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ABSTRACT 

 

Purpose. Individualizing gastric-resistant tablets is associated with major challenges 

for clinical staff in hospitals and healthcare centres. This work aims to fabricate gastric-

resistant 3D printed tablets using dual FDM 3D printing. 

Methods. The gastric-resistant tablets were engineered by employing a range of shell-

core designs using polyvinylpyrrolidone (PVP) and methacrylic acid co-polymer for 

core and shell structures respectively. Filaments for both core and shell were 

compounded using a twin-screw hot-melt extruder (HME). CAD software was utilized 

to design a capsule-shaped core with a complementary shell of increasing thicknesses 

(0.17, 0.35, 0.52, 0.70 or 0.87 mm). The physical form of the drug and its integrity 

following an FDM 3D printing were assessed using x-ray powder diffractometry 

(XRPD), thermal analysis and HPLC.  

Results. A shell thickness ≥0.52 mm was deemed necessary in order to achieve 

sufficient core protection in the acid medium. The technology proved viable for 

incorporating different drug candidates; theophylline, budesonide and diclofenac 

sodium. XRPD indicated the presence of theophylline as crystals whilst budesonide 

and diclofenac sodium remained in the amorphous form in the PVP matrix of the 

filaments and 3D printed tablets. Fabricated tablets demonstrated gastric resistant 

properties and a pH responsive drug release pattern in both phosphate and 

bicarbonate buffers. 

Conclusions. Despite its relatively limited resolution, FDM 3D printing proved to be a 

suitable platform for a single-process fabrication of delayed release tablets. This work 

reveals the potential of dual FDM 3D printing as a unique platform for personalising 

delayed release tablets to suit an individual patient’s needs. 

KEYWORDS: Delayed release; gastric resistant; modified-release, personalised; 

patient-specific; additive manufacturing 
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ABBREVIATIONS  

API  active pharmaceutical ingredient 

CAD   computer aided design 

DSC  differential scanning calorimetry 

FDM   Fused Deposition Modelling 

HME   hot melt extrusion 

HPLC   high performance liquid chromatography 

MTDSC modulated temperature differential scanning calorimetry 

PEG   polyethylene glycol 

PVP   polyvinylpyrrolidone 

SEM   scanning electron microscopy  

TBP  tribasic sodium phosphate 

TEC  triethyl citrate 

Tg   glass transition temperature 

Tm   melting point 

TGA   thermal gravimetric analysis 

XRPD  X-ray powder diffractometry 
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INTRODUCTION 

Latest advances in pharmacogenomics and clinical trials have put more emphasis on 

individualizing treatment in a patient-centred health care (1). One important aspect of 

personalizing treatment is individualizing dosage forms. In case of solid dosage forms, 

dose personalisation by splitting of tablets has been associated with dose variation (2, 

3). Moreover, the splitting of coated tablets physically compromises the barrier function 

of the coating, rendering dose adjustment impractical for delayed and modified release 

tablets (4). One potential solution for personalising the dose of solid dosage forms is 

the on-demand manufacturing by using a benchtop 3D printer (5). This approach offers 

several advantages to both healthcare workers and patients, such as flexibility in 

modifying the dose, shape and size of the dosage form in response to patient’s or 

healthcare staff’s needs (6). Therefore, it would be of great interest to fabricate an 

enteric dosage using a bench-top 3D printer. 

Enteric coated formulations are produced by carrying out two main steps; i) production 

of an API-loaded core, and ii) coating the core with synthesized or semi-synthetized 

polymers (7, 8). The technology requires paradoxical criteria of no or limited drug 

release in the acid media followed by the release of 80 % of the actives in the intestinal 

phase within a certain time limit (9). These criteria are usually met by applying a 30-

100 µm thick film to a core (e.g. tablets, pellets). However, achieving such a 

demanding criteria via 3D printing technologies creates some major technical 

challenges such as i) grafting a consistent protective shell within the resolution of 3D 

printers, ii) achieving adhesion and compatibility between the shell and core materials, 

and iii) coordinating simultaneous applications of the shell and core materials.  

