
Central Lancashire Online Knowledge (CLoK)

Title Developing an ecologically relevant heterogeneous biofilm model for 
dental-unit waterlines

Type Article
URL https://clok.uclan.ac.uk/id/eprint/16184/
DOI https://doi.org/10.1080/08927014.2016.1260710
Date 2016
Citation Lal, Sham, Pearce, Mark, Achilles-Day, Undine EM, Day, John G, Morton, 

Leslie Hugh Glyn, Crean, Stjohn and Singhrao, Simarjit Kaur (2016) 
Developing an ecologically relevant heterogeneous biofilm model for 
dental-unit waterlines. Biofouling, 33 (1). pp. 75-87. ISSN 0892-7014 

Creators Lal, Sham, Pearce, Mark, Achilles-Day, Undine EM, Day, John G, Morton, 
Leslie Hugh Glyn, Crean, Stjohn and Singhrao, Simarjit Kaur

It is advisable to refer to the publisher’s version if you intend to cite from the work. 
https://doi.org/10.1080/08927014.2016.1260710

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/ 

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law.  
Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors 
and/or other copyright owners. Terms and conditions for use of this material are defined in the 
http://clok.uclan.ac.uk/policies/

http://www.uclan.ac.uk/research/
http://clok.uclan.ac.uk/policies/


1 

 

 

Title:  Developing an ecologically relevant heterogeneous biofilm model for dental-unit waterlines 

 

Journal name: Biofouling 

 

Authors: Sham Lal1,2, Mark Pearce1, Undine E.M. Achilles-Day3, John G. Day4, L. H. Glyn Morton1, 

StJohn Crean1, Sim K. Singhrao1*, 

1Oral & Dental Sciences Research Group,    

College of Clinical and Biomedical Sciences,  

University of Central Lancashire, 

Preston, PR1 2HE, UK. 

2Department of Microbiology, 

Shah Abdul Latif University, Khairpur, Pakistan. 

 

3Department of Life & Environmental Science, 

Bournemouth University, Talbot Campus, Fern Barrow, Poole, BH12 5BB, UK. 

4Culture Collection of Algae and Protozoa, 

The Scottish Association for Marine Science (SAMS), Oban, PA37 1QA, UK. 

 

Running Title: Dental-unit waterline biofilm model    

 

 

 



2 

 

Abstract:      

This study monitored the biodiversity of microbes cultured from a heterogeneous biofilm which had formed 

on the lumen of a section of dental waterline tubing over a period of 910 days. By day two bacterial counts 

on the outlet-water showed that contamination of the system had occurred. After 14 days, a biofilm 

comparable to that of clinical waterlines, consisting of bacteria, fungi and amoebae had formed. This 

showed that the proprietary silver coating applied to the lumenal surface of the commercial waterline tubing 

failed to prevent biofilm formation. Molecular barcoding of isolated culturable microorganisms showed 

some degree of the diversity of taxa in the biofilm, including the opportunistic pathogen Legionella 

pneumophila. Whilst the system used for isolation and identification of contaminating microorganisms may 

underestimate the diversity of organisms in the biofilm, their similarity to those found in the clinical 

environment makes this a promising test-bed for future biocide testing.  

 

Key words: Biofilm, simulated waterline system, Legionella pneumophila 
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Introduction 

In the UK, as in most developed countries, there is often a common water supply from reservoirs to 

domestic, public and commercial users. These reservoirs may contain low numbers of human opportunistic 

bacteria such as Legionella pneumophila 

(http://www.epa.gov/ogwdw/disinfection/tcr/pdfs/whitepaper_tcr_biofilms.pdf). In the distribution systems, 

pipes (dead legs/blind ends) and infrequently used water taps can provide a niche where L. pneumophila 

may thrive and multiply within amoebae that graze on bacteria (Tyndall & Dominigue 1982; Rowbotham 

1986; Barbaree et al. 1986; Wadowsky et al. 1991). Although legionellosis was first identified in an 

outbreak in Philadelphia in the USA in 1976 (Fraser et al. 1977), it is now known that there have been a 

significant number of public outbreaks due to the presence of L. pneumophila in water systems worldwide. 

Furthermore, recreational and healthcare services are vulnerable to such outbreaks and need to be monitored 

frequently. 

All surgeries depend on dental-unit waterlines to supply water to hand-pieces of dental drills during 

clinical treatment. These waterlines are a complex system of thin pipes and valves that supply clean water 

from a reservoir to the drill for the cooling of oral tissues undergoing treatment. In-between treatments, the 

water within the tubing may become “stagnant” and this allows the development of a microbial biofilm 

(Blake 1963). The contamination of water by planktonic heterotrophic bacteria is normally assessed by 

culture methods on R2A agar plates (Reasoner & Geldreich 1979; 1985). However, currently, there is no 

guidance on the frequency of monitoring treatment water.  

It is considered normal practice for waterlines undergoing treatment using biocides (Williams et al. 

