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ABSTRACT

Fast magnetoacoustic waves are an important tool for inferring parameters of the solar atmosphere. We numerically
simulate the propagation of fast wave pulses in randomly structured plasmas that mimic the highly inhomogeneous
solar corona. A network of secondary waves is formed by a series of partial reflections and transmissions. These
secondary waves exhibit quasi-periodicities in both time and space. Since the temporal and spatial periods are
related simply through the speed of the fast wave, we quantify the properties of secondary waves by examining the
dependence of the average temporal period ( p̄) on the initial pulse width (w0) and studying the density contrast (dr)
and correlation length (Lc) that characterize the randomness of the equilibrium density profiles. For small-
amplitude pulses, dr does not alter p̄ significantly. Large-amplitude pulses, on the other hand, enhance the density
contrast when dr is small but have a smoothing effect when dr is sufficiently large. We found that p̄ scales linearly
with Lc and that the scaling factor is larger for a narrower pulse. However, in terms of the absolute values of p̄,
broader pulses generate secondary waves with longer periods, and this effect is stronger in random plasmas with
shorter correlation lengths. Secondary waves carry the signatures of both the leading wave pulse and the
background plasma. Our study may find applications in magnetohydrodynamic seismology by exploiting the
secondary waves detected in the dimming regions after coronal mass ejections or extreme ultraviolet waves.

Key words: magnetohydrodynamics (MHD) – methods: numerical – Sun: atmosphere – Sun: corona – Sun:
oscillations – waves

1. INTRODUCTION

Fast magnetohydrodynamic (MHD) waves can propagate
across various magnetic structures, and could therefore be
easily trapped in structures with low Alfvén speeds (see, e.g.,
Goedbloed & Poedts 2004). Plasma structuring modifies how
MHD waves propagate and leads to interesting effects such as
waveguiding, dispersion, mode coupling, resonant absorption,
and phase mixing (Edwin & Roberts 1983; Heyvaerts & Priest
1983; Sakurai et al. 1991; Van Doorsselaere et al. 2008).
Theoretical studies on MHD waves in structured plasmas,
combined with the abundant measurements of low-frequency
waves and oscillations in the solar atmosphere, can be
employed to infer parameters of the solar atmosphere that are
difficult to measure directly (see the reviews by Nakariakov &
Verwichte 2005; De Moortel & Nakariakov 2012, and
references therein). This technique, commonly referred to as
solar MHD seismology, has been successful in yielding the
magnetic field strength (Nakariakov & Ofman 2001), plasma
beta (Zhang et al. 2015), transverse structuring (Aschwanden
et al. 2003), and longitudinal Alfvén transit time (Arregui
et al. 2007) in various coronal loops. In addition, it has also
been adopted to infer the effective polytropic index of coronal
plasmas (Van Doorsselaere et al. 2011), the magnetic topology
of sunspots (Yuan et al. 2014a, 2014b), and the magnetic
structure of large-scale coronal streamers (Chen
et al. 2010, 2011).

While not a common practice in the literature, modelling the
inhomogeneous solar atmosphere as randomly structured
plasmas is more appropriate in a number of situations. For
instance, this approach has been adopted to model the plethora
of thin fibrils in sunspots (Keppens et al. 1994), the filamentary
coronal loops (Parker 1988; Pascoe et al. 2011), and the

structuring in the solar corona across the solar disk (Murawski
et al. 2001; Yuan et al. 2015, hereafter referred to as Paper I).
Nakariakov et al. (2005) examined the dispersive oscillatory
wakes of fast waves in randomly structured plasmas. Murawski
et al. (2001) studied the possible deceleration of fast waves due
to random structuring. Paper I performed a parametric study on
the attenuation of fast wave pulses propagating across a
randomly structured corona, and proposed the application of
the results for seismologically exploiting the frequently
observed large-scale extreme ultraviolet (EUV) waves.
Previous investigations of global EUV waves across the

solar disk focused primarily on the nature and properties of the
leading front (see the reviews by, e.g., Gallagher & Long 2011;
Patsourakos & Vourlidas 2012; Liu & Ofman 2014; War-
muth 2015). However, secondary waves have been observed at
strong magnetic waveguides or anti-waveguides, e.g., active
regions (Ofman & Thompson 2002; Shen et al. 2013), coronal
holes (Veronig et al. 2006; Li et al. 2012; Olmedo et al. 2012),
prominences (Okamoto et al. 2004; Takahashi et al. 2015), and
coronal loops (Shen & Liu 2012). These studies on secondary
waves were primarily intended to provide support for the wave
nature of EUV waves. However, given that their spatial
distribution and temporal evolution can now be observed in
substantial detail, secondary waves may well be suitable for
remotely diagnosing the structured solar atmosphere as well
(Paper I).
In this study, we present a detailed numerical study of the

interaction between fast wave pulses and a randomly structured
plasma, paying special attention to secondary waves in the
wake of the leading fast wave pulse. We describe our numerical
model in Section 2, and then present a case study on the
secondary waves and their quasi-periodicity in Section 3. Then
we perform a parametric study on how this quasi-periodicity is

The Astrophysical Journal, 828:17 (5pp), 2016 September 1 doi:10.3847/0004-637X/828/1/17
© 2016. The American Astronomical Society. All rights reserved.

