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ABSTRACT
Models of the Sagittarius stream have consistently found that the Milky Way disc is oriented
such that its short axis is along the intermediate axis of the triaxial dark matter halo. We
attempt to build models of disc galaxies in such an ‘intermediate-axis orientation’. We do this
with three models. In the first two cases we simply rigidly grow a disc in a triaxial halo such
that the disc ends up perpendicular to the global intermediate axis. We also attempt to coax
a disc to form in an intermediate-axis orientation by producing a gas+dark matter triaxial
system with gas angular momentum about the intermediate axis. In all cases we fail to produce
systems which remain with stellar angular momentum aligned with the halo’s intermediate
axis, even when the disc’s potential flattens the inner halo such that the disc is everywhere
perpendicular to the halo’s local minor axis. For one of these unstable simulations we show
that the potential is even rounder than the models of the Milky Way potential in the region
probed by the Sagittarius stream. We conclude that the Milky Way’s disc is very unlikely to
be in an intermediate-axis orientation. However we find that a disc can persist off one of the
principal planes of the potential. We propose that the disc of the Milky Way must be tilted
relative to the principal axes of the dark matter halo. Direct confirmation of this prediction
would constitute a critical test of Modified Newtonian Dynamics.

Key words: Galaxy: evolution – Galaxy: formation – Galaxy: halo – Galaxy: kinematics and
dynamics – Galaxy: structure – galaxies: haloes.

1 IN T RO D U C T I O N

Dark matter haloes in purely collisionless simulations are gener-
ally triaxial (Bardeen et al. 1986; Barnes & Efstathiou 1987; Frenk
et al. 1988; Dubinski & Carlberg 1991; Jing & Suto 2002; Bailin
& Steinmetz 2005; Allgood et al. 2006) with typical axial ratios
b/a ∼ 0.6 and c/a ∼ 0.4 (where c < b < a are the short, in-
termediate and long axes, respectively). Observations instead find
rounder haloes (Schweizer, Whitmore & Rubin 1983; Sackett &
Sparke 1990; Franx & de Zeeuw 1992; Huizinga & van Albada
1992; Buote & Canizares 1994; Franx, van Gorkom & de Zeeuw
1994; Kuijken & Tremaine 1994; Bartelmann, Steinmetz & Weiss
1995; Kochanek 1995; Olling 1995, 1996; Schoenmakers, Franx &

� E-mail: vpdebattista@gmail.com
†Visiting Lecturer at Department of Physics, University of Malta.

de Zeeuw 1997; Koopmans, de Bruyn & Jackson 1998; Olling &
Merrifield 2000; Andersen et al. 2001; Buote et al. 2002; Barnes
& Sellwood 2003; Debattista 2003; Iodice et al. 2003; Oguri, Lee
& Suto 2003; Diehl & Statler 2007; Spekkens & Sellwood 2007;
Banerjee & Jog 2008). This discrepancy is most likely accounted
for by the fact that haloes become rounder when baryons condense
within them (Dubinski 1994; Kazantzidis et al. 2004b; Debattista
et al. 2008; Zemp et al. 2012; Bryan et al. 2013). This is mainly due
to a change in both the type and shape of orbits (Valluri et al. 2010).
Nonetheless models predict that haloes remain triaxial beyond ∼30–
50 kpc, which, however, is a region that is poorly constrained by
observations.

The Sagittarius dwarf tidal stream, which extends to ∼60 kpc
from the Galactic Centre, has been used to constrain the shape of
the Milky Way’s halo with varying results. Noting that the tidal
debris is distributed on a great circle, Ibata et al. (2001) concluded
that the halo is nearly spherical. Likewise Fellhauer et al. (2006)
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argued that the position of the bifurcation in the tidal stream, which
they interpreted as two wraps of the stream, can be explained if
the halo is close to spherical. Martı́nez-Delgado et al. (2004) and
Johnston, Law & Majewski (2005) instead found a mildly oblate
halo (c/a ∼ 0.9) flattened in the same sense as the disc. Helmi
(2004a) meanwhile argued that the trailing part of the Sagittarius
stream is too dynamically young to provide a stringent constraint.
Using instead the leading stream, Helmi (2004b) found evidence for
a prolate halo with c/a ∼ 0.6 and with its long axis perpendicular to
the disc. Law, Majewski & Johnston (2009) were the first to demon-
strate that simultaneously fitting the density and kinematics of the
Sagittarius stream requires a triaxial (rather than oblate/prolate) po-
tential. A surprising property of this potential is that its intermediate
axis is aligned with the short axis of the disc (a relative orientation
we will refer to as the ‘intermediate-axis orientation’). Law & Ma-
jewski (2010, hereafter LM10) presented a suite of ∼500 N-body
simulations of the tidal disruption of the Sagittarius dwarf in a fixed
potential. The simulations were compared with a large number of
constraints including (i) the position and velocity of the Sagittarius
dwarf with its velocity vector in the orbital plane of the young trail-
ing tail, (ii) the radial velocity and velocity dispersion in the trailing
tidal tail and (iii) the angular location, width and radial velocities
of the leading tail. The best-fitting model is in the intermediate-
axis orientation with (b/a)� = 0.99 and (c/a)� = 0.72 between 20
and 60 kpc, and with the major and minor axes in the plane of the
disc. An analysis by Deg & Widrow (2013) that varies also the
parameters of the bulge+disc of the Milky Way still finds a disc
in the intermediate-axis orientation. Recent extended mapping of
the Sagittarius stream in the Southern Galactic hemisphere finds a
stream consistent with the LM10 model (Slater et al. 2013).

