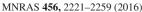


Central Lancashire Online Knowledge (CLoK)


Title	H-ATLAS/GAMA: the nature and characteristics of optically red galaxies detected at submillimetre wavelengths
Туре	Article
URL	https://clok.uclan.ac.uk/15115/
DOI	https://doi.org/10.1093/mnras/stv2767
Date	2015
Citation	Dariush, A, DIb, S, Hony, S, Smith, DJB, Zhukovska, S, Dunne, L, Eales, S, Andrae, E, Baes, M et al (2015) H-ATLAS/GAMA: the nature and characteristics of optically red galaxies detected at submillimetre wavelengths. Monthly Notices of the Royal Astronomical Society, 456 (2). pp. 2221-2259. ISSN 0035-8711
Creators	Dariush, A, DIb, S, Hony, S, Smith, DJB, Zhukovska, S, Dunne, L, Eales, S, Andrae, E, Baes, M, Baldry, I and et, al

It is advisable to refer to the publisher's version if you intend to cite from the work. https://doi.org/10.1093/mnras/stv2767

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law. Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors and/or other copyright owners. Terms and conditions for use of this material are defined in the http://clok.uclan.ac.uk/policies/

H-ATLAS/GAMA: the nature and characteristics of optically red galaxies detected at submillimetre wavelengths

- A. Dariush, 1 S. Dib, 2 S. Hony, 3 D. J. B. Smith, S. Zhukovska, L. Dunne, 6,7
- S. Eales, E. Andrae, M. Baes, 10 I. Baldry, 11 A. Bauer, 12 J. Bland-Hawthorn, 13
- S. Brough, ¹⁴ N. Bourne, ⁷ A. Cava, ¹⁵ D. Clements, ¹⁶ M. Cluver, ¹⁷ A. Cooray, ¹⁸
- G. De Zotti, ¹⁹ S. Driver, ^{20,21} M. W. Grootes, ⁹ A. M. Hopkins, ¹² R. Hopwood, ^{16,22}
- S. Kaviraj, 16,23 L. Kelvin, 24 M. A. Lara-Lopez, 25 J. Liske, 26 J. Loveday, 27
- S. Maddox, ⁶ B. Madore, ²⁸ M. J. Michałowski, ²⁹ C. Pearson, ^{22,23,30}
- C. Popescu, ^{31,32} A. Robotham, ²⁰ K. Rowlands, ²¹ M. Seibert, ²⁸ F. Shabani, ³³
- M. W. L. Smith, 8 E. N. Taylor, 34 R. Tuffs, 9 E. Valiante 8 and J. S. Virdee 23,30

Affiliations are listed at the end of the paper

Accepted 2015 November 23. Received 2015 November 17; in original form 2015 February 24

ABSTRACT

We combine Herschel/SPIRE submillimetre (submm) observations with existing multiwavelength data to investigate the characteristics of low-redshift, optically red galaxies detected in submm bands. We select a sample of galaxies in the redshift range 0.01 < z < 0.2, having $>5\sigma$ detections in the SPIRE 250 µm submm waveband. Sources are then divided into two sub-samples of red and blue galaxies, based on their UV-optical colours. Galaxies in the red sample account for \approx 4.2 per cent of the total number of sources with stellar masses $M_* \gtrsim 10^{10} \,\mathrm{M_{\odot}}$. Following visual classification of the *red* galaxies, we find that $\gtrsim 30$ per cent of them are early-type galaxies and \$40 per cent are spirals. The colour of the *red*-spiral galaxies could be the result of their highly inclined orientation and/or a strong contribution of the old stellar population. It is found that irrespective of their morphological types, red and blue sources occupy environments with more or less similar densities (i.e. the Σ_5 parameter). From the analysis of the spectral energy distributions of galaxies in our samples based on MAGPHYS, we find that galaxies in the red sample (of any morphological type) have dust masses similar to those in the blue sample (i.e. normal spiral/star-forming systems). However, in comparison to the red-spirals and in particular blue systems, red-ellipticals have lower mean dust-to-stellar mass ratios. Besides galaxies in the red-elliptical sample have much lower mean star formation/specific star formation rates in contrast to their counterparts in the *blue* sample. Our results support a scenario where dust in early-type systems is likely to be of an external origin.

Key words: galaxies: general – submillimetre: galaxies.

1 INTRODUCTION

Galaxies display a wide variety of physical and observational properties. It is well known that the distribution of galaxy optical colours is bimodal, e.g. blue cloud versus the red sequence (Strateva et al.

*E-mail: ali.a.dariush@gmail.com (AD); sdib@nbi.dk (SD); sacha. hony@free.fr (SH)

2001; Baldry et al. 2004; Taylor et al. 2015). The bimodality of the galaxy population exists at least out to $z \simeq 1$ (e.g. Bell et al. 2004b; Tanaka et al. 2005; Cooper et al. 2006; Cucciati et al. 2006; Willmer et al. 2006). A number of different mechanisms (taking place in different environments) have been proposed for the observed bimodality of the galaxy population, including, but not limited to, galaxy merging (major and minor), galaxy strangulation and harassment, ram-pressure stripping as well as AGN feedback (e.g. Mulchaey 2000; Croton et al. 2006; Conselice 2014). Such mechanisms could

regulate the observed optical colours of galaxies by influencing their key physical parameters such as star formation history, mean age of stellar populations, the amount of dust attenuation, dust geometry and metallicity (Bruzual & Charlot 2003; Burgarella, Buat & Iglesias-Pàramo 2005; da Cunha, Charlot & Elbaz 2008; Conroy, Gunn & White 2009).

Besides, there are substantial differences between galaxy populations in the field and those in clusters and groups. According to Dressler (1980), galaxy morphology is a strong function of galaxy density, i.e. the morphology-density relation, and numerous studies since then have shown the dependence of galaxy properties on the local environment (Binggeli, Tammann & Sandage 1987; Lewis et al. 2002; Balogh et al. 2004; Ball, Loveday & Brunner 2008). For example, the red population is substantially dominated by earlytype galaxies and thus preferentially found in high-galaxy density environments, while blue galaxies are predominantly late-type systems and mostly found in low-galaxy density environments, i.e. the colour–density relation. Moreover, vast majority of galaxies in the blue cloud are actively forming stars, while the red sequence consists mainly of passive galaxies with little or no ongoing star formation. There are also additional contributions to the red cloud from (a) heavily obscured star-forming or edge-on galaxies and (b) galaxies with passive discs, e.g. red spirals showing signs of low level of star formation, which are known to be considerably redder and more massive than their blue/star-forming counterparts (van den Bergh 1976; Wolf et al. 2009; Masters et al. 2010; Cortese 2012). It is noteworthy that the morphology-density and colourdensity relations evolve with redshift (e.g. Butcher & Oemler 1984; Poggianti et al. 2009, 2010).

Analyses of the dust attenuation in active/star-forming galaxies suggest that in contrast to passive galaxies, they are heavily affected by dust (Driver et al. 2007; Johnson et al. 2007; Wyder et al. 2007; Cortese et al. 2008; Tojeiro et al. 2009; Grootes et al. 2013). It has been shown that the bulk of the dust in late-type galaxies is in the cold phase and as consequence emits at >100 μm, i.e. the far-infrared (FIR) and submillimetre (submm) wavelengths (Sodroski et al. 1997; Odenwald et al. 1998; Dunne & Eales 2001; Popescu et al. 2002; Popescu & Tuffs 2002; Vlahakis, Dunne & Eales 2005; Dale et al. 2007, 2012; Bendo et al. 2012). Such wavelengths are covered by the instruments on board the *Herschel Space Observatory* (Pilbratt et al. 2010), ¹ Thus, the data collected by *Herschel* is uniquely suited to probe the dusty component, e.g. its characteristics and origin, in all type of galaxies, in particular early-type galaxies which contain significantly less dust than late-type systems.

The existence of dust in early-type galaxies has been first reported from studying the absorption of stellar light (Bertola & Galletta 1978; Ebneter & Balick 1985; Goudfrooij et al. 1994) and since then several studies have been conducted in order to shed light on the quantitative dust content of eary-type galaxies (Knapp et al. 1989; Leeuw et al. 2004; Temi et al. 2004; Temi, Brighenti & Mathews 2007; Savoy, Welch & Fich 2009). However, submm data provided by *Herschel* have enabled us to study dust properties, e.g. its total luminosity, mass and temperature in early-type galaxies in an unprecedented manner due to a better sensitivity, resolution and/or the long wavelength coverage necessary (Boselli et al. 2010; Davies et al. 2010; De Looze et al. 2010; Smith et al. 2012b; Auld et al. 2013; di Serego Alighieri et al. 2013).

Among various surveys, the *Herschel* Astrophysical Terahertz Large Area Survey (H-ATLAS; Eales et al. 2010) is the widest extragalactic survey undertaken in submm with *Herschel*. The large coverage of H-ATLAS helps to have a better statistical view of the dust content and its characteristic among galaxies spanning a broad range of luminosities, colours and morphologies. Results from Dariush et al. (2011) as part of the H-ATLAS Science Demonstration Phase (SDP) and based on the UV-optical colour classification, show that the majority of sources (\simeq 95 per cent) with submm detections at low redshift ($z \le 0.2$), are blue/star-forming galaxies with UV-optical colours NUV- $r \le 4.5$. This earlier study suggested that the submm-detected/optically red galaxies (NUV-r > 4.5), with a contribution of \lesssim 5 per cent to the total number of detections, are more likely to be star-forming galaxies and that their red colours are due to obscuration by dust.

From a stacking analysis at submm wavelengths, Bourne et al. (2012) performed a large-scale statistical study of the submm properties of optically selected galaxies (based on the rest-frame colour g-r) at $z \lesssim 0.35$, and found that approximately 20 per cent of low-redshift galaxies in H-ATLAS are red.

In the mean time, there have been several H-ATLAS studies trying to shed light on the existence and properties of dust in early-type galaxies. For instance Rowlands et al. (2012) used data from the H-ATLAS SDP to study dust properties and star formation histories in a sample of low-redshift galaxies ($z \lesssim 0.5$) detected at submm wavelengths. Followed by classification of their sample based on optical morphology, Rowlands et al. (2012) found that \simeq 4.1 per cent of all detections are early-type systems and that \simeq 3.8 per cent (19 out of 496) of spiral galaxies with submm detections are passive. In another study and by using samples of early-type galaxies at low redshifts (0.013 $\lesssim z \lesssim$ 0.06), Agius et al. (2013) found that early-type galaxies with H-ATLAS detections (based on phase 1 version 2.0 internal release of the H-ATLAS catalogue), are not only bluer in the UV-optical colours but also are significantly brighter in NUV in comparison to their H-ATLAS non-detected counterparts.

The aim of this work is to examine in more detail the nature of submm detected red galaxies using the data of H-ATLAS. The main difference between this work and those conducted by Rowlands et al. (2012) and Agius et al. (2013) is that all sources in our sample are detected in H-ATLAS and classified by means of the UV-optical colour index. Our main objectives are: to segregate intrinsically red galaxies from heavily obscured star-forming galaxies, and subsequently discuss the origin and the role of the dust in passive systems. The main improvements compared to our previous study come from:

- (i) a larger area coverage (by a factor of \sim 10) and therefore a better statistics;
- (ii) the inclusion of complimentary wavelengths in the midinfrared (MIR) bands;
- (iii) the extraction of various physical parameters from multiwavelengths observations of sources by means of the spectral energy distribution (SED) fitting.

The paper is organized as following: In Section 2, we present the data from H-ATLAS phase 1 and select a sample of low-redshift galaxies, all detected with *Herschel* in the SPIRE 250 μ m submm band. In Section 3, we select sub-samples of optically blue and red galaxies and analyse their physical characteristics such as star formation activities and dust properties as inferred from fitting their SEDs. Our main finding and conclusion are given in Section 4. Throughout the paper, we assume a concordance cold dark matter cosmology with $H_0 = 70 \, \mathrm{km \ s^{-1} \ Mpc^{-1}}$, $\Omega_{\rm m} = 0.3 \, \mathrm{and} \, \Omega_{\Lambda} = 0.7$.

¹ *Herschel* is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

2 DATA

We use data from the H-ATLAS phase 1 version 3.0 internal release which contains the IDs of $>5\sigma$ SPIRE detections at 250 μ m and is reduced in a similar way to the SDP data, as described by Ibar et al. (2010), Pascale et al. (2011), Rigby et al. (2011) and Smith et al. (2011). The phase 1 ID catalogues have been produced in a similar way to Smith et al. (2011) and will be presented in Bourne et al. (in preparation).

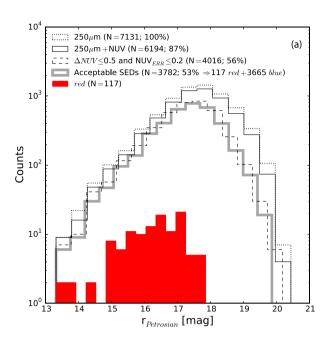
Initially observed time-line data from SPIRE and PACS instruments were processed by using the Herschel Interactive Processing Environment (HIPE) based on a custom reduction scripts. High-pass filtering was then applied to the data time-lines in order to correct the thermal drift in bolometer arrays. Cross-scan time-line observations were projected by using the naive map-making method of HIPE. For point like sources, catalogue of $>5\sigma$ submm fluxes were produced from the 250 µm PSF filtered map, using the MADX algorithm (Maddox et al. in preparation), as described in Rigby et al. (2011). For extended sources, larger apertures were chosen such that they match the extent of the source submm emission. For each 250 µm source, corresponding 350 and 500 µm flux densities were estimated by using the 350 and 500 µm maps (noiseweighted/beam-convolved) at the source position extracted from the 250 µm map. Finally, 100 and 160 µm aperture flux densities were measured following matching each 250 µm source to the nearest PACS sources within a radius of 10 arcsec. A likelihood-ratio analysis (Sutherland & Saunders 1992) was performed by Bourne et al. (in preparation) to match 250 µm sources to the SDSS DR7 (Abazajian et al. 2009) sources brighter than r = 22.4 mag within a 10 arcsec radius. The probability that an optical source is associated with the submm source has been used to define the reliability of an association. According to Bourne et al. (in preparation), objects with reliability ≥ 0.8 are considered to be true matches to submm sources.

The H-ATLAS fields are along the celestial equator centred at RA of 9 h(G09), 12 h(G12) and 14.5 h(G15). 144 deg² out of the 161 deg²covered by H-ATLAS overlap with the Galaxy and Mass Assembly (GAMA I) survey (Driver et al. 2009, 2011). The GAMA survey re-processes and combines optical data from the Sloan Digital Sky Survey (SDSS DR6; Adelman-McCarthy et al. 2008), NIR data from the UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS DR4; Lawrence et al. 2007), and UV from the Galaxy Evolution Explorer (GALEX; Morrissey et al. 2005). The pre-processing of the GAMA, SDSS and UKIDSS archive data is described in detail in Hill et al. (2011). For all galaxies with r <19.4 mag in G09 and G15 as well as $r \le 19.8$ mag in G12, redshifts have been measured using the Anglo Australian Telescope and for brighter galaxies, redshift estimates are taken from other existing redshift surveys such as SDSS, the 2dF Galaxy Redshift Survey and the Millennium Galaxy Catalogue (Liske et al. 2003; Driver et al. 2005). Furthermore, the GAMA-WISE (the Wide-field Infrared Survey Explorer; Wright et al. 2010) catalogue adds coverage in four MIR bands at 3.4, 4.6, 12 and 22 μm (Cluver et al. 2014).

In summary, we have at our disposal UV, optical and MIR data as well as redshift estimates for the submm galaxies within the H-ATLAS/GAMA-overlapping area where all submm selected sources in our sample satisfy the following criteria.

- (i) They all have $> 5\sigma$ submm detected at SPIRE 250 μ m.
- (ii) They fall within the redshift range $0.01 \le z \le 0.2$. We only select objects with a sufficiently reliable spectroscopic determination (i.e. $n_O \ge 3$; Driver et al. 2011).

- (iii) All submm galaxies have a reliability parameter (reliability \geq 0.8) of being associated with an optical counterpart in the SDSS r-band catalogue, for which multiwavelength photometry is available. As such, in addition to the 250 μ m emission, all sources (7131 objects) have corresponding fluxes (all corrected for Galactic extinction) via aperture matched photometry in other bands ranging from UV to MIR.
- (iv) Since a crucial aspect of our selection of red galaxies is based on the UV-optical (NUV-r) colour, we remove from our sample those galaxies for which their NUV fluxes as estimated in GAMA, differ by more than >0.5 mag from those retrieved through GALEX GR6 Data Release based on the All-Sky Imaging survey (AIS) data products (NUV depth ~20.8 mag). In addition, all selected sources have NUV magnitude errors, as provided by GALEX-GR6, which are \leq 0.2 mag. This guarantees that all sources in our sample have enough signal-to-noise ratio in UV. The above constraints on UV fluxes, reduces our sample to 4016 sources.
- (v) Finally, since the physical parameters inferred for each galaxy are based on SED-fitting techniques, an extra criterion has been applied in order to exclude sources (234 in total) with poor-quality SED fits (see Section 3.3).


After applying these selection criteria, we find 3782 galaxies with detections in at least NUV + u, g, r, i, z and 250 μ m bands. Distributions of the SDSS r band and NUV magnitudes for all galaxies as well as those qualified to be included for the subsequent data analysis are shown in panels of Fig. 1. According to the first panel, approximately \approx 13 per cent of the initial submm sources were excluded following the requirement of a UV detection for inclusion in the sample. But that does not seems to exclude systematically any particular type of sources as a Kolmogorov–Smirnov test (KS test) suggests a \gtrsim 70.0 per cent probability that the distribution of sources detected at 250 μ m is similar to the one being observed simultaneously in the 250 μ m+ NUV bands. However by limiting errors in the NUV band to \lesssim 0.2 mag, more sources (\approx 31 per cent) are excluded in particular faint objects in the NUV band.

A subset of sources have also detections in *GALEX* FUV, PACS (100, 160 μm) and SPIRE (350, 500 μm) submm bands. *WISE* data are available and recently have been cross-matched, with extended sources from *WISE* accounted for correctly, for all GAMA fields. Yet at the time of analysing galaxy SEDs in this work, *WISE* data were only available for the G12 and G15 fields. Thus, out of the 3782 sources, 2622 ($\approx \! 70$ per cent) have also aperture-matched *WISE*-MIR data.

3 ANALYSIS

3.1 Selection of intrinsically red objects

Though the vast majority of galaxies at low redshift with submm detection are star forming and optically blue, a small fraction of them are red in optical bands (e.g. u-r, g-r). We separate blue and red galaxies in the sample using the UV-optical index. This is more robust than optical colour indices as it is more sensitive to recent star formation activity (e.g. Kaviraj et al. 2007). Dariush et al. (2011) separate red and blue galaxies in the H-ATLAS sample at NUV-r = 4.5, estimated through fitting a double Gaussian to the NUV-r colour distribution of galaxies, with redshifts $0.01 \le z \le 0.2$ (i.e. similar to this work), in the H-ATLAS SDP data. Hence any source with NUV- $r \ge 4.5$ mag is considered as red, while blue objects are those with NUV-r < 4.5 mag. As Fig. 1(a) shows, the

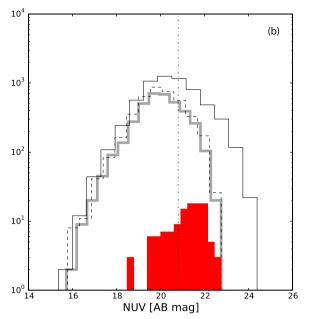
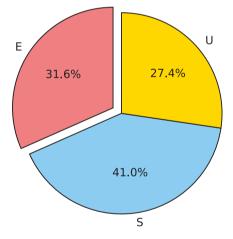


Figure 1. Distributions of the SDSS r band (panel a) and NUV (panel b) magnitudes for all galaxies as well as those qualified to be included for the subsequent data analysis. 'Dotted line' represents all galaxies detected in 250 μ m while the 'black solid line' shows those observed in NUV with a subset of them (dashed line) having NUV errors \leq 0.2 and Δ NUV \leq 0.5 (i.e. the absolute difference between the GAMA and GALEX NUV flux measurements). Finally, the 'grey thick line' represents sources with good quality SED fits as described in Section 3.3. Sources were also divided into two categories of red (filled histogram) or blue based on their UV-optical NUV-r colours as discussed in Section 3.1. The vertical 'dash–dotted' line in panel (b) shows the GALEX AIS (All-Sky Imaging Survey) NUV depth which is around \approx 20.8 mag.

majority of the *red* galaxies in our sample have apparent *r*-band magnitudes \lesssim 17.5 mag and NUV magnitudes \gtrsim 19.0 mag.

3.1.1 Contamination by radio AGN


In order to ensure that none of the submm emission has been contaminated by synchrotron emission from radio jets hosted by active galactic nuclei (AGNs), we find and exclude radio AGN as follows. We cross-matched the SDSS position of our sources with those from the full, unfiltered radio-source catalogue of Virdee et al. (2012). The radio catalogue consists of all sources detected in the H-ATLAS phase 1 field by the NRAO VLA Sky Survey (Condon et al. 1998) and, as such, contains 7823 sources. The outcome is 117 matches having separations of <1.0 arcsec. In order to determine whether the radio emission was consistent with the presence of a radio-loud AGN, we calculated q_{250} , defined as

$$q_{250} = \log_{10} \left(\frac{S_{250}}{S_{14}} \right), \tag{1}$$

where S_{250} and $S_{1.4}$ are fluxes at 250 μ m and 1.4 GHz for all matched sources, respectively. If $q_{250} < 1.4$ then part of the radio emission is due to AGN activity (Jarvis et al. 2010). Conservatively, we exclude any source which satisfies this criterion in order to ensure none of the submm emission may be contaminated by radio AGN activity. Out of 117 sources with radio counterparts, only 13 sources (1 red and 12 blue galaxies) have $q_{250} < 1.4$ and are thus excluded from the subsequent analysis.