1

mailto:DYuan2@uclan.ac.uk
http://dx.doi.org/10.3847/0004-637X/828/1/17
http://crossmark.crossref.org/dialog/?doi=10.3847/0004-637X/828/1/17&domain=pdf&date_stamp=2016-08-24
http://crossmark.crossref.org/dialog/?doi=10.3847/0004-637X/828/1/17&domain=pdf&date_stamp=2016-08-24


affected by plasma structuring (Section 4). Finally, Section 5
summarizes the present study.

2. NUMERICAL MODEL

We used MPI-AMRVAC, a finite-volume code (Keppens
et al. 2012; Porth et al. 2014), to solve the ideal MHD
equations:
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where ρ is the density, v the velocity, B the magnetic field, and
I the unit tensor. In addition, m= +p p B 2tot

2
0 is the total

pressure, where p is the gas pressure and m0 is the magnetic
permeability of free space. The total energy density  is defined
by  r g m= + - +v p B2 1 22 2

0( ) , where γ is the adiabatic
index.

To facilitate the numerical computations, we adopt a set of
three independent constants of normalization, namely,

=B 10 G0 , =L 1000 km0 , and r = ´ - -7.978 10 kg m0
13 3.

Some derived constants are also relevant, e.g., the Alfvén speed
r m= = -V B 1000 km sA 0 0 0

1 and the Alfvén transit time
t = 1 sA . In the following text, all symbols represent normal-
ized variables.

The MPI-AMRVAC code was configured to solve the one-
dimensional (1D) version of the ideal MHD equations in
Cartesian coordinates x y z, ,( ), meaning that all dependent
variables depend only on y. We chose the three-step Runge–
Kutta method for time integration. Furthermore, from the
multiple finite-volume approaches implemented by the MPI-
AMRVAC code, we adopted the HLL approximate Riemann
solver (Harten et al. 1983) with the KOREN flux limiter (see,
e.g., Tóth & Odstrčil 1996; Kuzmin 2006).

The equilibrium state, into which fast wave pulses are to be
introduced, is characterized by a uniform, x-directed magnetic
field = =B t y0, 1, 0, 0( ) ( ). The plasma pressure =p t y0,( )
is also uniform, corresponding to a plasma beta of 0.01
everywhere in the computational domain. Random structuring
is realized by specifying a proper density profile r =t y0,( ). A
uniform plasma pressure is maintained by adjusting the
temperature profile ( r=p T ) accordingly.

The density profile is formed from a set of sinusoidal
modulations superimposed on a uniform background,
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where Δ is a scaling parameter and Ly is the size of the
numerical domain in the y-direction. The values Ri and fi are
the random amplitude and phase of the ith harmonic
component, given by uniform pseudo-random number gen-
erators within the ranges [0, 1] and [−π, π], respectively. A
correlation length Lc is defined to quantify the average spacing
between two fine structures; and a density contrast dr is

calculated to define the coarseness of density fluctuations
(Paper I). A density distribution with d =r 0.18 and Lc=1.26
is shown in Figure 1(a) for illustration.
Fast wave pulses to be launched into the equilibrium are in

the form of a Gaussian profile centered around =y 00 with an
amplitude of A0 and an initial width of w0 (Paper I):
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where ¢vy, ¢Bx, and r¢ are the perturbations to the y-component of
the velocity, the x-component of the magnetic field, and the
plasma density, respectively. This form of perturbation
simulates a local eigenmode solution and ensures that fast
waves are unidirectional.
Hereafter, fast wave pulses with A0=0.005 (0.1) will be

referred to as small-amplitude (large-amplitude) pulses. As will
be shown, the small-amplitude pulses have negligible nonlinear
effects, whereas the large-amplitude ones lead to irreversible
density perturbations.

3. QUASI-PERIODICITY OF SECONDARY WAVES

We start with an examination of what happens when a small-
amplitude fast pulse with w0=1.78 is launched into a
randomly structured plasma as depicted in Figure 1(a).