Triaxial potentials are populated by box orbits (which get arbi-
trarily close to the centre of the potential) and tube orbits (which
have a fixed sense of rotation relative to one of the principal axes).
The stability of tube orbits about each of the principal axes of a
triaxial potential has been studied extensively: tube orbits are stable
around the short and long axes, but not around the intermediate axis
(Heiligman & Schwarzschild 1979; Goodman & Schwarzschild
1981; Wilkinson & James 1982), even when planar (Adams et al.
2007; Carpintero & Muzzio 2012). Figure rotation gives rise to
warped planes of stable loop orbits capable of supporting discs
(Binney 1978; Heisler, Merritt & Schwarzschild 1982; Magnenat
1982; Durisen et al. 1983; Lake & Norman 1983; Steiman-Cameron
& Durisen 1984; Habe & Ikeuchi 1985, 1988; Martinet & de Zeeuw
1988), but the level of figure rotation of dark matter haloes is found
to be on average �10◦ Gyr−1 in cosmological dark-matter-only sim-
ulations (Bailin & Steinmetz 2004). In semicosmological models,
Aumer & White (2013) showed that discs are most stable when the
angular momentum is aligned with the minor axis of the halo. The
model of LM10 therefore challenges the view that the instability
of intermediate-axis tube (IAT) orbits prohibits discs from forming
in this orientation. One way in which this discrepancy might be
resolved is if in the vicinity of the disc it dominates the net poten-
tial, which becomes flattened like the disc. Then the near-circular
orbits in the disc are orbiting around the local short axis of the
potential, and therefore in a stable configuration (Johnston, private
communication).

In this paper we show that discs are unable to persist in an
intermediate-axis orientation. We use both simulations in which
discs are grown inside isolated triaxial haloes as well as a sim-
ulation of a galaxy forming out of gas with angular momentum
about the intermediate axis of a triaxial halo. In Section 2 we dis-
cuss the methods used in this paper, including the initial conditions

of the stars, dark matter and gas. Section 3 presents the evolution
of the models. We draw our conclusions in Section 4. Appendix A
presents our interpretation for why the intermediate-axis orientation
is unstable based on an orbital study.

2 N U M E R I C A L M E T H O D S

2.1 Constructing collisionless initial conditions

As in Debattista et al. (2008), we formed triaxial haloes via the
merger of three or more spherical haloes (Moore et al. 2004). The
mergers, and all subsequent collisionless simulations, were evolved
with PKDGRAV (Stadel 2001), an efficient, multistepping, parallel
tree code. The spherical haloes were generated from a distribution
function using the method of Kazantzidis, Magorrian & Moore
(2004a) with each halo composed of two mass species arranged on
shells. The outer shell has more massive particles than the inner
one, increasing the effective resolution in the centre. As shown in
Debattista et al. (2008), a large part of the particle mass segregation
persists after the mergers and the inner region remains dominated
by the lower mass particles.

We produced two dark-matter-only triaxial haloes, which we re-
fer to as A and C; halo A was presented already in Debattista et al.
(2008). These haloes were constructed from two consecutive merg-
ers. In both cases the first merger placed two identical spherical
concentration C = 10 haloes 800 kpc apart approaching each other
at 50 km s−1, producing a prolate merged halo. Halo A was gen-
erated by the head-on merger of two copies of this remnant halo
starting at rest 400 kpc apart. For halo C, after the first merger, a
third spherical halo, with C = 20, was merged from 100 kpc along
the first remnant’s minor axis. This C = 20 halo itself had two mass
species different from those of the C = 10 halo. The top two panels
of Fig. 1 plot the shape and triaxiality of these two haloes, measured
as described in Debattista et al. (2008) (see also Zemp et al. 2011),
before any discs are introduced. The triaxiality parameter is defined
as T = (a2 − b2)/(a2 − c2) (Franx, Illingworth & de Zeeuw 1991).
Halo A is highly prolate but has only a mild triaxiality T ∼ 0.9;
its shape however is very constant out to 100 kpc. Halo C instead
has a radially varying T ranging from ∼0.9 at the centre to ∼0.3
at 50 kpc. Halo C is considerably rounder than halo A everywhere
within the inner 100 kpc. Table 1 lists the properties of the haloes.1

The outer particles are ∼19× more massive than the inner ones in
halo A. Halo C has two additional mass species which came with the
C = 20 halo: ∼1.8× and ∼16× more massive than the low-mass
particles in the C = 10 halo. Both the initial spherical halo with
C = 10 and the one with C = 20 each had one million particles,
equally divided between the two mass species. Thus halo A has
four million particles while halo C has three million. We used a
softening parameter ε = 0.1 kpc (ε = 0.5 kpc) for low-(high-)mass
particles in both the C = 10 and the C = 20 spherical haloes.

Once we produced the triaxial haloes, we inserted a disc of par-
ticles which initially remained rigid. The disc distribution was, in
all cases, exponential with scale-length Rd = 3 kpc and Gaussian
scale-height zd = 0.05Rd. The discs are composed of 300 000 equal-
mass particles. Initially the disc has negligible mass but this grows
linearly over 5 Gyr. During this time, the halo particles are free to
move and achieve equilibrium with the growing disc.

1 We use a different convention from Debattista et al. (2008) and Valluri
et al. (2010, 2012), who used the radius at which ρ = 200ρcrit. Here r200 is
the radius within which the enclosed mass has average density 200ρcrit.
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The Milky Way’s disc relative to the halo 2973

Figure 1. Density shape of dark matter haloes A (top), C (middle) and GI1
(bottom) before any of the discs/star formation are introduced. Solid, dashed
and dotted lines show b/a, c/a and T, respectively.