These challenges were reflected by the absence of literature reports utilizing 3D 

printing technologies for the fabrication of delayed release shell-core tablets. Although 

powder based 3D printing have been reported for immediate and controlled release 

(10-12), no examples of delayed release tablets meeting the pharmacopeial criteria 

have been reported. Yet, one relevant attempt was the use of TheriForm technology 

(powder-based 3D printing) to manufacture a dual pulsatile release system composed 

of 3 chambers (11, 13). In the enteric chamber, an ethanolic solution of the enteric 

polymer was sprayed onto a mixture of lactose and MMC, resulting in a pH dependent 

behaviour and a drug release over 4 h in the intestinal phase. 
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With increased interest in FDM 3D printing in fabrication of oral tablets for extended 

(5, 14-16) and immediate drug release (17-19), few attempts have been reported 

utilising the technology for enteric tablets. For instance, FDM 3D printed PVA based 

tablets were coated with methacrylic polymer to target the colon using a conventional 

fluidized bed coater (20). More recently, a double disc containing an enteric layer was 

fabricated by FDM 3D printing and the drug release from the disc was assessed using 

a test cell assembly (21). As far as the authors know, there have been no previous 

examples of complete production of delayed release tablets through 3D printing. 

Recent technological advances have made 3D printers available with multiple nozzles. 

Such advances paved its way in artistic designs (22, 23), the manufacturing of 

composite elements (24), as well as pharmaceutical applications (25). In this effort, 

we aim to fabricate an enteric coated tablet using a dual-nozzle single step FDM 3D 

printing process. The gastric-resistant tablets were engineered by employing a range 

of shell-core designs using polyvinylpyrrolidone (PVP) and methacrylic acid co-

polymer for core and shell structures respectively, such polymers have been also 

broadly exploited in supporting other advance techniques (26, 27) . Theophylline was 

used initially as a model drug for its thermal stability, small molecular weight and high 

water solubility, rendering it an ideal model drug to test the efficiency of controlling 

drug release from the enteric system. Later, other model drugs commonly available as 

gastric-resistant products (budesonide and sodium diclofenac) were deployed in this 

system. 
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MATERIALS AND METHODS 

Materials 

Theophylline was purchased from Acros Organics (UK). Polyvinylpyrrolidone (PVP, 

MW 40,000), PEG400, castor oil, triethyl citrate, tribasic phosphate (TBP) and oleic 

acid and dipyridamole were purchased from Sigma-Aldrich (UK). Talc was ordered 

from Fluka Analytical (UK). Scotch blue painter’s tape 50 mm was supplied by 3M 

(Bracknell, UK). Eudragit L100-55 was donated by Evonik Industries (Darmstadt, 

Germany).  

Preparation of filaments using HME 

For the preparation of the core filaments, a Thermo Scientific HAAKE MiniCTW hot 

melt extruder (Karlsruhe, Germany) was utilised. An optimised ratio of a powder 

mixture constituting of the polymer (PVP), plasticizer (TEC), filler (talc) or tribasic 

phosphate sodium (TBP) and API (theophylline) respectively (Table I) was adapted 

from previous work (18). The mixture was gradually added to the HME and allowed to 

mix for 5 min at 100 oC to allow homogenous distribution of the molten mass. 

Afterwards, extrusion took place at 90 oC at a torque of 0.4 Nm and 1.25 mm nozzle 

size. Optimised filaments were also modified to include another two model drugs, 

budesonide (2.3%wt) and diclofenac sodium (20%wt). The change in drug 

concentration allowed achieving a representative dose for budesonide (3 mg) and 

diclofenac sodium (25 mg) from the model core. For the preparation of the shell, 

Eudragit L100-55, TEC and talc (50, 16.67 and 33.33%wt) were mixed at 135 oC for 5 

min in a HME and extruded at 125 oC using 1 mm nozzle size. 