Figure 1. (a) Density distribution of a randomly structured plasma with a
density contrast d =r 0.18 and a correlation length Lc=1.26. (b) Distribution
in the y–t plane of the y-component of the velocity perturbation (vy) in response
to a small-amplitude fast pulse with w0=1.78. The green (black) curve shows
the temporal (spatial) distribution of vy at y=32 (t = 80). In both curves, the
values of vy are multiplied by 104 for presentation purposes.
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Figure 1(b) presents the distribution in the y–t plane of the y-
component of the velocity perturbation (vy), where the diagonal
ridge is the course of the leading fast wave pulse. While
propagating, this pulse undergoes a series of interactions with
the random plasma, thereby experiencing some attenuation and
broadening (Paper I). In addition, secondary waves with
amplitudes of about 10%–20% of that of the main pulse are
clearly seen, forming a “fabric” pattern as a result of partial
transmissions and reflections. Partial reflection is strong at
sharp density changes (e.g., at y 20, 48, 85, 105), as
evidenced by the strong backward propagation of secondary
waves.

We see that the secondary waves exhibit both spatial and
temporal quasi-periodicities. To show this better, we derive the
Fourier spectra for the secondary waves shown in the two
curves in Figure 1(b) by excluding the main pulse and the zeros
ahead of it. As shown in Figure 2(a), the velocity variation

=v t y, 32y ( ) has prominent oscillations with periods in the
range between 6 and 24 (Figure 2(a)). The average period is
found to be = p 8.5 2.5¯ (see the Appendixfor how we
calculate this p̄). This periodicity is not unique to the temporal
profile of vy at y=32 but is found at all other positions. On the
other hand, the spatial period (Figure 2(b)) for =v t y80,y ( )

ranges from 6 to 22 (or from 5Lc to 17Lc), with an average
value of l = 8.1 2.3¯ . The average spatial period is a few
times longer than the correlation length Lc, meaning that
secondary waves need to traverse several correlation lengths
before settling into a quasi-periodic signal. This is consistent
with Yuan et al. (2016). In addition, the temporal periodicity is
found to be correlated with the spatial one, which is not
surprising given that the fast wave pulse and secondary waves
have an average speed of propagation of about unity in
numerical units. The randomness in spatial structuring is
transformed into randomness in the temporal domain. As
demonstrated in Yuan et al. (2016), quasi-periodicity is an
intrinsic property of a random time series, and the quasi-periods
are usually a few times longer than the timescales of the
transients.

4. PARAMETRIC STUDY

In this section, we investigate how the quasi-periodicities
depend on various parameters characterizing the equilibrium
density profiles and fast pulses. As is evident from Equation (5),
the equilibrium density profile is characterized primarily by the
density contrast dr and correlation length Lc. On the other hand,
in addition to the amplitudes, fast pulses are also characterized
by their initial widths w0. To bring out the effects of each
individual parameter on the average period p̄, we choose to
vary a single designated parameter by fixing the rest. In
addition, since the periodicities in the temporal and spatial
domains are correlated, we will show only the results for the
temporal periodicities. Given that the time series at each
position should be sufficiently long to allow the computation of
a significant Fourier spectrum, we choose only the vy profiles
for locations between y=10 and y=100. The values for p̄
are then scatter-plotted for each parameter, see Figures 3–5. A
smaller spread of period means that secondary waves are
trapped by a randomly structured plasma in a more uniform

Figure 2. Normalized Fourier spectra for (a) =v t y, 32y ( ) and (b)
=v t y80,y ( ). The solid vertical lines represent the mean periods (p̄ and l̄),

enclosed by the lower and upper limits as given by the dashed–dotted lines.
The horizontal dashed lines plot the s3 noise level, and the red diamonds mark
the frequency components above it.

Figure 3. Period as a function of density contrast dr for pulses of (a) small and
(b) large amplitude. These computations pertain to a fixed correlation length Lc
of 1.26 and a fixed initial pulse width w0 of 0.18.
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manner, similar to the thermalization of collisional particles
heated impulsively.

The dependence of p̄ on the density contrast dr is shown in
Figure 3, for which the values of the correlation length and
initial pulse width are fixed at Lc=1.26 and w0=1.18,
respectively. For small-amplitude pulses, given in Figure 3(a),
the mean period does not vary significantly with the density
contrast. However, the spread in p̄ is larger for larger values of
dr. In the case of large-amplitude pulses, shown in Figure 3(b),
the spread in p̄ tends to be greater than for small-amplitude
pulses. Furthermore, this spread tends to first increase with
increasing dr before decreasing when dr 0.2. This trend can
be understood as follows. Large-amplitude pulses can lead to
irreversible density perturbations (Paper I) and therefore will
enhance the density contrast if dr is weak. However, when dr is
sufficiently strong, the passage of a nonlinear fast wave pulse
has a smoothing effect.

