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Background 12 

The determination of drugs, metabolites and biomarkers in biological samples 13 

continues to present one of the most difficult challenges to analytical scientists. 14 

Matrices such as plasma, serum, blood, urine or tissues for example, usually 15 

contain the analyte(s) of interest at low concentration in the presence of many 16 

other components which may interfere directly or indirectly with the accurate 17 

determination of species and concentration. Historically, the most common 18 

methods have involved some form of extraction or isolation such as liquid-liquid 19 

extraction (LLE), solid phase extraction (SPE) or protein precipitation. For a 20 

recent review of sample preparation methods for bioanalysis, see [1]. This 21 

includes comments on costs, automation, and miniaturisation with an overall 22 

focus on productivity.  23 

 24 

Accurate quantitative measurement over the last 40 years has traditionally been 25 

carried out by chromatography, mainly high performance liquid chromatography 26 

(HPLC) and occasionally gas chromatography (GC). Although a range of 27 

detectors has been available for both, most typically, HPLC used ultraviolet (UV) 28 

and GC used flame ionisation and then both have used mass spectrometry (MS). 29 

Sample preparation has been usually by a variant of LLE, SPE or protein 30 

precipitation [2]. As the need for greater sensitivity has been a constant 31 

challenge, sophisticated and more selective methods of sample preparation have 32 

been explored. One of the most attractive of these has been the use of 33 

immobilised antibodies [3] to selectively extract drugs and metabolites in a typical 34 



SPE format. Many examples have been published but the approach has been 35 

limited by a number of factors such as cost and uncertainty of antibody 36 

production as well as stability of the antibodies. Significant developments 37 

overcoming the coupling of MS to HPLC and its subsequent widespread use has 38 

meant that the demands on sample preparation have been reduced. As drugs 39 

and metabolites are typically small molecular mass organic compounds greater 40 

selectivity and sensitivity could be achieved by the end step measuring 41 

technique, and there has indeed been wide uptake of this technology especially 42 

in the pharmaceutical industry.  43 

 44 

Molecularly imprinted polymers  45 

Nevertheless, within the bioanalytical community the interest in the advantages 46 

offered by selective extraction have remained. Molecularly imprinted polymers 47 

(MIPs) have been suggested as an alternative to immobilised antibodies in a 48 

number of areas including bioanalysis [4] as these are potentially much cheaper 49 

to synthesise and more stable than biological antibodies.  MIPs have been the 50 

subject of numerous reviews [5, 6] so the basic principles will only be 51 

summarised here. Briefly, the preparation involves a reaction mixture containing 52 

the analyte (the so-called template molecule), a functional monomer, a cross-53 

linking agent and an initiator in a suitable solvent. The MIP is formed around the 54 

template. The template is subsequently removed leaving cavities that can 55 

selectively rebind the template. The aim is to create a reagent (MIP) that can 56 

selectively bind the analyte, in a similar way to an antibody. Immobilized 57 



antibodies can be very specific but they are inherently quite fragile molecules, 58 

particularly when exposed to organic solvents, pH values of more than 2-3 units 59 

from neutral and/or heat. They can also be quite time-consuming to produce, in 60 

many cases requiring repeated dosing to animals, with no certainty that useful 61 

antibodies will eventually be obtained. In contrast, MIPs are produced rapidly in 62 

the chemistry laboratory and use well-established synthetic routes which lead to 63 

comparatively lower production costs. They are more stable over a wider pH 64 

range and can be used with a broader range of solvents. This potentially also 65 

offers the advantage that they could be re-usable, further lowering the costs.   66 

