solution in this
approach is that themotionmatrix is nonlinear, when an inac-
curate set of basis shapes have been chosen, it may not be
possible to remove the affine ambiguity.

Ourmodel departs from the linear shapemodel. The shape
basis in the proposed method are selected from the learned
shape manifold. The shape St is represented as a linear com-
bination of n+1 (where n is the dimension of the manifold
introduced in Sect. 4.1) basis shapes Btl , adaptively selected
from the learned manifold: St = ∑n+1

l=1 θtlBtl . Unlike the
low-rank shapemodel, where all the reconstructed shapes are
represented as a linear combination of unknown but fixed K
basis shapes, in the proposedmethod, the basis shapesmaybe
different for each frame. Such approach adds an extra flexibil-
ity to the reconstruction process allowing a better adaptation
of the method to the temporal shape changes. Although it
may seem that this increases the number of parameters in
the model, it should be clarified that all the basis shapes are
selected from the manifold and are not estimated as a part of
the optimisation process. The parameters to be estimated in
the proposed approach include only the camera motion and
shape coefficients, representing the shape in the local linear
barycentric coordinates system approximating the manifold
at the location corresponding to the current estimate of St .

4 Manifold forests

In this paper, themanifold forests are constructed upon diffu-
sion maps with the neighbourhood topology learned through
random forest data clustering. It generates efficient repre-
sentations of complex geometric structures even when the
observed samples are non-uniformly distributed. This sec-
tion gives an introduction to diffusion maps and randomised
decision forests first, and then describes the application of
random forests in learning diffusion map manifolds.

4.1 Diffusion maps

In many problems, data are difficult to represent or analysed
due to their high-dimensional structure. However, in same
cases, complex data might be governed by a small num-
ber of parameters. The goal of the manifold learning is
to find the embedding function, mapping the data set X
form a high, N = 3P-dimensional space to a reduced,
n-dimensional space. The diffusion map is a graph-based
nonlinear techniquewith quasi-isometricmapping fromorig-
inal shape space onto a lower-dimensional diffusion space.
Unlike linear methods, nonlinear approaches are able to
handle a wider range of data variability, preserving local
structures at the same time. The problem with linear man-
ifold methods is that the input data may have complex
nonlinear dependencies and preserving global or indeed local
structures in the data may not be possible utilising linear
projections.

Assuming X is a dataset with M samples, the goal of
dimensionality reduction problems is to find a mapping of
the data X = {X1 . . .XM } given in high N -dimensional
space to data {x1 . . . xM } given in a reduced n-dimensional
space. A mapping is defined by: Ψ : X �→ Ψ (X) =
(Ψ1(X), . . . , Ψn(X)) = x, where X ∈ R

N , n � N .
Given a set of shapes X1 . . .XM ∈ M, where M

is the manifold embedded in R
N , Euclidean distance for

each pair of shapes
∥∥Xi − X j

∥∥2 is calculated to build
an adjacency graph. The entries of the affinity matrix
W = [Wij], i, j ∈ 1 . . . M define the weighted similarity
graph for all connected vertexes. Wij could be calculated
in number of different ways, often Gaussian kernel is
used. In that case: Wi j = exp(−∥∥Xi − X j

∥∥2/2δ), where
δ is a kernel scale. k-nearest neighbour (kNN) sparsifi-
cation scheme can also be applied, retaining k edges for
each graph vertex and removing other connections to avoid
outliers.

Coifman et al. presented a justification behind using nor-
malised graph Laplacian [9] by connecting them to diffusion
distance. Each entry of the diffusion operator G is con-
structed as G(Xi ,X j ) = W ′

i j/Υi i with Υi i = ∑
j W

′
i j .

W′ is a renormalised version of the affinity matrix W using
an anisotropic normalised graph Laplacian, such thatW ′

i j =
Wi j/qiq j with qi = ∑

j Wi j , q j = ∑
i W ji . The conver-

gence of optimal embedding � for diffusion maps is proven
in [9] and is found via eigenvectors ϕ and their correspond-
ing n biggest eigenvalues λ of the operator G, such that
1 = λ0 > λ1 ≥ · · · ≥ λn ,

� : Xi �→ [λ1ϕ1(Xi ), . . . , λnϕn(Xi )]
T (4)

where ϕ j (Xi ) represents i th element (corresponding to the
i th training sample Xi ) of the j th eigenvector of G.
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4.2 Randomised decision forest

Random forest [10] has become a popular method given
its capability to handle high-dimensional data, avoid over-
fitting, and enabling simple parallel implementation. The
decision trees in our method are built by making decisions
in each node of the tree based on randomly selected features.
A random decision forest is an ensemble of such decision
trees. The trees are different and independent fromeachother.
Although other choices are possible, this paper is focused
only on the binary decision forest.