3.1.2 Morphology of the red galaxies

The SDSS postage-stamp images of all *red* sources together with their SEDs (inferred as described in Section 3.3) are presented in Appendix A.

Figure 2. Percentage of each morphological type in the sample of 117 red galaxies (see Section 3.1.2). Labels represent elliptical (E), spiral (S) and undefined (U) galaxies.

The morphology of all 117 galaxies were examined from their SDSS *r*-band images, following independent visual inspection by three team members. Galaxies were classified into three categories of elliptical (E), spiral (S) and uncertain (U). The number of sources in each morphological type is 37, 48 and 32 for the E, S and U galaxies, respectively (see Fig. 2). Many of the sources classified as U are too small in the SDSS images to judge their morphology and can be of any type, i.e. spiral, elliptical or merging galaxies.

In order to test the validity of this morphological classification, we compared our classification to an independent morphological classification based on the Sérsic index n which we obtained from the SDSS DR7 galaxy catalogue Simard et al. (2011). Different studies have adopted different thresholds of the Sérsic index above/below

Figure 3. Distributions of morphology related parameters in all blue (thick solid line) and red sources. E (red dashed line), S (green dotted line) and U (cyan line) labels represent the morphology of individual red source as explained in Section 3.1.2. Each histogram is normalized by its integral. Panels represent distributions of galaxy (a) Sérsic index, (b) ellipticity and (c) inclination angle. In addition, the 'black dotted line' and 'grey filled histogram' in panel (c) represent the distribution of *red-S+R* galaxies and random distribution of inclination angles, respectively.

which a galaxy is considered as early/late type. For instance, Ravindranath et al. (2004) adopts n=2.0 to divide their sample into early and late types though Sérsic indices of n>2.5 have been also used to describe early-type sources (e.g. Bell et al. 2004a; Barden et al. 2005).

Fig. 3 (panel a) displays the distributions of Sérsic indices for all galaxies in our sample, i.e. the *blue* sample as well as the morphologically classified *red* galaxies.² From this figure, it is clear that the distribution of Sérsic indices for the *red*-E sample peaks around \approx 4. This is larger than those estimated for the S galaxies (either *blue* or *red*). The Sérsic index distribution of the *red*-U galaxies lies somewhat between those of the S and E samples.

An inspection of the ellipticity parameter³ of all galaxies in the sample (Fig. 3, panel b) reveals that, not surprisingly, in *red* sources of type S, $e \gtrsim 0.5$ whereas in *red* galaxies of type E, $e \lesssim 0.5$. In fact the disc structure is extremely pronounced in highly inclined spiral galaxies and therefore the majority of galaxies in the S category are those having larger ellipticities. This is better shown in Fig. 3(c) where histograms of galaxy inclination angles (*i*) for *blue*, *red*-S, *red*-E as well as *red* S+U samples are plotted. Inclinations are determined from the relation

$$\cos^2 i = [(b/a)^2 - p^2](1 - p^2)^{-1}$$
(2)

in which p is the ratio of the smallest to the largest axis of an oblate spheroid of rotation. We assume p = 0.20 which is an appropriate value to use for the intrinsic flattening of the distribution of the light of galactic spheroids (e.g. van den Bergh 1988).

Unlike *blue* and *red*-E galaxies, the majority of *red*-S galaxies are highly inclined. Note that, even in the combined *red*-U + *red*-S sample, there is still and excess of galaxies with relatively large inclination angles in comparison to the *blue* and *red*-E samples.

To illustrate this, we show in Fig. 3(c) the distribution of inclination angles as expected from a random sampling. The observed difference between the distribution of *red*-(S+U) galaxies in com-

parison to a sample of simulated inclinations, suggests that the fraction of highly inclined systems in *red*-(S+U) sample is more than one would expect for a random distribution. This shows that the inclination angle play a non-negligible role in the observed red colour of *red*-S systems.

The main conclusion is that the *red*-E sample consists of intrinsically red objects, while the *red*-S sample contains galaxies where inclination could be a dominant factor in determining the observed red optical colours. Although these inclined sources are not the main interest of this paper, we do discuss some of their ensemble properties in Section 3.5.1.

3.2 Environmental density of red galaxies

In order to explore the environmental density of *red* galaxies and see if it plays an important role in shaping their observed properties, we compute the projected surface density around each galaxy. This is based on counting the number of nearest neighbours, i.e. the density within the distance to the Nth nearest neighbour. Hence, the surface density to the fifth nearest neighbour is calculated as

$$\Sigma_5(\text{Mpc}^{-2}) = \frac{5}{\pi d_z^2},\tag{3}$$

where d_5 is the projected comoving distance to the fifth nearest neighbour within a volume-limited density-defining population (DDP) and relative velocity $\pm 1000 \, \mathrm{km \, s^{-1}}$ (Wijesinghe et al. 2012; Brough et al. 2013). The DDP are galaxies brighter than $M_r \leq -20.0$. Densities are calculated for galaxies with $r_{\mathrm{Petro}} \leq 19.4$ (where r_{Petro} is the r-band Petrosian magnitude), $0.01 \leq z \leq 0.18$ and with reliable redshifts ($n_Q \geq 3$; Driver et al. 2011). Although equation (3) is a 2D estimate, the redshift information of each galaxy is used to remove the background and foreground sources.

Fig. 4 displays histograms of the projected densities for *blue* and *red* galaxies within the redshift range of $0.01 \le z \le 0.18$ and for all systems having $M_r \le -20.0$. This decreases the overall number of *red* galaxies by ≈ 4.2 per cent (out of 117 *red* galaxies, two have z > 0.18 and three have $M_r > -20.0$). Although the highest observed density $(1.5 \le \log{(\Sigma_5)} \le 2.5)$ is populated by a small fraction of the *red*-E-type systems which indeed are relatively massive galaxies, there is no significant difference between the distribution for the *red* sources in any morphological type with respect to the one corresponding to the *blue* sample. This indicates that all galaxies,

 $^{^2}$ We perform a KS test, associated with different estimated parameters, for each pair of galaxy types. The results (p values) are reported in the KS test Table 1

³ The ellipticity for each galaxy has been estimated as (e = 1 - b/a) where a and b are the galaxy's semimajor and semiminor axes as measured in the SDSS.

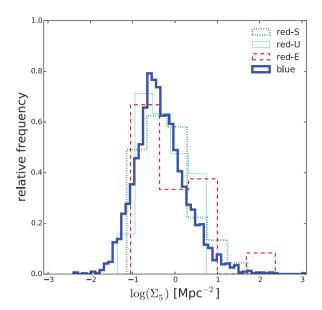


Figure 4. Distributions of the projected surface density Σ_5 estimated according to equation (3) in blue (thick solid line) and red sources. E (red dashed line), S (green dotted line) and U (cyan line) labels represent the morphology of individual red source. Each histogram is normalized by its integral.

irrespective of their morphologies, reside in environments with similar densities. It is worth mentioning however that within the redshift range considered here, the survey area does not contain very dense, cluster-like, environments.

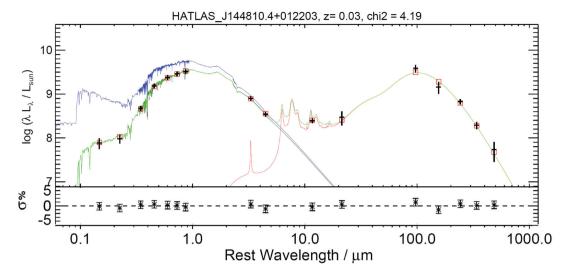
3.3 UV-to-submm SED fitting

We derive the basic properties of galaxies by fitting their SEDs which makes use of the data (Section 2) going from the NUV up to all available Herschel bands. The SED of each galaxy is fitted using MAGPHYS (Multi-wavelength Analysis of Galaxy Physical Properties; da Cunha et al. 2008). MAGPHYS infers the galactic properties by matching the observed SED with a large library of calculated SEDs. These templates are constructed by considering the spectral evolution of stellar populations that are born with a Chabrier (2003) initial mass function (IMF) in combination with infrared dust spectral libraries as described in da Cunha et al. (2008). The model assumes that the energy from UV-optical radiation emitted by the stellar populations is absorbed by dust and re-radiated in the FIR. It uses also the two-component dust model of Charlot & Fall (2000) in order to account for the attenuation of starlight by dust. The model also accounts for the enhanced attenuation of stellar radiation for stars located in star-forming regions in comparison to older stars found elsewhere within the galaxy.

As the MAGPHYS analysis is based on AB magnitudes, all available photometry (aperture matched) has been converted to the AB magnitude system before estimating their associated fluxes in units of Jansky (Jy). Additional errors have been added to non-submm fluxes before running MAGPHYS to account for the total flux measurements and calibrations between the different surveys. These include adding 10 per cent of the flux values in quadrature for all optical-NIR bands and 20 per cent for the UV bands. For each output parameter, MAGPHYS produces a probability density function (PDF), in addition to the median value of each PDF. The 16th and 84th percentiles of the PDF have been considered as a measure of the uncertainty.

Smith et al. (2012a) showed that it is insufficient to identify bad SED fits based on a simple χ^2 threshold, instead deriving a threshold which depends on the number of bands of photometry available, above which there is <1 per cent chance that the photometry is consistent with the MAGPHYS model. Sources exceeding this varying threshold are identified as bad fits, and excluded from the subsequent analysis. We use the H-ATLAS SED fits over the entire phase 1 area, derived using the same method as in Smith et al. (2012a), with updated PACS coverage and including data from WISE.

For the purpose of our study, we have focused on a number of galactic parameters that are inferred by fitting the observed SEDs with MAGPHYS. These are: the galactic stellar mass (M_*) , the dust mass (M_D) , the star formation rate (SFR), and the fraction of total dust luminosity contributed by the diffuse interstellar medium (ISM, f_{μ} ; $0 \le f_{\mu} \le 1.0$). Large values of f_{μ} indicate that dust is heated by the old stellar populations, while lower values suggest that ongoing star formation has a more prominent role in heating the dust. An example of an SED fit for a submm source in our red sample is shown in Fig. 5. We find that the distribution of χ^2 in our sources, does not show any correlation with galaxy NUV-r colour indices. It is worth mentioning that the comparison of the results from MAGPHYS, with and without the MIR constraints from WISE, shows that including the WISE data modifies the output results from MAGPHYS. The inclusion of WISE data improves the fits of the SEDs and provides better estimates of some of the parameter, and notably of the SFR. For this reason, we include in the following sections only those galaxies for which WISE data are available (e.g. $\approx 2/3$ of the main sample). This in turn, reduces the size of our sample from 3782 to 2622 sources with 78 having NUV-r > 4.5 mag and therefore are red.


Fig. 6 displays the mass distribution of galaxies in the *blue* and *red* samples (in different categories). In our sample, \approx 73 per cent of *blue* sources have stellar masses $\log(M_*/\mathrm{M}_{\odot}) \geq 10.0$, while the same number for the *red* galaxies is \approx 97 per cent, accounting for \approx 4.2 per cent of the total number of sources with $\log(M_*/\mathrm{M}_{\odot}) \geq 10.0$. As expected, bins associated with largest stellar masses are occupied by the *red*-E galaxies (see Table 2).

3.4 Dust properties

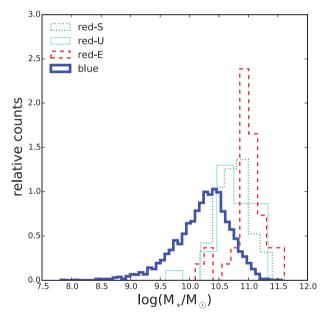

It is important to compare the inferred parameters derived from MAGPHYS to other determinations. We compare the estimated dust-to-stellar mass ratio ($M_{\rm D}/M_{*}$) for all sources as computed by MAGPHYS to those derived for a sample of $\sim \! 300$ nearby galaxies from the HRS (*Herschel* Reference Survey; Cortese et al. 2012). The total dust mass of a given galaxy as estimated by MAGPHYS is the sum of the three components which includes the mass contributed by dust in thermal equilibrium in stellar birth clouds, as well as warm and cold dust components in the ambient ISM (da Cunha et al. 2008).

Fig. 7 displays the distribution of $M_{\rm D}/M_{*}$ inferred from MAGPHYS for our sample against NUV-r for all red and blue sources. Overlaid are the $M_{\rm D}/M_{*}$ estimates from the HRS using all SPIRE bands. For HRS non-detections (triangles), the submm upper-limit fluxes have been determined assuming a 3σ signal over a circular aperture of radius $0.3\times$, $0.8\times$ and $1.4\times$ of the optical radius for the HRS E, S0 and spirals, respectively.

Note that in determining dust masses $M_{\rm D}$, both magphys and Cortese et al. (2012) adopt a dust emissivity index $\beta=2.0$ for cold dust but different dust mass absorption coefficients κ_{ν} . Cortese et al. (2012) use a dust mass absorption coefficient κ_{350} of 0.192 m² kg⁻¹ at 350 μ m whereas da Cunha et al. (2008) assume $\kappa_{850}=0.077$ m² kg⁻¹ at 850 μ m. Given the scaling relations

Figure 5. Top panel: a typical MAGPHYS rest-frame SED fit of an H-ATLAS red source. Observed UV to submm fluxes are shown with plus symbols. The green line is the best-fitting model, while the blue line is the unattenuated stellar fitted spectrum. Bottom panel: the fit residuals σ in per cent estimated according to $(L_{\lambda}^{\text{obs}} - L_{\lambda}^{\text{model}})/L_{\lambda}^{\text{obs}}$, where L_{λ}^{obs} and $L_{\lambda}^{\text{model}}$ are the observed and model fluxes in a given photometric band.

Figure 6. Distribution of galaxy stellar masses in blue (thin solid line) and red samples (*red*-S: dashed line, *red*-U: dotted line, *red*-E: thick solid line). Each histogram is normalized by its integral.

 $M_{\rm D} \propto \kappa_{\nu}^{-1}$ and $\kappa_{\nu} \propto \nu^{-\beta}$ one finds that κ_{850} in MAGPHYS can be scaled down (assuming $\beta=2.0$) to $0.45~{\rm m^2\,kg^{-1}}$ at 350 μm and that dust masses as measured by Cortese et al. (2012) are \approx 2.36 times larger than those estimated by MAGPHYS. Thus in Fig. 7, the HRS sample are scaled down for \approx 0.37 dex to account for the differences between the two measurements of dust masses.

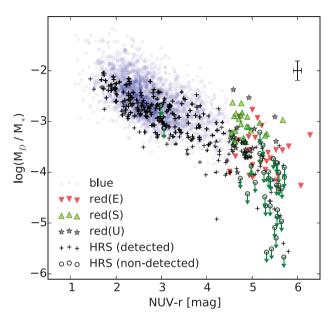

It can be seen that the $M_{\rm D}/M_*$ ratios for both the *blue* or *red* galaxies agrees reasonably well with estimates from the HRS-detected objects. Furthermore, the *red* sources of type E exhibit, on average, $M_{\rm D}/M_*$ ratios that are noticeably lower than those of *blue* galaxies. This is even more clear in the right-hand panel of Fig. 8 which displays the distributions $M_{\rm D}/M_*$ in all sources. The mean values as summarized in Table 2 suggest that the *red-E* objects have values of the dust-to-stellar masses that are approximately an order of magnitude lower than those in the *blue* sources. This is partly because the *red-Es* have high stellar masses but as is visible in the left-hand panel of Fig. 8, they also have a lower dust content in comparison to the *red-S* and *blue* systems. Note that the distribution of specific dust mass of the *red-S* galaxies does not match the distribution of the *blue* star-forming galaxies. We will discuss this further in Section 3.5.

Table 1. The results of a KS test (p values) associated with parameter distributions shown in Figs 3, 4, 6, 8 and 10. We highlight with bold face fonts those parameters for which the KS test indicates a significant difference in the underlying distributions, i.e. p < 0.001.

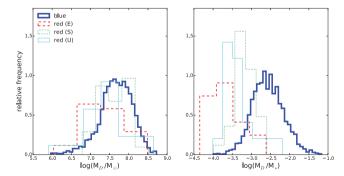

Parameter	blue versus red-E	blue versus red-S	blue versus red-U	red-E versus red-S	red-E versus red-U	red-S versus red-U
Sérsic index	< 0.001	< 0.001	< 0.001	< 0.001	0.098	0.056
Ellipticity	< 0.001	0.40	0.0045	< 0.001	0.013	< 0.001
$\log(\Sigma_5)$	0.25	0.43	0.13	0.71	0.46	0.63
$\log (M_*/\mathrm{M}_{\odot})$	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.94
$\log (SFR)[M_{\bigodot} yr^{-1}]$	< 0.001	< 0.001	< 0.001	0.021	0.87	0.032
$\log (SFR/M_*)[yr^{-1}]$	< 0.001	< 0.001	< 0.001	< 0.001	0.10	0.012
$\log (M_{\rm D}/{\rm M}_{\odot})$	0.50	0.0049	0.0021	0.029	0.89	0.23
$\log (M_{\rm D}/M_*)$	< 0.001	< 0.001	< 0.001	< 0.001	0.014	0.012
f_{μ}	< 0.001	< 0.001	< 0.001	0.056	0.87	0.45

Table 2. Mean values of various MAGPHYS output parameters estimated from distributions shown in Figs 8 and 10.

Galaxy type	$\log (SFR)[M_{\bigodot}yr^{-1}]$	$\log (SFR/M_*)[yr^{-1}]$	$\log{(M_{\rm D}/{\rm M}_{\odot})}$	$\log (M_*/\mathrm{M}_{\odot})$	$\log{(M_{\rm D}/M_*)}$	f_{μ}
blue	0.43 ± 0.57	-9.72 ± 0.80	7.84 ± 0.54	10.42 ± 0.47	-2.58 ± 0.62	0.55 ± 0.53
red (type-S)	-0.29 ± 0.54	-11.11 ± 0.65	7.74 ± 0.44	10.86 ± 0.37	-3.12 ± 0.51	0.88 ± 0.31
red (type-U)	-0.71 ± 0.53	-11.34 ± 0.53	7.67 ± 0.39	10.83 ± 0.29	-3.16 ± 0.44	0.88 ± 0.22
red (type-E)	-0.67 ± 0.63	-11.70 ± 0.62	7.62 ± 0.49	11.06 ± 0.26	-3.44 ± 0.51	0.92 ± 0.29

Figure 7. The dust-to-stellar mass ratio as function of NUV—rcolour for the blue (square) and red samples. E (triangle down), S (triangle up) and U (stars) labels represent the morphology of individual red source. The typical errors associated with our galaxies are indicated on the top-right corner. Overlaid are HRS (*Herschel* Reference Survey; Cortese et al. 2012) detected (plus sign) and non-detected (open circle; downward arrows indicating upper limits) galaxies.

Figure 8. Distributions of dust mass (left-hand panel) as well as specific dust mass (right-hand panel) in the blue (thick solid line) and red sources. E (red dashed line), S (green dotted line) and U (cyan line) labels represent the morphology of individual red source. Each histogram is normalized by its integral. The estimated mean value associated with each histogram is given in Table 2.

3.5 Star formation rates

In Fig. 9, we compare the MAGPHYS derived values of the SFRs to those estimated based on the spectral analysis of the H α lines using the Second GAMA Data Release (GAMA-DR2) catalogues

Figure 9. Ratio of MAGPHYS SFR over GAMA DR2 SFR in logarithmic scale versus M_* for all galaxies in our sample (see equation 4). Vertical histogram shows the distributions of data points along y-axis.

(Wijesinghe et al. 2012; Gunawardhana et al. 2013; Hopkins et al. 2013; Liske et al. 2015).

Galaxy SFRs in GAMA-DR2 are determined from the Kennicutt (1998) relation and based on the total aperture-corrected H α luminosities observed through fibre spectroscopy. The r-band absolute magnitude of each galaxy have been used in order to correct for the aperture and therefore recovering the total H α luminosities (Hopkins et al. 2003; Gunawardhana et al. 2011). Dust corrections were estimated for each galaxy from the observed Balmer decrement. Finally, stellar absorption corrections were applied to both H α and H β fluxes which together with the H α equivalent width allow us to calculate the total aperture-corrected H α luminosities as described in detail in Hopkins et al. (2003).

We find a strong correlation between the two estimates of SFRs such that (SFRs are in units of M_{\odot} yr⁻¹)

$$\log SFR_{\text{Magphys}} = 1.22^{+0.02}_{-0.02} \times \log SFR_{\text{GamaDR2}} - 0.35.$$
 (4)

Give the Pearson correlation coefficient of $r\simeq 0.71$ in the above equation, it is evident that in general, GAMA DR2 H α -derived SFRs are well correlated with those predicted by MAGPHYS through SED based measurements though on average MAGPHYS derived SFRs are ≈ 0.3 dex lower than those based on the H α luminosities from GAMA. This may be due to different treatments applied in correcting for dust or aperture as explained in Wijesinghe et al. (2011).