 67 

Many papers and reviews have been written on the optimisation of conditions, 68 

different methods of characterisation and different uses of MIPs [7-9]. In many 69 

cases, the MIPs will only perform their selective capture if they are in the solvent 70 

used for their preparation. The importance of buffer conditioning has been 71 

emphasised [9]. For example, MIPs have been proposed as offering advantages 72 

as columns for HPLC, SPE [2, 3, 10, 11], capillary electrophoresis [12] and 73 

electrochromatography, replacing antibodies in enzyme-linked immunosorbent 74 

assay (ELISA) tests [13], artificial enzymes or receptors, recognition elements 75 

within sensors [14], selective drug delivery, catalysts and to aid crystallization 76 

[15].  The area of SPE has attracted most attention and new approaches are still 77 

being reported in this area. The development of nanoparticles has led to 78 

molecular imprinting onto the surface of magnetic nanoparticles [16] followed by 79 

solid phase microextraction (SPME) or ultrasonic assisted SPME [17-19] and 80 



matrix dispersant SPME [20, 21]. MIPs which are integrated with magnetic 81 

nanoparticles offers the added advantage of a simple separation using a magnet 82 

following the selective template (analyte) binding/extraction step. Ding et al. 2014 83 

[22]  has written a recent review on surface imprinting technologies for nano-84 

MIPs. This described both small and large molecule templates in two different 85 

sections. Examples of biomacromolecules that have been imprinted include 86 

lysozyme, bovine haemoglobin, human haemoglobin, amylase and bovine serum 87 

albumin (BSA) as well as virus particles.  88 

 89 

The preponderance of reviews on the use of MIPs for separation science has led 90 

to a review of reviews [23]. Nonetheless the use of commercially available MIPs 91 

using validated methods for bioanalysis is not considered commonplace. Li et al. 92 

2014 [24] has written an extensive review on macromolecules concentrating on 93 

proteins, carbohydrates, DNA, viruses and cells. The review contrasts the 94 

development of small molecular mass versus macromolecule templates. 95 

Progress with the latter has been slower and unremarkable. Several commercial 96 

companies are producing MIPs for SPE mainly for small molecular mass analytes 97 

such as drugs and pesticides. These however are not commonplace. 98 

 99 

Many of the applications published in scientific literature consider only the 100 

comparison of a MIP with a non-imprinted polymer (NIP), along with comparisons 101 

of a very small number of other related compounds as evidence of a MIP effect. 102 

Studies looking at the rebinding of the analyte to the MIP compared to a NIP are 103 



commonplace. In many applications the MIPs will often only work satisfactorily 104 

when the rebinding is carried out in the solvent in which the MIP was 105 

synthesised, typically organic solvents. This is a considerable drawback when the 106 

need is to extract from aqueous biological fluids such as plasma, serum, urine, 107 

tissue extracts and faeces. It is also unsuitable for most macromolecules of 108 

biological interest as they are not stable in organic solvents. Biologicals (greater 109 

than 1000 Da) are metastable and can undergo intra-molecularly-induced 110 

changes in conformation depending on their chemical environment. They 111 

therefore need to be exposed to less harsh polymerisation conditions compared 112 

with the imprinting of small and robust molecules (less than 700 Da) the latter 113 

inherently possessing less degrees of freedom in molecular arrangement. MIP 114 

preparations for biologicals have therefore focused on the use of water-115 

compatible polymers, namely hydrogels based on using acrylamide (AAm)  as a 116 

functional monomer [25-27] and the repertoire extended more recently using a 117 

combination of acrylo-based functional monomers to polymerise in the presence 118 

of a second (more biocompatible) polymer including polyethylene glycol (PEG) 119 

and chitosan [28]. Chitosan is a derivative of chitin (extracted from crustacean 120 

species), and is produced by deacetylation of chitin under alkaline conditions. At 121 

around physiological pH and below, chitosan is positively charged. Thus in 122 

addition to the generally accepted hydrogen bonding interactions and cavity fit 123 

offered by MIPs, the presence of positive charge offers an additional 124 

(electrostatic) anchor for the imprinting of proteins. 125 

 126 



MIPs for extraction/enrichment of macromolecules 127 

One area of growing interest in bioanalysis has been in the preparation of MIPs 128 