Given a set of training data X with M samples: Xi ∈
X , i = 1 . . . M , where each sample contains 3P features.
The trees are randomised, by randomly selecting a single
feature at each internal node. The decision function at the
internal node is used to decide whether the data Xi reaching
that node should be assigned to its left or right child node. The
threshold αm of the decision function at node m is selected
as result of the maximisation of the information gain:

α∗
m = argmax

αm
Im (5)

with the generic information gain Im defined as:

Im = H (Xm) −
∑

i∈{L ,R}

∣∣X i
m

∣∣
|Xm | H

(
X i
m

)
(6)

where |·| indicates a cardinality for the dataset. Xm denotes
the training dataX reaching nodem.X L

m ,X R
m are the subsets

assigned to the left and right child nodes of node m. In this
paper it is assumed that data is adequately represented by
the Gaussian distribution [11]. In that case the differential
entropy H (Xm) can be calculated analytically as:

H (Xm) = 1

2
ln

(
(2πe)N |�(Xm)|

)
(7)

where |�(Xm)| is the determinant of the covariance matrix
estimated from the Xm training data. By substituting (7) into
(6), the information gain can be rewritten as:

Im ∝ 1

2
ln (|�(Xm)|) − 1

2

∑

i∈{L ,R}

∣∣X i
m

∣∣
|Xm | ln

(∣∣∣�
(
X i
m

)∣∣∣
)

(8)

The trees are trained until the number of samples in a leaf
is less than the pre-specified limit or the depth of the tree has
exceeded the pre-defined depth.

Once the random forest has been trained, the new sample
can be simply put through each tree. Depending on the result
of the decision function at each internal node, the new data is
sent to the left or right child node until it arrives at a leaf. The
samples ending up in the same leaf are likely to be statistically
similar and are expected to represent the sameneighbourhood

of the manifold. As such similarity measure is statistical in
nature, thus the results is averaged over many decision trees.
If the samples end up in the same leaf for the majority of
the trees they are considered to be drawn from the similar
location on the manifold.

4.3 Forest model for manifold learning

In the proposedmethod, the affinity model in manifold learn-
ing is built by applying random forest clustering. The data
partition is defined based on the leaf node l(·) the input data
Xi would reach. The entries of the affinity matrixWt for tree
t are calculated as,

Wt
i j = e−Lt(Xi ,X j), i, j ∈ 1 . . . M (9)

where the distance L can be obtained using different models.
For instance, Gaussian or binary affinity for the data ending
up in the same leaf node are defined as follows [11]:
Gaussian affinity model

Lt (Xi ,X j
) =

⎧
⎪⎨

⎪⎩

‖Xi−X j‖2

2δ l(Xi ) = l(X j )

∞ otherwise
c

(10)

Binary affinity model

Lt (Xi ,X j
) =

{
0 l(Xi ) = l(X j )

∞ otherwise
(11)

In this paper binary affinity model is used as it is simple
and efficient, and can be considered to be parameter free.
In a forest, each randomly trained clustering tree produces a
disjoint partition of the data, and they are independent and
different with respect to each other. A graphic representa-
tion of building affinity matrix using binary model is shown
in Fig. 2. However, as affinity matrix computed for a sin-
gle randomly trained tree is not representative of the correct
similarities of the data, the ensemble of T trees is used to
calculate a much smoother affinity matrix W. The affinity
matrix representing a forest of size T is calculated by aver-
aging over all affinity matrices from each single tree:

W = 1

T

T∑

t=1

Wt (12)

The comparison results of diffusion maps and manifold
forests are shown in Fig. 3. Figure 3a illustrates syntheti-
cally generated data of a 3D parabola surface given by the

equation f (x, y) = x2+y2

2 . Its corresponding embeddings
in 2D reduced space using diffusion maps and random for-
est manifold with the Gaussian affinity model are shown in
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i

Fig. 2 A graphic representation of building affinity matrix using binary model. Left Decision tree model. Shapes are stored in different leaves.
Right Distance matrix L corresponding to that tree

Fig. 3 Simulated results for nonlinear dimensionality reduction. a Input 3D points from parabola surface. b Nonlinear mapping from the original
3D space to the 2D reduced space based on diffusion maps. c Embedding based on manifold forests with Gaussian affinity model

Fig. 3b, c, respectively. It can be seen that the embedding
obtained based on the manifold forest achieves somewhat
better representation of the data in the lower-dimensional
space. This is specifically well illustrated when comparing
the distribution of the embedded points representing the base
and the rim of the parabola, as these points seem to be more
equally distributed when random forest manifold embedding
is used.

Moreover, in diffusion maps, the method of sparsifying
an affinity matrix is based on retaining the k-nearest neigh-
bourhoods among the data in the graph. However, this may
cause two problems: Choosing appropriate number of near-
est points is not easy since it depends on the data structure,
and it can create connected edges in the graph for the points
whichmay be outliers. Forming affinitymatrix using random
forest technique would efficiently solve such problems as the
points are only connected if they are in the same cluster.

Figure 4 illustrates the embedding of shapes using diffu-
sion maps and manifold forests from cardboard data [39]
together with corresponding representative shapes extracted

from 1000 training samples. The embedding results obtained
by applying manifold forests seem to be more evenly distrib-
uted than points embedded using diffusion maps, especially
for the shapes located along the rim of the manifold.

One of the main advantages of using random forest mani-
fold is that it implicitly addresses one of the main difficulties
in the manifold learning, namely it optimally defines the data
neighbourhood structure. The optimality criterion is defined
through the splitting decision used in the nodes of the trees,
in this paper optimality is defined through maximisation of
the information gain. Additionally, random forest implicitly
selects optimal features for the data clustering, where the
optimum criterion is defined by the node decision rule. In the
case of the random forest implemented in this paper the max-
imum information gain decision rule is used which favours
features for which data splitting at a node leads to compact
class distributions. This may explain a better performance
of the random forest manifold when compared to the origi-
nal diffusion maps with the neighbourhoods defined by the
k-nearest neighbours. This can be seen in Fig. 4 (cardboard
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(a) (b)

Fig. 4 The reduced space of cardboard dataset. a The embedding of shapes using diffusion maps only. b The embedding of shape using manifold
forests

dataset) where the mapping to the lower-dimensional space,
using the random forestmanifold, produces visiblymore uni-
formly distributed points.