The distribution of SFR related parameters are displayed in Fig. 10. The first two panels, show the SFR and the specific star formation rate (SSFR) of *blue* and *red* galaxies. The mean value of the SFR in the *red*-E galaxies is an order of magnitude lower than in the *blue* galaxies with SFR_{blue}/SFR_{red-E} \approx 13 (SFR_{red-S}/SFR_{red-E} \approx 2.5; see also Table 2).

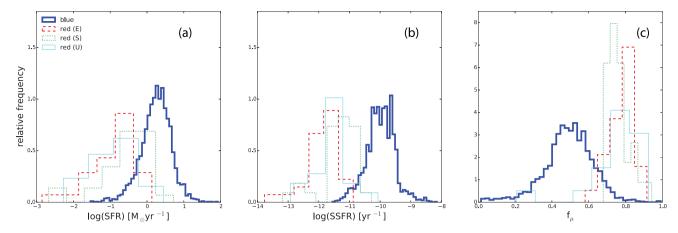
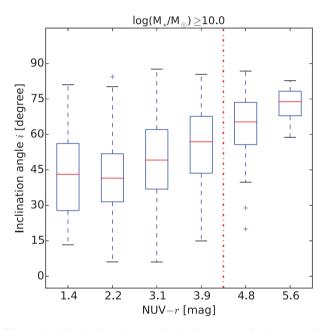


Figure 10. Distributions of (a) SFR, (b) SSFR and (c) f_{μ} , e.g. the fraction of total dust luminosity contributed by the diffuse ISM, in the blue (thick solid line) and the red sources. E (red dashed line), S (green dotted line) and U (cyan line) labels represent the morphology of individual red source. Each histogram is normalized by its integral. The estimated mean value associated with each histogram is given in Table 2.

The difference between the two samples is even more pronounced when considering SFR normalized by galaxy's stellar mass M_* such that SSFR_{blue}/SSFR_{red-E} ≈ 100 (SSFR_{red-S}/SSFR_{red-E} ≈ 4). For both the SFR and the SSFR, the values estimated for the red-S-type sources and the galaxies with uncertain morphology, lay between the red-E galaxies and the blue control sample. In comparison, Rowlands et al. (2012, i.e. table C1) measure $-9.99^{+0.03}_{-0.03}$ and $-10.85^{+0.14}_{-0.14}$ for SSFR in samples of 'H-ATLAS spiral' and 'H-ATLAS elliptical' galaxies, respectively.


Fig. 10(c) shows the normalized distributions of f_{μ} in the *blue* and *red* populations. The *red*-E galaxies have an average $f_{\mu} \sim 0.92$, well above the mean (~ 0.55) of the *blue* galaxies. This indicates that while about half of the observed FIR emission observed in the *blue* galaxies comes from dust in birth clouds, the FIR of *red*-E galaxies is dominated by dust in the diffuse ISM. We note that the average derived f_{μ} for the *red*-S systems is significantly higher than for the *blue* control sample and only slightly lower than for the sample of the *red*-E galaxies.

3.5.1 On the derived properties of the red-S sample

Even though the *red-S* galaxies are not the prime focus of this paper, this sample does display some interesting characteristics that are worth commenting on briefly. As can be derived from Figs 6, 8(b) and 10 the deduced properties of the *red-S* galaxies do not match the *blue* galaxy properties. The *red-S* galaxies appear intermediate between the *red-E* and the *blue* galaxies in stellar mass, SFR and specific dust mass. This offset is primarily driven by the higher derived stellar masses and the correspondingly lower SFR. This is contrary to what one would expected if the red colours of the edge-on galaxies are *only* due to their high inclination.

Inclination does play a significant role in defining this sample, as can be concluded from Fig. 11. We show in this figure the inclination of the blue + red-S for the stellar masses above $\log(M_*/\mathrm{M}_{\odot}) \approx 10.0$, i.e. the range of stellar masses of interest. There is a definite trend of the median inclination against observed optical redness and in particular the very reddest sources are almost exclusively very inclined sources.

We see two main interpretations – which could be at play simultaneously – that could explain these characteristics of the *red-S* sample.

Figure 11. Distribution of galactic inclination angles i for blue and red-S galaxies, having stellar masses $\log(M_*/\mathrm{M}_{\odot}) \geq 10.0$, versus NUV-r colour. Each box extends from the lower to upper quartile values of data, with a line at the median (red line). Inclination angles are computed using equation (2). Dashed lines extending vertically from the boxes indicating variability outside the upper and lower quartiles. Individual data points indicate outliers. The vertical dash–dotted line intersects the x-axis at NUV-r = 4.5 above which galaxies are classified as red.

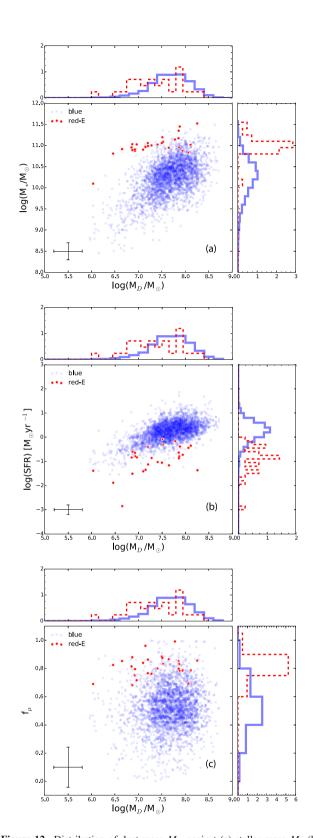
- (i) High inclination is a necessary, but not sufficient condition for a star-forming disc galaxy to be submm detected *and* very optically red. In this case, the red colour would apparently select preferentially the more massive disc galaxies. Perhaps the less massive disc galaxies have enough star formation in their periphery of their discs which would not be strongly obscured, even in the case of strong inclination to exhibit a blueish optical colour. Alternatively, the red colour of those massive discs could be a direct results of a dominant old stellar population.
- (ii) The galaxy parameters, derived from MAGPHYS, of the very inclined and dusty sources are systematically biased to higher stellar masses and less star formation. This is in line with the finding of

da Cunha et al. (2010). These authors find that the derived SFR for edge-on galaxies is about a factor of $3\times$ (\approx 0.48 dex) below their face-on counterparts. They also find that this effect is also responsible for the lower dust masses (or dust luminosities) and higher f_{μ} estimated for edge-on in comparison to face-on galaxies. The amplitude of this effect is insufficient to directly explain the difference we find between the blue sample and the red-S sample. Note however that da Cunha et al. (2010) describe the effect on an *inclined* sample of galaxies while the red-S sample is selected to have only galaxies with very red colours. The *inclined* sample contains galaxies with varying degrees of hidden star formation, whereas the red-S sample contains only galaxies with very obscured star formation. We thus would expect to find a larger offset of the derived parameters in the red-S sample than in the *inclined* sample.

Clearly this red disc population of nearby galaxies deserves further attention in a dedicated study.

3.6 Dust mass correlations with galactic properties

We show in Fig. 12 correlation plots of the derived dust mass versus a number of key parameters $(M_*, \text{SFR and } f_\mu)$ in the red-E and blue galaxies. These parameters have been chosen to elucidate the possible origin and role of the dust in the red-E galaxies. The first conclusion that can be drawn from the perusal of these diagrams is that the red-E galaxies clearly occupy a different parameter space from blue spiral galaxies.


Fig. 12(a) shows a very different behaviour of the $M_{\rm D}$ as a function of M_* for the blue galaxies and the red-E sample. The blue sample shows a roughly linear correlation (with scatter) between the dust reservoir and the M_* . This relation is expected due to the M_* -SFR relation for normal galaxies, if the $M_{\rm D}$ is measuring the reservoir available for star formation. The red-E sample exhibits a totally different behaviour apart from being located in a distinctly different part of this diagram. While the host galaxies are all – with one outlier – of very similar mass ($\approx 10^{11} {\rm M}_{\odot}$) their dust content spans more than two orders of magnitude. This complete decorrelation of stellar mass and dust content argues against a stellar origin (e.g. Cortese et al. 2012) for the dust in those galaxies. While for blue galaxies the dust mass increases with stellar mass, the dust masses found for the red-E span ≈ 2 order of magnitudes for stellar masses that are roughly constant at $\approx 10^{11} {\rm M}_{\odot}$ (see Table 3).

In Fig. 12(b), we show that there *is* a moderate correlation in the *red*-E galaxies between the derived SFR and $M_{\rm D}$ with a similar slope but offset from the *blue* sequence. We interpret the existence of this correlation as an indication that the star formation is probably taking place in the cold gas associated with the dust.

The observed offset between the *blue* control sample and the *red*-E sample implies that the same amount of dust in the *red*-E galaxies is associated with about an order of magnitude less star formation. This could be an indication that the physical state of the cold ISM phase in the *red*-E galaxies is significantly different perhaps due to the very different environment in which the cold gas is embedded. This interpretation is corroborated by Fig. 12(c) where we show that indeed the MAGPHYS derived fraction of the dust heating due to the interstellar radiation field, i.e. f_{μ} is much higher in the *red*-E galaxies than their *blue* counterparts.

3.7 The origin of dust in red-E

In the classical definition of galactic types, ellipticals were classified as devoid of gas and dust (Hubble 1926; de Vaucouleurs 1959;

Figure 12. Distribution of dust mass $M_{\rm D}$ against (a) stellar mass M_* (b) star formation rate, SFR and (c) f_{μ} in blue (blue square), red-E (red circle). In addition, horizontal and vertical histograms show the distributions of data points along x- and y-axes with blue/thick and red/dashed lines representing blue and red-E. Each histogram is normalized by its integral. Typical errors associated with various parameters are indicated on the bottom-left corner. Results of linear regression analysis to blue and red-E observed data points in panels 'a' and 'b' are given in Table 3.

Table 3. Results of linear regression analysis to the observed data points in panels 'a' and 'b' of Fig. 12. Parameters in the table are associated with the linear model $Y = s(\pm \text{err}) \times X + c$.

Galaxy type	Y	X	s (slope)	± err (standard deviation)	c (intercept)	r value (Pearson correlation)	p value
blue (panel a) red-E (panel a)	$\log(M_*/\mathrm{M}_{\odot})$	$\log (M_{\rm D}/{\rm M}_{\odot})$	0.56 0.30	0.01 0.06	5.93 8.76	0.54 0.67	<0.001 <0.001
blue (panel b) red-E (panel b)	$log (SFR) [M_{\bigodot} yr^{-1}]$	$\log (M_{\rm D}/{\rm M}_{\odot})$	0.54 0.54	0.01 0.18	-3.89 -4.87	0.56 0.50	<0.001 0.006

Sandage 1961). In the subsequent years, dust emission in ellipticals has been detected from the ground (Hawarden et al. 1981; Sadler & Gerhard 1985; Sparks et al. 1985; Kormendy & Stauffer 1987; Ebneter, Djorgovski & Davis 1988; Pandey et al. 2001) and from space using the *Infrared Astronomical Satellite* (Jura et al. 1987; Knapp et al. 1989) and the *Spitzer Space Telescope* (Rocca-Volmerange et al. 2007). Dust lanes were observed early on along the minor axis of ellipticals (Bertola & Galleta 1978). When in some ellipticals the dust lanes and stars were observed to rotate in opposite direction, this was suggestive that this dust must have been accreted and cannot be accounted for by mass-loss from evolved stars (Kormendy & Djorgovski 1989). Kinematic information is important in order to constrain the presence of counter-rotating gas (and dust) in ellipticals in order to establish the frequency of the accretion scenario (Bertola, Buson & Zeilinger 1988).

In this study, the unresolved red ellipticals detected in the submm do not have associated kinematic information. However, we attempt to establish whether the present dust masses in our sample of elliptical galaxies can be explained with stellar sources using a model of dust formation and evolution in ellipticals. We compare the specific dust masses (M_D/M_*) with the predictions for dust mass return from a single stellar population (SSP) model and which represents an instantaneous burst of star formation. The star formation histories of the observed galaxies are more complex than that represented by a single burst of star formation. Their stellar masses and colours are however clearly dominated by the old stellar populations. Moreover, chemical evolution models of elliptical galaxies find very short time-scales of their formation and high star formation efficiencies of the initial starburst (Pipino et al. 2005). The present SFR of $\sim 0.1 \,\mathrm{M}_{\odot} \,\mathrm{yr}^{-1}$ in our sample is several orders of magnitude lower than that the SFR in the past responsible for the build-up of their stellar mass of $\sim 10^{11} \, M_{\odot}$. Therefore, for comparison with the dust model predictions, we assume that the entire stellar mass of each red-E galaxy is associated with a single burst with an age equal to its mass weighted age derived from the SED fitting. The observed dust mass in a galaxy is thus compared with the survived dust mass from the SSP with the same age. The model of the SSP adopted here was introduced in Zhukovska (2008) and was used to describe the chemical evolution of dust and gas in the Milky Way and dwarf galaxies (Zhukovska, Gail & Trieloff 2008; Zhukovska 2014). For the chemical evolution aspects of the SSP model, we adopt the same ingredients as in Zhukovska (2008) except for the IMF, for which we use the Chabrier (2003) form. This is consistent with the IMF that is adopted in the SED fitting with MAGPHYS.

The model includes dust production by Type II supernovae (SNe) and by asymptotic giant branch (AGB) stars. Type Ia SNe are an important source of metallic iron in early-type galaxies. Models of dust evolution imply that, with an assumption of high-condensation efficiencies of metals into dust in their ejecta, they can dominate dust input in elliptical galaxies (e.g. Calura, Pipino & Matteucci 2008; Pipino et al. 2011). FIR observational surveys of both warm and

cool dust in remnants of Type Ia SNe do not however find evidence of efficient dust formation, in contrast to remnants of Type II SNe (Gomez et al. 2012). This is supported by theoretical models, which indicate that newly formed grains are small and are easily destroyed in shocked gas before being ejected into the ISM (Nozawa et al. 2011). Therefore, we neglect the dust input from Type Ia SNe.

The net input from Type II SNe is still debated. We add their contribution for completeness, as they produce dust for a limited period of time after stars have formed (\sim 40 Myr). We adopt relatively low efficiencies of dust condensation in the SNe ejecta. These are constrained by meteoritic data and the observed metallicity—dust to gas ratio relation in dwarf galaxies (Zhukovska et al. 2008; Zhukovska 2014).

The mass- and metallicity-dependent dust yields for AGB stars are taken from the work of Ferrarotti & Gail (2006) with additional models from Zhukovska et al. (2008). These dust yields were computed for stellar metallicity ranging from Z = 0.001 up to the suprasolar values of 0.04 and for the stellar mass range [1–7] M_{\odot} . We extrapolate the dust yields in the mass range [7–8] M_{\odot} . Only one galaxy in the red-E sample is old enough for stars with masses below 1 M_{\odot} to contribute to the dust budget. However, stars in this mass range lose a large fraction of their envelopes during red giant branch evolution characterized by inefficient dust formation (Gail et al. 2009; McDonald et al. 2011a, 2015). Some amount of dust is condensed during following AGB stage, but the total dust mass returned to the ISM is very low. Estimates based on the gas mass-loss rates derived in McDonald et al. (2011b) and McDonald et al. (2015) point to $\lesssim 10^{-3} \text{ M}_{\odot}$ of dust per star. Given this low value, we choose not to extrapolate the dust yields down to $0.8 \,\mathrm{M}_{\odot}$ and neglect dust input from these stars.

The ISM in elliptical galaxies is dominated by hot rarefied gas with temperatures of $\sim 10^7$ K (Mathews & Brighenti 2003). Grains can be rapidly sputtered in high-temperature gas due to collisions with ions (mostly with abundant H⁺; Draine & Salpeter 1979; Itoh 1989). The time-scale of destruction by thermal sputtering can be approximated as

$$\tau_{\text{sput}} = 10^5 \left(1 + (10^6 \,\text{K/T})^3 \right) \frac{a/0.1 \,\text{\mu m}}{n/\text{cm}^{-3}} \,\text{yr},$$
 (5)

where n and T are the number density and temperature of the hot gas, respectively, and a is the grain radius. The total stardust mass $M_D(t)$ is reduced by thermal sputtering in the hot gas at the rate

$$\frac{\mathrm{d}M_{\mathrm{D}}(t)}{\mathrm{d}t} = -\frac{M_{D}(t)}{\tau_{\mathrm{sput}}}.\tag{6}$$

The temperature and density of the hot gas are derived from observations of extended X-ray emission. For simplicity, we assume single values for the electron density and temperature of the gas of $10^{-3}~\rm cm^{-3}$ and $1.5\times10^{7}~\rm K$, respectively (Mathews & Brighenti 2003) resulting in $\tau_{\rm sput}$ =100 Myr. Note that $\tau_{\rm sput}$ depends only weakly on temperature in the regime appropriate for the hot ISM of

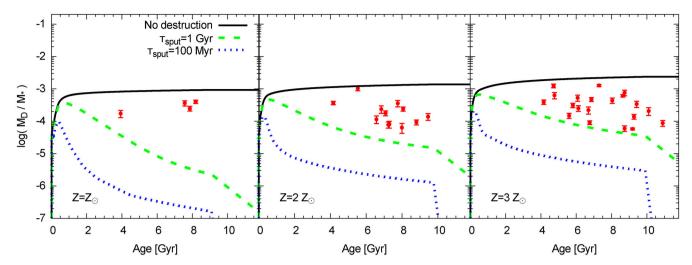


Figure 13. The evolution of the dust mass relatively to the stellar mass of as a function of the age of SSP. The left-hand, middle and right-hand panel indicate initial metallicities of Z=1, 2 and 3 Z_{\odot} , respectively. The value of the solar metallicity adopted here is $Z_{\odot}=0.014$ (Asplund et al. 2009). The solid lines show the evolution of the cumulative dust mass returned in the SSP. The evolution of dust mass for the same SSP model with dust destruction by thermal sputtering on the time-scales of 1 Gyr and 100 Myr are shown with the dashed and dotted lines, respectively. The filled red circles represent the sample of red-E galaxies which have been grouped in metallicity bins of [0.5-1.5], [1.5-2.5] and >2.5 Z_{\odot} . The specific dust masses of each red-E galaxy in the sample is plotted versus the mass weighted age of its stellar populations and the metallicity of each galaxy is obtained from the SDSS DR4 (Gallazi et al. 2005).

elliptical galaxies and a value of $T = 10^6$ K results in the time-scale of 200 Myr. A similarly low value of the time-scale of interstellar dust destruction, only 46 Myr, is derived for early type galaxies (ETGs) detected in FIR by Spitzer observations (Clemens et al. 2010). For a comparison, we also ran calculations of the SSP evolution with a longer dust destruction time-scale of 1 Gyr which corresponds to a lower gas density of 10⁻⁴ cm⁻³. This long timescale may also account for the fact that many early-type galaxies may harbour cold gas (Mathews & Brighenti 2003; Alatalo et al. 2013; Young et al. 2014), where grains are protected for some time from the thermal sputtering and can survive longer. Another mechanism of dust destruction is inertial sputtering in SN shocks, which is thought to be the dominant mechanism of dust destruction in spiral galaxies. However, in a hot rarefied medium one SN destroys 20 times less dust compared to the local ISM conditions (McKee 1989). We therefore do not consider dust destruction by Type Ia SNe and restrict our consideration to the thermal sputtering in hot gas. Dust mass in an early-type galaxy can also be substantially reduced by the galactic winds (not considered in the present model). Our estimates should therefore be considered as the upper limit for the stardust mass.

Fig. 13 compares the specific dust masses we have derived for the sample of red-E to the results of the SSP models.⁴ The data are grouped in three metallicity bins of [0.5-1.5], [1.5-2.5] and >2.5 Z_{\odot} and compared to three sets of SSP models with $Z=Z_{\odot}$ (left-hand panel), Z=2 Z_{\odot} (middle panel), and Z=3 Z_{\odot} (right-hand panel). The specific dust masses of each red-E galaxy in the sample is plotted versus the mass weighted age of its stellar populations and the metallicity of each galaxy is obtained from the SDSS DR4 (Gallazi et al. 2005). The figure clearly shows that, as expected, SSP models with no dust destruction tend to overpredict the amount of dust in these ellipticals. On the other hand, more realistic models with dust sputtering fail to reproduce the observed $M_{\rm D}/M_*$ ratio even when a relatively long dust destruction time-scale of 1 Gyr

is considered. The SSP models with dust destruction underpredicts the ratio of $M_{\rm D}/M_*$ by more than two order of magnitude. These estimates demonstrate that dust return into ISM from stellar sources is not sufficient to explain the observed $M_{\rm D}/M_*$. This implies an external origin of the dust via minor mergers and/or efficient dust growth in the dense ISM.

The amount of dust in the submm-detected galaxies as well as its correlation with the present-day SFR (Fig. 12, panel b) suggests a connection between the dust and the dense ISM in agreement with Alatalo et al. (2013), who find that the distribution of the CO and dust in nearby ETG is spatially correlated. The time-scale for dust growth in molecular clouds is short and of the order of a few to several 10⁷ yr (Hirashita 2000). We estimate an upper bound on the dust mass that may result from dust growth in the dense ISM in the following manner. Assuming a specific mass of molecular gas $M_{\rm H_2}/M_{\star}$ of 0.01 and a value of 0.06 for the specific mass of the atomic gas $M_{\rm H{\scriptscriptstyle I}}/M_{\star}$ (these are the observed upper limits in Young et al. 2014), a dust-to-hydrogen mass ratio of 0.018 (i.e. about 3 times the solar value), and a complete condensation of heavy elements into dust in the molecular gas, this yields a specific dust mass $M_{\rm D}/M_{\star}$ of $0.07 \times 0.018 \approx 1.3 \times 10^{-3}$ which is only slightly higher than the largest specific dust masses measured for the sample of red ellipticals that are displayed in Fig. 13. This means that it is difficult, but not impossible, to explain the measured dust masses as resulting from grain growth in the dense gas inside the elliptical galaxies. It should be noted that dust growth does not preclude the role of minor mergers because the molecular gas may have an external origin (Davis et al. 2011).