to peptides, proteins or other large biomolecules [29, 30]. The changing nature of 129 

drug development suggests that macromolecules are increasingly being 130 

proposed as new therapeutic agents or indeed as biomarkers for a range of 131 

diseases. Novel approaches for their reliable accurate measurement is thus of 132 

growing interest. In many cases the macromolecules will be present in biological 133 

fluids at low concentrations so the application of MIPs for selective extraction to 134 

allow pre-concentration and clean-up is a very attractive approach.  The 135 

development of such MIPs using protein templates was reviewed [31]. The latter 136 

review was focused on sensors but the methods used to prepare the MIPs 137 

should be a useful guide for their eventual application in selective enrichment or 138 

other applications. The review discussed template selection, bulk compared with 139 

surface imprinting, the use of whole protein or epitopes, solvent conditions used 140 

for imprinting, the choice of monomers and cross-linkers, procedures for template 141 

removal as well as the sensor development aspects, Many of the examples of 142 

MIPs for proteins use a low degree of cross-linking to give soft hydrogels rather 143 

than the highly cross-linked rigid gels used for small molecule imprinting. The 144 

advantages of using surface imprinting when preparing protein MIPs has been 145 

described in ref [32]. This review included sections on SPE, mainly of small 146 

molecular mass analytes. The use of carbon nanofibres, nanodiamonds, 147 

fullerenes, carbon nanotubes, graphene and graphene oxide were evaluated by 148 



ref [33] as possible materials for isolation and pre-concentration of proteins and 149 

where MIPs can improve selectivity. 150 

 151 

There have been several reviews of the use of MIPs for SPE. For example, 152 

Augusto et al. 2013 [34] considered the merits of immunoaffinity, MIPs, 153 

aptamers, carbon nanotubes and other nanomaterials. These give numerous 154 

examples of the use of MIPs to extract small molecular mass compounds but 155 

generally give few examples of macromolecule extraction. SPE can be carried 156 

out in several formats. Examples include a conventional small syringe packed 157 

with the MIP, coated fibres, capillaries, surface coated particles, coated stir bars, 158 

membranes, magnetic beads and nanoparticles [35]. All have advantages and 159 

disadvantages and these were evaluated. Hu et al. 2013 also emphasised that 160 

the major obstacles include the difficulty of finding optimised conditions for 161 

selective extraction, compatibility with aqueous solutions and the low number of 162 

binding sites obtained [35]. 163 

 164 

Schirhagl et al. 2014 [36] reviewed the particular approaches to imprinting large 165 

biomolecules and highlighted the advantages of using more flexible polymers 166 

than the rigid polymers used for small molecules. The review covered methods of 167 

synthesis, template removal, applications using various methods (optical, 168 

electrical and mass sensitive) of signal production in sensors, separation science 169 

and possibilities in drug discovery. The article concluded that selectivities 170 



obtained for large biomolecules are still not as good as those for small drug like 171 

molecules. 172 

 173 

One interesting approach recently reported was the use of a surface imprinted 174 

polymer using myoglobin as the template [37]. The MIP allowed selective capture 175 

and release of the target using temperature, rather than the much more 176 

widespread use of a change of solvent or pH.  177 

 178 

The basic principle of using a selective extraction followed by desorption into a 179 

chromatograph with an MS detector or other instrumental technique is attractive, 180 

as accurate measurement and a high degree of specificity or identification can be 181 

achieved. Again the evidence quoted in scientific literature for a MIP effect is 182 

often that the macromolecule is extracted with greater recovery from the MIP 183 

than the NIP and selectivity to similar molecules in terms of molecular mass, 184 

function or isoelectric potential. Conclusive evidence of a molecular imprinting 185 

effect has been questioned [38]. Although comparison of MIP to NIP is some 186 

evidence of a MIP effect the non-specific binding to the NIP does suggest that 187 