The uniformity of the data points distribution can be also
measured quantitatively by estimating the entropy character-
ising the data distribution in the parametric space. To start,
for the parametric space, a histogram representing areas of all
the Delaunay triangles for the training dataset is calculated.
For the well-distributed data, this histogram is expected to be
compact as all triangles would have similar area. The com-
pactness of the histogram is measured here using entropy,
with entropy equal to 6.85 and 5.08 for the data embedding in
2D space using diffusion maps and manifold forests, respec-
tively. Both, the subjective and objective measures show that
using the random forest manifold, produces more uniformly
distributed points and therefore could supportsmore accurate
data interpolation.

5 Random forests in 3D reconstruction

Once the manifold has been built from the training dataset,
the shape reconstruction can be obtained from the learned
shape manifold and the observed 2D measurements. In this
section, an overview of the proposed manifold-based recon-
struction algorithm is given first, followed by a description
of out-of-sample and inverse mapping problems.

As known from [41], enforcing only the rotation con-
straints cannot guarantee the unique solution for the camera
motion and the basis shapes. To solve this, the designed shape
prior can help to attract a shape towards the manifold and
therefore avoid incorrect reconstructions.

A summary of the algorithm for the shape recovery of a
non-rigid object and estimation of camera motion is given in
Algorithm 1. Initial shapesS ′ and cameramotionR′ are esti-
mated by running a few iterations of the optimisation process

using linear basis shapes model [35]. The method is not sig-
nificantly sensitive to the initial solution as it can iteratively
update the shapes by projecting them on the learnedmanifold
until convergence. For each initial shape, Nyström exten-
sion [3] is used for embedding these new samples into the
reduced space. Intuitively, if the points in the reduced space
are relatively close, the corresponding shapes in the high-
dimensional space should represent similar shapes. Based
on this observation, the reconstructed shape at each frame
can be represented as weighted sum of n + 1 basis shapes
from the learned manifold. The coefficients of correspond-
ing basis shapes are calculated as barycentric coordinates of
n+1 neighbouring points fromDelaunay triangulation of the
training dataset. Once the basis shapes and their coefficients
have been obtained, an optimisation is applied to minimise
the image reprojection error with an additional smoothing
termandbasic rotation constraint over all frames (seeEq. 15).
However, the quality of the reconstruction depends on the
accuracy of initial shapes. Updating basis shapes in each iter-
ation can help to circumvent the problem. The basis shapes
are being kept updated as long as 2D measurement error rt
exceeds the predefined threshold rT (10−3 in our case) or the
error between two adjacent frames is relatively large which
implies that the current results are unlikely to explain the
shapes well.

5.1 Mapping out-of-sample points

The manifold forests method briefly described in Sect. 4 is
used to find a meaningful representation of the data, but
the mapping � is only able to provide an embedding for
the data present in the given training set. In our algorithm,
it is necessary to calculate embedding for shapes which
are not presented in the training set. Suppose a new shape
St ∈ R

N becomes available after the manifold had been
learned, instead of re-learning the manifold, as it is too com-
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Algorithm1Outline ofmanifold forest-based reconstruction
Input: Streamof 2Dobservations,manifold forestΨ of training dataset

X (Sect. 4.3)
Output: 3Ddeformable shapesS and cameramotionR for each frame.
1: Initialisation of estimating initial shapes S ′ and camera motion R′.
2: while (‖r‖ > rT ) or

(‖rt‖ − ‖rt−1‖ > 10−3
)
do

3: Shape projection onto manifold (shape Embedding) (Sect. 5.1)
4: Find n + 1 closest points bl , l = 1 . . . n + 1 in low-dimensional

space, where n is the dimensionality of the reduced space.
5: Shape update (Sect. 5.2)
6: Nonlinear optimisation by minimising 2D measurement error and

shape smooth term to obtain updated shapes St and cameramotion
Rt,t = 1 . . . F (Sect. 5.3)

7: end while

putationally expensive, an efficient way is to interpolate the
shape based on the already learned manifold. For each new
shape, such embedding is calculated based on the Nyström
extension. Knowing that for every sample in the training
dataset:

∀Xi ∈ X ,
∑

X j∈X
G(Xi ,X j )ϕk(X j ) = λkϕk(Xi ), k = 1 . . . n

(13)

Having a shape St , not present in the training set X , an
embedding

St �→
(
Ψ̂1(St ), . . . , Ψ̂n(St )

)

of this new shape is calculated from:

Ψ̂k(St ) =
∑

X j∈X
G(St ,X j )ϕk(X j ), k ∈ 1 . . . n (14)

where G(St ,X j ) is calculated in the same way as the diffu-
sion operator (see Sect. 4.1). The distance between unseen
sample and the training samples is calculated using the binary
affinity model, (11). In principle these calculations still could
be expensive as the summation in (14) is done over all train-
ing samples. Random forest approach provides very effective
way for implementing the out-of-sample mapping. For this
the unseen sample is put through the forest, and subsequently
only the training samples from leafswhere the unseen sample
ended up are used in the sum in (14).