Tablet design and printing 

The core-shell tablets were designed in a caplet shape as described in a previous 

study (18).  In order to assess the impact of shell thickness, a number of designs with 

increasing shell thicknesses (0.17, 0.35, 0.52, 0.70 or 0.87mm) were constructed. All 

the shell designs were complementary to the same core. Shell-core tablets were 

printed using modified settings of the software: Shell and core printing temperatures 

were 185 °C and 110 °C respectively and the platform was heated to 40 °C. The first 

layer, infill, inset and outline layers were printed at 12 mm/s extrusion speed and 50 

mm/s travelling speed. The resolution was set as standard (200 µm layer thickness). 
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In a separate experiment and in order to assess the impact of 3D printing resolution, 

the resolution of core-shell theophylline tablet with 0.52mm were printed at low, 

standard and high resolutions. 

Thermal analysis 

For modulated temperature differential scanning calorimetry (MTDSC) analysis, a 

differential scanning calorimeter (DSC) Q2000 (TA Instruments, Elstree, Hertfordshire, 

UK) was employed, using previously reported method in an earlier study (18).  In order 

to assess the impact of different lubricant on thermal stability of the PVP filament, TGA 

analysis was employed as previously specified (18). 

X-ray Powder diffractometry (XPRD) 

The physical form of model APIs in PVP, PVP: TEC filament, API-free and API-loaded 

filaments, and 3D printed tablets were assessed using a powder X-ray diffractometer, 

D2 Phaser with Lynxeye (Bruker, Germany). Samples were scanned from 2Theta 

(2θ)= 5° to 50° using the parameters as previously reported (18).  

Determination of drug content 

In order to examine the effect of HME and FDM 3D printing on the integrity of API, 

API-loaded filaments and 3D printed tablets were analysed for drug content prior and 

following HME as well as in the 3D printed tablets. Samples (API loaded filaments or 

tablets) were accurately weighed and placed in a 500 mL of 0.1N HCl, 1:1 water: 

acetonitrile mixture or phosphate buffer 6.8 for 2 h under sonication for theophylline, 

budesonide and diclofenac sodium respectively. The solutions were filtered through 

0.22 μm Millex-GP syringe filters (Merck Millipore, USA) and prepared for HPLC 

analysis.  

Theophylline content in relevant samples was assessed using an Agilent UV-HPLC 

1260 series (Agilent Technologies, Inc., Germany) equipped with XTerra RP 18 

column (150 × 4.6 mm, 5 μm particle size) (Waters, Ireland) at a temperature of 40°C. 

The mobile phase consists of a 10 mM solution of ammonium acetate buffer, methanol 

and acetonitrile (86:7:7). Analysis was carried out at a wavelength of 272 nm, flow rate 

of 1 mL/min, injection volume was 5 µL and a run time of 7 min.  
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Budesonide content was assessed using an Agilent UV-HPLC 1260 series (Agilent 

Technologies, Inc., Germany) equipped with synergy max column at 30°C. A mixture 

of acetonitrile and pH 3 water (55:45) was used as a mobile phase. Analysis was 

carried out at a wavelength of 244 nm, flow rate of 1.5 mL/min, injection volume was 

50 µL and a run time of 10 min.  

For diclofenac sodium, samples were assessed using an Agilent UV-HPLC 1200 

series (Agilent Technologies, Inc., Germany) equipped with synergy fusion column at 

temperature 30°C. The mobile phase was made up of methanol and pH 2 water (80: 

20). Analysis was carried out at a wavelength of 280 nm, flow rate of 1 mL/min, 

injection volume was 10 µL and a run time of 10 min.  

Scanning electron microscopy (SEM) 

Quanta-200 SEM microscope at 20 kV was used to examine the surface morphology 

of the printed shell-core structures. Samples were placed on a metallic stub and then 

gold coated under vacuum using JFC-1200 Fine Coater (Jeol, Tokyo, Japan). Images 

of the tablets were also taken using a Canon EOS-1D Mark IV (Canon Ltd, Japan). 

Raman Spectroscopy 

Raman spectroscopy (Horiba HR800, UK) was used to analyse and map the flat 

surface of the content of a 50% printed tablet. A green laser was used (532nm) with 

25% filter and 600 grating. The slit and hole were set to 100 and 300 µm respectively. 

An acquisition time of 2 sec was used with an accumulation of 5 scans per point. 