1994) to follow the protocol recommended by their manufacturer, usually on daily basis, to prevent 

contamination. However, few practices have the resources, or expertise, to undertake routine assessments of 

the efficacy of the treatments. In a recent study (Lal 2016), where assessments were systematically 

performed, 52% of the dental surgeries tested, failed to meet the standards set by the authorities i.e. that 

water discharged from a dental-unit should be at least as clean as that from the domestic water. The reasons 

http://www.epa.gov/ogwdw/disinfection/tcr/pdfs/whitepaper_tcr_biofilms.pdf
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for this are not fully understood, but it has been speculated that when used in the clinical environment, 

biocides may result in incomplete control (Costa et al. 2016).   

Comprehensive lists of contaminating microorganisms isolated from dental-unit waterlines are 

described elsewhere (Pankhurst et al. 1998; Szymanska et al. 2008; Kumar et al. 2010) and although the 

majority of waterborne bacteria pose no risk of infection, opportunistic nosocomial pathogens from dental 

waterlines have been associated with human cases of infection including L. pneumophila, non-tuberculosis 

Mycobacterium spp., Klebsiella pneumoniae and Pseudomonas aeruginosa (Martin 1987; Pankhurst et al. 

1998; D’Ovidio et al. 2011; Ricci et al. 2012).  

Amoebae also reside in the waterline biofilm and feed on mixed communities of bacteria (Michel & 

Just 1984; Barbeau & Buhler 2001; Dillon et al. 2014a). L. pneumophila, ingested by amoebae, not only 

survive, but remain resistant to recommended biocidal disinfection regimes used to clean the waterlines 

(Dillon et al. 2014a). Legionella can then survive within the amoebal cell vacuoles where they are protected 

from biocides and multiply. Once released from the amoebal cells L. pneumophila will become re-suspended 

in the water, and along with other biofilm bacteria contaminate the water within the dental-unit and 

subsequently the surrounding environment via aerosol sprays. Such a scenario can lead to the potential 

infection of patients and dental professionals. 

In the UK, primary dental care premises are required to comply with the Health and Safety at work 

acts (1974, 1999) http://www.healthyworkinglives.com/advice/Legislation-and-policy/Workplace-Health-

and-Safety/health-safety-legislation, and the Environment Agency water maintenance regulations 1999, 

2001 http://www.hse.gov.uk/aboutus/howwework/framework/aa/hse-ea-nov12.pdf. These provide guidance 

for control of L. pneumophila (ACOP l8) www.hse.gov.uk/legionnaires/what-you-must-do.htm, which 

includes the Department of Health, UK, recommendations for undertaking a written Legionella risk 

assessment of hot air and cold water plumbing by a competent and a qualified water engineer from the 

Legionella Control Association. The assessment should identify and assess sources of known risk for the 

growth of Legionellae. Failure to comply can result in a criminal prosecution. In the USA, the Centers for 

Disease Control and Prevention (CDC) http://www.cdc.gov/ and the American Dental Association (ADA) 

http://www.cdc.gov/
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recommend that the microbial load of the discharged water should be below 500 colony forming units 

(CFU) of aerobic mesophilic heterotrophic bacteria/millilitre (CFU ml−1) (Kohn et al. 2003). The 

recommended standards for dentistry set by the Department of Health, in the UK, HTM 01-05 are of ≤ 200 

CFU ml−1 (Anon 1993; Anon 1996; Al Shorman et al. 2002; Kohn et al. 2003; ADA 2004; 

http://www.cdc.gov/;HTM 01-05: http://www.dh.gov.uk). 

In 2012, Ricci and co-workers reported the death of an elderly Italian female from Legionnaires’ 

disease following inhalation of aerosols during dental treatment. In order to confirm this claim, tap water 

samples were taken from the sink of the dental surgery, and from the high-speed turbine of the dental-unit 

waterlines, as well as water from the deceased patient’s home (tap and shower) for laboratory analysis for 

the presence of L. pneumophila. Subsequently, the same strain of L. pneumophila as the one isolated from 

the patient, was found in tap water and the dental-unit waterlines output water in the dental practice (Ricci et 

al. 2012).  

In vitro simulated waterline systems have been used to test proprietary biocides for dental use (Spratt 

et al. 2004; Dillon et al. 2014b; Lal et al. 2015; Ditommaso et al. 2016). These in vitro models were designed 

primarily for testing biocide efficacy on specific biofilm bacterial species (Spratt et al. 2004) and on 

Vermamoeba vermiformis (Dillon et al. 2014a). The latter model was used for subsequent studies on the 

cultivation of amoebae for in vitro propagation of an avirulent form of Legionella (Dillon et al. 2014b), and 

Serratia marcescens (Lal et al. 2015). More recently, Ditommaso et al. (2016) tested the efficacy of a 

biocide on L. pneumophila serogroup 1 in a new clinical dental waterline without an ecologically relevant 

biofilm.  