5.2 Inverse mapping for shape update

Given a point st ∈ R
n in the reduced space, finding its

inverse mapping St = �−1(st ) from the reduced space
back to the input space is a typical pre-image problem. As
claimed in [3], the exact pre-image might not exist if the
shape St is not included in the training set. However, accord-
ing to the properties of diffusion maps, if the points in the

reduced space are relatively close, the corresponding shapes
in high-dimensional space should represent similar shapes
since they have small diffusion distances. Based on this, the
point st can be approximated as a linear combination of its
weighted neighbouring points in reduced space, such that
st = ∑n+1

l=1 θtlxtl , where xtl is the lth neighbouring points
of st obtained by computing Delaunay triangulation [5] on
the training dataset, and the weights θtl are computed as
the barycentric coordinates of st . Once the weights are esti-
mated, the shape St can be calculated as well based on a
set of weighted training samples St = ∑n+1

l=1 θtlXtl , where
the training samples Xtl are the pre-images of xtl , and are
equivalent to the basis shapes in (2).

5.3 Nonlinear refinement

The cost function E() to be minimised consists of the repro-
jection error, shape smoothing term and rotation constraint,

E({Rt }, {θtl})=
F∑

t=1

‖Yt−P · Rt · St‖2+γS

F∑

t=2

‖St−St−1‖2

+ γR

F∑

t=1

εrot

with
n+1∑

l=1

θtl = 1, 0 ≤ θt ≤ 1 (15)

where εrot = ∥∥Rt · Rt
T − I

∥∥2 penalises deviation from
orthonomality of all Rt . γS and γR are regularisation con-
stants, and St is expressed as linear combination of weighted
neighbouring training shapes Xtl (see Sect. 5.2). A nonlin-
ear optimisation using Levenberg–Marquardt algorithm is
applied to minimise the cost function with analytically cal-
culated Jacobian.

However, the underlying problem is that the quality of the
optimisation result strongly depends on the accuracy of ini-
tial shapes. To avoid this, we update the basis shapes in each
iteration until 2D measurement error is less than the defined
threshold (10−3 in our case) and the error between two adja-
cent frames is relatively small. This effectively means that
for any given t the basis shapes {Xtl} can change during the
iteration minimising E().

5.4 Nonlinear refinement with reduced training set

Building a dense manifold requires large number of training
samples. In practice it may be difficult to obtain such dense
training set. To address this problem, this section briefly
describes a variant of the proposed method which can han-
dle situation when only limited training data is provided.
The idea is to modify the cost function with additional term.
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In this case the basis shapes will be estimated, rather than
matched to the local training samples. The similar method
was introduced in [32], but manifold was learned without
using the random forest.

The main idea is to partition a set of estimated shapes into
K clusters, in which the shapes have similar structure, with
each shape cluster denoted by Ti , i ∈ 1 . . . K . The clusters
are obtained by performing the Delaunay triangulation in the
reduced space. The points in the reduced space belong to the
same Delaunay triangle (i.e. cluster), can be modelled in the
same linear manifold embedded inRN , and therefore all cor-
responding reconstructed shapes (represented by that cluster)
can be approximated by a linear combination of the same set
of unknown but fixed basis shapes. Thus all the shapes in the
cluster i can be represented as St = ∑n+1

l=1 θtlBi
l ,∀t ∈ Ti ,

where a set of basis shapes Bi = {
Bi
1 . . .Bi

n+1

}
is spanning

the tangent linear subspace representing all the shapes from
the cluster i .

The parameters θtl ,Bi
l and Rt are optimised simultane-

ously by minimising the following modified cost function,

E({Rt }, {Bi
l }, {θtl})=

∑

t∈Ti

∥∥∥∥∥Yt−P · Rt

n+1∑

l=1

θtlBi
l

∥∥∥∥∥

2

+γBεibs

+ γR

∑

t∈Ti
εrot (16)

where the additional constraint applied to the i th set of basis
shapes is,

εibs =
n+1∑

l=1

∥∥∥Bi
l − Xi

l

∥∥∥
2
,Xi

l ∈ X (17)

Figure 5 shows the embedding using reduced number of
training samples. 40 shapes are randomly selected from the
cardboard dataset. In the figure, the result of the Delaunay
triangulations is visualised by blue line segments. One frame
from the testing sequence is chosen to demonstrate how the
shape is updated in each iteration. Yellow lines illustrate the
trajectory of the embedding of the shapemoving through dif-
ferent triangles. Red and black dots represent the embedding
of reconstructed and the ground truth shape respectively.

6 Reconstruction with missing data and outliers

The fact that the measurements can be affected by outliers
andmay not be complete, means that the reconstruction algo-
rithmmust be robust tomeasurement data deficiencies in real
application. The algorithm described so far assumes themea-
surementsY are complete, all the feature points are identified
in all the images in the sequence. In real sequences, some

Fig. 5 The embedding of the reduced number of samples from the
cardboard dataset with corresponding shapes

of the points cannot be detected in all the images due to
the occlusions, feature detection problems, or tracking fail-
ures and therefore acquiring complete set of measurements
is unlikely, and the measurement may be affected by outliers
due to errors in the correspondence search.