Samples were scanned from 1200 nm to 1800 nm with a step size of 150 μm. The 

band for theophylline was assigned a red colour, whilst a green colour was assigned 

to Eudragit L100-55. Labspec 6 spectroscopy software suite (Horiba Scientific, Japan) 

was used to process the data.  

In vitro disintegration and dissolution studies 

a. Disintegration tests. Disintegration studies were conducted following United 

States Pharmacopeia 30 standards (9). Six tablets were places in the baskets of 

DT700 disintegration apparatus (Erweka, Germany) and were shaken for an hour in 

0.1M HCl. The gastric medium was then replaced with phosphate buffer pH 6.8. The 
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experiment was continued and the time for complete disintegration of all tablets was 

recorded.  

b. Acid uptake tests. In order to assess the ability of the 3D printed enteric shell 

to protect the core, three coated tablets were weighed individually prior to 2-

hours exposure to 0.1M HCl at 37 °C. The tablets were then drained off the 

acidic medium, dried with filter paper and weighted again. The acid uptake was 

calculated as follows: 

Weight gain (%) =
wet mass – dry mass

dry mass
 × 100 

 

c. pH change dissolution test (phosphate buffer). In vitro drug release studies for 

all gastro-resistant tablets used in this study were conducted using an AT 7 Smart 

dissolution USP II apparatus (Sotax, Switzerland). Each experiment was carried out 

in triplicate in dissolution medium at 37±0.5 °C with a paddle speed of 50 rpm. The 

tablets were tested in 750 mL of a stimulated gastric fluid (0.1M HCl, pH 1.2) for 2 h, 

followed by 4-h exposure to pH 6.8 phosphate buffer.  

Within all the experiment the amount of released theophylline was determined at 5 min 

intervals by UV/VIS spectrophotometer (PG Instruments Limited, UK) at a wavelength 

of 272 nm and path length of 1 mm. Data was analysed using IDISis software 

(Automated Lab, 2012). For budesonide and diclofenac sodium, samples (2 mL) were 

manually collected at 0, 15, 30, 60, 90, 120, 150, 165, 180, 210, 240, 300, 360, 420 

and 480 min. They were then assessed using the HPLC methods outlined in the HPLC 

method described in section 2.5. 

d. pH change dissolution test (bicarbonate buffer). In order to assess the drug 

release pattern in a more physiologically relevant medium, an additional evaluation of 

drug release was performed in pH 7.4 modified Krebs bicarbonate buffer. The latter 

better simulates the buffer capacity, pH and ionic composition of human gastric fluids 

(28). 

The dissolution test was carried out following the same protocol specified in section 

2.8c. For the first 2 hours, tablets were exposed to 900 mL of 0.1 HCl (pH 1.2). Tablets 

were then retrieved from the acidic medium and introduced into 900 mL of modified 
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Krebs buffer for an additional 4 h (1.18 mM KH2PO4, 24 mM NaHCO3, 118.07 mM 

NaCl, 4.69 mM KCl, 2.52 mM CaCl2, and 1.18 mM MgSO4·7H2O).  

Statistical analysis 

One-way ANOVA was employed using SPSS Software (22.0.0.2) to analyse the 

results. Differences in results of p <0.05 were considered to be significant. 
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RESULTS AND DISCUSSION 

Fig.1 provides a schematic illustration of the fabrication of 3D-printed shell-core enteric 

tablets. CAD software was utilized to design two complementary stereolithographic 

files to form a shell-core structure. Dual FDM 3D printer was employed with two 

different filaments; i) filament for enteric shell (Eudragit L100-55), and ii) filament for 

the core (API, PVP) processed through an HME compounder. Theophylline was used 

as a model drug to develop the enteric core structure due to its high solubility in acidic 

medium and small molecular weight, rendering it a major challenge for an enteric 

system (29).  

Unlike single FDM 3D printing of theophylline (18), frequent blocking of PVP filament 

(core) was encountered in dual FDM 3D printing. It is possible that whilst the first 

nozzle is printing, the filament in the second head remains at elevated temperature 

leading to material adherence to the inner wall of the nozzle head. To overcome the 

blocking of the nozzle, several additives were initially incorporated in PVP filament 

composition. However, it led to the softening of the filament and rendered it 

incompatible with the gear of the 3D printer. An alternative solution inspected was the 

addition of lubricant liquids with high boiling points (castor oil, oleic acid or PEG 400). 

