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ABSTRACT 46 

Globular proteins are important both as therapeutic agents and excipients. However, their fragile 47 

native conformations can be denatured during pharmaceutical processing, which leads to 48 

modification of the surface energy of their powders and hence their performance. Lyophilized 49 

powders of hen egg-white lysozyme and β-galactosidase from Aspergillus oryzae were used as 50 

models to study the effects of mechanical denaturation on the surface energies of basic and acidic 51 

protein powders, respectively. Their mechanical denaturation upon milling was confirmed by the 52 

absence of their thermal unfolding transition phases and by the changes in their secondary and 53 

tertiary structures. Inverse gas chromatography detected differences between both unprocessed 54 

protein powders and the changes induced by their mechanical denaturation. The surfaces of the 55 

acidic and basic protein powders were relatively basic, however the surface acidity of β-56 

galactosidase was higher than that of lysozyme. Also the surface of β-galactosidase powder had a 57 

higher dispersive energy compared to lysozyme. The mechanical denaturation decreased the 58 

dispersive energy and the basicity of the surfaces of both protein powders. The amino acid 59 

composition and molecular conformation of the proteins explained the surface energy data 60 

measured by inverse gas chromatography. The biological activity of mechanically denatured 61 

protein powders can either be reversible (lysozyme) or irreversible (β-galactosidase) upon 62 

hydration. Our surface data can be exploited to understand and predict the performance of protein 63 

powders within pharmaceutical dosage forms. 64 

 65 

Keywords: 66 

Protein denaturation; β-Galactosidase; Lysozyme; Conformational change; Inverse gas 67 

chromatography; Surface free energy. 68 
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1. Introduction 69 

 70 

In the pharmaceutical field, there is considerable interest in the use of globular proteins for 71 

their therapeutic effects. During pharmaceutical processes, protein powders are often subjected to 72 

mechanical stresses. For example, milling has been used to prepare protein particles suitable for 73 

pulmonary delivery and protein-loaded microparticles in industrial quantities [1,2]. The 74 

mechanical stresses applied during the milling can partially or completely denature the proteins 75 

and change their bulk properties [3]. In recent years, denatured globular proteins have found 76 

extensive applications as excipients in pharmaceutical formulations [4,5]. Denatured globular 77 

proteins have been used to prepare emulsion systems designed to enhance the absorption of 78 

insoluble drugs and to form nanoparticles for drug delivery and targeting [4]. Globular proteins 79 

have also been successfully used to formulate controlled drug delivery tablets, which delay drug 80 

release in gastric conditions by forming a gel-layer stabilized by intermolecular–beta sheets of 81 

denatured globular proteins [5]. 82 

Surface energies of powders are critical properties to be considered during formulation and 83 

development of dosage forms in the pharmaceutical industry. Surface energy has significant effects 84 

on pharmaceutical processes such as granulation, tableting, disintegration, dissolution, 85 

dispersibility, immiscibility, wettability, adhesion, flowability, packing etc. Resultant data from 86 

recent determination of surface energies have been used to reduce the time of formulation 87 

development and enhance the quality of the final product [6-8]. 88 

The effect of the protein denaturation on their surface chemistry has been determined using 89 

time-of-flight secondary ion mass spectrometry [9]. However, the effect of mechanical 90 

denaturation on the surface energies of globular proteins has not been reported and these effects 91 
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must be understood to exploit the full potential of globular proteins in pharmaceutical industry 92 

both as therapeutic agents and excipients. Inverse gas chromatography (IGC) is a useful verified 93 

tool for surface energy measurements [10]. IGC has been used to measure the surface free energy 94 

of lyophilized protein particles, detecting lot-to-lot variations in the amorphous microstructure of 95 

lyophilized protein formulations [11]. 96 

This paper aims to evaluate the effects of mechanical denaturation on the surface energies 97 

of globular protein powders using IGC. β-Galactosidase is a hydrolytic enzyme that has been 98 

widely investigated for potential applications in the food industry to improve sweetness, solubility, 99 

flavor, and digestibility of dairy products. Preparations of β galactosidases have also been 100 

exploited for industrial, biotechnological, medical, and analytical applications [12]. Lysozyme is 101 

a naturally occurring enzyme found in bodily secretions such as tears, saliva, and milk and has 102 

been explored as a food preservative and pharmaceutical. The isoelectric points (pI) of β-103 

galactosidase from Aspergillus oryzae and hen egg-white lysozyme are 4.6 and 11.3, and were 104 

used as models of acidic and basic globular proteins, respectively [13]. Lyophilized powders of 105 

these proteins were mechanically denatured by milling. Their surface energies before and after 106 

denaturation were compared in order to understand how the surfaces of the globular protein 107 

powders respond to the mechanical denaturation.  108 

 109 

2. Materials and methods 110 

2.1. Materials 111 

Micrococcus lysodeikticus (Sigma-Aldrich), 2-nitrophenyl β-D-galacto pyranoside 112 