Two methods are introduced in this section, for solving
missing data and outliers problems, respectively. A nonlinear
approach for missing data is presented first. This method
efficiently solves the problem by simultaneously optimising
the missing entries, shape and motion. In the second part, a
method based on applying robust M-estimator reduces the
effect of outliers by replacing the L2 norm in cost function
(Eq. 15) by Cauchy function.

6.1 Nonlinear approach for missing data

If the point tracks are not visible in all images and the object
has relatively small deformations, it has been proposed in
[35] that instead of considering more complex and time-
consuming optimisation algorithms, using a linear method
based on principal component analysis (PCA) can recover
the missing entries before shape and motion estimation. The
major benefit of this imputation algorithm is its simple imple-
mentation and fast computation. The PCAas a linearmethod,
is only able to cope well with simple deformations. Although
the method is not suitable when the deformations are rela-
tively large or complex, it still can be used for providing a
starting point for the optimisation when the following non-
linear approach is applied.

The diffusion maps based method can be easily extended
to handle the case with missing data. To facilitate this,
Eq. 15 is modified with the cost function rewritten as
E({Rt }, {θtl}, {Yt

∗}), depending explicitly on the missing
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Fig. 6 Graphic representations of L2 estimator and Cauchy function

observations Yt
∗. As the results, the cost function is simul-

taneously minimised with respect to rotation, shape coeffi-
cients and the missing observations. It should be pointed out
that only the missing observation Yt

∗ are optimised not all
2D measurements Yt .

6.2 Robust estimator for data with outliers

It is well known that least-squares methods are sensitive
to outliers as even a single outlier in the observations can
strongly influence the values of the estimated parameters.
Assuming that in the proposed model outliers affect only
observations, the analysis can be restricted to the 2D re-
projection error (the first term in Eq. 15). Defining the
mismatch between the real observation (measurement) and
the projection of the shape estimate at time t as a residualEt :

Et = Yt − P · Rt ·
n+1∑

l=1

θtlXtl (18)

the camera motion and 3D shape are calculated by minimis-
ing the sumof squared residuals,

∑F
t=1

∑2
i=1

∑P
j=1 E

2
t (i, j),

where i is the image coordinate index and j is a feature point
index with P reconstructed points. In practice, the outliers
will be presented in the observations and therefore the use of
L2 normmay lead to significant reconstruction errors. In this
paper it is proposed to address this problem by using a func-
tion which penalises the large residual errors less than the
L2 norm and in this way “desensitise” the re-projection error
with respect to outliers. The adopted approach uses the so-
called M-estimators, in this case the new re-projection error
is defined as:

∑F
t=1

∑2
i=1

∑P
j=1 f (Et (i, j)), where f (·) is

Cauchy function f (x) = c2
2 log(1+(x/c)2). The results pre-

sented in the next section were obtained for c = 1. Figure 6
illustrates the L2 estimator andCauchy function. The L2 esti-
mator is non-robust as it strongly depends on large errors,
while Cauchy function considerably reduce their influence
which make it less sensitive to outliers.

7 Results and discussion

A number of experiments were carried out to evaluate the
proposed method. Several state-of-the-art algorithms were
evaluated and compared in these experiments:

RF: The proposed random forest method;
DM: The diffusion map-based method. The DMmethod
is similar to the RF except the manifold learning was
implemented without random forest. [34];
PTA: The discrete cosine transform (DCT)-based point
trajectory approach [2];
CSF: The column space fitting method [14];
KSFM: The kernel non-rigid structure from motion
approach [15];
IPCA: The incremental principal components analysis-
based method [35].

The testing data used for evaluation include: two artic-
ulated face sequences, surprise and talking, both captured
using 3D scanner with 3D tracking of 83 facial landmarks
and two surfacemodels, cardboard and cloth [39]. This paper
does not focus on feature detection and tracking. In the exper-
iments describedhere the 3Dpoints are knownand thesewere
projected onto the image sequences under the orthographic
camera model and subsequently used as features. Diffusion
maps require training process, so training dataset for face
sequences were taken from the BU-3DFE [43] and for sur-
face sequences the data were obtained from [39]. All the
training data have been rigidly co-registered, and the same
testing data have been used with the methods which do not
require training.

During the experiments ten trials are run for each level
of noise, missing data and outliers in different sequences.
The reconstructed shapes are aligned using a single global
rotation based on Procrustes alignment [2]. For evaluating
the results, the same procedure as in [15] is used. The nor-
malised means of the 3D error are compared over all frames
and all points:

e = 1

�FP

F∑

t=1

P∑

p=1

etp, Δ = 1

3F

F∑

t=1

(
Δt x+Δt y+Δt z

)

(19)

where Δt x ,Δt y ,Δt z are the standard deviations of x,y and z
coordinates of ground truth shape at t th frame and etp is the
Euclidean distance between point p at frame t in the recon-
structed and ground truth data.

7.1 Comparison with previous methods

Table 1 shows the 3D reconstruction error for PTA, CSF,
KSFM, IPCA, DM and RF. The manifold-based method DM
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Table 1 Relative normalised
mean reconstruction 3D error
for PTA, CSF, KSFM, IPCA,
DM and RF methods

PTA CSF KSFM IPCA DM RF

Initial No opt. Opt.