The disc in halo A is grown to a mass of 1.75 × 1011 M�. The
disc is placed in an intermediate-axis orientation and we therefore
refer to this model as model IA1. Valluri et al. (2012) presented an
orbital analysis of the halo in this model at t = 0; there the model is
also referred to as IA1. For some of our analysis, we also present a
version of this model with the disc at a mass of only 7 × 1010 M�,

Table 1. The haloes used in the simulations. The properties listed are for
the halo after the last merger and before the discs have been grown. Np and
Ng are the number of dark matter and gas particles within r200, and M200 is
the halo mass within the virial radius, r200. Density axes ratios b/a and c/a
are by-eye averaged over the inner 20 kpc (see Fig. 1).

Halo Np Ng M200 r200 b/a c/a
(106) (106) (1012 M�) (kpc)

A 3.3 – 6.3 379 0.45 0.35
C 2.6 – 5.1 355 0.7 0.6

GI1 2.8 2.7 3.2 304 0.4 0.32

which we refer to as model IA2. The disc in halo C instead is placed
with its short axis along the halo’s long axis, so we refer to it as
model LC1. This disc has a final mass of 1.4 × 1011 M�. The
high disc masses in models IA1 and LC1 allow us argue that even
a high mass does not offer a disc protection against the unstable
intermediate-axis orientation, but we have checked that lower mass
discs (including in IA2) are also unstable in this orientation. Disc
particles in model IA1 each has a softening ε = 100 pc, while disc
particles in models IA2 and LC1 have ε = 60 pc.

We set the kinematics of the final discs to give constant zd and
Toomre Q = 1.5, as described in Debattista & Sellwood (2000). For
this we calculate the potential using a hybrid polar-grid code with the
disc on a cylindrical grid and the halo on a spherical grid (Sellwood
2003). In setting the disc kinematics, we azimuthally average radial
and vertical forces; thus our discs are initially not in perfect equi-
librium. Equilibrium is quickly established once the disc particles
are free to move. In these simulations t = 0 corresponds to the time
at which we set the disc kinematics. PKDGRAV is a multistepping tree
code, with time-steps refined such that δt = �t/2n < η(ε/ag)1/2,
where ε is the softening and ag is the acceleration at a particle’s
current position. We use base time-step �t = 5 Myr, η = 0.2 and
set the opening angle of the tree code to θ = 0.7 in all cases.

2.2 Initial conditions with gas

We also present a simulation of a disc forming out of gas rotating
about the intermediate axis of a triaxial halo, which we refer to as
model GI1. As did Aumer & White (2013), in our initial experiments
we found that arbitrarily inserting rotating gas haloes within pre-
existing non-spherical dark matter haloes leads to a substantial loss
of gas angular momentum. Our approach therefore is to include the
gas, which is not allowed to cool, right from the start while merging
haloes to produce the triaxial system. We first set up a prolate
halo with an equilibrium gas distribution by merging two spherical
Navarro–Frenk–White (NFW) dark matter haloes as before. Each
of the spherical initial haloes has an embedded spherical hot gas
component containing 10 per cent of the total mass and following
the same density distribution. The initial haloes have been described
in Roškar et al. (2008): each dark matter halo has a mass within
the virial radius of 1012 M�. A temperature gradient in each halo
ensures an initial gas pressure equilibrium for an adiabatic equation
of state. Gas velocities are initialized to give a spin parameter of
λ = 0.039 (Bullock et al. 2001; Macciò et al. 2007), with specific
angular momentum j ∝ R, where R is the cylindrical radius. Each
halo used 106 particles in each of the gas and dark components. Gas
particles initially have masses 1.4 × 105 M� and softening 50 pc,
the latter inherited by the star particles, while dark matter particles
come in two mass flavours (106 and 3.5 × 106 M� inside and
outside 200 kpc, respectively) and with a softening of 100 pc. The
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Figure 2. Cartoon representation of the merger geometry that produces
a triaxial halo with gas angular momentum along the intermediate axis,
model GI1. The (red) filled arrows indicate the orientation of the gas angular
momentum relative to the two merging prolate haloes while the (black) open
arrows indicate the relative motion of the two haloes.

two haloes are placed 500 kpc apart along the x-axis and are initially
moving towards each other at a relative velocity of 100 km s−1.

After the first merger the resulting halo is prolate, elongated
along the x-axis, with 〈c/a 〉 	 0.65 and angular momentum along
the short (z) axis. We produce a triaxial halo by merging two copies
of this prolate system (for a total of 4 × 106 particles in each of the
gas and dark matter components). In order to align the gas angular
momentum with the intermediate axis of the halo we first rotate the
prolate system about the long axis so the angular momentum vector
is along the y-axis, then rotate two copies of the prolate halo about
the z-axis by +30◦ in one case and by −30◦ in the other. This merger
geometry for the two prolate haloes is illustrated in Fig. 2. Merging
these two haloes from a separation of 500 kpc along the x-axis with
a relative velocity of 100 km s−1 produces a quite prolate halo with
only a very mild triaxiality (T ∼ 0.93 within the inner 100 kpc), as
shown in the bottom panel of Fig. 1.