4 CONCLUSIONS

In this work, we examine the properties of low-redshift galaxies detected in $250 \, \mu m(> 5\sigma)$ using H-ATLAS DR1 catalogue. We define two sub-samples of *red* and *blue* galaxies based on NUV-r colours. Our aim is to understand the nature of the *red* subset in comparison to those in the *blue* sub-sample. We can summarize our findings as follows.

⁴ Value of the solar metallicity adopted here is $Z_{\bigodot} = 0.014$ (Asplund et al. 2009).

- (i) Within the redshift range $0.01 \le z \le 0.2$ of our sample, red sources with the UV-optical colour indices of NUV- $r \ge 4.5$, constitute ≈ 4.2 per cent of the total number of systems in H-ATLAS. The fraction of red sources increases with the galaxy stellar mass such that in $\gtrsim 97$ per cent of the red sample, $M_* \gtrsim 10^{10} \, \mathrm{M}_{\odot}$.
- (ii) Following the visual inspection of galaxies, sources in the *red* sample were grouped into three categories of elliptical (E), spiral (S) and uncertain (U). We find that at least $\gtrsim 30$ per cent of the *red* sources are of type E and more than $\gtrsim 40$ per cent of sources belong to type S.
- (iii) Both *blue* and *red* sources, seem to occupy environments with similar densities (e.g. having similar $\log (\Sigma_5)$ distributions) though in comparison to *blue* and *red* objects of type S and U, a slightly larger fraction of *red*-E sources are in relatively denser regions with $\log(\Sigma_5/\text{Mpc}^{-2}) \gtrsim 1.5$.
- (iv) The SED analysis of galaxies in our sample based on MAGPHYS, reveals that the red galaxies (either type S or E) span a similar range of dust masses but different dust-to-stellar mass ratios in comparison to the blue galaxies. The specific dust masses in the blue and red-S galaxies are, on average, larger than those found for the red-E sample by a factor of $7\times$ and $2\times$, respectively. Similarly, galaxies of type E have lower levels of mean SFR and SSFR in contrast to sources in the blue and red-S samples. Furthermore, analysis of f_μ shows that unlike blue galaxies where star-forming regions have the main contribution to the observed submm fluxes, FIR emission in the red systems of type E is mainly from the dust in the ISM.
- (v) The UV-optical colours of the *red-S* sample could be the result of their highly inclined orientation and/or a strong contribution of the old stellar population. However, in the current work we did not further investigate the contribution of each factor to the observed colour of the *red-S* sources.
- (vi) Finally, the comparison of specific dust masses $(M_{\rm D}/M_*)$ of the *red* elliptical galaxies to the dust evolution in SSP models excludes that the origin of the dust is from internal stellar sources. Dust growth in molecular clouds and/or gas and dust accretion through minor mergers provide more realistic and appealing alternatives (e.g. Gomez et al. 2010; Smith et al. 2012b).

Our results show that there exist a population of early-type galaxies, containing a significant level of cold dust similar to those observed in blue/star-forming galaxies. The origin of dust in such early-type galaxies is likely to be of external origin (e.g. fuelled through mergers and tidal interactions). Hence, it is interesting to know the difference between *red* galaxies which are detected in 250µm and those without any submm detection in the hope to find the mechanisms that are responsible for tuning the dust content in passive and/or early-type galaxies.

ACKNOWLEDGEMENTS

We would like to thank the anonymous referee for his valuable comments and suggestions which helped to improve this paper.

SD is supported by a Marie-Curie Intra European Fellowship under the European Community's Seventh Framework Programme FP7/2007-2013 grant agreement no. 627008. SH acknowledges support from the *Deutsche Forschungsgemeinschaft* (DFG) in the collaborative research project SFB881 The Milky Way System (subprojects B1). RJI, LD and SJM acknowledge support from the European Research Council Advanced Grant, cosmicism. SZ acknowledge support by the Deutsche Forschungsgemeinschaft through SPP 1573: Physics of the Interstellar Medium. GdZ acknowledge financial support from ASI/INAF Agreement 2014-024-R.0 for the

Planck LFI activity of Phase E2. KR acknowledges support from the European Research Council Starting Grant SEDmorph (P.I: V. Wild)

The Herschel-ATLAS is a project with Herschel; which is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. The H-ATLAS website is http://www.h-atlas.org/. GAMA is a joint European-Australasian project based around a spectroscopic campaign using the Anglo-Australian Telescope. The GAMA input catalogue is based on data taken from the SDSS and UKIDSS. Complementary imaging of the GAMA regions is being obtained by a number of independent survey programmes including GALEX MIS, VST KIDS, VISTA VIKING, WISE, Herschel-ATLAS, GMRT and ASKAP providing UV to radio coverage. GAMA is funded by the STFC (UK), the ARC (Australia), the AAO, and the participating institutions. The GAMA website is http://www.gama-survey.org/. MAGPHYS is available via http://www.iap.fr/magphys/magphys/MAGPHYS.html.

REFERENCES

Abazajian K. N. et al., 2009, ApJS, 182, 543

Adelman-McCarthy J. K. et al., 2008, ApJS, 175, 297

Agius N. K. et al., 2013, MNRAS, 431, 1929

Alatalo K. et al., 2013, MNRAS, 432, 1796

Asplund M., Grevesse N., Sauval A. J., Scott P., 2009, ARA&A, 47, 481

Auld R. et al., 2013, MNRAS, 428, 1880

Baldry I. K. et al., 2004, ApJ, 600, 681

Ball N. M., Loveday J., Brunner R. J., 2008, MNRAS, 383, 907

Balogh M., Baldry I. K., Nichol R., Miller C., Bower R., Glazebrook K., 2004, ApJ, 615, L101

Barden M. et al., 2005, ApJ, 635, 959

Bell E. F. et al., 2004a, ApJ, 600, 11

Bell E. F. et al., 2004b, ApJ, 608, 752

Bendo G. J. et al., 2012, MNRAS 419, 1833

Bertola F., Galletta G., 1978, ApJ, 226, L115

Bertola F., Buson L. M., Zeilinger W. W., 1988, Nature, 335, 705

Binggeli B., Tammann G. A., Sandage A., 1987, AJ, 94, 251

Boselli A. et al., 2010, PASP, 122, 261

Bourne N. et al., 2012, MNRAS, 421, 3027

Brough S. et al., 2013, MNRAS, 435, 2903

Bruzual G., Charlot S., 2003, MNRAS, 344, 1000

Burgarella D., Buat V., Iglesias-Pàramo J., 2005, MNRAS, 360, 1413

Butcher H., Oemler A., Jr, 1984, ApJ, 285, 426

Calura F., Pipino A., Matteucci F., 2008, A&A, 479, 669

Chabrier G., 2003, PASP, 115, 763

Charlot S., Fall S. M., 2000, ApJ, 539, 718

Clemens M. S., Jones A. P., Bressan A., Baes M., Bendo G. J., 2010, A&A, 518, L50

Cluver M. E. et al., 2014, ApJ, 782, 90

Condon J. J. et al., 1998, AJ, 115, 1693

Conroy C., Gunn J. E., White M., 2009, ApJ, 699, 486

Conselice C. J., 2014, ARA&A, 52 291

Cooper M. C. et al., 2006, MNRAS, 370, 198

Cortese L., 2012, A&A, 543, 132

Cortese L., Boselli A., Franzetti P., Decarli R., Gavazzi G., Boissier S., Buat V., 2008, MNRAS, 386, 1157

Cortese L. et al., 2012, A&A, 540, 52

Croton D. J. et al., 2006, MNRAS, 365, 11

Cucciati O. et al., 2006, A&A, 458, 39

da Cunha E., Charlot S., Elbaz D., 2008, MNRAS, 388, 1595

da Cunha E., Eminian C., Charlot S., Blaizot J., 2010, MNRAS, 403, 1894

Dale D. A. et al., 2007, ApJ 655, 863

Dale D. A. et al., 2012, ApJ 745, 95

Dariush A. et al., 2011, MNRAS, 418, 64

Davies J. I. et al., 2010, A&A 518, L48

Davis T. A., Alatalo K., Sarzi M., Bureau M., Young L. M., 2011, MNRAS, 417, 882

De Looze I. et al., 2010, A&A 518, L54

de Vaucouleurs G., 1959, Handbuch Phys., 53, 275

di Serego Alighieri S. et al., 2013, A&A, 552, 8

Draine B. T., Salpeter E. E., 1979, ApJ, 231, 438

Dressler A., 1980, ApJ, 236, 351

Driver S. P., Liske J., Cross N. J. G., De Propris R., Allen P. D., 2005, MNRAS, 360, 81

Driver S. P., Popescu C. C., Tuffs R. J., Liske J., Graham A. W., Allen P. D., de Propris R., 2007, MNRAS, 379, 1022

Driver S. P. et al., 2009, Astron. Geophys., 50, 12

Driver S. P. et al., 2011, MNRAS, 413, 971

Dunne L., Eales S., 2001, MNRAS, 327, 697

Eales S. et al., 2010, PASP, 122, 499

Ebneter K., Balick B., 1985, AJ, 90, 183

Ebneter K., Djorgovski S., Davis M., 1988, AJ, 95, 422

Ferrarotti A. S., Gail H.-P., 2006, A&A, 447, 553

Gail H., Zhukovska S., Hoppe P., Trieloff M., 2009, ApJ, 698, 1136

Gallazi A., Charlot S., Brinchmann J., White S. D. M., Tremonti C. A., 2005, MNRAS, 362, 41

Gomez H. L. et al., 2010, A&A, 518, 45

Gomez H. L. et al., 2012, MNRAS, 420, 3557

Goudfrooij P., de Jong T., Hansen L., Norgaard-Nielsen H. U., 1994, MNRAS, 271, 833

Grootes M. W. et al., 2013, ApJ, 766, 59

Gunawardhana M. L. P. et al., 2011, MNRAS, 415, 1647

Gunawardhana M. L. P. et al., 2013, MNRAS, 433, 2764

Hawarden T. G., Elson R. A. W., Longmore A. J., Tritton S. B., Corwin H. G., 1981, MNRAS, 196, 747

Hill D. T. et al., 2011, MNRAS, 412, 765

Hirashita H., 2000, PASJ, 52, 585

Hopkins A. M. et al., 2003, ApJ, 599, 971

Hopkins A. M. et al., 2013, MNRAS, 430, 2047

Hubble E., 1926, ApJ, 64, 321

Ibar E. et al., 2010, MNRAS, 409, 38

Itoh H., 1989, PASJ, 41, 853

Jarvis M. J. et al., 2010, MNRAS, 409, 92

Johnson B. D. et al., 2007, ApJS, 173, 377

Jura M., Kim D. W., Knapp G. R., Guhatthakurta P., 1987, ApJ, 312, L11

Kaviraj S. et al., 2007, ApJS, 173, 619

Kennicutt R. C., Jr, 1998, ARA&A, 36, 189

Knapp G. R., Guhathakurta P., Kim D. W., Jura M., 1989, ApJS, 70, 329

Kormendy J., Djorgovski S., 1989, ARA&A, 27, 235

Kormendy J., Stauffer J., 1987, in de Zeeuw T., ed., Proc. IAU Symp. 127, Structure and Dynamics of Elliptical Galaxies. Reidel, Dordrecht, p. 405

Lawrence A. et al., 2007, MNRAS, 379, 1599

Leeuw L. L., Sansom A. E., Robson E. I., Haas M., Kuno N., 2004, ApJ, 612, 837

Lewis I. et al., 2002, MNRAS, 334, 673

Liske J., Lemon D. J., Driver S. P., Cross N. J. G., Couch W. J., 2003, MNRAS, 344, 307

Liske J. et al., 2015, MNRAS, 452, 2087

McDonald I. et al., 2011a, ApJS, 193, 23

McDonald I. et al., 2011b, ApJ, 730, 71

McDonald I. et al., 2015, MNRAS, 448, 502

McKee C., 1989, in Allamadola L. J., Tielens A. G. G. M., eds, the Proceedinfgs of Interstellar Dust, IAU Symposium 135, Kluwer Academic Publishers, Dordrecht, p. 341

Masters K. L. et al., 2010, MNRAS, 405, 783

Mathews W. G., Brighenti F., 2003, ARA&A, 41, 191

Morrissey P. et al., 2005, ApJ, 619, L7

Mulchaey J. S., 2000, ARA&A, 38, 289

Nozawa T., Maeda K., Kozasa T., Tanaka M., Nomoto K., Umeda H., 2011, ApJ, 736, 45

Odenwald S., Newmark J., Smoot G., 1998, ApJ, 500, 554

Pandey S. K., Sahu D. K., Kembhavi A. K., McCarthy P. J., 2001, BASI, 29, 449

Pascale E. et al., 2011, MNRAS, 415, 911

Pilbratt G. et al., 2010, A&A, 518, 1

Pipino A., Kawata D., Gibson B. K., Matteucci F., 2005, A&A, 434, 553

Pipino A., Fan X. L., Matteucci F., Calura F., Silva L., Granato G., Maiolino R., 2011, A&A, 525, 61

Poggianti B. M. et al., 2009, ApJ, 697, 137

Poggianti B. M., De Lucia G., Varela J., Aragon-Salamanca A., Finn R., Desai V., von der Linden A., White S. D. M., 2010, MNRAS, 405, 995

Popescu C. C., Tuffs R. J., 2002, MNRAS, 335, 41

Popescu C. C., Tuffs R. J., Völk H. J., Pierini D., Madore B. F., 2002, ApJ, 567, 221

Ravindranath S. et al., 2004, ApJ, 604, 9

Rigby E. E. et al., 2011, MNRAS, 415, 2336

Rocca-Volmerange B., de Lapparent V., Seymour N., Fioc M., 2007, A&A, 475, 801

Rowlands K. et al., 2012, MNRAS, 419, 2545

Sadler E. M., Gerhard O. E., 1985, MNRAS, 214, 177

Sandage A., 1961, The Hubble Atlas of Galaxies. Carnegie Inst., Washington, DC

Savoy J., Welch G. A., Fich M., 2009, ApJ, 706, 21

Simard L., Mendel J. T., Patton D. R., Ellison S. L., McConnachie A. W., 2011, ApJS, 196, 11

Smith D. J. B. et al., 2011, MNRAS, 416, 857

Smith D. J. B. et al., 2012a, MNRAS, 427, 703

Smith M. W. L. et al., 2012b, ApJ, 748, 123

Sodrosk T. J., Odegard N., Arendt R. G., Dwek E., Weiland J. L., Hauser M. G., Kelsall T., 1997, ApJ, 480, 173

Sparks W. B., Wall J. V., Thorne D. J., Jorden P. R., van Breda I. G., Rudd P. J., Jorgensen H. E., 1985, MNRAS, 217, 87

Strateva I. et al., 2001, AJ, 122, 1861

Sutherland W., Saunders W., 1992, MNRAS, 259, 413

Tanaka M., Kodama T., Arimoto N., Okamura S., Umetsu K., Shimasaku K., Tanaka I., Yamada T., 2005, MNRAS, 362, 268

Taylor E. N. et al., 2015, MNRAS, 446, 2144

Temi P., Brighenti F., Mathews W. G., Bregman J. D., 2004, ApJS, 151, 237

Temi P., Brighenti F., Mathews W. G., 2007, ApJ, 660, 1215

Tojeiro R., Wilkins S., Heavens A. F., Panter B., Jimenez R., 2009, ApJS, 185, 1

van den Bergh S., 1976, ApJ, 206, 883

van den Bergh S., 1988, PASP, 100, 344

Virdee J. S. et al., 2013, MNRAS, 432, 609

Vlahakis C., Dunne L., Eales S., 2005, MNRAS, 364, 1253

Wijesinghe D. B. et al., 2011, MNRAS, 410, 2291

Wijesinghe D. B. et al., 2012, MNRAS, 423, 3679

Willmer C. et al., 2006, ApJ, 647, 853

Wolf C. et al., 2009, MNRAS, 393, 1302

Wright E. L. et al., 2010, AJ, 140, 1868

Wyder T. K. et al., 2007, ApJS, 173, 293

Young L. M. et al., 2014, MNRAS, 444, 3408

Zhukovska S., 2008, PhD thesis, Heidelberg Univ.

Zhukovska S., 2014, A&A, 562, 76

Zhukovska S., Gail J.-P., Trieloff M., 2008, A&A, 479, 453

APPENDIX A: SDSS POSTAGE-STAMP IMAGES OF *RED* GALAXIES AND THEIR SED FITS

Table A1. List of all red galaxies detected in HATLAS.