Surprise 0.037(12) 0.040(3) 0.038(4) 0.129 0.035(10) 0.315 0.293 0.024(15)

Talking 0.087(10) 0.057(3) 0.050(4) 0.099 0.035(10) 0.966 0.084 0.034(10)

Cardboard 0.289(8) 0.324(3) 0.275(2) 0.245 0.106(10) 0.267 0.161 0.094(10)

Cloth 0.353(6) 0.261(6) 0.181(2) 0.191 0.029(7) 0.297 0.173 0.025(7)

Walking 0.395(2) 0.168(2) 0.103(5) 0.326 0.027(9) 0.350 0.163 0.037(15)

IndianDance 0.485(13) 0.337(7) 0.234(7) 0.344 0.098(10) 0.297 0.128 0.056(15)

Capoeira 0.513(6) 0.365(4) 0.238(7) 0.406 0.026(9) 0.406 0.292 0.005(10)

Stretch 0.109(12) 0.071(8) 0.074(12) 0.192 0.069(6) 0.262 0.171 0.059(10)

Dance 0.294(5) 0.268(2) 0.237(4) 0.306 0.168(7) 0.261 0.153 0.117(15)

The optimal number of bases n, for which the 3D errors are shown in the table, is given in brackets for each
tested method
The best results for each sequence are in bold

andRFonaverage provide better results thanother trajectory-
basedmethods. The relative normalisedmeans (Eq. 19) of the
3D error [14] are compared over all frames and all points. For
RF method the initialisation error and the error produced by
the proposed algorithm with and without nonlinear refine-
ment are given. The errors shown in the table correspond
to the selected optimal dimensionality parameter n, in case
of RF method this corresponds to the dimensionality of the
estimatedmanifold. This selection is achieved by running the
trials with n varying from 2 to 15. The best selected n for each
testedmethod is shown in brackets. IPCAuses different num-
ber of basis shapes for constructing offline and online shapes,
thus n is not provided in the table. As shown in the table, the
previously proposedmethods are able to provide comparable
results, to the DM and RF nonlinear manifold-based meth-
ods, for objects with small deformations, e.g. faces. This is
because these objects exhibitmostly a rigidmotion, the defor-
mations are only seen around the lips and chin. But those
methods provide relatively large error on highly deformable
shape sequences (e.g. Cloth). As expected, the proposed RF
method delivers themost accurate reconstruction in all tested
cases. This mainly, can be explained as being due to the fact
that the estimated affinities generate relatively uniform dis-
tribution of the training shapes in the reduced space. This
subsequently effects the interpolation of the new shapes in
the manifold, leading to more accurate reconstructions. Note
that even though the initial error is big, after optimisation
process, the results demonstrate good convergence since the
3D errors are relatively small. An important observation is
that, in the trajectory-based methods, the optimal number of
bases n has to be independently estimated for each sequence.
Choosing too big n may lead to an ill-conditioned problem,
but the point trajectory cannot be comprehensively repre-
sented if n is too small, while the results from the proposed
method are more predictable. However, it should be noticed
that the comparison for theWalking, IndianDance, Capoeira,

Stretch and Dance sequences between the proposed method
and the other methods may be seen as unfair, as better recon-
struction accuracy of the proposed method comes at the cost
of required availability of a representative training dataset.

7.2 The influence of embedding dimensionality

The accuracy of reconstruction is affected by the dimen-
sionality of the reduced space n, corresponding to number
of shape basis. The test described in this section looked at
the relation between manifold dimensionality and the shape
reconstruction error. The four sequences are tested individu-
ally with various dimensionalities (n = 3, 5, 7, 10, 15) of the
reduced space. The forests have been trained with 600 trees.
The results in Fig. 7a show that the shape reconstruction error
is reduced with increasing dimension n of the reduced space.
As expected, a higher number of bases is required to describe
a complex shape deformation, e.g. cloth sequences.

Figure 7b shows the results obtainedon the cloth sequence,
comparing performance of the proposed method against pre-
viously proposed methods. The error calculated for PTA,
CSF and KSFM varies with the number of bases, and over-
fitting occurs when n > 10 which indicates that the problem
becomes ill-conditioned. DM and RFmethods are “more sta-
ble” as the solution is strongly constrained by the requirement
that it belongs to the manifold.

7.3 Sensitivity to noise and missing data

In order to assess the performance of the reconstruction algo-
rithms when the observed data is corrupted by noise, the
next experiment compared the RF method against previ-
ously proposed methods in terms of shape reconstruction
error expressed as a function of level of noise in the observed
data.We follow the process in [41] to simulate the noisy data,
for which the measurements were perturbed by Gaussian
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Fig. 7 Reconstruction 3D error as a function of the number of bases n. a Errors produced by RF with different sequences; b comparison results
on cloth sequence
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Fig. 8 Reconstruction results on cardboard data a sequence with Gaussian noise, b comparison results of missing data

noise. The noise level is represented by the ratio between the
Frobenius norm of the noise and the measurement matrix.
The reconstruction errors are evaluated for different level of
noise, set to 2, 4, 6, 8, 10 and 12%. The results are shown in
Fig. 8a. It can be noticed that although the 3D reconstructed
error of all five algorithms increases with the higher level of
noise, the nonlinear method RF are obviously superior and
achievemuch smaller standard deviations,whereas others are
quite sensitive with large mean error and error dispersion.