The rationale for this study was to establish an ecologically relevant heterogeneous biofilm model, in 

which naturally occurring Legionella species could be detected to replicate a clinical waterline system. It 

was also an objective of the study to develop a model that truly represented a clinical environment that could 

in future be used as a test-bed for biocide studies.  

 

 

http://www.cdc.gov/
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Materials and Methods 

 

Biofilm formation in dental-unit waterline tubing  

Following ethical approval, a simulated in-vitro waterline system, based on former designs (Spratt et al. 

2004; Dillon et al. 2014a), was set up to allow natural biofilm formation from the microbes in tap water. The 

model consisted of a plastic container (Fisher Scientific) with a total liquid capacity of 5 litres, to which a 

length of approximately 2 metres of dental waterline tubing with a 4 millimetre bore was attached (courtesy 

of A-dec, Dental UK Ltd). A peristaltic pump (HaiYang, China) was connected to the tubing to supply a 

constant flow rate of the water at 6 L h−1 (Figure 1). The water supply was taken from a header-tank and the 

water was free of any known additives, other than conforming to compliance of water enforced by Health 

and Safety at work acts in the UK (1974, 1999) and water maintenance regulations 1999 and guidance for 

control of L. pneumophila (ACOP l8). During normal working days (Monday to Friday), fresh cold, tap 

water circulated through the reservoir by a peristaltic pump, filling the container up to the 3L mark to match 

the output flow rate. Overnight and at the weekends, water from the reservoir was circulated continuously 

through the unit via the connector tubing (Figure 1dotted lines) for 910 days (an end point determined by 

presence of planktonic L. pneumophila).             

                             

Establishment of biofilm microbes in the waterline system 

To enumerate planktonic bacterial levels, samples of the tap water and the output water for CFU counts from 

simulated waterline as indicated in Figure 1, were collected in a sterile container first thing each morning for 

14 days and thereafter once a week for total of 180 days. Using a class II safety cabinet serial dilutions were 

prepared down to 10-7 in sterile containers and mixed manually by vigorous shaking. An aliquot (0.1 mL) of 

the diluted planktonic suspension and the tap water (control) was inoculated (in triplicate), onto freshly poured, 

pre-labelled R2A agar plates (Lab M). The neat water samples were also inoculated on Glycine-Vancomycin-

Polymyxin-Cycloheximide (GVPC) medium plates (Fisher Scientific) for the detection of Legionella spp on 

days 1 to 14 and thereafter once a week for up to 180 days and thereafter at ~120 day intervals up to the end 

of the study (910 days). The GVPC plates were incubated at 30°C in a humid environment for up to 7 days. 
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All R2A agar plates were incubated at 22°C for 7 days. Following incubation the plates with colonies in the 

range of 30-300 were counted and the CFU ml−1 calculated using the mean of the triplicate R2A plate readings 

and adjusted for the dilution factor.  

Detection of culturable microorganisms from the biofilm community  

A length of the reservoir-DUWL tubing (1 cm) from the water outflow section (Figure 1) was removed and, 

in a class II safety cabinet and cut lengthwise to expose the lumen. The biofilm growing on the wall of the 

lumen of one half of the tube was swabbed (polypropylene swab tube plastic stick) on days 2, 3, 5, 6, 13, 14 

and then again on days 180 and 910. The attached microbes were then dispersed in 2 mL of sterile water and  

serial dilutions were prepared and inoculated on R2A agar plates, as outlined above.  

Measurement of chemical and physical parameters  

Changes in the water quality were assessed, including the presence of free and combined chlorine, 

temperature and pH. The concentration of free and combined chlorine was measured using CHECKIT® 

Comparator Chlorine kit (Fisher Scientific, UK) on-site for 84 days. Temperature and pH were measured 

using a thermometer and a pH-meter (340i WTW, Weilheim, Germany).  

Live/dead cell assay 

A routinely employed Propidium Iodide (PI) uptake assay to assess biocide activity protocol (Dennison et al. 

2009) was adapted to estimate the dead bacterial cells using microscopy. A length (1 mm) of the reservoir-

DUWL tubing from the water outflow section of the tubing was removed (Figure 1), from which, a loop full 

of the biofilm was taken and spread onto glass slides. One of the slides was treated with 10% buffered 

formalin for 5 minutes followed by a PBS wash. These and the test smears (without formalin treatment, in 

triplicate) were all mounted under glass coverslips using the Vectashield® PI mounting medium (Vector 

laboratories, Peterborough, UK). To visualise any auto-fluorescing bacteria under the microscope, an initial 

biofilm smear was also mounted under glycerol/PBS in 9:1 ratio. Images were captured using the 510 series 

Zeiss confocal microscope (Carl Zeiss Ltd). The bacterial cells having taken up PI were estimated from 

recorded images and related to the total viable count (TVC)/1 mm tube section. 
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Total viable counts 

To calculate TVC from the remaining biofilm on the tube (1 mm) section, bacteria were dispersed in 1 mL 

of sterile water and serial dilutions prepared. An aliquot (100 µl) of the appropriate dilution was then 

inoculated onto R2A agar plates and incubated as described earlier. 