HATLAS_J080234_2_9-010205	i Tydeg)	$\log (\Sigma_5) $ (Mpc^{-2})	NUV- <i>r</i> (mag)	SDSS Dec	SDSS RA	SDSS OBJID	HATLAS IAU ID	Index
HATLAS-J084643-S-0103205 \$88848899354329167 \$\frac{1}{2}\frac{1}\frac{1}{2}\frac{1}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2	56.3	- 0.693	4.71	+2°12′8″37	8 ^h 54 ^m 50 ^s .22	587727944563687568	HATLAS-J085450.2+021207	1
HATLAS-J084362-003205 588848899354329167 8°43°4522 -0°32′4′59 5.28 -0.08	38.67	0.099	5.06	$+1^{\circ}20'57''.21$	9 ^h 23 ^m 42 ^s .94	587727942956220488	HATLAS-J092342.9+012056	2
HATLAS-J09021103-H021205 S8772603320494H8266 P\$21#10743 +2:12*4"44 4.81 -1.143	70.88	0.997	5.44	$+1^{\circ}50'35''.95$	8h46m43s64	587727944025964790	HATLAS-J084643.5+015034	3
66 HATLAS-J084305.0+010858 S872720632227008788 8h4379.515 +1*8*55759 4.66 0.052 7 HATLAS-J092344.2-001113 588848899895591029 9h2379.44:38 -0*11'14''06 4.72 -0.203 8 HATLAS-J084419.9-4015346 58772507451595552 8h4379.402 -0*12'43''98 4.67 -0.484 9 HATLAS-J08946-8-8-000019 587725074915995552 8h4379.402 -0*12'43''98 4.67 -0.323 11 HATLAS-J089418-8-000301 587727943489094075 8h479*1409 +1*2'14''4''65 5.43 -0.648 12 HATLAS-J098401-6-012716 58772594391218943 9h9"1188 +0*10*26''85 5.16 -0.644 13 HATLAS-J084620-6-01825 588848900428398906 8h46"32'24 +0*18'26''85 5.44 0.122 14 HATLAS-J08610-1-01716 58772794258898018 8h46"32'24 +0*18'26''85 5.44 0.122 15 HATLAS-J08940-1-005060 5877229425899418 8h46"32'84 +1*27'18''01 4.92 0.427 16 HATLAS-J084629-1-005053	66.09	-0.08	5.28	$-0^{\circ}32'4''.59$	8h43m45s22	588848899354329167	HATLAS-J084345.2-003205	4
HATLAS_J0902344_2-001113 S88848809805591029 9\(^{\)23\(^	82.92	-1.143	4.81		9 ^h 21 ^m 10 ^s .43	587726033304944826	HATLAS-J092110.3+021205	5
8 HATLAS_J08439.5+015346 58772603300610494 8 ^h 4173955 +1°53'44°57 4.7 -0.484 9 HATLAS_J085946.8+000019 58884889892966689 8 ^h 437"44°02 -0°12'43'98 4.67 0.035 11 HATLAS_J089413.9+012141 587727943489094075 8 ^h 47"14°09 +1°21'44'65 5.43 -0.648 12 HATLAS_J099018.18+000303 58772507491218943 9°19"1188 +0°0'28"79 5.16 -0.644 13 HATLAS_J086432.0+001825 588848900428398906 8 ^h 46"32'24 +0°18"26'85 5.44 0.122 14 HATLAS_J086402.0+001825 58884899357147464 9 ^h 9"52'4 +0°18"26'85 5.44 0.122 15 HATLAS_J08401-0+012716 58772794025890418 8 ^h 46"25'84 +1°29'11'11 4.92 -0.57 16 HATLAS_J084025.7+014913 58772794025890418 8 ^h 46"25'84 +1°29'18'11'11 4.92 -0.427 18 HATLAS_J09612.2-004200 58772597431826557 9 ^h 16"12'16 -0°41'88'08 4.8 -0.4 20 HATLAS_J099139.3-10'325	57.29	0.055	4.66	$+1^{\circ}8'55''.59$			HATLAS-J084305.0+010858	6
HATLAS_1085946.8000019 S88725974451595552 8h39m4692 -0°12′43″98 4.67 0.035	72.62	-0.203	4.72		,	588848899895591029	HATLAS-J092344.2-001113	7
10	34.33	-0.484	4.7			587726033300619494	HATLAS-J084139.5+015346	8
HATLAS-J084713.9+012141 \$87727943489094075 \$\$^h47^m14^0.09 +1°21′44′65 5.43 -0.648 HATLAS-J084632.0+001825 \$888489043839806 \$406°3224 +0°18′26′85 5.44 0.122 -1.013 HATLAS-J084632.0+001825 \$8884890357147464 9°0°524 -0°30′16′72 4.72 -1.013 -1.014 -1.0	73.62						HATLAS-J084343.9-001243	9
12	69.26							
13	35.45							
14 HATLAS-J090952.3—003019 588848899357147464 9hom-52*4 —0°30′16′72 4.72 —1.013 15 HATLAS-J08467.6+012716 587727943489880290 8h 54″753 +1°27′18′01 4.52 —0.57 16 HATLAS-J084625.7+014913 587727944025899418 8h 46″55′84 +1°49′11′11 4.92 —0.427 17 HATLAS-J091612.2—004200 587727942951043325 8h 36″10;04 +0°56′0′54 4.72 0.665 18 HATLAS-J091618.8 40°258060 +0°36′0′54 4.72 0.665 18 HATLAS-J091618.8 40°33.8 +0°41′58′08 4.8 -0.4 20 HATLAS-J094933.2+014340 587727943491387551 9h²1″880.0 +2°3′4″39 4.62 0.597 21 HATLAS-J09929.3+020356 587727943488569644 8h42″15;64 +1°16′5′77 4.67 0.221 24 HATLAS-J084215.5+011605 58772794388569644 8h42″15;64 +1°16′5′77 4.67 0.221 24 HATLAS-J084344+005705 587727692951829819 8h32″15;64 +1°16′5′77 4.67 <td>79.06</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	79.06							
15	61.57							
16	48.67							
HATLAS-J083610.1+005604 587727942951043325 8\(^{h}36\)m10:04 +0\(^{h}56'0';54 \) 4.72 0.665 18 HATLAS-J091612.2-004200 587725073918263574 9\(^{h}16\)m12:16 -0\(^{h}41'58'';08 \) 4.8 -0.4 19 HATLAS-J08158.0+023427 587727944566636774 9\(^{h}21\)m18:805 +2\(^{h}34'28';44 \) 5.1 -1.051 20 HATLAS-J084933.2+014340 587726032764600581 8\(^{h}49\)m33*08 +1\(^{h}43'40';89 \) 4.78 -0.227 14 HATLAS-J090752.4+012945 587727943491387551 9\(^{h}7\)m52;23 +1\(^{h}29'4';39 \) 4.62 0.597 22 HATLAS-J090929.3+020326 587727943485560644 8\(^{h}42\)m15:64 +1\(^{h}65',77 \) 4.67 0.221 44 HATLAS-J084630.9+015620 5877279434916461 8\(^{h}46\)m15:64 +1\(^{h}65',77 \) 4.67 0.221 44 HATLAS-J084324.4+005705 587727942951829819 8\(^{h}43\)m24:52 +0\(^{h}57',562 \) 5.87 -0.245 45 46 46 46 46 46 46	61.4					587727943489880290	HATLAS-J085407.6+012716	
18	53.09							
HATLAS-J092158.0+023427 587727944566636774 9\tilde{\text{P}}21\tilde{\text{m}}5805 +2\tilde{\text{9}}34\tilde{\text{2}}44 5.1 -1.051 HATLAS-J084933.2+014340 587726032764600581 8\tilde{\text{8}}49\tilde{\text{m}}3508 +1\tilde{\text{4}}23\tilde{\text{2}}40\tilde{\text{8}} -0.227 HATLAS-J090752.4+012945 58772794349187551 9\tilde{\text{P}}95223 +1\tilde{\text{9}}9\tilde{\text{4}}13\tilde{\text{9}} 4\tilde{\text{6}}2 0.597 22 HATLAS-J090929.3+020326 58772794349187551 9\tilde{\text{P}}95223 +1\tilde{\text{9}}9\tilde{\text{4}}13\tilde{\text{9}} 4\tilde{\text{6}}3 0.597 24 HATLAS-J084215.5+011605 587727943488569644 8\tilde{\text{4}}2\tilde{\text{m}}15\tilde{\text{6}} 4\tilde{\text{6}}11\tilde{\text{6}} 4\tilde{\text{6}}3 -0.706 25 HATLAS-J084324.4+005705 587727942951829819 8\tilde{\text{4}}3\tilde{\text{2}}\tilde{\text{6}} 4\tilde{\text{6}}3 -0.245 26 HATLAS-J084324.4+005705 587727942951829819 8\tilde{\text{4}}3\tilde{\text{2}}\tilde{\text{6}} 4\tilde{\text{6}}3 -0.245 27 HATLAS-J091735.1+001931 58884890431741238 9\tilde{\text{1}}17\tilde{\text{3}}\tilde{\text{4}} 4\tilde{\text{6}}3 -0.702 27 HATLAS-J091333.6+001508 5887030331043661 8\tilde{\text{4}}9\tilde{\text{9}}2\tilde{\text{3}} 4\tilde{\text{4}} 4\tilde{\text{6}}3 -0.702 28 HATLAS-J091333.6-001508 587726034344806843 9\tilde{\text{4}}17\tilde{\text{3}} 4\tilde{\text{4}} 4\tilde{\text{5}} -0.175 32 HATLAS-J091333.6-001508 587726032230154446 9\tilde{\text{1}}1\tilde{\text{4}} 4\tilde{\text{6}} -0.669 30 HATLAS-J092125.1-000381 587726032230154446 9\tilde{\text{1}} 4\tilde{\text{4}} 4\tilde{\text{6}} -0.669 31 HATLAS-J084043.4+010814 587726032226746692 8\tilde{\text{5}} 8\tilde{\text{5}} 4\tilde{\text{7}} 4\tilde{\text{7}} 4\tilde{\text{7}} -0.955137 3\tilde{\text{5}} 4\tilde{\text{7}} 4\tilde{\text{7}} -0.955137 3\tilde{\text{5}} 4\tilde{\text{6}} 4\tilde{\text{6}} -0.833 4\tild	53.86							
HATLAS-J084933.2+014340 587726032764600581 8\(^h\text{8}\)49"33\(^h\text{8}\)50 4.78 -0.227 HATLAS-J090752.4+012945 587727943491387551 \(^h\text{9}\)"52523 +1°29'44"39 4.62 0.597 HATLAS-J090929.3+020326 587727944028455086 \(^h\text{9}\)"9"2566 +2°3'25"69 5.5 -0.356 HATLAS-J084215.5+011605 587727944028455086 \(^h\text{9}\)"9"2566 +2°3'25"69 5.5 -0.356 HATLAS-J084630.9+015620 587727943488569644 \(^h\text{4}\)"16"6"77" 4.67 0.221 4 HATLAS-J084324.4+005705 587727942951829819 \(^h\text{8}\)"4"3"564 +1°16"5"7"7 4.67 0.221 5 HATLAS-J084324.4+005705 587727942951829819 \(^h\text{8}\)"4"3"4552 +0°57"5"62 5.87 -0.245 6 HATLAS-J084324.4+005705 587727942953402664 \(^h\text{8}\)"3"3"515 +1°7"41"34 5.02 0.702 7 HATLAS-J091735.1+001931 588848900431741238 \(^h\text{1}\)"3"515 +0°19'30"52 5.06 -0.175 8 HATLAS-J084929.1-005350 588010931360933190 \(^h\text{8}\)"49"29"3 -0°53'44"48 4.58 nan 9 HATLAS-J091333.6-001508 587725074454806843 \(^h\text{1}\)"3"3"404 -0°15"9"56 4.74 -0.996 31 HATLAS-J091333.6-001508 587725074454806843 \(^h\text{1}\)"3"4"3"40 -0°15"9"56 4.74 -0.996 32 HATLAS-J092232.9-005813 587729151452774559 \(^h\text{2}\)"3"3"11 -0°58'13"64 5.03 2.057 33 HATLAS-J08575.5-005517 587729151450022213 \(^h\text{1}\)"3"5"5"7"7 -0°55'17"26 4.97 0.825 34 HATLAS-J085311.5+005530 587727942953074975 \(^h\text{3}\)"3"4"3"6 +1°20'56"79 4.77 -1.367 35 HATLAS-J085434.3+010814 587726032226746692 \(^h\text{4}\)"4"4"3"4 -0°34'3"62 4.86 -0.987 36 HATLAS-J198404.3-010510 58772892878410 \(^h\text{1}\)"3"5"50"7 -0°55'17"26 4.97 0.825 37 HATLAS-J114923.8-010501 58772892851859149 \(^h\text{1}\)"3"5"50"7 -0°55'3"5"5"79 4.6 0.22 39 HATLAS-J112940.2-001522 587722982815891459 \(^h\text{1}\)"4"3"3"5 -1°18'0'26 4.6 -0.833 40 HATLAS-J1120613.6-003423 5878289078651366 11\)"4"5"5"6 -1°18'0'	56.76							
21 HATLAS-J090752.4+012945 587727943491387551 9h7m52:23 +1°29′44″.39 4.62 0.597 22 HATLAS-J090929.3+020326 58772794348556964 9h9m29756 +2°3′25″.60 5.5 -0.356 23 HATLAS-J084215.5+011605 587727943485569644 8h2m15.64 +1°16′5″.77 4.67 0.221 24 HATLAS-J084630.9+015620 587726033301143661 8h46m31f0 +1°56′21″.44 4.63 -0.706 25 HATLAS-J084324.4+005705 587727942951829819 8h43m24f52 +0°57′5″.62 5.87 -0.245 26 HATLAS-J085738.4+010741 587727942953402664 8h57m38f51 +1°7′41″.34 5.02 0.702 27 HATLAS-J091735.1+001931 588848900431741238 9h17m35f15 +0°19′30″.52 5.06 -0.175 28 HATLAS-J084929.1-005350 588010931369083190 8h49m29.3 -0°53′44″.48 4.58 nan 29 HATLAS-J085554.8-002832 588848899355639926 8h55m36f.99 -0°28″26″.59 6.41 0.669 30 HATLAS-J091143.6+012055 587725074454806843 9h13m34f04 -0°15′9″.56 4.74 -0.996 31 HATLAS-J091143.6+012055 587726032230154446 9h11m43;76 +1°20′56″.79 4.77 -1.367 32 HATLAS-J091143.6+012055 587726032230154446 9h11m43;76 +1°20′56″.79 4.77 -1.367 33 HATLAS-J09140403.4+010814 587726032226746692 8h2m33111 -0°58′13″.64 5.03 2.057 34 HATLAS-J084043.4+010814 587726032226746692 8h2m34 1.9°811″.83 4.78 0.632 35 HATLAS-J085311.5+005530 587727942952878410 8h3m34°.2 +1°8′11″.33 4.78 0.632 36 HATLAS-J085311.5+005530 58772950745650867523744 11h58m41°.95 -1°18′0′.26 4.6 -0.987 31 HATLAS-J085443.3+010539 587727942952878410 8h3m34°.2 +1°5′14″.79 4.6 0.22 39 HATLAS-J118940.2-001522 5877282952878410 8h3m34°.2 +1°5′18′0′.26 4.6 -0.833 40 HATLAS-J118955.6+013042 58772830749580699 11h52m50 -1°18′0′.26 4.6 -0.833 40 HATLAS-J118955.6+013042 58772830749580699 11h52m576 -1°18′0′.26 4.6 -0.834 40 HATLAS-J118955.6+013042 58772830749580699 11h52m576 +1°29′30′.38 4.76 -0.244 41 HATLAS-J120028.7-015138 5877229822788410 11h39m55786 +1°29′30′.38 4.76 -0.244 42 HATLAS-J120044.2-003226 58884889937648025 11h49m23856 +1°19′38′.87 5.21 -0.697 44 HATLAS-J120044.2-003226 58884889937648026 12h8m15544 -0°21′53′.46 4.6 0.002 44 HATLAS-J121815.4-002151 58772298227824126 12h18m15544 -0°21′53′.46 4.6 0.002 44 HATLAS-J121815.5-00445 58772298227824126	39.17							
22 HATLAS-J090929.3+020326 587727944028455086 9h9m29:56 +2°3′25″69 5.5 -0.356 23 HATLAS-J084215.5+011605 587727943488569644 8²42m1564 +1°16′5″77 4.67 0.221 24 HATLAS-J084630.9+015620 587727942951829819 8²43m150 +1°56′21″44 4.63 -0.706 25 HATLAS-J084324.4+005705 587727942951829819 8²43m24/52 +0°57′5″60 5.87 -0.245 26 HATLAS-J084324.4+005705 587727942953402664 8²57m388:51 +1°7′41″34 5.02 0.702 27 HATLAS-J091735.1+001931 588848900431741238 9³17m35;15 +0°19′30′52 5.06 -0.175 28 HATLAS-J085554.8+002832 588848899355639926 8³55m54/59 -0°28′26′59 6.41 0.669 30 HATLAS-J091333.6+01205 587725074454806843 9²11m376 +1°20′56′79 4.77 -1.367 31 HATLAS-J092329.9-005813 587729151450022213 8°57m50/7 +0°55′1″26 4.74 -0.996 32 HATLAS-J08544.5-000517 5877294	54.61							
23 HATLAS-J084215.5+011605 587727943488569644 8h42m15;64 +1°16/5'.77 4.67 0.221 24 HATLAS-J084630.9+015620 587726033301143661 8h46m3150 +1°56′21'.44 4.63 -0.706 25 HATLAS-J084732.4+005705 587727942951829819 8h43m2452 +0°57′5'.62 5.87 -0.245 26 HATLAS-J085738.4+010741 587727942953402664 8h57m385:51 +1°74′1'.34 5.02 0.702 27 HATLAS-J091735.1+001931 588848900431741238 9h17m35:15 +0°19′30'.52 5.06 -0.175 28 HATLAS-J091333.6+001508 5887126031369083190 8h40m2923 -0°53′44'.48 4.58 nan 29 HATLAS-J091333.6+001508 5887250314544606843 9h11m43;76 +1°20′56'79 4.74 -0.996 31 HATLAS-J09133.6+012055 587729151452774559 9h2m33;11 -0°58′13''.64 5.03 2.057 32 HATLAS-J0854043.4+010814 587726032226746692 8h40m43;12 +1°8′11''.83 4.78 0.632 35 HATLAS-J085411.5+005530	34.05							
24 HATLAS-J084630.9+015620 587726033301143661 8h46m31!0 +1°56′21″.44 4.63 -0.706 25 HATLAS-J084324.4+005705 587727942951829819 8h43m2452 +0°57′5″.62 5.87 -0.245 26 HATLAS-J085738.4+010741 587727942953402664 8h57m38*51 +1°7′41″.34 5.02 0.702 27 HATLAS-J091735.1+001931 588848900431741238 9h17m35*15 +0°19′30″.52 5.06 -0.175 28 HATLAS-J084929.1-005350 588010931369083190 8h49m29?.3 -0°53′44″.48 4.58 nan 29 HATLAS-J085554.8+002832 588848899355639926 8h55m54*59 -0°28′26″.59 6.41 0.669 30 HATLAS-J091333.6+001508 587725074454806843 9h13m34*04 -0°15′9′.56 4.74 -0.996 31 HATLAS-J091143.6+012055 587726032230154446 9h11m43*76 +1°20′56″.79 4.77 -1.367 32 HATLAS-J09232.9+005813 587729151452774559 9h2m33111 -0°58′13″.64 5.03 2.057 33 HATLAS-J092132.1+001041 587726032226746692 8h40m43*12 +1°8′11″83 4.78 0.632 35 HATLAS-J092125.1+000341 588848899895328909 9h21m25:09 -0°3′43″.62 4.86 -0.987 36 HATLAS-J085311.5+005530 587727942953074975 8h54m43:22 +1°5′45″.35 5.07 -0.578 38 HATLAS-J118541.9+011801 58772608902552 11h49m23554 -1°5′1″.79 4.6 0.22 4.60 -0.833 4.71 HATLAS-J11840.2+001522 58772830749584346 11h39m55;86 +1°30′43″.42 4.62 1.267 4.41 HATLAS-J113955.6+013042 58772830749584346 11h39m55;86 +1°30′43″.42 4.62 1.267 4.41 HATLAS-J112840.2+001522 58772830749584346 11h39m55;86 +1°30′43″.42 4.62 1.267 4.41 HATLAS-J1120028.7+01304 58724809307472 12h6m13;54 -0°34′23″.79 4.54 -0.44 4.61 HATLAS-J112815.4+002151 587724928215826662 12h8m15;44 -0°44′57″.05 4.78 -0.44 4.61 HATLAS-J112815.4+002151 5877298215826662 12h8m15;44 -0°44′57″.05 4.78 -0.44 4.61 HATLAS-J112815.4+002151 5877298215826662 12h8m15;44 -0°44′57″.05 4.78 -0.44 4.61 HATLAS-J1121815.4+002151 5877298215826662 12h8m15;44 -0°44′57″.05 4.78 -0.44 4.61 HATLAS-J1121815.4+002151 5877298215826662 12h8m15;44 -0°44′57″.05 4.78 -0.44 4.61 HAT	62.22							