further studies such as structural characterization would be helpful. Non-specific 188 

binding will prove to be a particular obstacle to widespread acceptance when 189 

complex samples such as biofluids are processed. Ultimately, the crucial point is 190 

not whether the selective capture is an effect requiring specific interactions at 191 

specific points on the polymer; rather, it is whether or not MIP-based selective 192 



extraction provides improvement in the analytical methods developed. This would 193 

then need widespread uptake to become completely convincing. 194 

This article will review recent examples in the development of the use MIPs for 195 

selective extraction or enrichment of proteins and other large biomolecules 196 

appropriate to biological samples. A very extensive collection of articles 197 

describing the preparation or use of MIPs in all their applications is listed online 198 

[39]. The majority of applications of MIPs are in the area of separation science or 199 

sensors. The reality that there are few examples of methods based on MIPs for 200 

selective extraction of macromolecules suggests something of an unmet need 201 

here. 202 

 203 

Examples of extraction/enrichment of macromolecules using MIPs (see  204 

also Table 1) 205 

Qadar et al. 2014 [40] developed MIPs to the nonapeptide progastrin releasing 206 

peptide (ProGRP), a possible biomarker for small cell lung cancer. A range of 207 

acrylamide monomers were evaluated in the SPE format with fractions analysed 208 

by HPLC-UV. Selectivity was checked against 4 other peptides. In a follow up 209 

paper [41] this group applied the optimised protocol to enrich the peptide from 210 

fortified serum. The limit of detection from the optimised protocol was reported to 211 

be about 600 pM.  The elution protocol used 80% acetonitrile as elution solvent. 212 

The MIP retained the targeted peptide more than the NIP, which nonetheless 213 

does show non-specific binding. Importantly an example showed a much cleaner 214 

chromatogram for the MIP compared with the NIP. Although a nonapeptide rather 215 



than a protein, this paper illustrates the potential of a method based on selective 216 

SPE with a MIP followed by LC-MS for an important low abundance biomarker. 217 

There are several other examples of polypeptide MIPs [30, 40, 42, 43]. Shinde et 218 

al. 2012 [44] described how an SPE MIP format could distinguish between 219 

sulpho- and phosphorylated peptides. Fractions were analysed by HPLC and 220 

matrix assisted laser desorption ionisation (MALDI) to confirm the elution fraction 221 

contents. 222 

 223 

Qin et al. 2009 [45] showed the possibility of enriching lysozyme from aqueous 224 

and biological samples – in this case egg white. N-(4-vinyl)-benzyl iminodiacetic 225 

acid (VBIDA) was co-polymerized with N-isopropylacrylamide (NiPAm) and AAm 226 

in the presence of copper (Cu2+) ions. Greater adsorption capacity was shown for 227 

the lysozyme template than for several other proteins (cytochrome C (CytC), 228 

ribonuclease A (RNase A), ovalbumin, bovine haemoglobin (BHb), BSA, and 229 

glucose oxidase). A gel electrophoresis figure showed enrichment of the 230 

lysozyme from diluted egg white. There is growing interest in incorporating metal 231 

ions (through complexation) to improve the binding affinity of MIP for a target 232 

protein [46]. The electron donating effect of amino groups of the protein to the 233 

metal centre offers an additional anchor point for the protein to dock within the 234 

vicinity of the cavity.  235 

 236 

Gao et al. 2010 [47] prepared a surface modified MIP to lysozyme using 237 

methacrylic acid (MAA) as functional monomer and hydroxyethylmethacrylate 238 



(HEMA)/ N-vinylpyrrolidone (VNP) as cross-linked microspheres. Although 239 

biological samples were not evaluated, dynamic binding curves clearly illustrated 240 