Opportunistic Bacteria 

Detection of potential opportunistic, human pathogens from the tubing involved inoculation of a non-diluted 

biofilm suspension (0.1 mL) on Pseudomonas isolation agar (Sigma) plates; HiCromeTM Klebsiella selective 

medium (Sigma) and GVPC plates on days 2, 3, 5, 6, 13, 14, day 180 and then periodically up to day 910. 

The GVPC plates were incubated as described above and Pseudomonas isolation agar, the HiCromeTM 

Klebsiella selective medium plates incubated at 37°C for 2 days.  

Fungi  

For the isolation of fungi, an additional aliquot (0.1 mL) of the undiluted biofilm suspension was used to 

inoculate malt extract agar plates (Lab M) with the addition of chloramphenicol (0.1g L−1). The plates were 

then incubated at 22°C for 7 days.  

Protozoa  

For isolating protozoa, freshly prepared Escherichia coli (XL blue) were used to serve as a “food line” (Lal 

et al. 2015). The unused half of the cut side of the tubing was placed directly in contact with one end of the 

food line to “encourage” amoebae to graze on E. coli supplied as food on the R2A plate then incubated at 

22°C for 7 days.  

 

Sub-cultures and maintenance 

Bacteria from R2A 

Selected isolates (based on morphological characteristics) of the colonies growing on the R2A plates, were 

sub cultured onto fresh R2A plates and incubated as described earlier. 
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Bacteria from GVPC plates to R2A plates 

Selected colonies growing on the GVPC plates, were also sub cultured onto fresh R2A plates and incubated 

as before. This was performed in order to eliminate non- Legionella colonies that may have been growing on 

GVPC plates and to show if they demonstrated pigment and/or swarming characteristics on R2A.  

Maintenance of fungi  

Blackish green - coloured colonies were isolated on the malt extract agar plates containing chloramphenicol. 

For subsequent microscopic identification, a pure culture of each colony type from each plate was obtained 

and maintained by sub-culturing onto new malt extract agar plates without chloramphenicol as before.  

 

Molecular identification of isolated bacteria 

Samples of bacteria were collected from the biofilm growth from the tubing lumen on days 2, 3, 5, 6, 13, 14, 

from R2A plates and then from Pseudomonas isolation agar, the HiCromeTM Klebsiella selective medium 

plates incubated at 37°C for 2 days and the GVPC plates for human pathogenic bacterial species at 180 and 

at 910 days. Colonies were “picked” and genomic DNA isolated from cells lysed in 20 mg ml−1 lysozyme in 

buffer (20 mM Tris-HCl pH 8.0, 2 mM EDTA, 1.2% Triton X-100). A Qiagen DNA easy blood & tissue kit 

69504 was used (as per manufactures’ instructions) to isolate and purify DNA. The purified DNA pellets 

were re-suspended in 50 μL of AE buffer (from kit) and quantified using a Nanodrop 1000 

spectrophotometer. DNA amplification was performed as detailed by Paster et al. (2001) using the universal 

16S rRNA bacterial gene primers D88F and E94R. The positive control consisted of all reagents and DNA 

isolated from a lab culture of P. aeruginosa and the negative control included all reagents except for the test 

genomic DNA. Presence of PCR products was confirmed using 1% agarose gel electrophoresis using 

standard conditions. Sequencing was performed using the BigDye® Terminator v3.1 cycle sequencing kit 

on an ABI system and assembly of the data was carried out using Geneious Pro v6.1.5 

(http://www.geneious.com/). The assembled sequences were submitted to the NCBI Basic Local Alignment 

Search Tool (GenBank) and incorporated in the Silva comprehensive ribosomal RNA databases to find the 

identity of the organisms. Only those sequences with > 200 bases and 98-100% alignment were considered 

for the identity of the organism (Stackebrandt & Goebel 1994). 

http://www.geneious.com/
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Tentative identification of the isolated fungus 

The isolated fungal colonies were tentatively identified by macroscopic and microscopic methods, according 

to the morphological characteristics of their hyphae and fruiting bodies (Onions et al. 1991). Using aseptic 

technique, small samples of mature peripheral fungal growth were removed from colonies growing on plates 

of malt extract agar and placed onto glass microscope slides for examination under phase-contrast and 

differential interference contrast microscopy (DIC).  

 

Molecular identification of protozoa 

Amoebae from a culture plate were removed using 5 ml of sterile distilled water and collected prior to 

centrifugation for 3 min at 25004 ×g. The supernatant was discarded and the cell pellet retained for 

molecular profiling. Genomic DNA was extracted from the cell pellet using the DNeasy Plant Mini kit, 

according to the manufacturer’s instructions. DNA amplification and sequencing for ribosomal RNA gene 

was performed using the QIAGEN Taq PCR Master Mix using EAF3 and ITS055R as PCR primers (Marin 

et al. 2003). For the amplification in the thermo-cycler the following protocol was used: an initial 

denaturation step at 95 °C for 2 minutes was followed by 30 cycles including denaturation (95 °C for 1 

minute), annealing (55 °C for 2 minutes), and elongation (68 °C for 3 minutes). The amplified product was 

visualised using electrophoresis (1.5% agarose gel) and purified using QIAquick PCR Purification Kit, 

following manufacturer’s instructions. Sequencing was performed on an ABI system and data analysed as 

detailed above for bacteria. 