(Sigma-Aldrich), lyophilized powders of β-galactosidase from A. oryzae (Sigma-Aldrich) and hen 113 

egg-white lysozyme (Biozyme Laboratories, UK) were purchased as indicated. The purchased β-114 
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galactosidase and lysozyme powders were considered to be unprocessed samples and named UNG 115 

and UNL, respectively. 116 

 117 

2.2. Preparation of mechanically denatured protein powders 118 

Mechanically denatured powders of β-galactosidase and lysozyme were prepared by 119 

manually milling. The milling was achieved by rotating a marble pestle over the powder within a 120 

marble mortar at ~45 cycles per minute (cpm). Milling times of 60 min were enough to completely 121 

denature the protein powders, and this was confirmed by differential scanning calorimetry (DSC) 122 

[3]. The mechanically denatured powders of β-galactosidase and lysozyme were named DeG and 123 

DeL, respectively. Three batches (2 g each batch) of the mechanically denatured powders were 124 

prepared for each protein. 125 

 126 

2.3. Microscopy 127 

A Zeiss Axioplan2 polarizing microscope (Carl Zeiss Vision GmbH; Hallbergmoos, 128 

Germany) was used to visualize the samples. The accompanying software (Axio Vision 4.2) was 129 

then used to determine the projected area diameters of the powders. 130 

 131 

2.4. Differential scanning calorimetry (DSC) 132 

Differential scanning calorimetry (DSC) thermograms were obtained using a Perkin-Elmer 133 

Series 7 DSC (Perkin-Elmer Ltd., Beaconsfield, UK). Samples (4-7 mg) were sealed in aluminium 134 

pans. The escape of water was facilitated by making a pinhole in the lid prior to sealing. The 135 

samples were equilibrated at 25 °C and heated to 250 °C at a scan heating rate of 10 °C/min under 136 

a flow of anhydrous nitrogen (20 ml/min). Each sample was analysed in triplicate. The temperature 137 
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axis and cell constant of the DSC cell were calibrated with indium (10 mg, 99.999 % pure, melting 138 

point 156.60 °C, and heat of fusion 28.40 J/g). 139 

 140 

2.5. FT-Raman spectroscopy 141 

FT-Raman spectra of samples were recorded with a Bruker IFS66 optics system using a 142 

Bruker FRA 106 Raman module. The excitation source was an Nd: YAG laser operating at 1064 143 

nm and a laser power of 50 mW was used. The FT-Raman module was equipped with a liquid 144 

nitrogen cooled germanium diode detector with an extended spectrum band width covering the 145 

wave number range 1800-450 cm-1. Samples were placed in stainless steel sample cups and 146 

scanned 200 times with the resolution set at 8 cm-1. The observed band wave numbers were 147 

calibrated against the internal laser frequency and are correct to better than ±1 cm-1. The spectra 148 

were corrected for instrument response. The experiments were run at a controlled room 149 

temperature of 20±1°C. 150 

 151 

2.6. Enzymatic assay 152 

The enzymatic activity of lysozyme samples was measured to determine the ability of 153 

lysozyme to catalyze the hydrolysis of β-1,4-glycosidic linkages of cell-wall mucopolysaccharides 154 

[14]. Lysozyme solution (30 µl, 0.05 % in phosphate buffer, pH = 5.2; 10 mM) was added to 155 

Micrococcus lysodeikticus suspension (2.97 ml, 0.025 % in phosphate buffer, pH = 6.24; 66 mM). 156 

The decrease in the absorbance at 450 nm was monitored by using a UV-Vis spectrophotometer 157 

(PU 8700, Philips, UK). The activity was determined by measuring the decrease in the substrate 158 

bacterial suspension concentration with time. Hence the slope of the reduction in light absorbance 159 

at 450 nm against the time of 3 min, starting when the protein solutions were mixed with the 160 
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substrate bacterial suspension, was considered to be the indicator of the lytic activity of lysozyme 161 

