Purification of bacterial membrane sensor kinases and biophysical methods for determination of their ligand and inhibitor interactions

Hussain, Rohanah, Harding, Stephen E., Hughes, Charlotte S., Ma, Pikyee, Patching, Simon G., Edara, Shalini, Siligardi, Giuliano, Henderson, Peter J.F. and Phillips-Jones, Mary orcid iconORCID: 0000-0002-0362-4690 (2016) Purification of bacterial membrane sensor kinases and biophysical methods for determination of their ligand and inhibitor interactions. Biochemical Society Transactions, 44 (3). pp. 810-823. ISSN 0300-5127

[thumbnail of Version of Record - Open Access]
Preview
PDF (Version of Record - Open Access) - Published Version
Available under License Creative Commons Attribution.

1MB

Official URL: http://dx.doi.org/10.1042/BST20160023

Abstract

This article reviews current methods for the reliable heterologous overexpression in Escherichia coli and purification of milligram quantities of bacterial membrane sensor kinase (MSK) proteins belonging to the two-component signal transduction family of integral membrane proteins. Many of these methods were developedatLeedsalongsideProfessor SteveBaldwintowhomthisreviewisdedicated.Italsoreviewstwo biophysical methods that we have adapted successfully for studies of purified MSKs and other membrane proteins – synchrotron radiation circular dichroism (SRCD) spectroscopy and analytical ultracentrifugation (AUC), both of which are non-immobilization and matrix-free methods that require no labelling strategies. Other techniques such as isothermal titration calorimetry (ITC) also share these features but generally require high concentrations of material. In common with many other biophysical techniques, both of these biophysical methods provide information regarding membrane protein conformation, oligomerization state and ligand binding, but they possess the additional advantage of providing direct assessments of whether ligand binding interactions are accompanied by conformational changes. Therefore, both methods provide a powerful means by which to identify and characterize inhibitor binding and any associated protein conformational changes, thereby contributing valuable information for future drug intervention strategies directed towards bacterial MSKs.


Repository Staff Only: item control page