 

Morphological analysis of the microbial communities from the biofilm 

Scanning electron microscopy of tubing.  

Scanning electron microscopy (SEM) of a section of unused, new and used in-vitro simulated waterline 

tubing (A-dec, Dental UK Ltd.) was performed to visualize the luminal surface before and after formation of 

a biofilm from the initiation to the end of this study spanning 910 days. The first examination was on 

material from day one to day14 and samples were then examined at 84 days, 180 days and 910 days. Tubing 
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sections (1-cm length) were removed and split lengthwise prior to their immersion in 2.5% glutaraldehyde 

solution (Agar Scientific) in phosphate-buffered saline (PBS) for 3 h at 4°C. Following an overnight wash in 

PBS, all specimens were further processed as described previously (Dillon et al. 2014a).     

Transmission electron microscopy to visualise Legionellae inside amoebae from mature biofilm.  

A 1cm cut end of the tubing by day 910 (see figure 1) was directly immersed into 2.5% glutaraldehyde 

fixative for up to 3h at 4°C. Following washes in PBS, the tubing section was processed to full dehydration 

in a series of graded ethanol (70% to 100%). During the dehydration steps, the intact biofilm from the lumen 

of the tubing  detached free of the plastic. From thereon, the intact biofilm alone was processed and 

embedded in Araldite as described previously (Dillon et al. 2014a). The TEM images of amoebae were taken 

directly from the biofilm from the day 910 time point.  

 

Statistical analysis  

All analyses were performed using the Minitab 16 statistical software. Where appropriate, data are presented 

as the mean ± SD (N = 3), tested for normality and equal variances, analysed by a t-test for two independent 

samples and Pearson correlation coefficient. Differences were considered significant at p ≤ 0.05. 

 

Results 

Time span for the biofilm formation 

The simulated waterline system (Figure 1) used the same quality waterline tubing (A-dec Dental UK Ltd, 

http://gb.a-dec.com/en/) as is incorporated into commercial dental chair units. The planktonic bacterial 

counts from the in-vitro simulated waterlines output water and the Anderson-Darling normality test (Minitab 

16) suggested the data were normally distributed, and the independent samples t-test demonstrated a 

statistically significant result (p = 0.0001) for test water compared to the tap water used as control (Figure 

2A) by day two.  
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Longer-term monitoring of output water  

After 15 days, as the biofilm established, the bacterial cell counts initially remained high until day 57, 

fluctuating between one and ~10 million CFU ml−1 and then dropped to ~10,000 CFU ml−1 (Figure 2B). The 

degree of linear dependence between CFU ml−1 count of test and control water samples was calculated using 

the correlation coefficient test on normally (Anderson-Darling) distributed data. The results indicated a 

negative correlation between fluctuation in the numbers of bacteria from simulated waterlines output water 

and tap water samples (r = −0.079; p = 0.402) (Figure 2B).  

Legionella spp. from discharged water at 910 days 

Enumeration of the discharged water from the laboratory model of the waterline tubing for human 

pathogenic bacterial species on GVPC plates at 910 days was 1,620 CFU ml−1 (Figure 2C-A). They were 

Gram negative rods and did not grow on R2A agar upon sub-culturing. 

 

Measurement of chemical and physical parameters  

Free chlorine was not detected in the tap water tested once every seven days up to 183 days, indicating 

potentially inadequate disinfection of the tap water supply. Over this period, the pH of the tap water source 

ranged from 6.71 to 7.69 and in the simulated waterlines reservoir between pH 6.98 to 7.8. The tap water 

temperature varied between 18-25 °C and was between 19-26 °C in the simulated waterlines reservoir water.  

 

Live/dead assay 

Under the confocal microscope, the intact bacterial smear demonstrated little auto-fluorescence (Figure 2C-

A), whereas the bacterial cells treated with formalin fluoresced red (Figure 2C-B). In the test biofilm smear 

both red fluorescing cells and non-fluorescing cells were observed (Figure 2C-C). On enumeration of cells 

which had taken up PI in the test smears, around 1.1 x 10
3 cells fluoresced red field−1. The TVC from the 

remaining biofilm on the tube section gave a viability count of 2.1 x 10
7 CFU mm−1.  
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Molecular identification of culturable bacteria and amoeba from biofilm consortium  

Five bacterial colonisers were isolated in the first 14 days and of these, three were Gram negative rods, one 

was Gram variable rod and one was a Gram positive coccus. The molecular identities of the bacterial species 

isolated from simulated waterlines were: Acidovorax facilis, Leptothrix cholodnii which survived only a few 

subculture transfers, Mycobacterium chelonae strain B14, Herminiimonas saxobsidens and Micrococcus 

luteus. One bacterial coloniser isolated after 910 days of biofilm establishment was L. pneumophila. Neither 

P. aeruginosa nor Klebsiella spp., were recovered using microbiological culture methods during this study. 

The amoeba was identified as V. vermiformis, as published elsewhere (Dillon et al. 2014a). On the R2A 

culture plates, A. facilis and, H. saxobsidens demonstrated their swarming characteristics with A. facilis 

spreading the faster of the two. H. saxobsidens were unable to swarm when transferred onto plates of GVPC 

medium.  

