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The stannide family of materials A;7;Sn;; (A = La,Sr,Ca; T = Ir,Rh) is interesting due to the interplay
between a tunable lattice instability and phonon-mediated superconductivity with 7, ~ 5-7 K. In Sr3Ir,Sny3, a
structural transition temperature 7* ~ 147 K associated with this instability has been reported, which is believed
to result from a superlattice distortion of the high-temperature phase on cooling. Here we report an experimental
study of the electronic structure of a member of this material family, Sr3Ir,Sn;;, through measurements of
quantum oscillations and comparison with density functional theory calculations. Our measurements reveal good
agreement with theory using the lattice parameters consistent with a body-centered-cubic lattice of symmetry
143d of the low-temperature phase. The study of the fermiology of Sr3Ir4Sn;; that we present here should help
inform models of multiband superconductivity in the superconducting stannides.

DOLI: 10.1103/PhysRevB.93.235121

Structural distortions of a crystal lattice can often pro-
foundly influence electronic properties. In materials such as
Ca,RuQy, for instance, tilt and rotations of the RuOg octahedra
can induce a Mott insulating transition [1,2], while in the
iron arsenide materials, modifications of the Fermi surface
driven by structural distortions have been shown to play a
role in enhancing superconductivity [3,4]. Understanding the
subtle interplay between structural degrees of freedom and
electronic and magnetic order remains a major research theme
in condensed-matter physics.

Recent work on members of the stannide superconducting
family A374Sn;3 (A =La,Sr,Ca; T'=1Ir,Rh) [5-13] is proving to
be interesting in this context. Studies of Sr3IrsSn;3 have shown
that the material undergoes a continuous second-order phase
transition at a temperature 7* ~ 147 K, which is observed in
a range of transport, spectroscopic, and thermodynamic mea-
surements [14,15]. Upon further cooling, superconductivity
emerges with a transition temperature 7, = 5 K [6,16-18].
X-ray diffraction measurements suggest that 7* corresponds
to a structural phase transition from the simple cubic / phase
(Pm3n) to the I phase [5,19], a body-centered-cubic lattice
(143d), with a corresponding doubling of the lattice constant.

A remarkable feature of the A374Sn;3 system is its highly
tunable nature. Isoelectronic substitution of Sr by Ca has the
effect of applying chemical pressure, initially enhancing, then
suppressing T, in a domelike fashion, an effect that is also seen
by applying hydrostatic pressure [5,7]. At the same time, T™*
is suppressed to zero, leading to a structural quantum phase
transition with an associated softening of parts of the phonon
spectrum [7]. While there is evidence that the lattice distortion
is accompanied by the formation of a charge density wave
(CDW) [5,15] which partially gaps out states at the Fermi
level [14], there is no evidence of long-range magnetic order.
This offers a rare opportunity to study superconductivity in
the vicinity of a lattice instability, without the complicating
effects of magnetism.
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In this work, we report measurements and calculations
of the electronic structure of Sr3IrysSni;z; with the aim of
answering two questions. First, we address whether the
electronic structure is consistent with the structural transition
suggested from x-ray measurements, and second, we look for
insight into how superconductivity arises and is enhanced in
the presence of a lattice instability.

Single-crystal samples of Sr3Ir4Sn;3 were grown by a
self-flux method [8], yielding large, high-quality crystals
which were cleaved and polished to dimensions of the order
of 0.8 x0.32 x 0.1 mm. The residual resistivity ratio of
RRR = p300k/psx On our best samples was found to be
17, and low resistance contacts were made to the sample
using DuPont 6838 silver-loaded epoxy. The orientation of the
crystal was determined using single-crystal x-ray diffraction,
with an associated alignment error of about 5°.

Quantum oscillations were detected using the Shubnikov-
de Haas (SdH) technique. Four-point resistivity measurements
were made using a low-noise lock-in amplifier detection
technique on a dilution refrigerator with a superconducting
magnet at fields up to 18 T. The sample was mounted on a
rotation platform allowing the angle between the crystalline
axes and applied field to be varied. Investigations of the
electronic band structure were carried out using density
functional theory (DFT) within the framework of the local
density approximation (LDA), using the WIEN2K software
package [20]. Experimentally determined lattice parameters
and atomic positions [5,8] for both the I” and I phases were
used in the calculations. The positions of the atoms were then
further adjusted to minimize their internal forces. Calculations
were performed using Rky.x = 7 and with an 8000 k-point
mesh in the first Brillouin zone.