the delayed elution of the lysozyme compared to bovine haemoglobin.  241 

 242 

Gai et al. 2010 and 2011 [48, 49] prepared MIPs to BHb and lysozyme. The 243 

lysozyme MIP was surface imprinted and showed greater selectivity for the 244 

lysozyme compared with BHb, myoglobin, BSA, Trypsin inhibitor (TI) and CytC. 245 

The BSA MIP similarly showed greater selectivity in adsorption experiments, 246 

potentially applicable as a sample preparation/enrichment method. Non-specific 247 

binding to NIP was also shown which could lessen the use of such a MIP for 248 

accurate measurement. 249 

 250 

Dan et al. 2013 [28] reported MIPs to ovalbumin using the polysaccharide 251 

chitosan and acrylamide as monomers and described extensive optimisation of 252 

synthesis. Selectivity was ascertained by comparing MIP rebinding with the non-253 

cognate proteins BSA, BHb and lysozyme. They also looked at surface 254 

morphology using several techniques.  Gels using chitosan and acrylic acid (AA) 255 

and MAA showed the best potential but non-selective binding to NIP and 256 

selectivity to other proteins still needs addressing. Biological samples were not 257 

evaluated. 258 

 259 

Wan et al. 2015 [50] showed how a polydopamine MIP surface imprinted on 260 

nanoparticles could enrich lysozyme spiked diluted egg white samples. The MIP 261 



was compared to NIP and cross reactivity studies versus five proteins (RNase A, 262 

BHb, BSA, trypsin and CytC) demonstrated preferential binding to the target 263 

protein. Samples were analysed using MALDI-TOF. 264 

 265 

Deng et al. 2011 [51] prepared a monolithic MIP to BSA using a freeze thawing 266 

polymerisation method with acrylamide as the monomer. Both HPLC and SPE 267 

demonstrated a greater retention for the BSA versus Hb. A gel electrophoresis 268 

plate showed a SPE extract enriched with the target protein compared to 269 

carbonic anhydrase, lysozyme, BSA, and trypsin. The MIP column showed the 270 

BSA, the NIP column showed none of the aforementioned proteins. 271 

 272 

Lin et al. 2013 [52] described the selective extraction of horseradish peroxidise 273 

(HRP) from spiked human serum samples. Dopamine was the functional 274 

monomer used for MIP preparation. Although the paper was mainly concerned 275 

with a monolithic HPLC column it also described the use of the MIP approach in 276 

SPME format. It showed a gel electrophoresis plate with significantly enriched 277 

HRP. 278 

 279 

Namatozola et al. 2014 [53] used AAm to prepare MIPs for human serum 280 

albumin (HSA) and IgG. Part of their article described the evaluation using SPE. 281 

Comparison of MIP and NIP shows a slightly increased recovery in the elution 282 

fraction for the imprinted protein particularly for the IgG. For both MIPs much of 283 



the protein was eluted in load and wash fractions suggesting very low selective 284 

binding capacities within the MIP. 285 

 286 

Solemani et al. 2012 [54] described the preparation of a BSA MIP under the 287 

conditions normally used for small molecule analytes. They evaluated the MIP in 288 

SPE format, optimising the flow rate, the effect of pH, ionic strength, sample 289 

volume and different ratios of methanol/acetonitrile on elution. After optimisation 290 

with standard solutions, more challenging solutions such as serum, urine, whey 291 

and milk were applied. MIPs were compared with NIPs for recovery. It should be 292 

noted that elution fractions from the SPE columns were evaluated by UV-Vis 293 

spectrophotometry not by chromatography or MS. The possibility of denaturation 294 

of the BSA during MIP synthesis or the analytical protocol cannot be discounted 295 

and could be evaluated by, for example, using circular dichroism spectroscopy to 296 

assess the nature of the protein during and following the MIP production process 297 