Tentative identification of a fungus 

Macroscopically, the colonial texture was velvety and became powdery overtime. The surface colonial 

colour was blackish green while on the reverse side it was black. Microscopically, both hyphae and 

conidiophore were septate and dark in colour. Conidiophores produced branching acropetal chains of 

unicellular and smooth conidia (Not shown). All the aforementioned features of the isolate agreed with the 

features of Cladosporium cladosporioides (Onions et al. 1991). 

 

Morphological analysis of the microbial community 

SEM evidence of microbial biofilm ecology within the simulated waterlines tubing 

SEM examination of the overview of sections of the lumen of the experimental tubing before use, 

demonstrated a rough coating on the luminal surface (Figure 3A). On day one, no biological growth was 

observed, but from day two to five, a few bacterial colonies adhering to the rough luminal coating were 

noted. However, their presence was difficult to discern on the captured images (Figure 3B, circles). Higher 

confluency of microbial growth was observed after 14 days (Figure 3C), with evenly distributed microbial 

growth observed after 84 days (Figure 3D) and an encrusted layer of mature biofilm after 180 days (Figure 
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4E) and 910 days (Figure 3F). At higher magnification, SEM images (Figure 4), confirmed the presence of 

microbial colonisers in the simulated waterlines biofilm in the order as follows: on day 1 antimicrobial 

coating alone (Figure 4A); on days 2-5 rod shaped bacteria (Figure 4B red box); on day 6 cocci and rods 

(Figure 4C). Also by day 6, cocci and rods were observed to be within an extracellular, assumed 

polysaccharide matrix (Figure 4D); at day 8 spiral shaped bacteria or possibly Actinomycete spores (Figure 

4E, arrow and insert E1); by day 9 longer bacterial rods in extracellular matrix (Figure 4F); after 84 days 

longer spiral shaped bacteria (Figure 4G arrow), fungal hyphae amongst a cluster of cocci (Figure 4H 

rectangular box) and amoebae (Figure 4I, square box) were observed.  

 

Transmission electron microscopy to visualise Legionellae inside amoebae from mature biofilm at days 910  

Having isolated a potential human pathogen such as L. pneumophila in the simulated waterlines, it was 

considered appropriate to check whether the V. vermiformis sharing the same niche, were supporting their 

life-cycle. TEM images taken directly from the biofilm itself from day 910, demonstrated the typical 

healthy, nucleated trophozoite form of V. vermiformis with hyaloplasm around the periphery and food 

vacuoles containing fully digested debris (Figure 5A, B), without any evidence of harbouring vast numbers 

of metabolically viable bacteria in their food vacuoles and/or in the cytoplasm.  

 

 

Discussion  

The biofilm grown under laboratory conditions in simulated polyurethane waterline tubing aimed to 

replicate a clinical scenario without biocide control to determine the possibility of detecting L. pneumophila. 

A heterogeneous biofilm initiated and developed within 14 days from start of the experiment. This biofilm 

was made up of Gram negative bacteria both rods and cocci, in an extracellular matrix and included at least 

one fungal and one amoeba species. The organisms detected and identified, via isolation and cultivation in 

pure culture, were comparable to previous reports on the diversity of culturable microorganisms isolated 

from clinical dental waterline systems biofilms communities (Tall et al. 1995; Barbeau & Buhler 2001; 
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Dillon et al. 2014a; Kadaifciler & Cotuk 2014). The bacterial counts on the outlet water from the simulated 

waterlines demonstrated contamination had occurred by day two. Over the duration of the study a more 

diverse and complex microbial consortium developed with additional microbial species co-habiting the same 

niche. By day 910 detection of the human opportunistic pathogen, L. pneumophila determined the end point 

of the study. It could be considered that if an enrichment protocol, such as that suggested by Atlas et al. 

(1995) had been followed, then the detection of L. pneumophila may have been accomplished sooner and the 

duration of study could have been reduced.  

In this study, the rationale for sub-culturing all colonies that were initially observed on GVPC plates 

was to determine whether they were Legionella, as a variety of non-Legionella species with glassy 

appearance, a typical example S. marcescens, can also grow on this medium (Lal et al. 2015). By culturing 

bacteria on R2A, the isolated bacteria may demonstrate their pigmentation and swarming characteristics.  