Figure 1 shows the representative data from our SdH
measurements for a single field orientation. Figure 1(a) shows
resistivity data for a magnetic field sweep after a third-order
polynomial background subtraction. Clear oscillations are

©2016 American Physical Society
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FIG. 1. (a) The blue trace shows resistivity data as a function of
the field with third-order polynomial background subtraction for the
field aligned at an angle of ¢ = 42° from the a axis (see text) and a
temperature of 100 mK. The red trace shows the results of a Lifshitz-
Kosevich (LK) fit to the data described in the text. The fitting residual
as a function of field is shown in gray. The averaged absolute residual
is about 0.29 n € cm, which is about 5% of the oscillation amplitudes.
(b) Fourier transform of the magnetic field sweep shown above. Main
frequencies are labeled with the mean free path estimated from the
data in parentheses. The inset shows the resistivity vs temperature
of the sample used in the study. (c) Integrated Fourier-transform
amplitude vs temperature for 91 T frequency. The line is a fit to the
temperature dependence expected from LK theory.

observed between 18 and 8 T, at a number of frequencies
F. Figure 1(b) shows a Fourier transform of this data, with
peaks corresponding to strong oscillation frequencies labeled
accordingly. The highest observed frequencies were in the
vicinity of F = 1.35 kT. Quantum oscillation frequencies are
related to the extremal cross-sectional area of the Fermi surface
A that is perpendicular to the applied field by the Onsager
relationship F = hA/2mwe. The magnetic field dependence
(Rp) and temperature dependence (Ry) of the amplitude of
these oscillations are captured within the Lifshitz-Kosevich
(LK) framework [21].

By fitting the field dependence of the quantum oscillations
to the canonical Lifshitz-Kosevich expressions, we can obtain
a value for the mean free path ¢, corresponding to each
orbit. For n well-spaced frequencies with phase 6(n), the
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TABLE 1. Summary of experimentally detected orbits, likely
bands they originate from, and cyclotron mean free paths for ¢ = 42°.
m, is the electron mass, m,, is the calculated band mass, and m* is the
measured effective mass.

Frequency (T) Band (m;,/m,) m*/m, £y (nm)
91 Ay (0.553) By (1.390) 0.802+£0.015 58+3
209 Ap (0.553) By (1.390)  0.469 £0.026 190 £ 65
418 By (1.390) 1.37+0.01 53+£5
644 B (1.390) 1.64+£0.2 88+ 15
1350 Cyp (1.381) 1.824+0.09 70+4

total oscillation signal can then be modeled as the sum of
oscillations of the form Rp)sin[27 F,/B — 6(n)], with the
Rp(y terms containing information about £ for the nth orbit.
The fit to such a model is shown in red in Fig. 1(a), and
the extracted values of £y for the five frequencies with the
highest amplitudes are summarized in Table I. The residual
from the fit is shown in gray in the same figure. There is
some leftover spectral weight in the residual mainly from the
1.35 kT frequency, due to small drifts with time in the gain of
our setup which is not completely removed by the polynomial
background subtraction. However, this has a negligible impact
on any of the parameters we have extracted from the fit.

Figure 1(c) shows the temperature dependence of the
oscillation amplitude, which is also understood within the
Lifshitz-Kosevich framework [21]. From these fits, we can
extract an effective cyclotron mass m* for each frequency, and
these are summarized in Table I. Figure 1(c) shows an example
of such a fit using data for the 91 T frequency.

Band structure calculations in the body-centered-cubic I’
phase reveal a complicated Fermi surface with several folded
and reconstructed sheets with small frequency orbits. Figure 2
shows the four main sheets, within a rhombic dodecahedral

(a) Band Ap/ (b) Band By
(c¢) Band Cp (d) Band Dy

FIG. 2. Fermi surface sheets of Sr;IrySni; in the I’ phase,
calculated using the DFT method described in the text.

235121-2



EXPERIMENTAL DETERMINATION OF THE FERMI ...