[15]. 162 

The enzymatic activity of β-galactosidase samples was determined using a method relying 163 

on the ability of β-galactosidase to hydrolyse the chromogenic substrate o-nitrophenyl β-D-galacto 164 

pyranoside (ONPG) to o-nitrophenol [16]. The results were achieved by adding 20 µl of protein 165 

solution (0.05 w/v% in deionised water) to 4 ml of the substrate solution (0.665 mg/ml) in a 166 

phosphate buffer (100 mM and pH = 7). The mixture then was incubated for 10 min in a water 167 

bath at 30±1 °C. The absorbance at λ = 420 nm was measured to indicate the activity. 168 

The concentrations of the protein solutions had been determined prior to the activity tests 169 

using the following equation: 170 

[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃] = 𝐴𝐴𝐴𝐴𝐴𝐴280 𝑛𝑛𝑛𝑛 𝐸𝐸280 𝑛𝑛𝑛𝑛⁄                              (1) 171 

where [𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃] is the concentration of protein in the tested solution w/v%, 𝐴𝐴𝐴𝐴𝐴𝐴280 𝑛𝑛𝑛𝑛 is the 172 

absorbance of the tested protein solution at 280 nm, and 𝐸𝐸280 𝑛𝑛𝑛𝑛 is the absorbance of protein 173 

standard solution with concentration 0.05 w/v%. The concentrations of the solutions were diluted 174 

to be about 0.05 % w/v so as to give an absorbance value of less than 0.8. The activities of all 175 

samples were measured relative to that of a corresponding fresh sample, which was considered as 176 

the standard solution. 177 

 178 

2.7. Inverse gas chromatography 179 

IGC experiments were performed using an inverse gas chromatography (IGC 2000, 180 

Surface Measurement Systems Ltd., UK). A sample (~500 mg) was packed into a pre-silanised 181 
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glass column (300 mm × 3 mm i.d.). Three columns of each sample were analysed at 30 °C (the 182 

lowest temperature at which the IGC experiments can be performed to avoid thermal stress) and 183 

zero relative humidity, using anhydrous helium gas as the carrier. A series of n-alkanes (n-hexane 184 

to n-nonane) in addition to chloroform, as a monopolar electron acceptor probe (𝑙𝑙+), and ethyl 185 

acetate, as a monopolar donor acceptor probe (𝑙𝑙−), were injected through the columns at the infinite 186 

dilution region. Their retention times followed from detection using a flame ionization detector 187 

(FID). 188 

 189 

2.7.1. Surface energy calculations 190 

Our published methods were used to calculate the surface energies and verify their 191 

accuracy [17-19]. These methods describe the surface properties using the dispersive retention 192 

factor (𝐾𝐾𝐶𝐶𝐶𝐶2
𝑎𝑎 ), the electron acceptor retention factor (𝐾𝐾𝑙𝑙+𝑎𝑎 ), and the electron donor retention factor 193 

(𝐾𝐾𝑙𝑙−𝑎𝑎 ), which are calculated using the retention times of probes:  194 

ln (tr − t0)= (ln 𝐾𝐾𝐶𝐶𝐶𝐶2
𝑎𝑎 ) n + C                             (2) 195 

where n is the carbon number of the homologous n-alkanes, tr and t0 are the retention times of the 196 

n-alkanes and a non-adsorbing marker, respectively, 𝐾𝐾𝐶𝐶𝐶𝐶2
𝑎𝑎  is the dispersive retention factor of the 197 

analysed powder and C is a constant. The linear regression statistics of equation 2 generate the 198 

value of t0 which gives its best linear fit. The slope of the equation 2 gives the value of 𝐾𝐾𝐶𝐶𝐶𝐶2
𝑎𝑎 .  199 

𝐾𝐾𝑙𝑙+𝑎𝑎 = 𝑃𝑃𝑛𝑛𝑙𝑙+ 𝑃𝑃𝑛𝑛𝑙𝑙+,𝑟𝑟𝑟𝑟𝑟𝑟⁄                              (3) 200 

𝐾𝐾𝑙𝑙−𝑎𝑎 = 𝑃𝑃𝑛𝑛𝑙𝑙− 𝑃𝑃𝑛𝑛𝑙𝑙−,𝑟𝑟𝑟𝑟𝑟𝑟⁄                              (4) 201 
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where 𝑃𝑃𝑛𝑛𝑙𝑙+ and 𝑃𝑃𝑛𝑛𝑙𝑙+,𝑟𝑟𝑟𝑟𝑟𝑟 are the retention time of 𝑙𝑙+ and its theoretical n-alkane reference, 202 