Missing data problem happens very often in real cases
due to feature points track loss or occlusion. To simulate the
measurement with missing data, 10, 20, 30, 40 and 50% of
the 2D entries in Y were randomly discarded. The results
shown in Fig. 8b are calculated with the missing data ratio
of up to 50%, the average (maximum) 3D error using RF
method is 0.1798 (0.2018) which is still acceptable. As the
missing data problem is not addressed in [2], PTA is not used
for comparison in this experiment.

Observing that in practice, measurements are likely to
be affected by missing data and noise at the same time,

the following experiment aims to evaluate the performance
with measurement noise and different percentage of missing
data. Figure 9a shows the results obtained by the nonlin-
ear approach presented in Sect. 6.1. For comparison Fig. 9b
shows results of the same experiment using the adaptive lin-
ear approach [35].

7.4 Sensitivity to outliers in the measurements

For real reconstruction cases, outliers present in themeasure-
ments is an inevitable problem thatmany previous algorithms
did not address. It is well known that the outliers can severely
affect the results.A small number of outliersmay lead to com-
pletelymeaningless reconstructed shapes. The robustmethod
for mitigating the affect has been presented in Sect. 6.2.
The experiment described in this section is designed to test
the robustness of the proposed method using both original
(Eq. 15) and the improved cost function applying robust
influence function (M-estimator) for the reprojection error.
To simulate the data corrupted by the outliers, a number of
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Fig. 9 Reconstruction results on Cardboard sequences. a Results for missing data and noise using nonlinear RF approach. b Results for missing
data and noise using adaptive linear approach IPCA
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Fig. 10 Comparison results using original and improved RF methods
on Cardboard sequence with outliers

the feature points are randomly selected in a test sequence as
percentage of the total number of points, subsequently these
points are replacedwith randomly selected points in the same
image frame. The effects of outliers on the reconstruction
accuracywere tested at 4, 8, 12, 16 and 20%. Figure 10 shows
the 3D reconstructed errors as a function of the percentage of
outliers given by the improvedmethod using robust estimator
and the original RFmethod. The robustmethod is able to han-
dle the outliers and provide relatively accurate reconstructed
shapes. Note that the outliers may also corrupt the training
data, but the training is usually done offline, and therefore it
is easier to filter the data and remove any outliers in this case.

7.5 Effect of forest model parameters

The analysis in this section is focused on how different
choices of forests design parameters effect reconstructed
results. The model has been evaluated in terms of two para-
meters: Tree depth and the forest size. For each experiment,

the same testing sequences Cardboard and Cloth are used to
represent small and large deformation shapes respectively.

The effect of varying tree depth has been investigated first.
Here, all the forests have been trained with the fixed number
of trees T = 500, and the maximum tree depths are vary-
ing from 2 to 7. As the forest size is sufficiently large, the
variability due to randomness of parameter selection for each
tree is averaged out, therefore we only show the results from
one trial for each tree depth in Table 2 as the repeated exper-
iments produce very similar results. The results show that in
general increasing the tree depth decreases the error. Larger
trees can better separate the shapes, thus the shapes ending up
at the same leaf node are more similar. However for the data
with small deformation (e.g.cardboard), the 3D error levels
off and does not strongly depend on the tree depth. This is
because that data exhibit relatively small deformations, and
is governed by a small number of degrees of freedom, thereby
even a small tree can well separate the shapes. It should be
noticed that although larger trees can improve the results, it
may lead to costly computation.

The proposed method has been also tested with respect
to varying number of trees (T =10, 50, 100, 500, 1000)
with fixed maximum tree depth of 5 in each experiment. The
results for two sequences are shown in Table 3. The average
3D error and the standard deviation were estimated based
on ten trials. As observed from the table, for both sequences
applying more trees in the training process produces more
accurate reconstructed results. Increasing number of trees in
the forest canhelp the affinityMatrixW to better approximate
to the true pairwise graph affinity.

7.6 Qualitative evaluation

The objective of this section is to provide a qualitative evi-
dence for the assessment of the shape reconstruction quality.
Following on the experiment summarised inTable 2, for com-
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Table 2 The 3D reconstruction
error as a function of varying
tree depth

Sequence Depth

2 3 4 5 6 7

Cardboard 0.1049 0.0907 0.0957 0.0940 0.0922 0.0899

Cloth 0.1462 0.0697 0.0457 0.0372 0.0254 0.0276

Table 3 The 3D reconstruction error as a function of different number
of trees in the forest

Sequence Tree number

10 50 100 500 1000

Cardboard

3D error 0.1890 0.1425 0.1252 0.0942 0.0929

Max error 0.2650 0.1975 0.1352 0.1029 0.0997

SD 0.0464 0.0280 0.0044 0.0048 0.0046

Cloth

3D error 0.1415 0.1170 0.0689 0.0255 0.0256

Max error 0.2956 0.2940 0.1532 0.0311 0.0349

SD 0.0825 0.0702 0.0389 0.0026 0.0042

parison Fig. 11 shows three randomly selected reconstructed
shapes from the Cloth sequence using PTA, CSF, KSFM,
IPCA, DM and RF methods.