PHYSICAL REVIEW B 93, 235121 (2016)

e 45
4t L Bl (b) I' phase (I43d) Band 4y || (¢) tetragonal phase Ejmd Ay |,
Band A; °ie s By . ¢
3.5 + By 1 Cr 1r . Dy 13.5

& O (a) I phase (Pm3n) Dy E,
31 + Di 1l F |5
E;
1.6 Fr s
Bl ) 2 14

o) 5 R SRR sssssansd |

1+

Frequency (kT)

08}, ..

0.6

...f::llii-:'::;[Ill;;:;lllt:!:lli-"
e

B "ty
8000, LTI IYPPRRNS b

05 . :.- .. -:""szsf"i! .o

0.4+t
03}

0.2}

Rotation angle ¢ (deg)

FIG. 3. Comparison of the angular dependence of SdH frequencies with DFT calculations in the (a) I phase (Pm3n), (b) I’ phase (143d),
and (c) tetragonal phase with merohedral twinning. The experimental data is plotted in grayscale. The Fourier-transform amplitudes are
normalized between O and 1, and then the dynamic range is reduced to 0.01 to 0.3 to increase the visibility of smaller peaks. Orbits extracted
from Fermi surface sheets above are color coded. The y axis is discontinuous between 1.6 and 3.0 kT, where no observed or calculated

frequencies are present.

Brillouin zone, formed by the superlattice distortion. Figure 3
shows the results of a rotational study, rotating away from the
orientation B|a towards the high-symmetry (010) direction.
Here, ¢ denotes the angle between the applied field and the a
axis, with an overall uncertainty in the orientation of the crystal
of ~5°. The angular dependence of the major frequencies are
tabulated in the Supplemental Material [22]. Data from the
current study is shown in grayscale, while overlaid on top are
the frequencies extracted from DFT calculations of various
phases using SKEAF [23]. Figure 3(b) shows the calculations
of the I’ phase, with the energy of band C rigidly shifted down
by 13 meV to obtain better agreement with the experiment.
Looking at Fig. 3(b), we can see that all four bands show
almost isotropic low-frequency oscillations that could explain
the strong and broad signal at around 100 T. The maximum
frequency of band A matches up well with the appearance of
400 T peaks between ¢ = 40° and 50°. Within the same range,
band B; exhibits a plateau, which coincides with the 700 T
peaks. Band Cj has the same curvature as the highest peaks
between 1.3-1.5 kT, though the frequency differs by about
20%. There are also complex features in band C;: that are not
observed in the experiment. In the high-temperature / phase,
the frequency corresponding to a full orbit of the Brillouin
zone is 4.31 KT, while in the I’ phase, it is reduced to 2.8 kT.
All of the observed frequencies are well below these limits.
While it is difficult to definitely assign a band to the 91 T
orbit, the 209, 418, and 644 T frequencies appear to arise

from bands A, By, and By, respectively, and give masses
that are within 20% of the calculated value. Interestingly, the
highest-frequency orbit at 1350 T shows a notably higher
mass enhancement than the others, with some 30% greater
than the band mass, potentially implying a higher degree
of renormalization through electron-phonon interactions or
an electronic mechanism and justifying the rigid-band shift
mentioned previously. As band C;: is a large sheet, it will
give a large contribution to the density of states at the Fermi
level, and this combined with the observed mass enhancement
suggests that it is likely to play an important role in the
superconductivity of the material.

Intriguingly, similar physics has been observed in high-
pressure measurements of the simple alkali metal lithium.
At hydrostatic pressures of greater than 40 GPa, lithium
undergoes a structural phase transition from an fcc structure,
through an intermediate rhombohedral structure, to the so-
called c/16 structure, which shares the same 143d space
group as Sr3IrySnyz in the I’ phase [24]. Superconductivity
in this phase is observed to be greatly enhanced over ambient
pressures and peaks near the boundaries of the ¢/16 phase,
reaching T, ~ 16 K [25], likely as a result of enhanced
electron-phonon coupling arising from the softening of a
phonon mode at finite q [26].

It is interesting to compare the size of our measured Fermi
surface with that estimated from transport measurements. We
have performed a simple Drude model Hall-effect calculation,
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using all four bands with measured mean free paths. We
approximate the Fermi wave vector kp as the radius of a
spherical Brillouin zone of the same volume for bands A and
B, and use our quantum oscillation frequencies, assuming
circular orbits, to estimate the kr for bands C and D. This
yields a Hall coefficient of 6.1 x 10™* cm?/C, which is a
factor of 2 larger than the measured, low-temperature value of
3.1 x 10~* ecm?/C [15]. A more detailed Boltzmann transport
calculation based on the actual Fermi surface geometry would
be required to check whether this apparent discrepancy can
be resolved once the highly corrugated nature of the Fermi
surface is taken into account.