respectively, 𝑃𝑃𝑛𝑛𝑙𝑙− and 𝑃𝑃𝑛𝑛𝑙𝑙−,𝑟𝑟𝑟𝑟𝑟𝑟 are the retention time of 𝑙𝑙− and its theoretical n-alkane reference, 203 

respectively.  204 

ln 𝑃𝑃𝑛𝑛𝑙𝑙+,𝑟𝑟𝑟𝑟𝑟𝑟 = ln 𝑃𝑃𝑛𝑛𝐶𝐶𝑛𝑛 + �
𝛼𝛼𝑙𝑙+�𝛾𝛾𝑙𝑙+

𝑑𝑑 �
0.5
−𝛼𝛼𝐶𝐶𝐶𝐶�𝛾𝛾𝐶𝐶𝐶𝐶

𝑑𝑑 �
0.5

𝛼𝛼𝐶𝐶𝐶𝐶2�𝛾𝛾𝐶𝐶𝐶𝐶2�
0.5 � ln𝐾𝐾𝐶𝐶𝐶𝐶2

𝑎𝑎                              (5) 205 

ln 𝑃𝑃𝑛𝑛𝑙𝑙−,𝑟𝑟𝑟𝑟𝑟𝑟 = ln 𝑃𝑃𝑛𝑛𝐶𝐶𝑛𝑛 + �
𝛼𝛼𝑙𝑙−�𝛾𝛾𝑙𝑙−

𝑑𝑑 �
0.5
−𝛼𝛼𝐶𝐶𝐶𝐶�𝛾𝛾𝐶𝐶𝐶𝐶

𝑑𝑑 �
0.5

𝛼𝛼𝐶𝐶𝐶𝐶2�𝛾𝛾𝐶𝐶𝐶𝐶2�
0.5 � ln𝐾𝐾𝐶𝐶𝐶𝐶2

𝑎𝑎                              (6) 206 

where αCH2 and γCH2
, 𝛼𝛼𝐶𝐶𝑛𝑛 and 𝛾𝛾𝐶𝐶𝑛𝑛𝑑𝑑 , 𝛼𝛼𝑙𝑙+ and 𝛾𝛾𝑙𝑙+𝑑𝑑 , and 𝛼𝛼𝑙𝑙− and 𝛾𝛾𝑙𝑙−𝑑𝑑  are the cross–sectional area and 207 

the dispersive free energy of a methylene group, an n-alkane, 𝑙𝑙+ and 𝑙𝑙−, respectively. 𝑃𝑃𝑛𝑛𝐶𝐶𝑛𝑛 is the 208 

retention time of the n-alkane. 209 

The retention factors are then used to calculate the surface dispersive (γs
d), electron donor (γs

−) and 210 

electron acceptor (γs
+) components of the powders: 211 

γs
d =

0.477 (T ln KCH2
a )2 

(𝛼𝛼𝐶𝐶𝐶𝐶2)2 γCH2
 mJ.m-2                             (7) 212 

γs
− = 0.477 (T ln𝐾𝐾𝑙𝑙+

𝑎𝑎 )2 
(𝛼𝛼𝑙𝑙+)2 𝛾𝛾𝑙𝑙+

+  mJ.m-2                             (8) 213 

γs
+ = 0.477 (T ln𝐾𝐾𝑙𝑙−

𝑎𝑎 )2 
(𝛼𝛼𝑙𝑙−)2 𝛾𝛾𝑙𝑙−

−  mJ.m-2                             (9) 214 

where  𝛾𝛾𝑙𝑙++  is the electron acceptor component of 𝑙𝑙+ and  𝛾𝛾𝑙𝑙−−  is the electron donor component of 215 

𝑙𝑙−. The units of 𝛼𝛼 are Å2 and of 𝛾𝛾 are mJ.m-2 in all equations.  216 

The parameters of CH2 are calculated from the following equation:  217 

(𝛼𝛼𝐶𝐶𝐶𝐶2)2 γCH2
= - 1.869T + 1867.194 Å4.mJ.m-2                             (10) 218 