[55, 56]. 298 

 299 

Liu et al. 2014 [57] prepared MIPs for extraction of HSA using porcine serum 300 

albumin as a dummy template with methacrylate monomers. The aim of this work 301 

was to selectively extract high abundance protein that was not the analyte of 302 

interest, thereby enhancing the detection limits of low abundance proteins of 303 

interest. Much higher binding affinity for the desired protein was obtained 304 

compared with β-lactoglobulin, CytC or ribonuclease B. The use of a dummy 305 

template was common with small molecule SPE. It involved the use of a 306 



structural analogue of the target analyte to form the MIP. To date it is much less 307 

common with macromolecules. 308 

 309 

An example of virus imprinting was shown by Sykora et al. 2015 [58] where 310 

preliminary results indicated the synthesis of surface MIPs to a Human Norovirus 311 

strain. They pointed out some of the difficulties of this type of work. Quite apart 312 

from the problem of biomolecule stability, the need to use large amounts of 313 

pathogenic virus in the MIP synthesis stage restricts this type of work. This issue 314 

was overcome by using a genetically modified virus-like particle as the template. 315 

The paper showed a much larger binding to the MIP compared with the NIP. 316 

Field emission scanning electron microscopy pictures were also shown as 317 

evidence of MIP structure. 318 

 319 

Comments 320 

Sample preparation includes trying to isolate the analyte to improve detection 321 

limits, especially if the analyte is at very low concentration when there is plenty of 322 

sample. It can also include trying to remove matrix components that interfere 323 

even if they do not give a direct signal to the detector, for example ion 324 

suppression in MS.  325 

 326 

In contrast to MIPs, antibodies are extensively used commercially especially in 327 

clinical (bio) chemistry laboratories. There are examples where MIPs have been 328 

shown to replace antibodies in clinical tests [13, 59]. So their increasing use for 329 



selective extraction of macromolecules is anticipated. Whether it will be for 330 

special applications or widespread depends on the reality of commercially 331 

developing suitable products. The virtues of combining immunoaffinity sample 332 

preparation with MS detection have been highlighted in a special issue of 333 

Bioanalysis especially in the overview given by Ackerman [60]. The advantages 334 

offered by biological antibodies will be potentially superseded if suitable MIPs can 335 

be reliably produced. The attraction of specific analyte capture, trace enrichment 336 

from a large volume and then release into a small volume of liquid compatible 337 

with injection into an LC-MS is clear. The use of antibodies for this is increasing. 338 

If this type of procedure could be achieved with MIPs this would be an even more 339 

attractive approach. 340 

 341 

With proteins and other large biomolecules analyte stability is a problem, so 342 

aqueous based SPE protocols are essential. Several papers look at morphology 343 

or cavity size, but to be of use to bioanalysts with real measurements to make 344 

and defend this ultimately depends on how clean the samples are and the 345 

reproducibility of results that is demanded by the end user. One of the drawbacks 346 

with the use of MIPs has been the reality that they are not yet as specific as 347 

biologically developed antibodies. Whereas Kd values for antibody-antigen 348 

interactions are of the order of 10-9 M, the majority of MIP-antigen interactions 349 

are still at the 10-6-10-7 M range, However, recently Piletsky’s group has 350 

developed a technique for the mass production of nanosized MIPs (plastic 351 

antibodies) reporting Kd values matching biological antibodies [61]. When used 352 



as reagents for SPE followed by a specific and sensitive end-step such as LC-353 

MS the lack of high affinity MIPs is less of a drawback. Potentially they can offer 354 

enough selectivity in extraction to provide a clean enough sample for the 355 

chromatography or other measurement. The reality that there are currently few 356 

examples of this approach suggests it is worthy of more effort. 357 

 358 

Peptides are not as challenging because they are more stable than proteins and 359 

also less expensive in terms of requiring a relatively large amount of template. 360 