This simulation was evolved with GASOLINE (Wadsley, Stadel &
Quinn 2004), the smooth particle hydrodynamics (SPH) version of
PKDGRAV. We use a base time-step of 10 Myr with a refinement pa-
rameter η = 0.175. During the mergers, and for some time after, we
evolve the gas adiabatically without cooling or star formation. After,
we switch on gas cooling, star formation and stellar feedback using
the prescriptions of Stinson et al. (2006). A gas particle undergoes
star formation if it has number density n > 0.1 cm−3, temperature
T < 15 000 K and is part of a converging flow; efficiency of star
formation is 0.05, i.e. 5 per cent of gas particles eligible to form
stars do so per dynamical time. Star particles form with an initial
mass of 1/3 that of the parent gas particle, which at our resolution
corresponds to 4.6 × 104 M�. Gas particles can spawn multiple
star particles but once they drop below 1/5 of their initial mass
the remaining mass is distributed amongst the nearest neighbours,
leading to a decreasing number of gas particles. Each star particle
represents an entire stellar population with a Miller–Scalo (Miller
& Scalo 1979) initial mass function. The evolution of star particles
includes asymptotic giant branch (AGB) stellar winds and feedback
from Type II and Type Ia supernovae, with their energy injected
into the interstellar medium (ISM). Each supernova releases 4 ×
1050 erg into the ISM. The effect of the supernovae explosions is
modelled as a subgrid prescription for a blast wave propagating
through the ISM (Stinson et al. 2006). We again use an opening
angle of θ = 0.7. The time-step of gas particles also satisfies the
condition δtgas = ηcouranth/[(1 + α)c + βμmax], where ηcourant = 0.4,
h is the SPH smoothing length, α is the shear coefficient, which is
set to 1, β = 2 is the viscosity coefficient and μmax is described in
Wadsley et al. (2004). The SPH kernel is defined using the 32 nearest
neighbours. Gas cooling is calculated without taking into account
the gas metallicity. These prescriptions have been shown to lead to
realistic Milky-Way-type galaxies (Roškar et al. 2012; Roškar, De-

battista & Loebman 2013). In this run, t = 0 corresponds to the time
at which gas cooling is switched on and star formation commences.

2.3 Briggs figures

We use Briggs figures, originally introduced for studying warps
(Briggs 1990), to illustrate disc tilting in the simulations. A Briggs
figure is a 2D polar coordinate representation of the direction of
vectors. We decompose the stellar discs into five concentric rings
of equal width extending to a radius of 15 kpc and for each ring plot
the direction of the angular momentum vector in 2D cylindrical
polar coordinates. The tilt of the angular momentum vector from
some fiducial z-axis, θ , is plotted as the radial coordinate, while
the angle from some fiducial x-axis, φ, is plotted as the angle coor-
dinate. Briggs figures are useful for showing the evolution of disc
orientation provided that the axes with respect to which the angles
θ and φ are defined are kept fixed. Note that the Briggs figure of a
uniformly tilting disc consists of a set of coincident points, indicat-
ing that the angular momentum of the disc is everywhere aligned.
A differentially tilting (i.e. warped) disc instead is represented by
non-coincident points. In the collisionless simulations we always
set the z-axis to be the direction of the angular momentum of the
initial disc. The reader is cautioned that this is different from the
convention adopted in Valluri et al. (2012).

3 R ESULTS

3.1 Models IA1 and IA2

In models IA1 and IA2 the x-axis is the pre-disc halo long axis,
while the y-axis is the short axis. Once the disc is grown, however,
the inner halo is flattened to the extent that the disc’s vertical (i.e.
short) axis becomes the shortest axis of the inner halo. At larger radii
the x and y axes continue to be the long and short axes of the halo, so
we use these to specify the axes ordering. We compute the potential
in the x = 0 and y = 0 planes, from which we measure the axes
ratios of the potential by computing the distance along each axis at
which the potential takes particular values. The top panel of Fig. 3
plots the equipotential axis ratios x�/z� and y�/z� for IA1. The
pre-disc potential has x�/z� > 1 > y�/z� ⇒ x� > z� > y� but
after the disc is grown, within 20 kpc this becomes x� > y� > z�.
The mid-plane potential has an ellipticity ε� � 0.15 within 20 kpc.

The evolution of run IA1 is shown in Fig. 4. The disc tilts by
90◦ out of the initial plane within 4 Gyr. During this rapid tilting
phase the disc does not warp substantially or precess (which can
be seen from the fact that the disc short axis does not circulate
about any axis). At t = 4 Gyr the disc has not yet settled, having
overshot the minor axis orientation to θ 	 120◦. After 4 Gyr the disc
precesses about the short axis while slowly settling into a short-axis
orientation. Throughout this evolution, total angular momentum
is conserved to better than 1.5 per cent, with angular momentum
exchanged between the disc and the halo. Other than the disc tilting
more rapidly, the lower disc mass run IA2 evolves similar to run
IA1.

IAT orbits are unstable (e.g. Binney & Tremaine 2008, p. 263).
If the disc is perpendicular to the intermediate axis of the potential,
then its stars would be on IAT orbits, which would render them
unstable. As Fig. 3 shows, after the disc has grown the net potential
becomes so vertically flattened that the z-axis becomes the shortest
axis of the potential in the disc’s vicinity. This is the case also if
just the halo potential is considered. Therefore the disc tube orbits
are stable because they are cocooned inside a vertically flattened
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The Milky Way’s disc relative to the halo 2975

Figure 3. Equipotential axis ratios in models IA1 (top) and LC1 (bottom).
The solid lines show x�/z�, while the dashed lines show y�/z�. The thick
blue lines correspond to the halo before the disc is grown. The black and
red lines show the full and halo potential shape after the disc is grown.
The dotted horizontal lines indicate an axis ratio of unity. The z-axis is
perpendicular to the disc at t = 0.

halo and circulate about the shortest axes of their local potential.
We confirm this by repeating the simulation with the halo particles
frozen in place in model IA2. Then the disc does not tilt during
5 Gyr.