The parameters of polar probes are still under debate and different values have been 219 

reported [20-25]. In this paper, we used the values which were recently used for ethyl acetate ( 𝛾𝛾𝑙𝑙−− = 220 
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19.20 mJ/m2, 𝛾𝛾𝑙𝑙−𝑑𝑑 = 19.60 mJ/m2, 𝛼𝛼𝑙𝑙−= 48.0 Å2) and for chloroform ( 𝛾𝛾𝑙𝑙++ = 3.80 mJ/m2, 𝛾𝛾𝑙𝑙+𝑑𝑑 = 25.90 221 

mJ/m2, 𝛼𝛼𝑙𝑙+= 44.0 Å2) [17,22]. However, using any other different reported numbers will not 222 

change the findings of the comparison. 223 

The percentage coefficient of variation of ln 𝐾𝐾𝐶𝐶𝐶𝐶2
𝑎𝑎  (%𝐶𝐶𝐶𝐶ln 𝐾𝐾𝐶𝐶𝐶𝐶2

𝑎𝑎 ) is the indicator of the 224 

accuracy of the surface energy measurements. The error of the slope of the equation 2 (𝑆𝑆𝑆𝑆ln 𝐾𝐾𝐶𝐶𝐶𝐶2
𝑎𝑎 ) 225 

is used to calculate %𝐶𝐶𝐶𝐶ln 𝐾𝐾𝐶𝐶𝐶𝐶2
𝑎𝑎 : 226 

%𝐶𝐶𝐶𝐶ln 𝐾𝐾𝐶𝐶𝐶𝐶2
𝑎𝑎 = �𝑆𝑆𝑆𝑆ln 𝐾𝐾𝐶𝐶𝐶𝐶2

𝑎𝑎 ln 𝐾𝐾𝐶𝐶𝐶𝐶2
𝑎𝑎⁄ � × 100                             (11) 227 

a
CHKCV

2 ln% should be less than 0.7% to accept the accuracy of the measurement. a
CHKCV

2 ln% is then 228 

used to calculate the uncertainty range of γs
d: 229 

Uncertainty Range of γs
d =  �� 100×γs

d

100+7.5%𝐶𝐶𝐶𝐶ln 𝐾𝐾𝐶𝐶𝐶𝐶2
𝑎𝑎

�  𝑃𝑃𝑃𝑃 � 100×γs
d

100−7.5%𝐶𝐶𝐶𝐶ln 𝐾𝐾𝐶𝐶𝐶𝐶2
𝑎𝑎

��                             (12) 230 

  231 

3. Results and discussion 232 

3.1. Microscopy 233 

The photomicrographs of UNL, UNG, DeL, and DeG powders show that they had project-234 

area diameters of ~4 µm (Fig. S1), ~2.5 µm (Fig. S2), ~1.5 µm (Fig. S3), and ~1.5 µm (Fig. S4), 235 

respectively. The particle sizes of the original powders were below 5 µm. Therefore, the attrition 236 

mechanism was dominant during milling, and so the same original faces did not change [3]. 237 

 238 

3.2. Differential scanning calorimetry (DSC) 239 

For both proteins, DSC thermograms exhibited broad peaks ranging from ~30 to ~140 °C 240 

(Figure 1). These peaks are due to water removal, and their areas depend on water residues in the 241 
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powders [3]. The enthalpy of the water evaporation peak was 118±11, 124±6, 114±9 and 130±8 242 

J/g for UNL, UNG, DeL, and DeG, respectively, and did not significantly change after milling (t-243 

test: P < 0.05). The protein powders exchange water with the surrounding air depending on 244 

conditions of temperature, relative humidity and exposure time. Therefore, the conditions used 245 

during milling did not change the water content of the powders. Also Figure 1 shows that the 246 

unprocessed proteins unfolded and a peak was detected at their apparent denaturation 247 

temperatures, which varied according to the protein. DSC thermograms of UNL displayed one 248 

denaturation peak at ~201 °C, but UNG displayed two denaturation peaks at ~176 °C and ~212 249 

°C.  250 

 251 

 

 
Fig. 1. Example DSC thermograms of protein powders (A) unprocessed lysozyme, (B) 
mechanically denatured lysozyme, (C) unprocessed β-galactosidase, (D) mechanically 
denatured β-galactosidase. Conditions: samples heated from 25 to 250 °C; heating rate: 10 
°C/min. 
 

 252 

The difference in the thermal denaturation pattern can be due to the difference in the 253 

thermal unfolding mechanisms of the proteins. While lysozyme folds in a highly cooperative 254 
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manner and so exhibits an all-or-none thermal unfolding transition, β-galactosidase goes through 255 

a non-two state thermal unfolding transition resulting in two peaks [26,27]. The unfolding 256 

transition peaks were completely lost after mechanical denaturation. Hence there was no peak at 257 