In order to measure the degree of linear dependence between simulated waterlines output water and 

tap water samples, correlation coefficient test (Minitab 16) was performed, which demonstrated a negative 

correlation between fluctuations in a number of bacteria from both samples (r = −0.079; p = 0.402). A 

similar result was previously reported by Tall et al. (1995) following the establishment of a biofilm in their 

clinical waterline system, but without further explanation for this occurrence. The negative correlation in the 

present study may be due to several factors including the observation that free chlorine was not detected in 

the tap water. This indicated insufficient quantities of disinfectant were being applied to ensure control of 

water contamination at source. In addition, in the present study, the water temperature in the simulated 

waterline was consistently 1°C higher than the source tap water. Seasonal variation in temperature are 

widely known to influence bacterial counts of water (van der Kooij 1992), therefore the constantly warmer 

simulated waterline environment will almost certainly have encouraged microbial growth and dispersion. By 

far the most significant factor contributing to the negative correlation observed in CFU count may be the 

proportion of non-culturable but viable organisms and the dead cells embedded within the deeper biofilm 

layers. This was further explored by using the PI live/dead cell assay, adapted from an accepted protocol in 

which biocide efficacy was being estimated (Dennison et al. 2009). Discrepancies between the planktonic 

bacterial count and observations by SEM of a thicker biofilm were in part explained by the observation of 
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large numbers of dead cells on lumen of tube. The authors acknowledge the limitation of this approach, as 

only those bacteria with damaged cell surface membrane would have taken up PI, but not necessarily dead 

cells that were embedded within the deeper layers of extracellular matrix.  

In the biofilm in this study A. facilis, formerly known as Pseudomonas facilis (Rittenhouse et al. 

1973), was the first organism isolated from the lumen of the waterline. Morphological features documented 

previously by Kilb et al. (2003) suggests that A. facilis is a common water contaminant due its ability to 

swarm (spread), colonise, and flourish rapidly in a mineral medium with or without any organic matter 

(Palleroni 1989). This suggests either A. facilis is able to grow chemolithotrophically, or the polyurethane 

plastic tubing components were leaching out as a supply of nutrients supporting its survival and proliferation 

(Nakajima-Kambe et al. 1995). The next colonizer in the one to 14 days was the Gram negative L. cholodnii, 

a filamentous, sheathed, bacterium that can form globules of poly-hydroxybutyrate in their cytoplasm as a 

food reserve. This enables L. cholodnii to survive in nutrient-poor environments (Furutani et al. 2012), and 

is highly adaptable to conditions conducive to maintaining biofilm progression.  

Mycobacterium chelonae was the third coloniser that was successfully cultivated from the simulated 

waterline tubing. This organisms has Gram variable characteristics and is one of the faster growing 

Mycobacterium species that form biofilms under low and high nutrient conditions (Hall-Stoodley et al. 

1998). In contrast the genus Herminiimonas is a relatively newly described taxon (Fernandes et al. 2005) to 

which H. saxobsidens has been included as a member (Lang et al. 2007). Pathogenic L. pneumophila was 

also isolated from the polyurethane simulated waterline tubing, when the biofilm had become fully 

established and matured over time (910 days). All of these bacterial isolates (except for the Legionella 

species), demonstrated at least one pilus, a strategic factor that promotes attachment of bacteria to their 

biofilm substrates so that they can withstand shear forces and obtain nutrients (Proft & Baker 2009). These 

colonisers also contributed to laying down the polysaccharide extracellular matrix, which allows bacterial 

cells to become scattered within its channels gaining extra surface area to volume ratio for biofilm growth, 

and protection against desiccation and toxic substances (Donlan & Costerton 2002). This could be another 

reason why the dental biocides fail to control the waterline biofilm and indicates the importance of a unified 

model test-bed for biocide testing.  

https://en.wikipedia.org/wiki/Shear_force
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Embedded within the polysaccharide extracellular matrix were a variety of spiral shaped 

Actinomycetes species, known for their earthy-musty smell (geosmin) and taste in drinking water (Wood et 

al. 1983) and the filamentous fungus C. cladosporioides. Electron microscopy demonstrated that the bacteria 

remained outside of C. cladosporioides, suggesting the possibility of an ectosymbiotic relationship of these 

two phylotypes in the simulated waterline biofilm community. The biofilm bacterial isolates identified 

appeared to be on the larger size and an explanation for this phenotypic observation may lie in bacterial-

fungal interactions reducing stressors in their environment and bacterial-amoebic interactions in which “if 

the size fits” result in them being engulfed. Thus bacteria exhibiting physiological differences in size, 

compared to their smaller free-living infective counterparts, may be employing this as a survival strategy.  