The good agreement between measured masses and those
determined from band structure for most orbits demonstrates
that strongly correlated electron physics is not at play in this
material. Scenarios involving significant spin fluctuations and
a magnetic origin for the anomaly at T* are therefore less
likely, and our data would support a structural instability as
the origin for this feature, as suggested by other techniques
such as uSR [27].

Our results show a good qualitative fit and a reasonably
quantitative fit to the band structure calculations using the
space group I43d. Originally it was suggested through
calculations of the Lindhard function x(q) that the dominant
instability in the system might occuralong q = (1/2,1/2,1/2),
where x (q) is considerably enhanced over the value at the zone
center [5]. Subsequent theoretical [19] and experimental [28]
work have shown that the dominant instability, however,
is more likely to be q =(1/2,1/2,0) and its symmetry
equivalents, as is required by the bce space group 143d.

It is instructive to compare the same quantum oscillation
data against calculations performed in the high-temperature
simple cubic I phase. Figure 3(a) shows DFT calculations
in this phase [19]. The lack of resemblance to experimental
data, most evidently seen in the weakly dispersive bands Cy,
Dy, and Ej, as well as the high-frequency orbit arising from
band B are strong indications that the low-temperature crystal
structure is not simple cubic. This supports the picture of a
structural transition occurring at 7*.

Recently, the possibility of merohedral twinning was
raised in connection with low-temperature x-ray studies of
Ca;zIrySny3 [28]. In this scenario, the low-temperature phase
would consist of three equivalent tetragonal domains that are
oriented along the axes of the high-temperature cubic phase,
mimicking a higher symmetry. If such a scenario were to
occur, the domains would likely have to be larger than the
cyclotron radius of the electrons at high fields (up to 100 nm at
B = 12T), as scattering from multiple grain boundaries would
significantly reduce the size of the quantum oscillation signal.

PHYSICAL REVIEW B 93, 235121 (2016)

Nevertheless, we calculated the expected quantum oscillation
frequencies using DFT for this scenario, with a resolution
of 1600 k points in the first Brillouin zone, as shown in
Fig. 3(c). Since experimentally measured lattice parameters
are not available, the tetragonal phase is artificially constructed
from the I phase (Pm3n) with all symmetries removed.
The atoms are displaced manually and an internal structure
relaxation is performed. As we can see from Fig. 3(c), there
are many predicted frequencies between 0.7 to 1.1 kT that are
not experimentally observed, and the main 1350 T frequency
is missing. Based on the above reasons, we conclude that the
merohedral twinning scenario is very unlikely.

It is useful to extract an estimate of the strength of the
electron-phonon coupling in Sr3IrySn;3 from our measured
cyclotron masses, and hence estimate the expected 7. From
the orbits that we are able to assign to bands without ambiguity,
the strongest mass renormalization occurs for the 1350 T orbit,
where A = m*/m; — 1 = 0.3 [29]. Using this band alone, we
can estimate 7, by using the McMillan formula [30],

C)
T, D XP|:

B 1.04(1 + )
= 145°¢ ’

T — (14 0.62%)

for superconductors in the strong-coupling limit, with a u* of
0.1 and a measured Debye temperature ®p of 184 K [31].
Doing so yields 7, ~ 0.1 K, considerably lower than the
measured value, which points to the multiband nature of
superconductivity in this material. For instance, some of the
lower-frequency orbits, which are difficult to assign to a band,
may have significant electron-phonon coupling.

The complicated multiband electronic structure we have
established in Sr3IrsSn;3; may underpin models of supercon-
ductivity that involve more than one superconducting gap.
Recent 1SR measurements on this material are consistent with
s-wave pairing, with gap values of 0.91(4) and 0.14(7) meV on
different Fermi surface sheets [6], while thermal conductivity
measurements on CazIr,Sn;3 support either an anisotropic sin-
gle gap or multiple isotropic gaps of different magnitudes [32].
The comprehensive account of the fermiology of this material
presented here should aid in the development of quantitative
models of multiband superconductivity in the vicinity of a
structural quantum critical point.
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Science, Technology and Research and RGC Hong Kong
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