~201 ºC for the milled lysozyme samples and neither were there peaks at ~176 °C and ~212 °C 258 

for the milled β-galactosidase. The complete disappearance of the unfolding transition peak from 259 

the DSC thermogram indicates the total transition of the protein from its folded state to its unfolded 260 

state [3]. 261 

 262 

3.3. FT-Raman study 263 

Raman spectroscopy was used to compare the molecular conformation of protein powders 264 

before and after mechanical denaturation. The band at ~1450 cm-1 indicates the CH bending 265 

vibrations of aliphatic side chains, and its intensity and position are unaffected by changes induced 266 

in protein structure after dehydration or applying different stresses [28]. Therefore, it was used as 267 

an internal intensity standard to normalize Raman spectra before comparison (Figures 2A and 3A). 268 

The vibration modes of amide I (C=O stretch) from 1580 to 1720 cm-1 (Figures 2B and 3B) and 269 

amide III (N-H in-plane bend + C-N stretch) from 1250–1330 cm-1 (Figures 2C and 3C) 270 

demonstrated the secondary structure of β-galactosidase and lysozyme, respectively. The spectra 271 

of the denatured samples show that the modes of the amide I upshifted and broadened for both 272 

proteins, and the mode of the amide III intensified and downshifted, especially for lysozyme, but 273 

there was no change in the mode of amide III for β-galactosidase. These changes indicated the 274 

transformation of α-helix content to β-sheets or a disordered structure which enhances the tendency 275 

of proteins to aggregate [3,29]. While β-galactosidase is a beta-type protein containing mainly β-276 
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sheet structure and only 5% α-helix [30], the secondary structure of lysozyme consists of 30% α-277 

helix [31]. This explains why no changes in the amide III of β-galactosidase were observed.  278 

The aggregation of denatured proteins combined with changes in the vibration modes of 279 

the aromatic residues at ~1550 cm-1 in β-galactosidase (Figure 2D), 1320-1380 cm-1 in lysozyme 280 

(Figure 3D) and 800-900 cm-1 in both proteins (Figures 2E and 3E). These changes in the vibration 281 

modes of the aromatic residues result from the changes in their micro-environment after 282 

denaturation because of their roles in the denaturation processes [29,32]. The aggregates of 283 

denatured protein molecules are formed via π-stacking interactions of the aromatic residues [33]. 284 
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Fig. 2. FT-Raman spectra of β-galactosidase powders, the unprocessed powders (solid lines) and 285 
the mechanically denatured powders (dotted lines). Vibration modes of secondary structure are 286 
(B) amide I and (C) amide III. Vibration modes of tertiary structure are (D) for Trp and (E) for Trp 287 
and Tyr. The spectra were normalized using the methylene deformation mode at ~1450 cm-1 as an 288 
internal intensity standard. 289 
 290 
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Fig. 3. FT-Raman spectra of lysozyme powders, the unprocessed powders (solid lines) and the 291 
mechanically denatured powders (dotted lines). Vibration modes of secondary structure are (B) 292 
amide I and (C) amide III. Vibration modes of tertiary structure are (D) for Trp and (E) for Trp 293 
and Tyr. The spectra were normalized using the methylene deformation mode at ~1450 cm-1 as 294 
an internal intensity standard. 295 

 296 

3.4. Enzymatic assay 297 

Therapeutic proteins may rapidly denature and lose their enzymatic activity. The structure 298 

changes detected using FT-Raman and the absence of Tm detected by DSC have been used to 299 

monitor the denaturation of proteins, and the results of Raman and DSC are linked to the results 300 

of enzymatic activity [34]. Our DSC and Raman results confirmed the denaturation of both 301 

proteins studied. The enzymatic assay showed that the mechanically denatured β-galactosidase 302 

samples (DeG) demonstrated no enzymatic activity (Figure 4). However, the mechanically 303 

denatured lysozyme samples (DeL) maintained full enzymatic activity when compared to an 304 

unprocessed sample (t-test: P < 0.05) (Figure 4). This is due to the ability of denatured lysozyme 305 

to refold upon dissolution in aqueous media and thus the biological activity of lysozyme is fully 306 

recovered following dissolution [3.35]. 307 

 308 
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 309 

Fig. 4. Enzymatic activity of the unprocessed powders and the mechanically 310 
denatured powders of lysozyme and β-galactosidase. 311 