Figure 4 shows the dependence of p̄ on the correlation length
Lc. In this set of experiments, we fix the density contrast at
d =r 0.18 and vary the correlation length. Furthermore, while
both pertain to small-amplitude pulses, two different values for
the initial pulse width ( =w 2.830 and 1.41) are examined and
the results are shown in Figures 4(a) and (b), respectively. It is
clear that, regardless of w0, the mean period p̄ tends to depend
linearly on Lc. Comparing Figures 4(a) and (b), one sees that a
narrow pulse is more sensitive to the variations in the
correlation length. The period almost triples as Lc doubles. In
contrast, the increase in p̄ with Lc for the broader pulse is not as
strong.

How does p̄ depend on the initial pulse width w0? To
address this, we launch a set of pulses with different initial
widths and investigate their propagation in two randomly
structured plasmas with correlation lengths of Lc=2.00 and
1.26. The effect of resonant energy loss (Paper I) is not
prominent in the periodicity of the secondary waves. However,
Figure 5 shows that broader pulses normally generate

secondary waves with longer periods, which is more evident
if Lc is smaller. This is understandable given that when Lc is
small, fast pulses will be able to interact with the fine-scale
inhomogeneities more frequently.

5. CONCLUSIONS

This study has offered a series of numerical simulations of
the propagation of fast MHD wave pulses in randomly
structured plasmas that mimic the solar corona. While
traversing the plasma inhomogeneities, fast wave pulses
experience partial reflections, giving rise to secondary waves
propagating in the opposite direction. In turn, these waves
generate further waves, once again due to their partial reflection
and transmission at plasma inhomogeneities. The end result is
that the energy contained in the primary fast pulses is spread
over the randomly structured plasmas in the form of
propagating and standing secondary waves. These secondary
waves exhibit quasi-periodicities in both time and space. The
spatial period at a given instant is related to the period observed
at a fixed position via the fast wave speed.
The interaction between fast wave pulses and the plasma

inhomogeneities, as quantified by the average temporal period
p̄ of secondary waves, turns out to depend primarily on the
combination of parameters dr L w, ,c 0[ ]. Here dr and Lc are the
density contrast and correlation length that characterize the
equilibrium density profile. Furthermore, w0 is the initial width
of the wave pulse. For small-amplitude pulses, dr does not have
a significant effect on p̄. Rather, it determines the rapidity with
which p̄ reaches a uniform distribution. Large-amplitude
pulses, on the other hand, lead to irreversible density
perturbations, thereby enhancing the density contrast when dr
is small but having a smoothing effect when dr is sufficiently
large. The average period p̄ scales linearly with the correlation
length, with the scaling factors being larger for narrower
pulses. However, broader pulses can generate secondary waves

Figure 4. Period as a function of correlation length for small-amplitude pulses
with two different initial widths: (a) w0=2.83 and (b) w0=1.41. These
computations pertain to a fixed density contrast dr of 0.18.

Figure 5. Period as a function of initial pulse width. Two density profiles with
correlation lengths of (a) Lc=1.26 and (b) Lc=2.0 are examined, even
though both pertain to the same density contrast of d =r 0.18. The vertical
dashed lines mark where the initial pulse width matches Lc and 2Lc.
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with longer periods, the effect being stronger in random
plasmas with shorter correlation lengths.

Secondary waves carrying the signatures of both the leading
wave pulse and background plasma may be detected in the
dimming regions after coronal mass ejections or EUV
waves(see Guo et al. 2015; Chandra et al. 2016, for some
recent observations). However, a dedicated observational study
is needed to fully explore the seismological applications of the
present study.

We thank the anonymous referee for constructive comments.
This work is supported by the Open Research Program
KLSA201504 of Key Laboratory of Solar Activity of National
Astronomical Observatories of China (D.Y.). It is also
supported by the National Natural Science Foundation of
China (41174154, 41274176, and 41474149).

APPENDIX
CALCULATION OF QUASI-PERIODICITY

We use f (s) to represent either the spatial distribution of the
velocity distribution v y t,y ( ) at a fixed instant or its temporal
variation at a fixed location, after excluding both the leading
pulse and the zeros ahead of it. The Fourier transform F x( ) is
calculated as

F òx = p x

-¥

¥
-f s e ds, 9js2( ) ( ) ( )

where = -j 1 and ξ denotes either the spatial or temporal
frequency. As a result, x1 will be either the spatial or temporal
period. The Fourier spectrum is then obtained by calculat-
ing Fx x=P 2( ) ∣ ( )∣ .

The mean frequency x̄ is taken to be a weighted average,
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In our calculations, we integrate only the frequency compo-
nents with power above the s3 noise level (see Torrence &
Compo 1998 for its definition). In terms of the temporal or
spatial periods, we adopt x1 ¯ and s xx

2¯ as the mean value and
its associated uncertainty (see the vertical lines in Figure 2).
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