The instability must therefore reside in the halo. In Appendix A
we present evidence that the instability is driven by the response
of tube orbits to a potential with a radially varying orientation.
Because the halo has negligible angular momentum, it tilts without
precessing, shepherding the disc along with it. Evidence that the
halo is driving the tilting of the disc comes also from the small
angular displacement between the disc and the inner halo. Close
examination of Fig. 4 shows that during the tilting phase (2–4 Gyr),
φ for the disc is not the same as that for the halo minor axis. In Fig. 4,
the red points mark the direction of the disc angular momentum;
thus the disc orientation during the tilting phase is ahead of (larger
φ) the great circle between the intermediate and short axes, along
which the halo tilts. In order to demonstrate this, we again use the
lower disc mass model IA2, since this distorts the inner halo to
a lesser extent. Fig. 5 shows the evolution of the direction of the

Figure 4. Briggs figures (see Section 2.3 for an explanation of these figures)
showing the evolution of run IA1 at 1 Gyr intervals. Dotted circles are spaced
at 20◦ intervals, with the outer solid circle corresponding to θ = 120◦. The
centre of the disc is indicated by the (red) open circle, while the remaining
disc annuli are indicated by (red) crosses. The open (blue) star, square and
triangle symbols indicate the direction of the pre-disc halo long, intermediate
and short axes, respectively.

inner halo (solid lines) and of the disc (dashed lines) minor axes
separately, by plotting the tilt angle θ from the z-axis and position
angle φ from the x-axis. The disc and halo tilt away from the original
vertical axis together, but the halo φ is clearly closer to φ = 90◦,
corresponding to the outer halo minor axis, than is the disc φ. Since
the halo tilts almost directly into the minor axis, the disc angle
φ can be understood as the disc misalignment relative to the halo
needed to generate the gravitational torque needed to reorient the
disc. Once the inner halo has settled, the misalignment between the
disc and the inner halo leads to the damped precession seen after
4 Gyr. Since the instability is due to the halo, no matter how massive
the disc becomes (the halo-to-disc mass ratio within 15 kpc is 1.6),
this orientation can never be stable.

3.2 Model LC1

Before the disc is grown in run LC1, the direction vertical to the disc
is the long axis of halo C. Fig. 3 shows that the ordering of the axes
is z� > y� > x� at this stage, but once the disc is grown, the halo
at r � 10 kpc switches orientation by 90◦, so that the intermediate
axis becomes the axis orthogonal to the disc. The combination of
the disc and halo potential then has y� > x� > z� inside 15 kpc,
and y� > z� > x� beyond. Although the switch in the principal
axes of the density extends only to the inner halo, the flip in the
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Figure 5. Evolution of the relative orientation of the disc and inner halo in
model IA2. The disc tilts rapidly from its initial orientation. The solid and
dashed lines show the halo and disc orientations, respectively, at different
times, as indicated at bottom. The black, blue, green, cyan and red lines
indicate t = 0, 1, 2, 3 and 3.5 Gyr, respectively. The z-axis relative to which
θ is measured is perpendicular to the initial disc, while the x-axis, which
defines φ = 0◦, is the long axis.

axes of the potential extends till at least 80 kpc. The halo flip is
probably related to the accretion history of halo C which included
an accretion along the minor axis of a prolate halo. Indeed the inner
halo major axis flips into the direction of the original accretion
event. Thus while most of the disc is immersed perpendicular to the
short axis of the local potential, at larger radii the disc short axis
is along the intermediate axis of the potential. The resulting global
potential has mid-plane potential ellipticity ε� < 0.11 everywhere
within the inner 20 kpc.

The disc in run LC1 tilts very rapidly, initially towards the orig-
inal intermediate-axis orientation and then dropping into a nearly
short-axis orientation, as shown in Fig. 6. The tilting rate reaches
∼30◦ Gyr−1 between 2 and 4 Gyr. This rapid, direct tilting is not
accompanied by precession or warping. When we re-run the sim-
ulation with the halo frozen, the outer disc still tilts and forms a
polar ring, while the inner disc tilts by only ∼15◦. Thus IAT orbits
of stars in the outer disc region are highly unstable. However the
entire disc is not tilting because of this instability. Given the lack of

Figure 6. Briggs figures showing the evolution of run LC1 at 1 Gyr inter-
vals. Dotted circles are spaced at 20◦ intervals, with the outer solid circle
corresponding to θ = 120◦. The centre of the disc is indicated by the (red)
open circle, while the remaining disc annuli are indicated by (red) crosses.
The open (blue) star, square and triangle symbols indicate the direction of
the pre-disc halo long, intermediate and short axes, respectively. In the inner
halo y > z > x while in the outer halo z > y > x once the disc is grown.

precession when the disc is live, we conclude that the inner halo of
run LC1 is also in an unstable orientation, much as in run IA1.

The middle panel of Fig. 7 shows the radial profile of the potential
axis ratios, x�/y� and z�/y� to 80 kpc. The longest axis of the
potential is the y-axis (recall that the axis vertical to the disc is z).
Beyond ∼15 kpc, the potential intermediate axis is the z-axis (i.e.
perpendicular to the initial disc) and its shape, while not constant,
does not vary substantially with radius.