The proposed algorithms have been also tested on a real
video sequence showing paper being bended. A frames’ sam-
ple from this video is shown in the top row of Fig. 12. In the
video, 81 features were tracked along 61 frames showing
approximately two periods of bending movement. The train-
ing data in this experiment is the cardboard dataset obtained
from [39], which is the same as used in the previous eval-
uations when using cardboard sequence. The results show
a comparison of our reconstructed shapes with the results
obtained from MP, PTA, KSFM methods. Figure 13 shows
3D reconstruction results obtained for a facial expression
sequence. The first row indicates the input images with

PTA

CSF

KSFM

IPCA

RF

Frame 1 Frame 90Frame 50Frame 30 Frame 100

DM

Fig. 11 Reconstruction results on the Cloth sequence. Reconstructed 3D shapes (blue), with ground truth (red) are shown (colour figure online)
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RF

MP

Frame 1

PTA

KSFM

Frame 11 Frame 41 Frame 53

Fig. 12 Selected 2D frames from the video sequence of a paper bending. Front and top views of the corresponding 3D reconstructed results using
the proposed method (RF), MP, PTA and KSFM

tracked feature points; the second and third row show the
front and side views of the reconstructed results using the
proposed RF method.

7.7 Results of using reduced training set

This section presents experiments of 3D reconstructionwhen
only small number of training samples are being used. The
method is labelled as RF2 to distinguish it from RF. Two
sequences are used for testing, they are: cloth and an artic-
ulated human motion sequence IndianDance from CMU
motion capture database.1 Since no separate training data
are provided for human motion sequence, every 10th frame
is selected to build training dataset (e.g. frame 1,11,21…are

1 The data were obtained from http://mocap.cs.cmu.edu.

selected), whereas frames 5,15,25…are selected as a testing
set. It should be stressed that the results provided for the
IndianDance sequence are indicative only, as an objective
tests should use independent training and test data, which
are currently not available. In this experiment, the number of
training shapes for RF2 andRF for the cloth sequence are 100
and 1000 respectively, and 100 for IndianDance sequence
when RF2 is used. For the cloth sequence the reconstruction
error for RF2 with the optimal selection of the number of
basis shapes (9 in this case) is 4.71%. This should be com-
pared with the results reported in Table 1. It can be concluded
that RF and RF2 are somewhat comparable in terms of the
reconstruction accuracy forCloth sequence. As expected, RF
outperform the RF2, but RF2 uses much smaller training set
than RF.

123

http://mocap.cs.cmu.edu


Robust deformable shape reconstruction from monocular video with manifold forests 817

Fig. 13 Selected frames from a video sequence of a “surprise” facial expression. First row Input images with tracked feature points. Second and
third rows Front and side views of the 3D reconstruction using the proposed RF method

Frame 1 Frame 20 Frame 40 Frame 60 Frame 80 Frame 100

KSFM

RF2

Fig. 14 Reconstruction results on the IndianDance sequence. Reconstructed 3D shapes (circles), with ground truth (dots) are shown

The performance of the RF2 method strongly depends
on the selection of the shapes included in the reduced
training set. It is beneficial when selected shapes generate
well-shaped triangles in the Delaunay triangulation. In the
performed test on the IndianDance sequence the selection
of the training samples was not optimised with respect to
results of the Delaunay triangulation. As human movement
contains large number of degrees of freedom, the reconstruc-
tion results are affected if corresponding shapes are being
clustered in badly shapes triangles (e.g. ’skinny triangles’) in
the reduced space. Even so the reconstructed error for Indian-

Dance is 12.95% obtained with seven basis shapes, which is
still acceptable.

The visualised results of reconstructed shape extracted
from the IndianDance sequence using KSFM (58.86% over-
all 3D reconstruction error) and RF2 methods are illustrated
in Fig. 14.

Limitation

While the proposed method is able to reconstruct complex
deformable shapes with some success, some limitations still
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(1) (2)

Fig. 15 The reconstruction success (1) and failures (2) examples
obtained for the Capoeria sequence. The ground truth and the recon-
structed shapes are shown as dots and circles, respectively

remain. For example, the method could fail when the shape
to be reconstructed is not adequately represented in the
available training dataset. Figure 15 shows examples of the
successful and failed reconstructions. In this case, theCapoe-
ria sequence is used for testing,whereas the abovementioned
IndianDance sequence is used for training. The shapes are
accurately reconstructed when they are sufficiently well rep-
resented by the training samples, but the reconstruction can
fail when the true shape is significantly different from the
shapes in the training set (see Fig. 15).

8 Conclusions

Anew approach for recovery non-rigid shape based onmani-
fold forests is described in the paper. The nonlinear manifold
has been build upon diffusion maps with random forests
used to estimate localmanifold neighbourhood topology. The
method achieves good performance especially for large and
complex deformable objects, when compared with the exist-
ing approaches.

In many practical applications there are only limited num-
ber of shape examples to be used for training. To address
this problem, a modification of the described RF method has
been also proposed which is able to accurately reconstruct
shapes even though only a small number of training shapes
could be available. Additionally, the existence of outliers in
the observations could be a limitation imposed by practical
applications on some of the previously proposed reconstruc-
tion methods, as often outliers are not modelled explicitly.
To address this problem, a further extension of the prosed
RF method has been described in this paper, with a robust
cost function used to measure the re-projection error. The
evaluation results on simulated and real data presented in the
paper demonstrate the validity of the proposed methods.

It should be mentioned that the comparison of the pro-
posed method with respect to the other methods may be seen
as unfair, as better reconstruction accuracy of the proposed

method comes at the cost of required availability of a repre-
sentative training dataset. As manifold learning has shown to
be a very powerful approach for analysis of the shapes, we
believe the manifold-based method is a suitable groundwork
for reconstruction of deformable shapes.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
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