Other similar approaches for selective extraction have also been developed. The 361 

use of aptamers (short single stranded DNA or RNA molecules) has been 362 

reviewed by [62, 63] including their use in SPE format. The importance of 363 

measuring new therapeutic agents or small abundance protein biomarkers 364 

means that the quest for improved methods of selective enrichment/clean-up will 365 

continue. Other areas where MIPs may show promise include virus imprinting 366 

[64-66] where preliminary experiments showed that tobacco mosaic virus could 367 

be imprinted using polyallylamine. 368 

 369 

Difficulties such as the need for a large amount of template for MIP synthesis, 370 

reliable and complete template removal, minimisation of non-specific binding, a 371 

reasonable shelf-life and commercial availability of quality controlled products 372 

that are suitable for rebinding in aqueous solutions still need to be overcome. 373 

Nonetheless the approach of selective (enough) extraction followed by HPLC-MS 374 



is an attractive proposition in bioanalysis. Hence, the development and validation 375 

to regulatory authority guidelines of macromolecule MIPs is tentatively awaited. 376 

 377 

Conclusions 378 

Molecularly imprinted polymers offer an alternative approach to biological 379 

antibodies for selective capture reagents in bioanalytical chemistry. Most of the 380 

developments in MIPs have involved small molecules particularly drugs and 381 

metabolites. Although several different applications have been proposed, none 382 

have come into widespread routine use in laboratories. Use as selective sorbents 383 

for SPE have been the most promising area. Even in this area, uptake has been 384 

slow. This is in part due to the advent of techniques such as LC-MS seemingly 385 

requiring less rigorous sample preparation requirements. It is also, in part, 386 

caused by the nature of the technique. If you develop a product that is specific to 387 

only one drug or class of drug – it is not going to attract a big market. However 388 

generic protocols would be helpful here. 389 

  390 

There is growing interest in accurate measurement of proteins and other 391 

macromolecules or biological entities such as viruses. These are being 392 

introduced as new drugs or being validated as biomarkers both for drug efficacy 393 

and diagnostics. Not surprisingly, MIPs are being produced to macromolecules 394 

and are now being evaluated for use in sensors and for sample preparation. 395 

Selective extraction both for analytical and preparative purposes is worthy of 396 

more research as there are few examples of macromolecule determination in 397 



biological samples. Methods proposed will need to be subject to the rigorous 398 

validation protocols required by regulatory authorities, not just publication in 399 

academic journals. 400 

 401 

Future Perspectives 402 

The determination of large molecules in biological fluids will continue to be an 403 

area of growing importance. Problems with determining intact macromolecules 404 

will present greater challenges than for small molecules not least due to their lack 405 

of stability. Improvements in the preparation of macromolecular MIPs are 406 

needed. This will facilitate investigations into the use of such selective reagents 407 

for improved methods of sample preparation. These could then be utilised along 408 

with methods such as LC-MS to provide accurate quantification at low 409 

concentrations in biological fluids. 410 

 411 
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Table 1 – Example of analytes imprinted within a varied mix of matrices and 416 

monomer/cross-linker combinations.  417 

Analyte Matrix Monomer Cross-linker Validation Ref 

BHb Aqueous buffers AAm MBAA 
MIP vs NIP 
Selectivity vs BSA 

[49] 

Lysozyme 
Aqueous and 
diluted egg white 

NiPAm/AAm MBAA 
MIP vs NIP 
Selectivity vs BSA, 
Mb, BHb, TI, CytC 

[48] 

Ovalbumin 
Aqueous non-
biological 

Chitosan/AA,AAm, 
MAA 

MBAA 
MIP vs NIP 
Selectivity vs BSA, 
BHb, lysozyme 

[28] 

ProGRP 
Aqueous non-
biological 

EAMA DVB 
MIP vs NIP 
Selectivity vs 3 
other poly peptides 

[40, 41] 

Lysozyme Aqueous buffers 
VBDIA/ NiPAm/AAm 
Plus Cu ions 

MBAA 

MIP vs NIP 
Selectivity vs 
CytC, RNasaA, 
OB, BSA, Hb, GOx 

[45] 