3.3 Comparison with previous models

The bottom panel of Fig. 7 compares the shapes of models IA1,
IA2 and LC1 with the Milky Way potential in the Law et al. (2009),
LM10 and Deg & Widrow (2013) models. Model LC1 has larger (i.e.
rounder) (c/a)� than all these models, while (b/a)� is comparable
to the best LM10 and Deg & Widrow (2013) TP models. For a
spherical potential, (b/a)2

� + (c/a)2
� = 2; we measure deviation

from sphericity as ξ = 2 − (b/a)2
� − (c/a)2

�. The bottom panel of
Fig. 7 plots contours of ξ which clearly shows that the potential in
LC1 is more nearly spherical in this region than are the Milky Way
models. The instability of model LC1 is therefore very probably
shared by all these Milky Way models.
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Figure 7. Top: profile of axes ratios of the potential at t = 0 in models
IA1 (thick lines) and IA2 (thin lines). The solid (dashed) line shows y�/x�

(z�/x�). Middle: profile of axes ratios of the potential at t = 0 in model
LC1. The solid (dashed) line shows x�/y� (z�/y�). Bottom: potential axes
ratios of LC1 (black circles), IA1 (blue circles) and IA2 (green circles) in
the radial range 16 ≤ r/kpc ≤ 60 (with the open blue circle showing 16 kpc
and the filled circles showing larger radii) and Milky Way models. Dashed
lines are contours of deviations from sphericity, ξ , as defined in the text,
while dot–dashed (blue) lines show contours of constant T.

Figure 8. Briggs figure for the gas within the inner 100 kpc in model GI1 at
t = 0, before any star formation. Dotted circles are spaced at 20◦ intervals,
with the outer solid circle corresponding to θ = 100◦. The centre of the
gas halo is indicated by the (red) open circle, while the remaining shells are
indicated by (red) crosses. Each shell is 10 kpc wide. The open (blue) star,
square and triangle symbols indicate the direction of the pre-disc halo long,
intermediate and short axes, respectively. The (black) filled star represents
the orientation of the total gas angular momentum within this volume.

3.4 Model GI1

Fig. 8 shows the initial angular momentum of the gas within the
inner 100 kpc of model GI1. The total angular momentum within
this region is very well aligned with the intermediate axis of the
halo. Only within 30 kpc is the gas angular momentum not in this
orientation, but this corresponds to a tiny fraction of the total angular
momentum of this gas.

During the first 2 Gyr of evolution after gas cooling and star
formation are turned on the stellar disc is highly warped but by
2.5 Gyr it settles into a single plane. Fig. 9 shows that by 6 Gyr
a rapidly rotating thin stellar disc supporting spirals has formed.
Fig. 10 shows the profile of the ellipticity of the potential in the
disc plane, ε�, measured using the task ELLIPSE in IRAF.2 Out to
30 kpc ε� � 0.15 at 2.5 Gyr, when the disc first becomes coherent.
This decreases to ε� � 0.08 by 6 Gyr. Thus ε� satisfies the strin-
gent constraint from the scatter in the Tully–Fisher relation (Franx
& de Zeeuw 1992). By 9 Gyr the stellar disc reaches a mass of
∼2 × 1011 M�.

Fig. 11 shows the evolution of the disc orientation. The stellar
disc never settles into an intermediate-axis orientation; at 3 Gyr the
disc is inclined by ∼30◦ to this axis, increasing to ∼100◦ by 9 Gyr.
Thus even with the global gas angular momentum aligned with
the intermediate axis, the disc cannot form in an intermediate-axis
orientation even though the halo is only very mildly triaxial, with
T ∼ 0.93 throughout the inner 100 kpc before the disc forms.

2 IRAF is distributed by National Optical Astronomy Observatory (NOAO),
which is operated by AURA Inc., under contract with the National Science
Foundation.
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Figure 9. The stellar+gas disc of run GI1 at 6 Gyr as seen face-on (top) and
edge-on (bottom). The scale bar in the bottom right-hand corner indicates
1 kpc.

Figure 10. Ellipticity of the potential in the disc mid-plane, ε�, for model
GI1, plotted as a function of the semimajor axis. The (black) open squares
are at 2.5 Gyr, while the (red) filled circles show 6 Gyr.

4 D ISC U SSION

We have shown that a disc can never remain with its minor
axis aligned with the intermediate axis of a triaxial halo (an
‘intermediate-axis orientation’). This is shown in a different way
in Fig. 12, which plots the evolution of the angle between the stellar
disc angular momentum and the halo’s intermediate axis. In mod-
els IA1, IA2 and LC1 this angle increases rapidly until the disc is
nearly orthogonal. In model GI1 the disc is initially chaotic, but
once it settles after 2.5 Gyr the angle increases throughout. This

Figure 11. Briggs figure for run GI1 at 1 Gyr intervals. Dotted circles
are spaced at 20◦ intervals, with the outer solid circle corresponding to
θ = 120◦. The centre of the disc is indicated by the (red) open circle, while
the remaining disc annuli are indicated by (red) crosses. The open (blue)
star, square and triangle symbols indicate the direction of the pre-disc halo
long, intermediate and short axes, respectively.

Figure 12. Tilting of the models away from the intermediate-axis orienta-
tion. Different simulations are shown by different line styles as indicated.
Model IA2 FH corresponds to model IA2 with halo particles frozen. During
the first 2 Gyr model GI1 is highly warped before it settles into a coherent
plane.

happens even if the disc cocoons itself by flattening the inner halo
such that the minor axis of the net potential is perpendicular to the
disc where it resides. Such a vertically flattened inner halo is the
expected configuration within 20 kpc for the LM10 triaxial model
of the Milky Way (Johnston, private communication). In that case,
the orbits of stars in the disc are stable. However, a disc grown in an
intermediate-axis orientation gives rise to an instability in the halo.
As a result the inner halo tilts rapidly (within ∼4 Gyr), shepherding
the disc along with it. A hallmark of this instability is that the disc
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tilts without precessing, as it stays near equilibrium with the tilting
inner halo.