25 HATLAS-J084324.4+005705 587727942951829819 8h43 ^m 24 ^c 52 +0°57′5″62 5.87 -0.245 26 HATLAS-J085738.4+010741 587727942953402664 8h57 ^m 38c;51 +1°7′41″34 5.02 0.702 27 HATLAS-J091735.1+001931 588848900431741238 9h17 ^m 35°15 +0°19′30″52 5.06 -0.175 28 HATLAS-J084929.1-005350 588010931369083190 8h49 ^m 29′3 -0°53′44″48 4.58 nan 29 HATLAS-J085554.8-002832 588848899355639926 8h55 ^m 34c*59 -0°28′26″59 6.41 0.669 30 HATLAS-J091333.6-001508 587725074454806843 9h13 ^m 34°04 -0°15′9″56 4.74 -0.996 31 HATLAS-J091143.6+012055 587726032230154446 9h11 ^m 43*76 +1°20′56″79 4.77 -1.367 32 HATLAS-J091143.6+012055 587726032230154446 9h11 ^m 43*76 +1°20′56″79 4.77 -1.367 33 HATLAS-J085750.5-005517 587729151450722213 8h57 ^m 50°7 -0°55′17″26 4.97 0.825 34 HATLAS-J084043.4+010814 587726032226746692 8h40 ^m 43°12 +1°8′11″83 4.78 0.632 35 HATLAS-J084043.3+010530 587727942952878410 8h53 ^m 1159 +0°55′34″59 5.94 -0.282 37 HATLAS-J08541.5+005530 587727942952878410 8h53 ^m 1159 +0°55′34″59 5.94 -0.282 39 HATLAS-J11840.2-001501 587748927628902552 1h49 ^m 23°54 +1°5′45″35 5.07 -0.578 38 HATLAS-J11840.2-001522 58772282815891459 12h18 ^m 40°23 -0°15′23″27 4.64 -0.417 41 HATLAS-J111840.2-001522 587728307494584336 11h39 ^m 55′86 +1°30′43″42 4.62 1.267 42 HATLAS-J113955.6+013042 587728307494584336 11h39 ^m 55′86 +1°30′43″42 4.62 1.267 44 HATLAS-J112840.2-001522 58772830749580699 11h52 ^m 57°70 +1°29′30″38 4.76 -0.244 43 HATLAS-J112840.2-001522 58782807495960699 11h52 ^m 57°70 +1°29′30″38 4.76 -0.244 44 HATLAS-J112840.2-001522 5878280749580699 11h52 ^m 57°70 +1°29′30″38 4.76 -0.244 45 HATLAS-J115256.8+012929 5877280749560699 11h52 ^m 57°70 +1°29′30″38 4.76 -0.244 46 HATLAS-J115448.1+000154 58772892815826062 12h8 ^m 44°22 -0°32′27″03 5.23 -0.717 45 HATLAS-J115448.1+000154 58772892178824126 12h18 ^m 15°44 -0°44′57″05 4.63 0.002 48 HATLAS-J115257.6+004210 58884890985651366 11h52 ^m 57°73 +0°42′9″72 5.17 -0.396	74.86							
26 HATLAS-J085738.4+010741 587727942953402664 8h57m38*51 +1°7'41'34 5.02 0.702 27 HATLAS-J091735.1+001931 588848900431741238 9h17m35*15 +0°19'30''52 5.06 -0.175 28 HATLAS-J084929.1-0055350 588010931369083190 8h49m29*3 -0°52'44''48 4.58 nan 29 HATLAS-J091333.6-001508 587725074454806843 9h13m34*04 -0°15'9'.56 4.74 -0.996 30 HATLAS-J091143.6+012055 587726032230154446 9h11m43*76 +1°20'56''.79 4.77 -1.367 31 HATLAS-J092232.9-005813 587729151450022213 8h57m50*7 -0°58'13''.64 5.03 2.057 33 HATLAS-J0825750.5-005517 587729151450022213 8h57m50*7 -0°58'13''.64 5.03 2.057 34 HATLAS-J08443.4+010814 587729151450022213 8h57m50*7 -0°55'17''.26 4.97 0.825 35 HATLAS-J085443.3+010539 587727942952878410 8h53m1159 +0°55'34''.59 5.94 -0.282 37 HATLAS-J114923.8-010501	80.33							
27 HATLAS-J091735.1+001931 588848900431741238 9h17m35\$15 +0°19′30″52 5.06 -0.175 28 HATLAS-J084929.1-005350 588010931369083190 8h49m29\$3 -0°53′44″48 4.58 nan 29 HATLAS-J085554.8-002832 588848899355639926 8h55m54\$59 -0°28′26″59 6.41 0.669 30 HATLAS-J091333.6-001508 587725074454806843 9h13m34804 -0°15′9″56 4.74 -0.996 31 HATLAS-J091143.6+012055 587726032230154446 9h11m43876 +1°20′56″79 4.77 -1.367 32 HATLAS-J092232.9-005813 587729151450022213 8h57m5087 -0°58′13″64 5.03 2.057 33 HATLAS-J084043.4+010814 587726032226746692 8h40m43812 +1°8′11′83 4.78 0.632 35 HATLAS-J084043.4+010814 58772942952878410 8h53m11°59 +0°55′34″62 4.86 -0.987 36 HATLAS-J085311.5+005530 587727942958744010 8h53m11°59 +0°55′34″59 5.94 -0.282 37 HATLAS-J114923.8-010501 58	37.25							
28 HATLAS-J084929.1-005350 588010931369083190 8h49m29\cdot 3 -0°53'44''48 4.58 nan 29 HATLAS-J085554.8-002832 588848899355639926 8h55m54\cdot 59 -0°28'26''.59 6.41 0.669 30 HATLAS-J091333.6-001508 587725074454806843 9h13m34\cdot 0 -0°15'9'.56 4.74 -0.996 31 HATLAS-J091143.6+012055 587726032230154446 9h11m48\cdot 6 +1°20'56'.79 4.77 -1.367 32 HATLAS-J09232.9-005813 587729151452774559 9h22m33\cdot 1 -0°58'13'.64 5.03 2.057 33 HATLAS-J085750.5-005517 587729151450022213 8h57m50\cdot 7 -0°58'13'.64 4.97 0.825 34 HATLAS-J084043.4+010814 587726032226746692 8h40m43\cdot 1 2 +1°8'11'83 4.78 0.632 35 HATLAS-J092125.1-000341 58884889985328909 9h21m25\cdot 0 -0°3'43''.62 4.86 -0.987 36 HATLAS-J085311.5+005530 587727942952878410 8h53m11\cdot 59 -0°3'43''.62 4.86 -0.987 37 HATLAS-J085443.3+010539 587727942953074975 8h54m43\cdot 2 +1°5'48''.35 5.07 -0.578 38 HATLAS-J114923.8-010501 587748927628902552 11h49m23\cdot 5 -1°18'0'.26 4.6 0.22 39 HATLAS-J112840.2-001522 587722982815891459 12h18m40\cdot 2 -0'18'0'.26 4.6 -0.833 40 HATLAS-J115955.6+013042 58772830749586069 11h52m55\cdot 0 -1'0'18'0'.26 4.6 -0.417 41 HATLAS-J112840.2-001522 587722982815891459 12h18m40\cdot 2 -0'15'23''.27 4.64 -0.417 41 HATLAS-J112063.6-003423 588848899376742632 12h8m4\cdot 2 -0'32''.27''.03 5.23 -0.717 45 HATLAS-J115448.1+000154 5877289281589169 12h8m4\cdot 2 -0'32''.27''.03 5.23 -0.717 46 HATLAS-J115448.1+000154 587748929240105086 11h54m4\cdot 2 -0'32''.27''.03 5.23 -0.717 47 HATLAS-J121815.4-002151 587722982815826062 12h8m15\cdot 4 -0'44'57''.05 4.78 0.602 48 HATLAS-J115257.6+004210 58884890985651366 11h52m57\cdot 3 -0'42''.972 5.17 -0.396	68.5							
29 HATLAS-J085554.8-002832 588848899355639926 8h55m54.59 -0°28′26″59 6.41 0.669 30 HATLAS-J091333.6-001508 587725074454806843 9h13m34.04 -0°15′9″.56 4.74 -0.996 31 HATLAS-J091143.6+012055 587726032230154446 9h11m43.76 +1°20′56″.79 4.77 -1.367 32 HATLAS-J092232.9-005813 587729151450022213 8h57m50°.7 -0°58′13″.64 5.03 2.057 33 HATLAS-J084043.4+010814 587726032226746692 8h40m43.12 +1°8′11″.83 4.78 0.632 34 HATLAS-J084043.4+010814 587726032226746692 8h40m43.12 +1°8′11″.83 4.78 0.632 35 HATLAS-J092125.1-000341 58884889989532890 9h21m2500 -0°3′43″.62 4.86 -0.987 36 HATLAS-J085311.5+005530 587727942952878410 8h53m1159 +0°55′34″.59 5.94 -0.282 37 HATLAS-J118423.8-010501 5877489276087523744 11h49m2354 -1°5′1″.79 4.6 0.22 39 HATLAS-J121844.9-011801 <	30.5	-0.175						
30 HATLAS-J091333.6-001508 587725074454806843 9 ^h 13 ^m 34 ^s 04 -0°15'9''.56 4.74 -0.996 31 HATLAS-J091143.6+012055 587726032230154446 9 ^h 11 ^m 43 ^s 76 +1°20'56''.79 4.77 -1.367 32 HATLAS-J092232.9-005813 587729151452774559 9 ^h 22 ^m 33 ^s 11 -0°58'13''.64 5.03 2.057 33 HATLAS-J085750.5-005517 587729151450022213 8 ^h 57 ^m 50 ^s 7 -0°55'17''.26 4.97 0.825 34 HATLAS-J084043.4+010814 587726032226746692 8 ^h 40 ^m 43 ^s 12 +1°8'11''83 4.78 0.632 35 HATLAS-J092125.1-000341 588848899895328909 9 ^h 21 ^m 25 ^s 09 -0°3'43''.62 4.86 -0.987 36 HATLAS-J085311.5+005530 587727942952878410 8 ^h 53 ^m 11 ^s 59 +0°55'34''.59 5.94 -0.282 37 HATLAS-J085443.3+010539 587727942953074975 8 ^h 54 ^m 43 ^s :22 +1°5'45''.35 5.07 -0.578 38 HATLAS-J114923.8-010501 58774892762802552 11 ^h 49 ^m 23 ^s 54 -1°5'14''.79 4.6 0.22 39 HATLAS-J115841.9-011801 587724650867523744 11 ^h 58 ^m 41 ^s 95 -1°18'0''.26 4.6 -0.833 40 HATLAS-J115840.2-001522 587722982815891459 12 ^h 18 ^m 40 ^s 23 -0°15'23''.27 4.64 -0.417 41 HATLAS-J113955.6+013042 587728307495860699 11 ^h 52 ^m 57 ^s 0 +1°29'30''38 4.76 -0.244 43 HATLAS-J120028.7-015138 587724650330849374 12 ^h 0 ^m 28 ^s 68 -1°51'38''87 5.21 -0.697 44 HATLAS-J120844.2-003226 58884889937642632 12 ^h 8 ^m 44 ^s 22 -0°32'27''03 5.23 -0.717 45 HATLAS-J115448.1+000154 5877489264062 12 ^h 6 ^m 13 ^s 54 -0°34'23'.79 4.54 -0.44 46 HATLAS-J121815.4-002151 58772298281580602 12 ^h 18 ^m 15 ^s 44 -0°21'53''.46 4.63 0.002 48 HATLAS-J121815.4-002151 58772298281858060 11 ^h 54 ^m 48 ^s 05 +0°1'54''.31 4.73 -0.281 47 HATLAS-J121815.4-002151 58772298281858060 11 ^h 54 ^m 48 ^s 05 +0°1'54''.31 4.73 -0.281 48 HATLAS-J121815.4-002151 58772298281858060 11 ^h 54 ^m 48 ^s 05 +0°1'54''.31 4.73 -0.281 49 HATLAS-J121815.4-002151 58772298281858060 11 ^h 52 ^m 57 ^s 73 +0°42'9''.72 5.17 -0.396	38.67							
31 HATLAS-J091143.6+012055 587726032230154446 9h11m43;76 +1°20′56″79 4.77 -1.367 32 HATLAS-J092232.9-005813 587729151452774559 9h22m33;11 -0°58′13″.64 5.03 2.057 33 HATLAS-J085750.5-005517 587729151450022213 8h57m50;7 -0°55′17″.26 4.97 0.825 34 HATLAS-J084043.4+010814 587726032226746692 8h40m43;12 +1°8′11″.83 4.78 0.632 35 HATLAS-J092125.1-000341 58884889985328909 9h21m25;09 -0°3′43″.62 4.86 -0.987 36 HATLAS-J085311.5+005530 587727942952878410 8h53m11;59 +0°55′34″.59 5.94 -0.282 37 HATLAS-J085443.3+010539 587727942953074975 8h54m43;22 +1°5′45″.35 5.07 -0.578 38 HATLAS-J114923.8-010501 5877289202552 11h49m23;54 -1°5′1″.79 4.6 0.22 39 HATLAS-J115841.9-011801 587724650867523744 11h58m41;95 -1°18′0′.26 4.6 -0.833 40 HATLAS-J121840.2-001522 587722982815891459 12h18m40;23 -0°15′23″.27 4.64 -0.417 41 HATLAS-J12064.2-001522 587728307494584346 11h39m55;86 +1°30′43″.42 4.62 1.267 42 HATLAS-J12028.7-015138 587724650867523744 11h52m57;0 +1°29′30″.38 4.76 -0.244 43 HATLAS-J120084.2-003226 588848899376742632 12h8m42;2 -0°32′27″.03 5.23 -0.717 45 HATLAS-J120844.2-003226 58884889376742632 12h8m42;2 -0°32′27″.03 5.23 -0.717 46 HATLAS-J120613.6-003423 58884889376742632 12h8m42;2 -0°32′27″.03 5.23 -0.717 47 HATLAS-J121840.2-00154 587748929240105086 11h54m48;05 +0°1′54″.31 4.73 -0.281 48 HATLAS-J121815.4-002151 587722982815826062 12h18m15;44 -0°21′53″.46 4.63 0.002 48 HATLAS-J121700.2-004455 58772298278824126 12h17m0;41 -0°44′57″.05 4.78 0.602 49 HATLAS-J115557.6+004210 58884890985651366 11h52m57;73 +0°42′9″.72 5.17 -0.396	46.49							
32 HATLAS-J092232.9-005813 587729151452774559 9h22m33*11 -0°58′13″.64 5.03 2.057 33 HATLAS-J085750.5-005517 587729151450022213 8h57m50?7 -0°55′17″.26 4.97 0.825 34 HATLAS-J084043.4+010814 587726032226746692 8h40m43*12 +1°8′11″.83 4.78 0.632 35 HATLAS-J092125.1-000341 588848899895328909 9h21m25*09 -0°3′43″.62 4.86 -0.987 36 HATLAS-J085311.5+005530 587727942952878410 8h53m11*59 +0°55′34″.59 5.94 -0.282 37 HATLAS-J085443.3+010539 58772492953074975 8h54m4*822 +1°5′45″.35 5.07 -0.578 38 HATLAS-J114923.8-010501 587748927628902552 11h49m23*54 -1°5′1″.79 4.6 0.22 39 HATLAS-J115841.9-011801 587722982815891459 12h18m40*23 -0°15′23″.27 4.64 -0.417 41 HATLAS-J113955.6+013042 587722882815891459 12h18m40*23 -0°15′23″.27 4.64 -0.417 42 HATLAS-J120643.2-003226	28.72							
33 HATLAS-J085750.5-005517 587729151450022213 8h57m5087 -0°55′17″26 4.97 0.825 34 HATLAS-J084043.4+010814 587726032226746692 8h40m43812 +1°8′11″83 4.78 0.632 35 HATLAS-J092125.1-000341 588848899895328909 9h21m25809 -0°3′43″62 4.86 -0.987 36 HATLAS-J085311.5+005530 587727942952878410 8h53m11859 +0°55′34″59 5.94 -0.282 37 HATLAS-J085443.3+010539 587727942953074975 8h54m43822 +1°5′45″35 5.07 -0.578 38 HATLAS-J114923.8-010501 587748927628902552 11h49m23854 -1°5′1″79 4.6 0.22 39 HATLAS-J115841.9-011801 587724650867523744 11h58m41895 -1°18′0″26 4.6 -0.833 40 HATLAS-J113955.6+013042 587722982815891459 12h18m40823 -0°15′23″27 4.64 -0.417 41 HATLAS-J120028.7-015138 587724650330849374 11h39m55*86 +1°30′43″42 4.62 1.267 44 HATLAS-J12044.2-003226 58	60.52							
34 HATLAS-J084043.4+010814 587726032226746692 8h40m43\frac{8}{12} +1°8'11''83 4.78 0.632 35 HATLAS-J092125.1-000341 588848899895328909 9h21m25\frac{8}{10}9 -0°3'43''.62 4.86 -0.987 36 HATLAS-J085311.5+005530 587727942952878410 8h53m11\frac{8}{15}9 +0°55'34''.59 5.94 -0.282 37 HATLAS-J085443.3+010539 587727942953074975 8h54m43\frac{8}{22} +1°5'45''.35 5.07 -0.578 38 HATLAS-J114923.8-010501 587748927628902552 11h49m23\frac{8}{54} -1°5'1''.79 4.6 0.22 39 HATLAS-J115841.9-011801 587724650867523744 11\h58m41\frac{8}{9}5 -1°18'0''.26 4.6 -0.833 40 HATLAS-J121840.2-001522 587722982815891459 12\h18m40\frac{8}{9}23 -0°15'23''.27 4.64 -0.417 41 HATLAS-J115256.8+012929 587728307495960699 11\h52m57\frac{8}{9}68 +1°30'43''.42 4.62 1.267 42 HATLAS-J120844.2-003226 58884889376742632 12\h8m44\frac{8}{2}2 -0°32'27''03 5.23 <td< td=""><td>29.99</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	29.99							
35 HATLAS-J092125.1-000341 588848899895328909 9h21m25\tilde{0}9 -0°3'43''.62 4.86 -0.987 36 HATLAS-J085311.5+005530 587727942952878410 8h53m11\tilde{0}59 +0°55'34''.59 5.94 -0.282 37 HATLAS-J085443.3+010539 587727942953074975 8h54m43\tilde{0}22 +1°5'45''.35 5.07 -0.578 38 HATLAS-J114923.8-010501 587748927628902552 11h49m23\tilde{0}54 -1°5'1''.79 4.6 0.22 39 HATLAS-J115841.9-011801 587724650867523744 11\tilde{0}58m41\tilde{0}95 -1°18'0''.26 4.6 -0.833 40 HATLAS-J121840.2-001522 587722982815891459 12\tilde{0}18\tilde{0}8''.23 -0°15'23''.27 4.64 -0.417 41 HATLAS-J113955.6+013042 587728307494584346 11\tilde{0}39\tilde{0}5\tilde{8}68 +1°30'43''.42 4.62 1.267 42 HATLAS-J120028.7-015138 587724650330849374 12\tilde{0}0\tilde{0}2\tilde{8}68 -1°51'38''.87 5.21 -0.697 44 HATLAS-J120844.2-003226 588848899376742632 12\tilde{0}8\tilde{0}4\tilde{2}2 -0°3	68.92							
36 HATLAS-J085311.5+005530 587727942952878410 8h53m11\cdot 59 +0°55'34"59 5.94 -0.282 37 HATLAS-J085443.3+010539 587727942953074975 8h54m43\cdot 22 +1°5'45".35 5.07 -0.578 38 HATLAS-J114923.8-010501 587748927628902552 11h49m23\cdot 54 -1°5'1".79 4.6 0.22 39 HATLAS-J115841.9-011801 587724650867523744 11h58m41\cdot 59 -1°18'0".26 4.6 -0.833 40 HATLAS-J121840.2-001522 587722982815891459 12h18m40\cdot 23 -0°15'23".27 4.64 -0.417 41 HATLAS-J113955.6+013042 587728307494584346 11h39m55\cdot 86 +1°30'43".42 4.62 1.267 42 HATLAS-J115256.8+012929 587728307495960699 11h52m57\cdot 0 +1°29'30".38 4.76 -0.244 43 HATLAS-J120084.2-003226 588848899376742632 12h8m4\cdot 22 -0°32'27".03 5.23 -0.717 45 HATLAS-J115448.1+000154 587748929240105086 11h54m48\cdot 805 +0°1'54".31 4.73 -0.281 47 </td <td>27.14</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	27.14							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	61.86							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70.27							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42.14							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75.72							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	81.55							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45.72							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	56.1							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	71.53							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	47.64							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	53.36							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	73.63							
48 HATLAS-J121700.2-004455 587722982278824126 12 ^h 17 ^m 0.41 -0°44′57″.05 4.78 0.602 49 HATLAS-J115257.6+004210 588848900985651366 11 ^h 52 ^m 57.873 +0°42′9″.72 5.17 -0.396	58.09							
49 HATLAS-J115257.6+004210 588848900985651366 $11^{\rm h}52^{\rm m}57^{\rm s}.73$ $+0^{\circ}42'9''.72$ 5.17 -0.396	62.11							
	75.37							
50 HATLAS_H2007X U_00775 5XXX/XX0001760607/2 12#0#2X\$X7 007/24//V7 5.01 0.212	76.79							
	56.89	0.612	5.81	$-0^{\circ}7'24''.87$	12 ^h 0 ^m 28.87	588848899912696073	HATLAS-J120028.9-000725	50
	71.6							
	58.0							
	65.02							
	60.34							
	39.33							
	56.33							
57 HATLAS-J121636.4 -005723 588848898840723542 $12^{h}16^{m}36^{s}.51$ $-0^{\circ}57'21''.43$ 5.19 -0.79	63.45	– 0.79	5.19	$-0^{\circ}57'21''.43$	12"16 ^m 36.51	588848898840723542	HATLAS-J121636.4—005723	57