It was of significant concern to note that L. pneumophila and V. vermiformis were co-habiting where 

amoebae were grazing on the same biofilm bacteria. Although fluorescent in-situ hybridization methodology 

can be used to detect/identify L. pneumophila inside amoebae (Manz et al. 1995; Grimm et al. 1998; Dutil et 

al. 2006), electron microscopy is also an accepted method of determining whether protozoans are acting as a 

carrier for Legionella (Molmerete et al. 2004, 2005). This study adopted the electron microscopy approach 

to distinguish whether V. vermiformis was able to propagate L. pneumophila from the environment. As no 

metabolically active/viable bacteria were present in the cytoplasm of these amoebae, it was concluded that 

L. pneumophila detected was not using this protozoan host to proliferate whilst in its natural biofilm niche. 

The large size of the L. pneumophila seen under the electron microscope also supports this conclusion, as it 

was out-with the size-range of bacteria, this amoeba choose to feed upon (Dillon et al. 2014b; Lal et al. 

2015). 

Conclusions 

The commercial waterline tubing developed a biofilm by day two and this was comparable to that observed 

in clinical waterlines, consisting of bacteria, fungi and amoebae by day 14, and Legionella was observed 

after 910 days. The primary biofilm culturable colonisers demonstrated a range of strategies for colonising, 

then adapting to nutrient poor conditions. It is accepted that this study has limitations as it only identifies 

and monitors the biodiversity of culturable microbes originating from the heterogeneous biofilm, on a dental 
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waterline tubing lumen. However, on employing a standard molecular barcoding approach on the isolated 

microbes, an indication of the diversity of taxa in the biofilm was obtained, including the presence of the 

opportunistic pathogen L. pneumophila. An alternative approach that would have allowed identification of 

both culturable and non-culturable-viable taxa would have been to employ high throughput 16S rRNA gene. 

However, there are limitations to any technique including microbiome analysis with 16S rRNA gene 

sequencing. A further limitation of this study was that a non-standard protocol was used to detect 

Legionella. Nevertheless, the objective of the study was realised, i.e. a model was developed that was 

directly comparable to a clinical setting and this was “naturally” colonised by a nosocomial pathogen. The 

negative correlation data between CFU counts and biofilm thickness suggests a large number of dead, 

damaged and unculturable bacteria remain within the established biofilm. The study also identified 

culturable biofilm organisms that would allow biocide efficacy testing to be performed both on the in situ 

biofilm and on key constituent organisms. There is an ongoing need for models that will allow the 

development and optimization of sanitation/cleaning strategies in the clinical environment. All dental 

surgeries will for the foreseeable future continue to depend on dental-unit waterlines for supply of water to 

hand-pieces during clinical treatment. Prevention of biofilm development, in which Legionella, amoebae 

and other pathogens can thrive is of crucial importance to ensure safety for patients and practitioners.  
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Legends 

Figure 1. A simulated laboratory dental-unit waterline system adapted from Spratt et al. (2004) and Dillon et 

al. (2014a). One half represents the day model showing fresh water from tap going into the reservoir during 

the daytime. A peristaltic pump circulates the water (in the direction of the arrow) at defined rate of 

exchange (see main text). The tube sections taken for biofilm analyses are indicated for the first 4 cuts and 

the output water analysed for CFU counts. The dotted line separates the night time and weekend model. The 

tubing from tap to reservoir was attached via a connector to the output water tubing at end of each working 

day.  

 

Figure 2. Planktonic bacterial counts from the simulated waterlines output water and tap water (source), A) 

for first three days after installation of simulated waterlines. Difference in CFU ml−1 count was statistically 

significant (p = 0.0001), B) for 183 days. C) Live/dead cell assay A) untreated smear showing no 

autofluorescing cells, B) formalin treated cells having taken up Propidium Iodide (PI), C) Smear showing 

cells with damaged membrane have taken up PI and other possibly dead cells protected by extracellular 

matix coating failed to take up PI (black spaces). 

http://www.elsevier.com/locate/ibiod
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Figure 3. SEM of the biofilm within the tubing lumen. A) No microbial growth was observed on new tubing 

with antimicrobial coating before installation, B) Few colonies observed after 5 days (circles), C) higher 

density of microbial growth after 14 days, D) abundant growth after 84 days, E) thick layer of biofilm at 180 

days, F) multilayers of biofilm after 910 days.  

 

Figure 4. SEM micrographs of sequence of biofilm flora colonisation on the lumen of waterline tubing, A) 

no microbial growth after 1st day, note the rough luminal surface of an antimicrobial coating, B) rod shaped 

bacteria from 2nd to 5th day (Box), C) cocci and rod shaped bacteria after 6 days, D) cocci and rods with 

exopolysaccharide matrix after 6 days, E) spiral shaped bacteria (possibly an Actinomycete spore) after 8 

days (arrow), E1 insert) showing image of spiral shaped bacterium, F) long curved rod shaped bacteria after 

9 days, G) long spiral shaped bacteria noted after 3 months (arrow), H)  fungal hypha imaged after 180 days 

(box), I) fully established biofilm with bacteria, fungi and amoeba (box) after 910 days.  

 

Figure 5. TEM micrographs showing an amoebal trophozoite of V. vermiformis with pseudopodia and the 

hyaloplasm around the periphery of the cell (A), a nucleus and food vacuole visible in some trophozoites 

(B). 

 