We also showed, by means of a simulation with gas and star for-
mation, that even if the gas angular momentum is along the interme-
diate axis, then the disc which forms is not in the intermediate-axis
orientation. This happens even if the halo is only very mildly triax-
ial: in model GI1 the halo density has T 	 0.93. We conclude that
discs cannot form in an intermediate-axis orientation, and even if
they were perturbed into such an orientation, they would not last
long in it. Since the instability resides in the halo, it also seems
unlikely that even more massive discs would be able inhibit it.

The shape of the LC1 potential is strongly varying inside ∼15 kpc
but this part of the potential is poorly constrained by the Sagittarius
stream (but see Loebman et al. 2012, for other constraints). Be-
yond this radius, the potential shape varies quite slowly. The ratio
(b/a)� � 0.9 which is not much different from the LM10 model,
while (c/a)� ∼ 0.9, which is larger than in the LM10 and Deg &
Widrow (2013) models. Thus the potential in model LC1 is closer to
spherical than the models of LM10 and Deg & Widrow (2013). The
top and bottom panels of Fig. 7 also show the shape of the potential
in models IA1 and IA2. Both of these are quite prolate, with model
IA1 closer to spherical than the best Milky Way model of DW13.
These less spherical Milky Way models would therefore probably
also be highly unstable. Since the Milky Way has not experienced
strong interactions in the past few gigayears that might have put it
in an intermediate-axis orientation, it is very unlikely to be in such
an orientation.

Further difficulties for the Sagittarius stream models come from
their failure to match the leading arm of the stream well, and to pro-
duce the observed bifurcation (Belokurov et al. 2006), which has
now been detected also in the trailing arm in the south (Koposov
et al. 2012). We note that the best-fitting model of LM10, while it
does an excellent job of fitting much of the observational data, still
has χ̃2 = 3.4 (but in comparison, their spherical halo has χ̃2 	 9).
In the past solutions of these problems have been sought, unsuc-
cessfully, in details of the Sagittarius dwarf itself (e.g. Peñarrubia
et al. 2010, 2011). Here we have shown that triaxial models of the
Milky Way which consistently find the disc in an intermediate-axis
orientation themselves can be ruled out.

What then is the most promising way to improve Milky Way
halo models of the Sagittarius stream? The assumption of a con-
stant shape within the region of the Sagittarius stream is unlikely
to be correct; however, halo shapes generally change sufficiently
slowly beyond the disc that this assumption amounts to measuring
an average shape rather than completely invalidating past models
(note, for instance, how small the variation in the shape of the
potential of model LC1 is from 16 to 60 kpc in Fig. 7).

Ibata et al. (2013) showed that if the halo rotation curve is allowed
to increase to ∼300 km s−1 at 60 kpc that it is still possible to fit
the Sagittarius stream by a spherical model. This model still fails
to produce a bifurcation and results in a quite massive Milky Way
(2.6–3.1 × 1012 M�). As argued by Ibata et al. (2013), such a
model cannot be excluded by current observational constraints but
it would be unusual in � cold dark matter (�CDM). Nonetheless,
more general density profiles are certainly highly recommended for
future models.

We propose here a different, and more natural, solution to the
problems of the Sagittarius stream. The models of Deg & Widrow
(2013) as well as those of Law et al. (2009) vary the axes ratios
of the halo such that if the disc had been perpendicular to either
the short or the long axes of the halo then the models would have
been able to recover this; the fact that they did not means that

the Milky Way disc is not in either orientation. We contend that
the assumption that the disc of the Milky Way is in one of the
symmetry planes of the halo must be incorrect. The possibility that
this assumption can fail is clearly illustrated by our model GI1
which shows that the disc does not need to be sitting in one of the
principal planes of a triaxial halo outside the region dominated by
the disc. Indeed in cosmological simulations a decoupling between
the disc/inner halo and the outer halo is a common outcome (Bailin
et al. 2005; Roškar et al. 2010). The most promising way to improve
future models of the Milky Way’s halo shape from the Sagittarius
stream is, therefore, the freedom for the disc to not be in one of
the symmetry planes of the halo. Such models can be constrained
further by the cold tidal streams of lower mass progenitors, which
can provide more accurate tracers of the underlying potential (Lux
et al. 2012; Peñarrubia, Koposov & Walker 2012).

While complicating efforts at understanding the halo, this orienta-
tion nonetheless provides a unique opportunity to test the Modified
Newtonian Dynamics (MOND; Milgrom 1983; Bekenstein 2004).
If the Sagittarius stream requires a net potential that is tilted with
respect to the Milky Way disc, as we have argued, then this would
constitute a problem for MOND, which requires the short axis of
the disc and of the net potential to be parallel (see also Buote &
Canizares 1994; Read & Moore 2005). The forthcoming generation
of Milky Way surveys and missions such as Gaia (Perryman et al.
2001) and the Large Synoptic Survey Telescope (Ivezic et al. 2008)
will provide the data needed for much more accurate modelling of
the Milky Way’s potential.
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APPENDI X A : A N INTERPRETATI ON
O F T H E H A L O IN S TA B I L I T Y