Table A1 - continued

Index	HATLAS IAU ID	SDSS OBJID	SDSS RA	SDSS Dec	NUV-r (mag)	$\log{(\Sigma_5)} \\ (\mathrm{Mpc}^{-2})$	i (deg)	Type
58	HATLAS-J115122.7+000702	587748929239711890	11 ^h 51 ^m 22 ^s .64	+0°7′2″43	4.68	- 0.597	23.1	U
59	HATLAS-J121747.1+003553	587722983889502322	12 ^h 17 ^m 47 ^s .17	$+0^{\circ}35'51''.09$	4.86	-0.583	72.32	S
60	HATLAS-J120454.4+011402	588848901523832979	12 ^h 4 ^m 54 ^s .65	+1°14′2″.7	5.35	-0.172	26.47	E
61	HATLAS-J114750.4-013710	587725041701159100	11 ^h 47 ^m 50 ^s .38	$-1^{\circ}37'11''.31$	4.86	0.558	49.64	U
62	HATLAS-J114828.1+001825	588848900448256260	11 ^h 48 ^m 28 ^s .25	+0°18′22″94	4.7	nan	56.22	Е
63	HATLAS-J120212.5-014032	587724650331045959	12 ^h 2 ^m 12 ^s .24	-1°40′31″17	4.75	- 0.764	63.17	S
64	HATLAS-J114930.0-010511	587748927628902442	11 ^h 49 ^m 30 ^s .15	-1°5′11″46	5.58	0.277	39.47	Е
65	HATLAS-J115053.9-010830	587722981739069591	11 ^h 50 ^m 53 ^s .76 12 ^h 0 ^m 8 ^s .17	-1°8′29′.65	4.93	0.115	37.35	U
66 67	HATLAS-J120008.3-003950 HATLAS-J120048.1-011117	587748928166953080 587748927630147744	12 ^h 0 ^m 48.17 12 ^h 0 ^m 48.28	-0°39′48″21 -1°11′17″6	4.94 5.01	0.066 -0.461	60.54 47.56	U E
68	HATLAS-J113836.4—013713	587724650328424633	11 ^h 38 ^m 36 ^s .27	-1°11'17'.0' -1°37'14''.05	4.52	0.554	22.58	E
69	HATLAS-J1122026.8-011046	587722981742280865	12 ^h 20 ^m 26 ^s .87	$-1^{\circ}10'47''.28$	4.67	0.334	34.85	U
70	HATLAS-J122020.8-011040	587748929241612470	12 20 20.87 12 ^h 8 ^m 44 ^s .83	$+0^{\circ}12'21''.46$	4.98	-0.572	42.44	U
71	HATLAS-J121001.7-011516	587724650868768886	12 ^h 10 ^m 1.61	$-1^{\circ}15'17''.01$	5.68	-0.833	58.76	S
72	HATLAS-J113919.1-012012	587724650865361032	11 ^h 39 ^m 18 ^s 95	-1°20′18″19	5.05	-0.521	55.2	U
73	HATLAS-J114318.5-004414	587748928165118125	11 ^h 43 ^m 18 ^s .61	$-0^{\circ}44'17''.11$	4.53	-0.539	51.33	U
74	HATLAS-J120140.5+005138	587748930314567848	12 ^h 1 ^m 40 ^s .15	+0°51′38″71	5.01	- 0.644	61.67	Ü
75	HATLAS-J121823.6-013038	587725041704501421	12h18m23s51	-1°30′37″86	4.83	-0.167	59.44	U
76	HATLAS-J120535.5+010445	588848901523898501	12h5m35s33	+1°4′44″34	5.53	0.479	49.35	U
77	HATLAS-J114526.8-002708	588848899374186712	11h45m26s58	$-0^{\circ}27'11''.56$	5.32	-0.914	29.57	E
78	HATLAS-J114849.6-005941	588848898837708980	11 ^h 48 ^m 49 ^s .57	$-0^{\circ}59'40''.53$	4.88	-0.6	53.97	U
79	HATLAS-J114609.3-010205	588848898837446812	11 ^h 46 ^m 9 ^s .18	-1°2′6″83	4.88	0.585	63.8	S
80	HATLAS-J120246.1+002207	588848900449829017	12 ^h 2 ^m 46 ^s .51	+0°22′3″61	6.64	-0.207	53.62	S
81	HATLAS-J120406.6+001411	588848900449960274	12 ^h 4 ^m 6 ^s .52	$+0^{\circ}14'9''.77$	4.98	-0.117	72.22	S
82	HATLAS-J145112.4-002724	588848899394568318	14 ^h 51 ^m 12 ^s .4	$-0^{\circ}27'24''.76$	4.71	0.187	75.01	S
83	HATLAS-J143224.5+005041	587722984441118986	14 ^h 32 ^m 24 ^s .62	$+0^{\circ}50'41''.14$	4.9	-0.133	86.81	S
84	HATLAS-J141501.6-005136	588848898853699826	14 ^h 15 ^m 1.74	$-0^{\circ}51'36''.46$	5.33	-0.412	82.77	S
85	HATLAS-J143143.3-011418	587729972324073647	14 ^h 31 ^m 43 ^s 38	-1°14′19″.78	4.84	- 1.137	77.59	S
86	HATLAS-J143801.4-001217	588848899929997456	14 ^h 38 ^m 1.53	-0°12′18″13	4.65	- 0.479	69.75	S
87	HATLAS-J141126.2+011711	587726014009573415	14 ^h 11 ^m 26 ^s .23 14 ^h 20 ^m 4 ^s .67	+1°17′11″47	5.55	0.777	19.37	Е
88 89	HATLAS-J142004.5-001852 HATLAS-J141611.6+015204	587722982829130030 587726032263446738	14 ^h 20 ^m 4.67 14 ^h 16 ^m 11.83	$-0^{\circ}18'53''.29$ $+1^{\circ}52'4''.72$	4.6 5.5	0.053 -0.575	33.78 62.73	U U
90	HATLAS-J141011.0+013204 HATLAS-J143012.5+001400	588848900465951018	14 10 11.85 14 ^h 30 ^m 12 ^s 5	$+1^{\circ}324.72$ $+0^{\circ}14'2''.81$	3.3 4.81	0.855	58.65	S
90 91	HATLAS-J144810.4+012203	587726014550442257	14 30 12.3 14 ^h 48 ^m 10 ^s .5	+0 14 2.81 +1°22′1″93	4.81	- 0.393	68.64	S
92	HATLAS-J14446.6-000417	588848899927441586	14 ^h 14 ^m 46 ^s .6	$-0^{\circ}4'17''.37$	5.26	-0.373 -0.764	59.98	S
93	HATLAS-J142926.0+012315	587726031728017631	14 ^h 29 ^m 26 ^s .06	+1°23′16′′62	4.56	- 0.658	57.74	S
94	HATLAS-J141727.9+002857	587722983902609591	14 ^h 17 ^m 27 ^s .97	$+0^{\circ}28'57''.99$	5.19	0.713	40.76	E
95	HATLAS-J141310.5+014618	587726014546641064	14 ^h 13 ^m 10 ^s .5	+1°46′17″11	5.57	2.006	44.1	E
96	HATLAS-J144224.0+005430	587722984442232848	14h42m23s61	+0°54′28″.79	5.01	-0.433	41.32	E
97	HATLAS-J142113.4-002756	588848899391226106	14h21m13s45	$-0^{\circ}27'59''.63$	4.94	-0.479	32.78	E
98	HATLAS-J142015.8+010252	587722984439808094	14 ^h 20 ^m 15 ^s .91	+1°2′51″5	4.81	0.17	65.57	S
99	HATLAS-J141539.0-002649	588848899390636315	14 ^h 15 ^m 39 ^s .07	$-0^{\circ}26'51\rlap.{''}7$	4.85	-0.098	57.74	U
100	HATLAS-J142429.3+015829	587726015084757174	14 ^h 24 ^m 29 ^s .34	+1°58′31″.01	4.82	0.175	74.27	S
101	HATLAS-J142856.4+002130	588848900465819923	14 ^h 28 ^m 56 ^s .56	$+0^{\circ}21'32''.39$	5.67	-0.635	25.6	E
102	HATLAS-J142613.8-011122	587729972323483911	14 ^h 26 ^m 13 ^s .74	$-1^{\circ}11'24''.01$	5.29	0.195	39.73	E
103	HATLAS-J143052.0+011836	587726031728214195	14 ^h 30 ^m 52 ^s .04	+1°18′34″61	4.97	-0.672	71.24	S
104	HATLAS-J143731.7+000341	587722983367901556	14 ^h 37 ^m 31 ^s .92	+0°3′39″.01	4.63	- 0.87	72.71	S
105	HATLAS-J144532.2-010921	587729972325646543	14 ^h 45 ^m 32 ^s .17	-1°9′20″.9	4.75	- 0.757	79.16	S
106	HATLAS-J144346.1+004306	588848901004329189	14 ^h 43 ^m 46 ^s .24	+0°43′4″43	4.59	- 0.767	61.13	U
107	HATLAS-J140753.5-001931	587722982827819184	14 ^h 7 ^m 53 ^s 34	-0°19′27″.74	4.5	- 0.396	27.39	Е
108 109	HATLAS-J142831.0+014541 HATLAS-J144718.4-010621	587726032264822925 587729972325843159	14 ^h 28 ^m 31 ^s .19 14 ^h 47 ^m 18 ^s .4	+1°45′40″.78 -1°6′18″.83	5.53 4.63	- 0.599 0.055	35.48 48.6	E
1109	HATLAS-J144/18.4-010621 HATLAS-J142517.4-010304	587722981755977936	14 ^h 25 ^m 17 ^s .4	-1°6′18′83 -1°3′6″24	5.18	0.055	48.6 33.86	E U
111	HATLAS-J142437.5-013819	587729971786481829	14 ^h 24 ^m 37 ^s .35	-1°38′20″15	5.18	0.139	31.13	E
111	HATLAS-J145123.6+000025	587722983369474066	14 24 37.33 14 ^h 51 ^m 23 ^s .42	-1° 38 20.13 $+0^{\circ}$ 0'25".48	3.4 4.94	- 0.627	44.69	E
113	HATLAS-J141353.0-004527	587722982291603595	14 31 23.42 14 ^h 13 ^m 53 ^s .48	$-0^{\circ}45'27''.18$	5.07	0.484	22.97	E
114	HATLAS-J141325.9-004923	587722982291003393	14 ^h 13 ^m 25 ^s .85	$-0^{\circ}49'23''.89$	5.12	0.464	43.99	E
115	HATLAS-J145216.9+010631	587726014014030018	14 ^h 52 ^m 16 ^s .66	$+1^{\circ}6'34''.3$	5.01	-0.721	32.7	E
116	HATLAS-J142512.3-001858	587722982829719819	14 ^h 25 ^m 12 ^s .49	-0°19′0′′67	4.92	-0.287	47.84	E
117	HATLAS-J141516.7-003941	587722982291734808	14 ^h 15 ^m 16 ^s .49	-0°39′40″61	5.29	-0.088	70.96	S

 Table A2.
 MAGPHYS output parameters for the red galaxies having WISE observed photometric data.

Index	HATLAS IAU ID	$\log{(M_*/{ m M}_{\odot})}$	log (SFR) $(M_{\bigodot} yr^{-1})$	$\log(SFR/M_*)$ (yr^{-1})	$\log{(M_{\rm D}/{ m M}_{\odot})}$	$\log{(M_{\rm D}/M_*)}$	f_{μ}
1	HATLAS-J114923.8-010501	10.92	- 0.09	- 11.01	7.51	- 3.41	0.72
2	HATLAS-J115841.9-011801	10.98	0.32	-10.66	8.08	-2.89	0.78
3	HATLAS-J121840.2-001522	11.29	-0.21	-11.5	7.77	-3.52	0.78
4	HATLAS-J113955.6+013042	11.2	-0.04	-11.25	7.82	-3.38	0.67
5	HATLAS-J115256.8+012929	10.61	-0.25	-10.86	7.97	-2.64	0.78
6	HATLAS-J120028.7-015138	10.95	-0.79	-11.75	7.87	-3.08	0.83
7	HATLAS-J120844.2-003226	11.05	-1.04	-12.08	7.39	-3.65	0.82
8	HATLAS-J120613.6-003423	10.59	0.02	-10.57	7.35	-3.24	0.68
9	HATLAS-J115448.1+000154	11.02	-0.35	-11.37	8.11	-2.9	0.78
10	HATLAS-J121815.4-002151	10.51	-2.67	-13.18	7.32	-3.18	0.98
11	HATLAS-J121700.2-004455	10.68	-0.84	-11.52	7.86	-2.83	0.74
12	HATLAS-J115257.6+004210	10.85	-0.62	-11.47	7.82	-3.03	0.8
13	HATLAS-J120028.9-000725	11.35	-0.87	-12.22	7.86	-3.49	0.8
14	HATLAS-J115754.8+001333	10.55	-0.34	-10.89	7.44	-3.11	0.86
15	HATLAS-J115442.0-005447	10.66	-2.27	-12.93	8.28	-2.37	0.85
16	HATLAS-J114547.3-011709	10.68	-0.23	-10.91	8.05	-2.63	0.72
17	HATLAS-J115525.5-002039	11.11	0.2	-10.91	7.67	-3.44	0.74
18	HATLAS-J114837.1-011246	11.52	-1.37	-12.89	8.26	-3.27	0.86
19	HATLAS-J115827.6+004304	10.92	-2.85	-13.77	6.65	-4.26	0.85
20	HATLAS-J121636.4-005723	10.9	-1.41	-12.31	7.1	-3.8	0.84
21	HATLAS-J115122.7+000702	10.88	-0.63	- 11.51	6.87	-4.01	0.64
22	HATLAS-J121747.1+003553	10.71	-0.46	- 11.17	7.3	-3.41	0.76
23	HATLAS-J120454.4+011402	11.02	- 1.03	- 12.05	7.41	-3.61	0.8
24	HATLAS-J114750.4-013710	10.71	- 0.95	- 11.66	7.16	-3.55	0.94
25	HATLAS-J114828.1+001825	11.14	-0.16	-11.3	7.78	-3.36	0.99
26	HATLAS-J120212.5-014032	10.95	-0.54	- 11.49	8.07	-2.88	0.83
27	HATLAS-J114930.0-010511	10.81	- 1.89	- 12.69	6.46	-4.35	0.82
28	HATLAS-J115053.9-010830	10.73	- 0.64	- 11.37	8.2	-2.53	0.75
29	HATLAS-J120008.3-003950	9.6	-1.77	- 11.36	5.91	- 3.69	0.16
30	HATLAS-J120048.1-011117	10.83	-0.44	- 11.27	8.06	-2.77	0.69
31	HATLAS-J113836.4-013713	10.89	- 0.59	-11.48	6.87	-4.02	0.68
32	HATLAS-J122026.8-011046	10.68	- 1.45	- 12.13 - 12.72	7.56	-3.13	0.85
33 34	HATLAS J121001.7-011516	10.29 10.5	- 2.43 - 1.19	- 12.72 - 11.69	7.32 7.36	-2.97 -3.15	0.85 0.84
35	HATLAS-J113919.1-012012	10.54	- 1.19 - 0.69	- 11.09 - 11.23	7.30	- 3.13 - 3.34	
36	HATLAS-J114318.5-004414	10.54	- 0.65	- 11.23 - 11.58	7.41	-3.54 -3.53	0.71 0.91
37	HATLAS-J120140.5+005138 HATLAS-J121823.6-013038	10.57	- 0.65 - 1.14	- 11.38 - 11.72	6.95	- 3.53 - 3.63	0.91
38	HATLAS-J121625.0-015056 HATLAS-J120535.5+010445	10.75	- 1.14 - 1.54	- 11.72 - 12.29	7.36	- 3.39	0.84
39	HATLAS-J120333.3+010443 HATLAS-J114526.8-002708	10.75	- 1.34 - 1.13	- 12.29 - 12.11	7.30	- 3.39 - 3.78	0.99
40	HATLAS-J114849.6-005941	11.25	- 1.13 - 0.43	- 12.11 - 11.68	7.54	- 3.78 - 3.71	1.0
41	HATLAS-J114649.0-003941 HATLAS-J114609.3-010205	10.66	- 0.43 - 0.89	- 11.55	7.57	-3.71 -3.1	0.87
42	HATLAS-J114009.5-010203	11.27	- 0.89 - 1.42	- 11.55 - 12.69	7.66	- 3.61	0.87
43	HATLAS-J120406.6+001411	10.92	-0.61	- 11.53	6.93	- 3.99	0.81
44	HATLAS-J120400.0+001411	10.63	-0.44	- 11.07	7.68	-2.95	0.75
45	HATLAS-J143224.5+005041	11.29	0.03	- 11.26	8.38	- 2.91	0.79
46	HATLAS-J141501.6-005136	10.61	- 0.79	-11.4	7.37	-3.24	0.81
47	HATLAS-J143143.3-011418	10.6	-0.43	-11.02	6.98	-3.61	0.73
48	HATLAS-J143801.4-001217	10.95	0.02	- 10.93	8.11	-2.84	0.79
49	HATLAS-J141126.2+011711	11.03	- 1.51	- 12.54	6.87	-4.16	0.88
50	HATLAS-J142004.5-001852	10.36	-0.21	- 10.57	7.05	-3.31	0.71
51	HATLAS-J141611.6+015204	11.03	-1.88	- 12.91	8.12	- 2.91	0.85
52	HATLAS-J143012.5+001400	10.69	-0.69	-11.38	7.37	-3.32	0.76
53	HATLAS-J144810.4+012203	9.89	- 0.96	- 10.85	6.56	-3.33	0.72
54	HATLAS-J142926.0+012315	11.09	-0.17	- 11.27	7.88	- 3.21	0.71
55	HATLAS-J141727.9+002857	10.97	-1.35	- 12.31	7.15	-3.81	0.96
56	HATLAS-J141310.5+014618	11.03	-0.83	- 11.86	6.96	-4.06	0.72
57	HATLAS-J144224.0+005430	10.95	- 0.84	- 11.79	6.85	- 4.1	0.82
58	HATLAS-J142113.4-002756	11.09	-0.29	-11.38	7.53	-3.56	0.83
59	HATLAS-J142015.8+010252	10.9	- 0.06	- 10.96	7.52	-3.38	0.77
					· · · · -		/

Table A2 - continued

Index	HATLAS IAU ID	$\log{(M_*/{ m M}_{\odot})}$	$\log (SFR) \\ [M_{\bigodot} yr^{-1}]$	$\log\left(\text{SFR}/M_*\right)$ [yr $^{-1}$]	$\log{(M_{\rm D}/{ m M}_{\odot})}$	$\log{(M_{\rm D}/M_*)}$	f_{μ}
61	HATLAS-J142429.3+015829	10.19	- 0.75	- 10.94	6.78	- 3.4	0.76
62	HATLAS-J142856.4+002130	11.45	-0.39	-11.83	7.88	-3.57	0.78
63	HATLAS-J142613.8-011122	10.87	-0.78	-11.65	6.93	-3.95	0.8
64	HATLAS-J143052.0+011836	11.19	-0.05	-11.24	8.01	-3.18	0.74
65	HATLAS-J143731.7+000341	10.59	-0.43	-11.02	7.19	-3.4	0.73
66	HATLAS-J144532.2-010921	10.38	-1.19	-11.57	7.32	-3.05	0.96
67	HATLAS-J144346.1+004306	10.25	-0.65	-10.89	6.77	-3.47	0.64
68	HATLAS-J140753.5-001931	10.91	-0.64	-11.55	6.92	-3.98	0.75
69	HATLAS-J142831.0+014541	11.06	-1.06	-12.11	7.5	-3.56	0.88
70	HATLAS-J144718.4-010621	11.2	-0.08	-11.28	7.51	-3.68	0.88
71	HATLAS-J142517.4-010304	11.06	-0.55	-11.61	7.65	-3.41	0.84
72	HATLAS-J142437.5-013819	11.0	-0.86	-11.86	7.28	-3.72	0.76
73	HATLAS-J145123.6+000025	10.1	-1.39	-11.49	6.04	-4.06	0.69
74	HATLAS-J141353.0-004527	11.17	-0.64	-11.81	7.86	-3.31	0.85
75	HATLAS-J141325.9-004923	10.87	-0.73	-11.6	7.94	-2.93	0.78
76	HATLAS-J145216.9+010631	11.06	-0.4	-11.46	7.2	-3.86	0.77
77	HATLAS-J142512.3-001858	10.95	-1.16	-12.11	7.65	-3.3	0.86
78	HATLAS-J141516.7-003941	10.93	-1.44	-12.37	7.65	-3.28	1.0

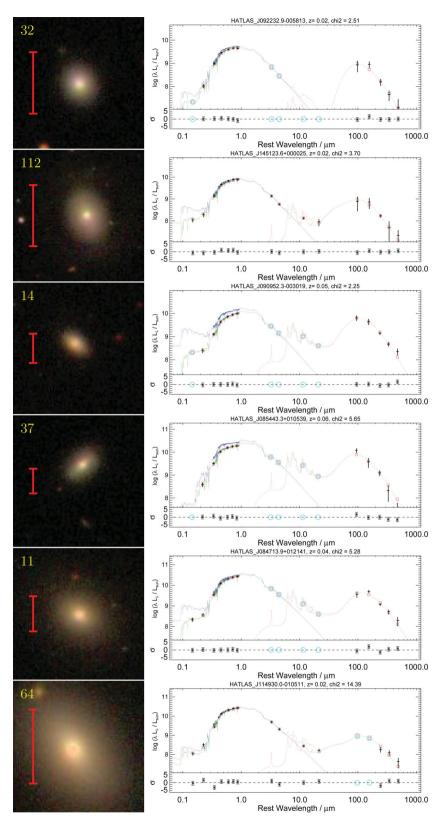


Figure A1. Gallery of optically red galaxies detected in H-ATLAS. The galaxies are sorted according to their optical morphological classification (elliptical, disc-like/edge-on and uncertain). The colour of the 10 kpc scale bar corresponds to the classification: elliptical-red, disc-like - blue and uncertain are green. Within each group the galaxies are sorted according to increasing stellar mass. We show for each galaxy the optical image (left) from SDSS (http://cas.sdss.org/dr7/en/tools/chart/list.asp) and the full UV to submm SED including the best-fitting MAGPHYS SED (right). The identification number in the top left corresponds to the row-number in Table A1.