Lysozyme 
Aqueous and  
diluted egg white 

Dopamine Not reported 

MIP vs NIP and 
selectivity vs CytC, 
RNase A, BHb, 
BSA, CytC 

[50] 

HPR 
Spiked human 
serum 

Dopamine PETA 
HSA, IgG, Trf and 
other serum 
proteins 

[52] 

HSA, IgG Aqueous buffers AAm MBAA MIP vs NIP [53] 

BSA Aqueous buffers AAm MBAA 

MIP vs NIP and 
selectivity vs CA,  
lysozyme, BSA, 
and trypsin 

[51] 

BSA 
Aqueous buffers, 
serum, urine 

2VP EGDMA MIP vs NIP [54] 

Acrylamide (AAm); Acrylic acid (AA); Methylacrylic acid (MAA); N-(2-Aminoethyl methacrylamide hydrochloride 
(EAMA); N-isopropylacrylamide (NiPAm); Divinyl benzene (DVB); N,N-methylenebisacrylamide (MBAA); N-(4-vinyl)-
benzyl iminodiacetic acid (VBIDA); 2-vinylpyridine (2VP); Cytochrome C (CytC); Bovine haemoglobin (BHb); Bovine 
serum albumin (BSA); Myoglobin (Mb); Trypsin inhibitor (TI); Glucose oxidase (GOx); Carbonic Anhydrase (CA); 
Ovalbumin (OB); Pentaerythritol triacrylate (PETA); Horseradish peroxidase (HPR); Transferrin (Trf); Ribonuclease A 
(RNase A); Ethylene glycol dimethylacrylate (EGDMA). 



Executive Summary 418 

Background 419 

 The measurement of drugs, metabolites and endogenous compounds is a 420 

very challenging area for Analytical Chemists. The most common methods 421 

involve some form of extraction to give sample clean up and pre-422 

concentration. This is then followed by injection into a gas or liquid 423 

chromatograph and measurement using a variety of detectors but most 424 

commonly nowadays mass spectrometry. 425 

 As demands for better sensitivity are a challenge methods of selective 426 

extraction have been explored. One of the most attractive of these has 427 

been the use of immobilised antibodies to selectively extract drugs and 428 

metabolites using solid phase extraction. 429 

 430 

Molecularly Imprinted Polymers 431 

 MIPs are synthetic polymers formed around a template molecule (the 432 

analyte). These are then used as reagents to selectively rebind the analyte 433 

during sample preparation. They are much cheaper than biological 434 

antibodies and are more stable. 435 

 There are many literature applications using MIPs to extract small 436 

molecular mass drugs and metabolites but they are not in common use in 437 

industrial laboratories. 438 

 439 

MIPs for extraction/enrichment of macromolecules 440 



 With the development of macromolecules as candidate drugs and 441 

biomarkers there has been increased interest in developing selective 442 

extraction to large molecules. 443 

 The use of soft gels, where the MIPs are formed in aqueous solutions is 444 

much more applicable to biomolecules which are generally not stable in 445 

other solvents. 446 

 447 

Examples of extraction/enrichment of macromolecules using MIPs 448 

 Examples of selective binding of a number of macromolecules are given. 449 

These include peptides and polypeptides, lysozyme, bovine haemoglobin, 450 

bovine serum albumin, ovalbumin, horseradish peroxidise, human serum 451 

albumin, and viruses. 452 

 453 

Comments 454 

 The combination of selective extraction along with HPLC-MS to measure 455 

macromolecules is very attractive.  456 

 However there are as yet few examples where this has been achieved 457 

with MIPs as opposed to biological antibodies. 458 

 There are some questions as to whether or not a MIP effect is as selective 459 

as desired. 460 

 461 

Conclusions 462 



 Use of selective extraction is an area likely to grow as more 463 

macromolecular drug candidates and biomarkers are developed.  464 

465 
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