 312 

3.5. Surface free energy 313 

The IGC results (Table 1) confirm the acceptable accuracy of the IGC experiments 314 

considered in this work with a
CHKCV

2 ln% values of less than 0.7% [18]. IGC data for the unprocessed 315 

powders demonstrated the differences in the surface free energy between β-galactosidase (an 316 

acidic protein) and lysozyme (a basic protein). UNG had higher γs
d compared to UNL because the 317 

uncertainty ranges of γs
d of UNG and UNL did not overlap for the three columns [18]. The surface 318 

acidity (γs
+) and the surface basicity (γs

−) of UNG were significantly different from their 319 

counterparts of UNL (t-test: P < 0.05). The average of γs
+ was 16.2±0.2 and 12.4±0.1 mJ.m-2 and 320 

the average of γs
− was 5.5±0.2 and 10.5±0.6 mJ.m-2 for UNG and UNL, respectively. This proves 321 

that UNG, chosen as a model for acidic proteins, has higher surface acidity and lower surface 322 

basicity compared to selected basic protein, UNL. 323 

 324 

Table 1. The surface energies (γs
d, γs

+ and γs
−) and retention factors (𝐾𝐾𝐶𝐶𝐶𝐶2

𝑎𝑎 , 𝐾𝐾𝑙𝑙+𝑎𝑎  and 𝐾𝐾𝑙𝑙−𝑎𝑎 ) of the 325 
lyophilized lysozyme powder (UNL), the lyophilized β-galactosidase powder (UNG), the 326 
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mechanically denatured lyophilized lysozyme powder (DeL) and the mechanically denatured 327 
lyophilized β-galactosidase powder (DeG).  328 

Material Column 𝐾𝐾𝐶𝐶𝐶𝐶2
𝑎𝑎  𝐾𝐾𝑙𝑙+𝑎𝑎  𝐾𝐾𝑙𝑙−𝑎𝑎  %𝐶𝐶𝐶𝐶ln 𝐾𝐾𝐶𝐶𝐶𝐶2

𝑎𝑎  γs
d 

mJ.m-2 
Uncertainty Range of γs

d 
mJ.m-2 

γs
+ 

mJ.m-2 
γs
− 

mJ.m-2 
UNL 1 3.099 3.725 34.572 0.144 43.1 41.9-44.4 12.4 10.3 
UNL 2 3.095 3.677 34.668 0.094 43.0 42.2-43.9 12.5 10.1 
UNL 3 3.089 3.944 33.704 0.077 42.9 42.2-43.6 12.3 11.2 
DeL 1 2.937 2.781 33.948 0.127 39.1 38.1-40.2 12.3 6.2 
DeL 2 2.965 2.742 31.928 0.147 39.8 38.7-41.0 11.9 6.1 
DeL 3 2.944 2.801 31.826 0.117 39.3 38.4-40.3 11.9 6.3 
UNG 1 3.235 2.542 55.641 0.141 46.5 45.1-47.8 16.0 5.2 
UNG 2 3.222 2.640 58.508 0.076 46.1 45.4-46.9 16.4 5.6 
UNG 3 3.228 2.625 56.028 0.158 46.3 44.8-47.9 16.1 5.6 
DeG 1 2.926 1.980 43.387 0.205 38.9 37.3-40.6 14.1 2.8 
DeG 2 2.958 1.829 41.065 0.160 39.7 38.4-41.0 13.7 2.2 
DeG 3 2.948 1.841 39.710 0.221 39.4 37.7-41.3 13.4 2.2 

 329 

The isoelectric point (pI) of a protein indicates its relative acidity or basicity, the higher the 330 

pI, the higher the basicity of the molecule [36]. The isoelectric points (pI) of the β-galactosidase 331 

and lysozyme used are 4.6 and 11.3, respectively [13]. The molecule of β-galactosidase contains 332 

~11 w/w% basic amino acids (histidine, lysine, and arginine) and ~22 w/w% acidic (aspartic acid 333 

and glutamic acid) residues [37], i.e., approximately double the number of acidic groups compared 334 

to basic. Conversely the lysozyme contains ~18 w/w% and ~7 w/w% basic (histidine, lysine, and 335 

arginine) and acidic (aspartic acid and glutamic acid) residues, respectively [38]. Detailed 336 

information regarding the structures of β-galactosidase and lysozyme can be found in [37,38]. 337 

However, this is not the only determinant of energy as the surfaces of both the acidic (UNG) and 338 

basic (UNL) protein powders were relatively basic (the values of γs
+ > γs

−). Therefore to explain 339 

our results further, the interaction of protein molecules with surfaces and interfaces, during 340 

preparation using lyophilization technique, must be considered. 341 

As protein molecules are surface active containing both polar and nonpolar groups, they 342 

tend to adsorb to interfaces via hydrophobic interactions (London), coulombs (electrostatic) and/or 343 
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hydrogen bonding, and they reorient their surfaces to the parts which give the optimum attractive 344 

force and the most stable state (minimum energy) with a substrate or an interface [39]. Upon 345 

lyophilization, protein molecules adsorb to the formed ice via hydrophobic residues but not via 346 

hydrophilic residues, and this gives support to the hypothesis that the interaction of proteins with 347 

ice involves appreciable hydrophobic interactions [40]. The hydrophobic regions in protein 348 

molecules interact spontaneously with the ice faces by an entropy driving force [41]. The rich 349 

electron rings of aromatic residues orient so that the ring structures lie flat with the interface in 350 

order to maximize the interaction at interfaces and lower the Gibbs free energy of the system [42]. 351 