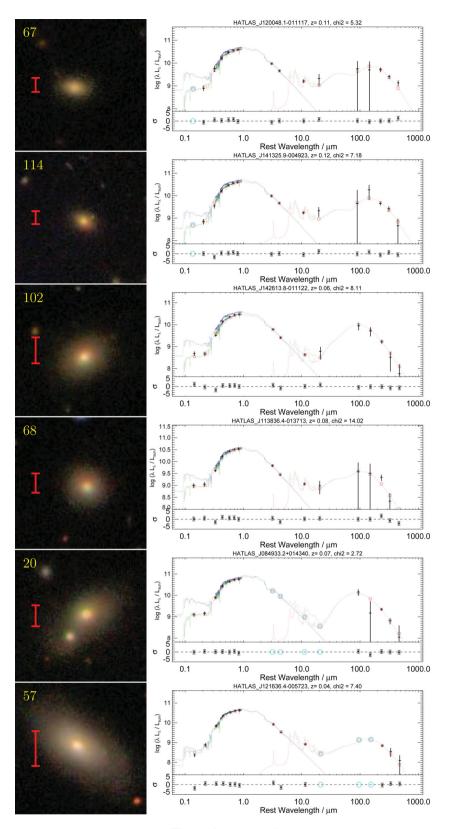


Figure A1 - continued

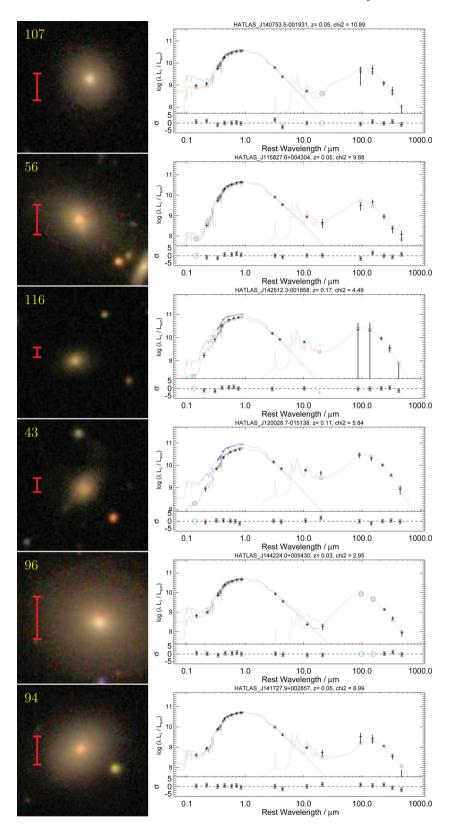


Figure A1 - continued



Figure A1 - continued

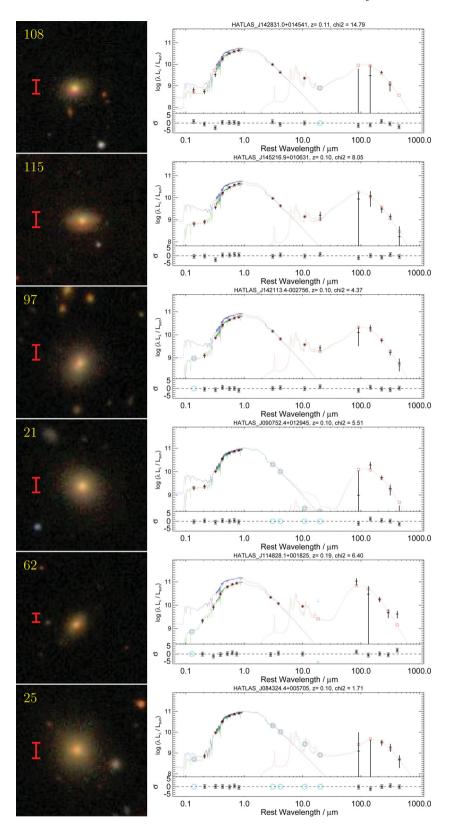


Figure A1 - continued

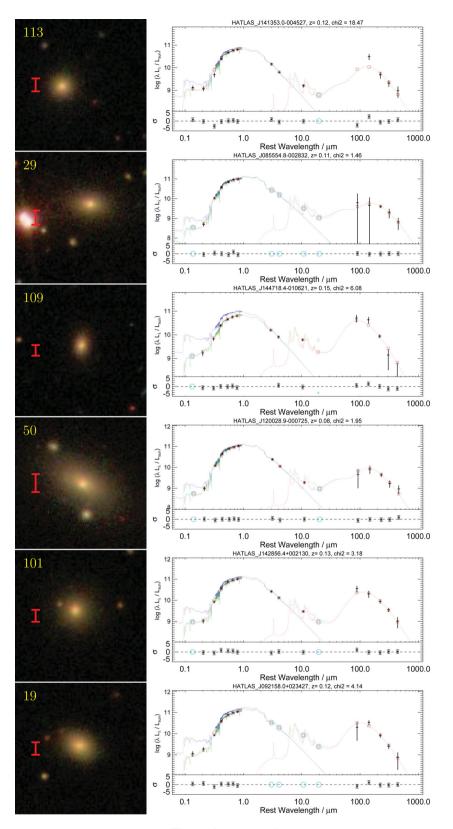


Figure A1 - continued

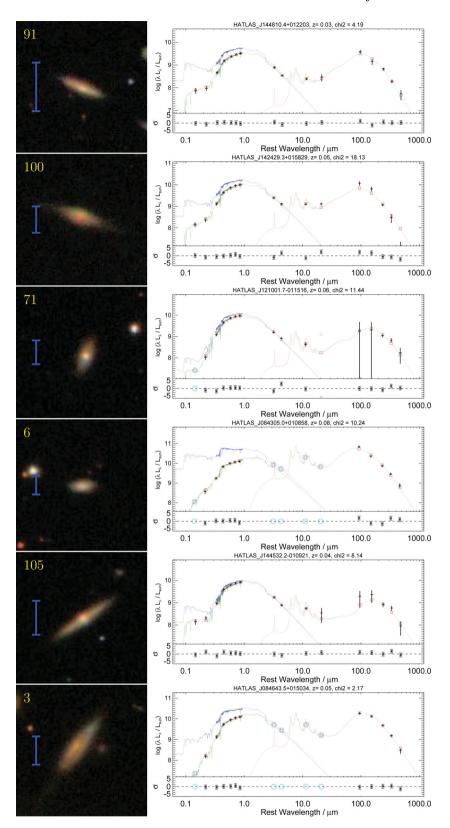


Figure A1 - continued

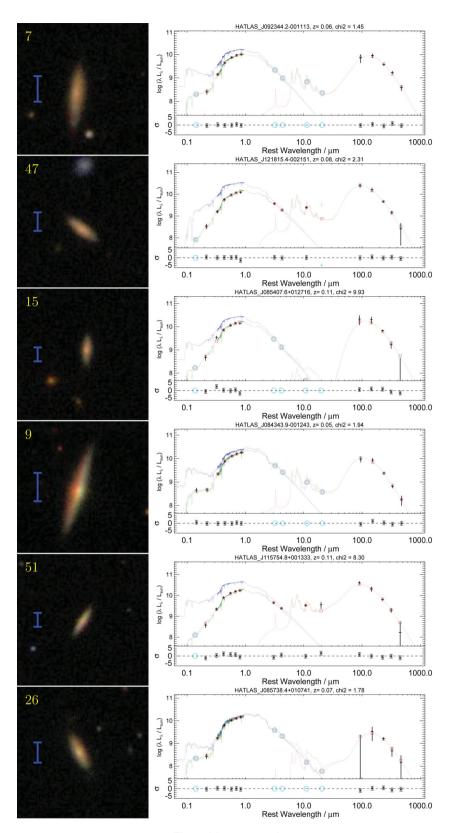


Figure A1 - continued

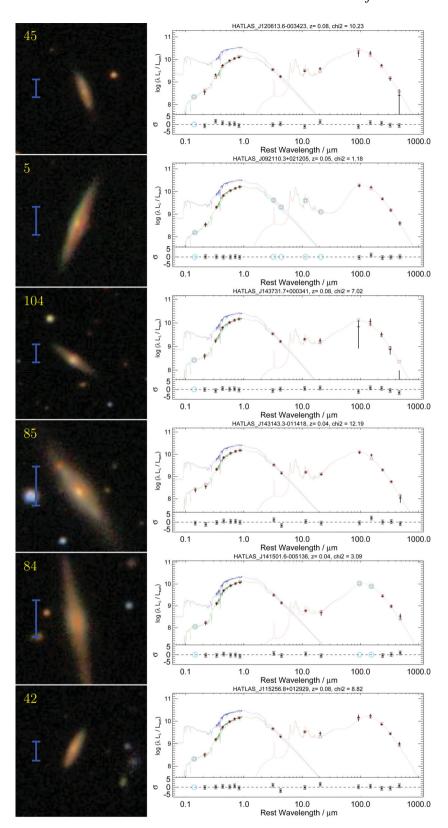


Figure A1 - continued

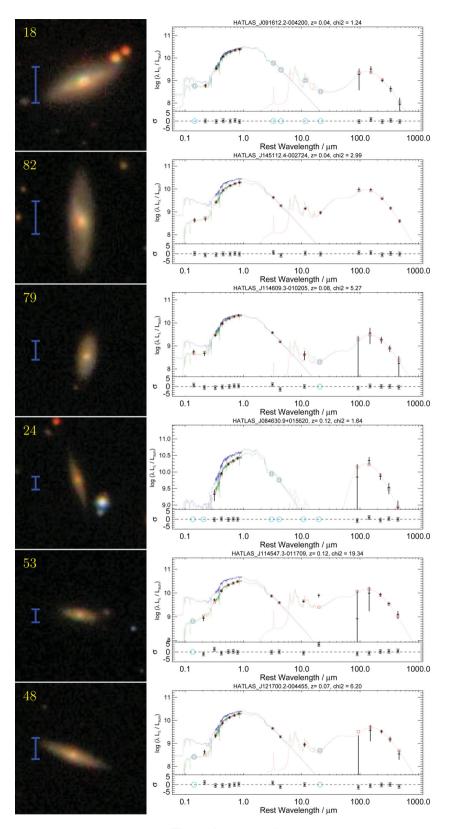


Figure A1 - continued

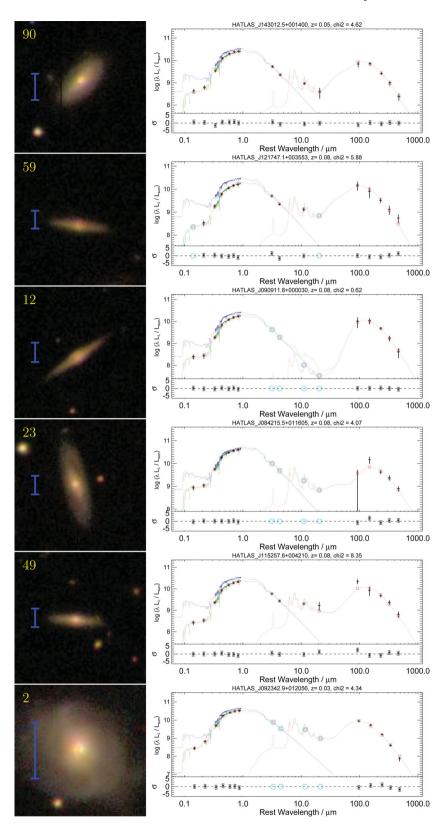


Figure A1 - continued

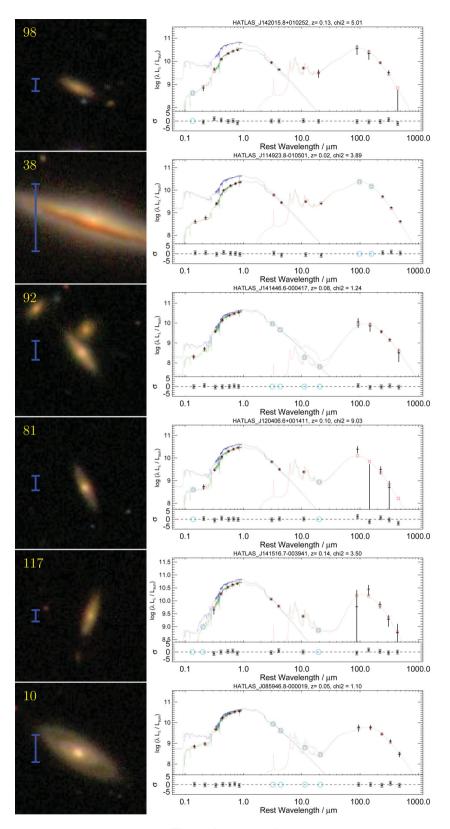


Figure A1 - continued

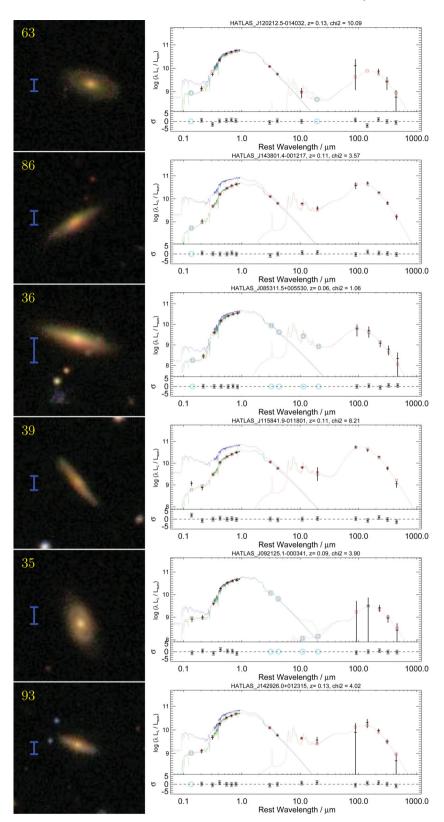


Figure A1 - continued

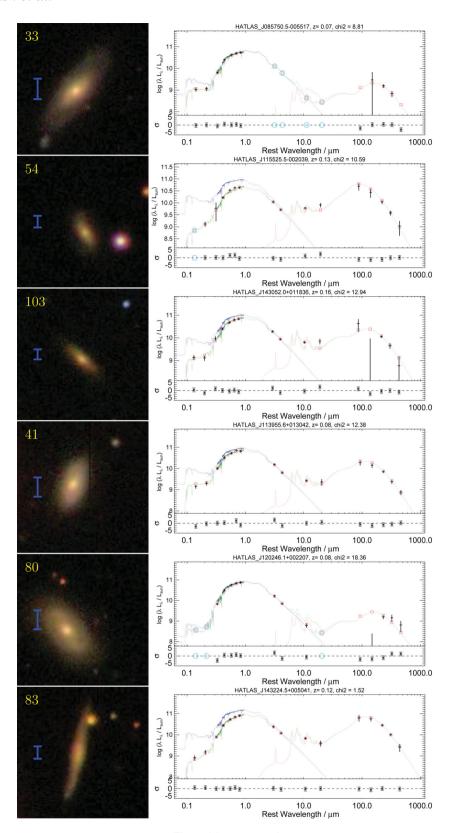


Figure A1 - continued

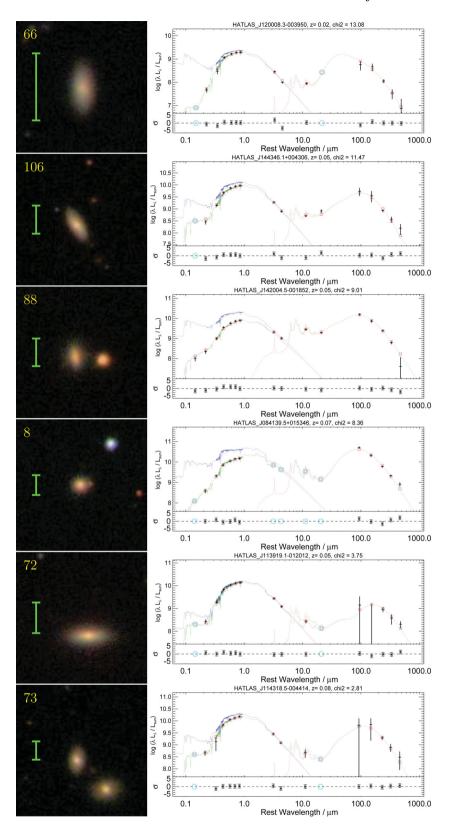


Figure A1 - continued

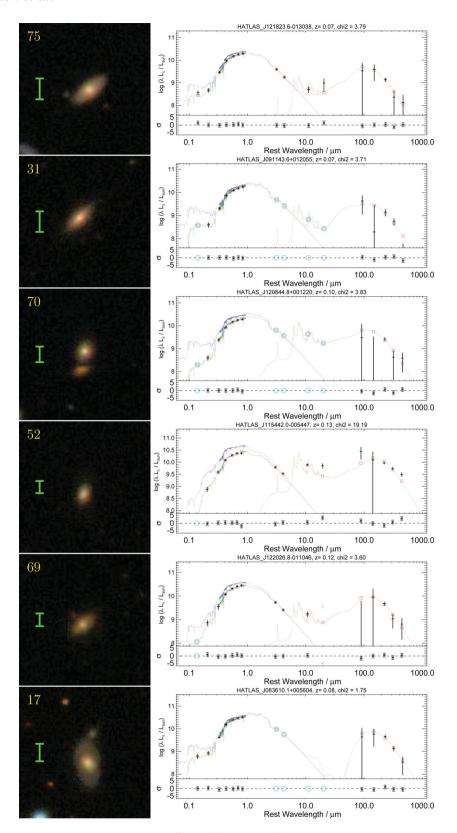


Figure A1 - continued

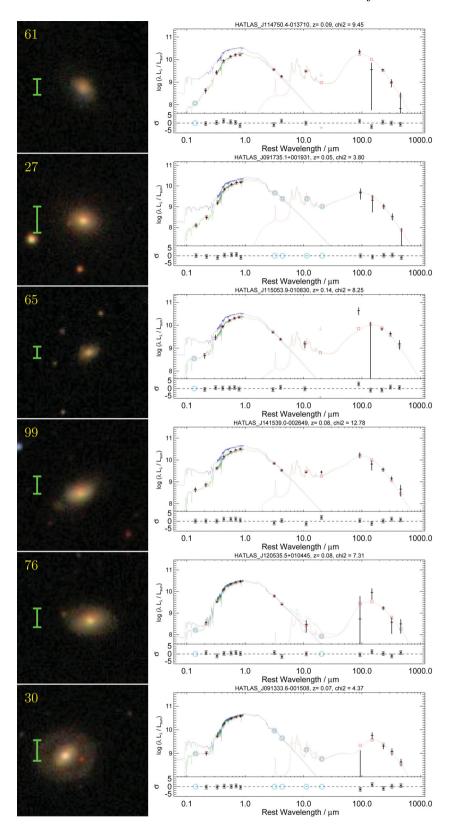


Figure A1 - continued

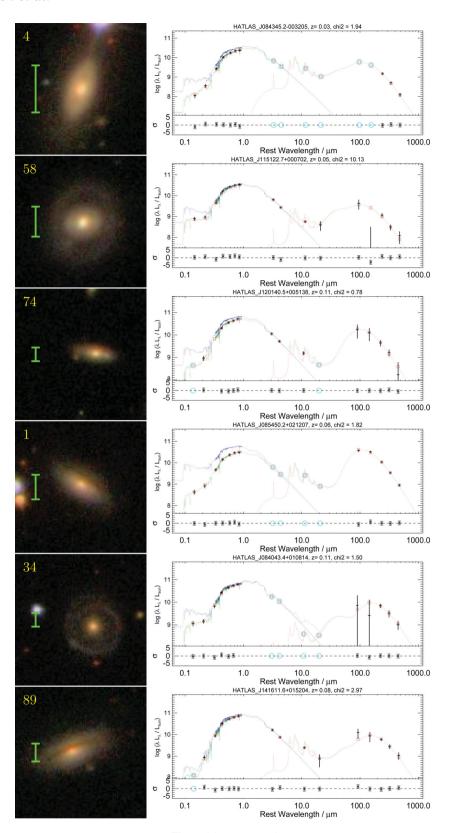


Figure A1 - continued

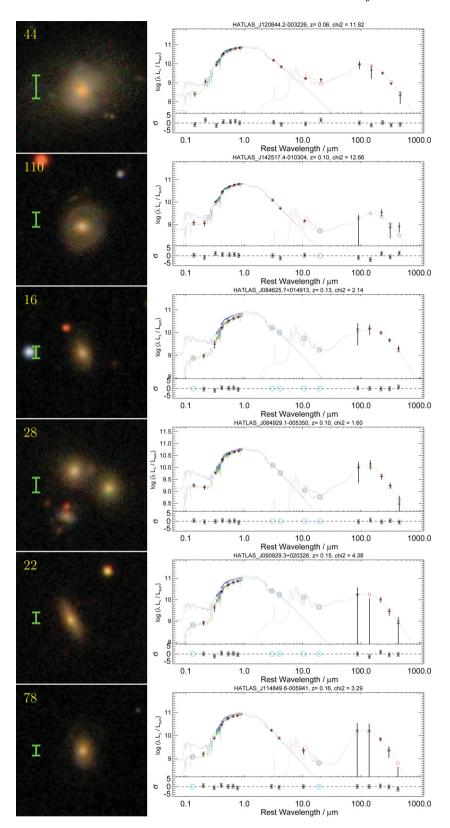


Figure A1 - continued

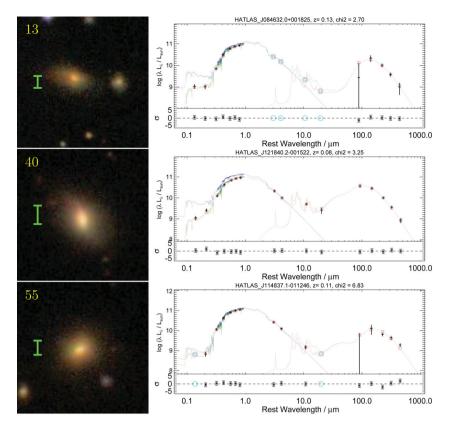


Figure A1 - continued

- ¹Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
- ²Niels Bohr Institute & Centre for Star and Planet Formation, University of Copenhagen, Øster Voldgade 5-7., DK-1350 Copenhagen, Denmark
- ³Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Straße 2, D-69120 Heidelberg, Germany ⁴Centre for Astrophysics, Science & Technology Research Institute, University of Hertfordshire, Hatfield, Herts AL10 9AB, UK
- ⁵Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85741 Garching, Germany
- ⁶Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch 8140, NZ
- ⁷Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK
- ⁸School of Physics and Astronomy, Cardiff University, the Parade, Cardiff CF24 3AA, UK
- ⁹Max Planck Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
- ¹⁰ Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281S9, B-9000 Gent, Belgium
- ¹¹Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF, UK
- ¹² Australian Astronomical Observatory, PO Box 915, North Ryde, NSW 1670. Australia
- ¹³ Sydney Institute for Astronomy, School of Physics A28, University of Sydney, NSW 2006, Australia
- ¹⁴Australian Astronomical Observatory, PO Box 296, Epping, NSW 1710, Australia
- ¹⁵Observatoire de Genève, Université de Genève, 51 Ch. des Maillettes, CH-1290 Versoix, Switzerland
- ¹⁶Physics Department, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
- ¹⁷University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
- ¹⁸Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA

- ¹⁹INAF-Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, I-35122 Padova, Italy, and SISSA, Via Bonomea 265, I-34136 Trieste, Italy
- ²⁰International Centre for Radio Astronomy Research (ICRAR), University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
- ²¹School of Physics & Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, UK
- ²²Department of Physical Sciences, The Open University, Milton Keynes MK7 6AA, UK
- ²³Oxford Astrophysics, Denys Wilkinson Building, University of Oxford, Keble Rd, Oxford OX1 3RH, UK
- ²⁴Institut für Astro- und Teilchenphysik, Universität Innsbruck, Technikerstraβe 25, A-6020 Innsbruck, Austria
- 25 Instituto de Astronomía, Universidad Nacional Autnoma de México, A.P. 70-264, 04510 México, D.F., México
- ²⁶European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching, Germany
- ²⁷Department of Physics and Astronomy, University of Sussex, Brighton BN1 9RH, UK
- ²⁸Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101, USA
- ²⁹SUPA, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ, UK
- ³⁰RAL Space, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxon OX11 0QX, UK
- ³¹ Jeremiah Horrocks Institute, University of Central Lancashire, Preston PRI 2HE IIK
- ³²The Astronomical Institute of the Romanian Academy, Str. Cutitul de Argint 5, Bucharest 040557, Romania
- ³³ Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Väisäläntie 20, FI-21500 Piikkiö, Finland
- ³⁴School of Physics, the University of Melbourne, Parkville, VIC 3010, Australia

This paper has been typeset from a TFX/LATFX file prepared by the author.