Here we explore the cause of the halo instability which prevents
discs from inhabiting an intermediate-axis orientation. As shown
above, the orientation of the inner potential changes as the disc
is grown within it. In model IA1, the axes of the potential are
initially ordered as x� > z� > y�, but once the disc grows, the
inner potential gets flattened and has axes ordered as x� > y� > z�,
while at larger radii the original axes ordering is retained. Valluri
et al. (2010) showed that while tube orbits are uncommon in halo A
before the disc forms, a fraction of halo box orbits are transformed
by the growing disc, with short axis tubes becoming abundant (we
refer to the axes ordering at large radii, rather than in the flattened
inner halo, to define orbit families). Because of the radial change
in the axes ordering, particles circulating about the short axis of the
inner halo are actually IATs if they venture outside the inner halo.
We propose that tube orbits crossing the inner halo are destabilized
by the radially varying halo orientation and drive the instability of
the inner halo. We explore this hypothesis by comparing models
IA1 and LA1. Model LA1, which was presented by Valluri et al.

 at U
niversity of C

entral L
ancashire on M

ay 11, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


The Milky Way’s disc relative to the halo 2981

(2012), is identical to model IA1 other than that the disc is grown
perpendicular to the long axis, which we found is a stable orientation
for this disc. In model LA1, the original axes ordering is z� > x� >

y� becoming, in the inner (�15 kpc) halo, x� > y� > z� once the
disc is grown. As with IA1, any particles on tube orbits can be
destabilized by crossing from the flattened inner halo to larger radii.
Thus model LA1 acts as a control in the interpretation of why IA1
(and the intermediate-axis orientation in general) is unstable.

Orbits of dark matter particles in LA1 and IA1 were analysed
using the Laskar frequency analysis method (Laskar 1993; Valluri
& Merritt 1998) with the automated orbit classification scheme
described previously (Valluri et al. 2010, 2012). Briefly, Laskar’s
method uses a filtered Fourier transform method to obtain accurate
orbital frequency spectra from complex time series constructed from
the orbital phase-space coordinates. The frequency spectra are then
decomposed into the set of three linearly independent base frequen-
cies (the ‘fundamental frequencies’) of which all other frequencies
in the spectrum are integer linear multiples. The ratios of fundamen-
tal frequencies are rationalized following a method similar to that
described by Carpintero & Aguilar (1998). Previously (e.g. Valluri
et al. 2010) we only considered classification into the traditional
orbit families believed to constitute triaxial galaxies (boxes, long-
axis tubes, short-axis tubes and various families of resonant orbits).
Here we adapted our code to also consider the possibility that orbits
may be tubes which circulate about the intermediate axis.

We measure the degree of diffusivity of individual orbits via the
diffusion rate parameter log (�f). Since regular orbits have fixed
frequencies, a chaotic orbit can be identified if its fundamental
frequencies measured in the two consecutive time segments change
significantly (Laskar 1993). Valluri et al. (2010) showed that even
for orbits in N-body potentials (which are inherently noisy) it is
possible to distinguish between N-body jitter and true chaos via a
quantitative measurement of frequency drift by defining log (�f) as
the logarithm of the change in the frequency of the leading term in
the orbit’s frequency spectrum in two consecutive time segments.
Valluri et al. (2010) showed, using orbits in N-body simulations of
spherical haloes, that orbits with log (�f) < −1.2 were regular.

We use the orbit sample described in Valluri et al. (2012): briefly,
this is a sample of orbits for 104 particles in each model. Each of
these particles was chosen at random from those within 200 kpc
from the centre before the disc was grown; the same set of parti-
cles is used in models IA1 and LA1. Each orbit is integrated for
50 Gyr. The frequency analysis is not guaranteed to produce accu-
rate frequencies for orbital integration times less than 20–30 orbital
periods. Table A1 lists the number of orbits of different types with
more than 30 orbital periods in our sample. About two-thirds of all
orbits satisfy the orbital periods condition; more than half of these
are box orbits. Model IA1 contains ∼30 per cent more box orbits
than model LA1. This probably contributes to making it more unsta-
ble since box orbits have zero average angular momentum making
them easier to tilt.

Table A1. The number of orbits in the different fam-
ilies in the two models from a sample of 104 or-
bits. Only those orbits which complete 30 periods in
50 Gyr integrations are counted.

Model Total Boxes LATs SATs IATs

IA1 6697 4157 1400 378 762
LA1 6782 3443 1316 2023 0

Figure A1. The distributions of log (�f) for tube orbits in model IA1 (black
lines) and LA1 (red lines). The solid, dashed and dotted lines show those
orbits with 5 kpc < rperi < rapo < rt, 5 kpc < rperi < rt < rapo and rperi >

rt, respectively. For model IA1, rt = 25 kpc, while for LA1 rt = 15 kpc.

Fig. A1 plots the distribution of log (�f) for tube orbits of all
types in models IA1 and LA1, separated into three groups by radial
range: 5 kpc < rperi < rapo < rt, 5 kpc < rperi < rt < rapo and rt <

rperi, where rperi and rapo are the peri- and apocentre distances and rt

is the radius at which the potential switches orientation. From Fig. 3
we find rt = 25 kpc for model IA1, whereas a similar measurement
for LA1 gives rt = 15 kpc. Orbits that never visit the inner region
have low log (�f). Orbits that remain wholly within the inner region
have higher diffusion rates, but they tend to be less numerous. Orbits
that move across rt are the most abundant and have higher diffusivity
in model IA1 than in LA1. It is this difference in the diffusion of
tube orbits crossing the radius at which the potential reorients that
we propose accounts for the different stability properties of models
IA1 and LA1.
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