Therefore, lyophilized protein particles expose the rich electron rings of the aromatic residues on 352 

their surfaces. Aromatic groups, via their π electrons, which are considered nucleophilic, can form 353 

hydrogen bonds with chemical groups (acidic polar probes) being the hydrogen donors [43]. 354 

Therefore, exposing these rings to surfaces relatively increases their basicity compared to their 355 

acidity irrespective of the acidic or basic nature of the proteins themselves. Also the ring structures 356 

can participate in raising the dispersive surface energy via London interactions due to their high 357 

polarizability [43]. The aromatic residues (tryptophan, tyrosine, and phenylalanine) make up 358 

16%w/w of the β-galactosidase molecules and 14%w/w of the lysozyme molecules [37,38]. This 359 

explains the higher values of γs
d of β-galactosidase compared to lysozyme, prior to mechanical 360 

denaturation. 361 

UNG was more acidic than UNL. The size and the shape of the molecule can also influence 362 

orientation. UNG is larger than UNL, with a globular shape and when some of the chemical groups 363 

are preferably exposed to a surface (energetically or entropically), this will expose not only those 364 

specific groups but also other closely associated groups which will vary in nature from one protein 365 
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to another.. Thus, the surfaces of the acidic protein (β-galactosidase) were more acidic compared 366 

to the basic protein (lysozyme).  367 

Table 1 shows that mechanical denaturation decreased the dispersive free energy and the basicity 368 

of the surfaces of protein powders, irrespective of the nature of the protein (acidic or basic). 369 

Usually milling induces an increase in the dispersive energy due to the generation of surface 370 

amorphous regions or/and creation of higher energy crystal faces because of particle 371 

fracture/breakage, thus the surface acidity and basicity change according to the formation of new 372 

faces and regions [44,45]. However, in our case, due to lyophilization, the protein powders are 373 

amorphous with particle sizes below 5 µm. Therefore, there would be no further size reduction by 374 

fracture mechanisms because of brittle ductile transition [3]. Therefore, the denatured protein 375 

powders were produced by milling where the attrition mechanism was dominant and so the same 376 

original faces did not change. During milling, the extensive mechanical energy completely 377 

denatured the protein molecules as confirmed by DSC and Raman results. This denaturation led to 378 

aggregation of the protein molecules via non-covalent interactions through π-stacking interactions 379 

[33]. This caused a loss of the aromatic groups, which are rich in π electrons, from the surfaces. 380 

Therefore, a decrease in the Van der Waals interactions, a major contributor to dispersive energy 381 

and nucleophilicity (basicity) occurred, and so γs
d and γs

− decreased after denaturation for both 382 

proteins. Also this loss of aromatic residues from the surface of the denatured powders renders γs
d 383 

similar for both proteins. This is further evidence that the exposed aromatic residues raise the γs
d 384 

as outlined previously. The Raman spectroscopic results confirmed that the aromatic residues were 385 

involved in the denaturation processes, therefore, supporting the findings and our interpretation of 386 

the IGC studies. 387 

4. Conclusions 388 
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The surface energies of the lyophilized protein powders differed according to their amino 389 

acid compositions. The absence of the thermal unfolding transition phase for the proteins 390 

(lysozyme and β-galactosidase) and the changes in the conformation of the back-bone and side 391 

chains confirmed that the mechanical milling process caused denaturation of the protein powders, 392 

and this denaturation could potentially be reversible in solution. The acidic protein powder (β-393 

galactosidase) had higher surface acidity (γs
+) and lower surface basicity (γs

−) compared to the 394 

basic protein powder (lysozyme). However, both protein powders had relatively basic surfaces due 395 

to the rich electron rings of the aromatic residues which are nucleophilic. During mechanical 396 

denaturation, these rings tend to associate through π-stacking interactions and are thus concealed 397 

from the surface. Their removal reduced γs
− and γs

d of the surfaces of both protein powders, and 398 

thereby yielded similar γs
d for the surfaces of both proteins.  399 
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