All three liquids allowed successful printing of tablets without affecting the TGA 

patterns of the polymer (Supplementary Data, Fig. S1A) or the dissolution rate of 

theophylline from the filaments (Supplementary Data, Fig. S1B). It is likely that these 

liquids exhibit a lubricating rather than protective effect and physically prevents the 

sticking of the filament to the internal wall of the nozzle, hence allowing smooth 

alternation between nozzles. Based on these findings it was decided to choose one 

lubricant, oleic acid to facilitate dual 3D printing. 

Following the optimisation of the core matrix, it was possible to graft a shell material 

based on developing a filament comprising of Eudragit L100-55, TEC and talc at a 

ratio of: 50, 16.67 and 33.33%wt, respectively. Eudragit L100-55 is a methacrylic acid-

ethyl acrylate copolymer (1:1) commonly used for the preparation of enteric solid 

dosage forms. Its unique structure gives it an enteric pH-dependent character, being 

insoluble at physiological pH values and soluble above pH 5.5 medium (30). The used 

ratio was deemed necessary to significantly lower the Tg of Eudragit L100-55 from 

125.53 oC to 10.23 oC (Supplementary Data, Fig. S2) to allow continuous flow from 
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FDM 3D printer’s nozzle, whilst solidifying quickly to permit the formation of a well-

defined structure.  

In order to adjust the pH response release pattern of core-shell structures, tablets with 

identical cores comprising theophylline as a model drug were fabricated with 

increasing thicknesses of the Eudragit L100-55 shell (Fig. 2A-D). In vitro dissolution 

tests indicated that thickness levels 0.17 and 0.35 mm led to a premature release of 

the drug in the acidic medium (Fig. 2E). It is possible that these thicknesses only 

allowed the printing of 1-2 layers in the shell structure, which was insufficient to control 

drug release. When a thicker shell design was applied (0.52, 0.7 or 0.87 mm), a 

superior control of drug release was achieved (<3% of drug released after 120min in 

gastric medium). This was accompanied with the formation of larger number of layers 

(3-5 layers), which is essential to construct a gastric-resistant barrier to the acidic 

medium. It is notable the drug release in the intestinal phase (pH 6.8) followed a bi-

phase pattern; a relatively slow drug release in the initial 45 min after pH change 

followed by a faster release after 45 min. It is possible that the first phase reflects the 

diffusion of the model drug through the eroding enteric shell layers, whilst a faster 

release takes place following the complete dissolution of the shell, where a water-

soluble PVP-based core starts to dissolve. Such a pattern has been seen in shell-core 

structures (25), where erosion of the external layer preceded the dissolution of the 

core.  

The impact of FDM 3D printing resolution (layer thickness) on the dissolution of shell-

core structures was also investigated using 0.52mm shell (Fig. 3A). Reducing the 

resolution of the 3D printing (reducing number of layers to fabricate the shell) in low 

and standard resolutions resulted in a relatively slower response to pH change in 

comparison to high resolution (Fig. 3B). It is worthy to note that using FDM 3D printing, 

a much thicker shell layer was needed to achieve sufficient gastric resistant pattern in 

comparison to conventionally coated tablets with fluid-bed or pan coater (30-100 µm) 

(31) which reflects the difficulty of producing a complete protective layer with a single 

layer of filament.  

In order to accelerate drug release in the intestinal phase, an alkalinizing agent, 

tribasic phosphate sodium (TBP), was examined as a filler in a replacement for talc. 

The strategy allowed a much faster dissolution pattern in the intestinal phase (Fig. 3C), 
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it is likely that TBP in the core would dissolve with water imbibition upon pH change, 

leading to a rise in the local pH resulting in acceleration of dissolution of Eudragit L100-

55 shell and hence faster release of the API (32). However, the use of TBP was 

associated with a drop in weight as revealed by TGA (Supplementary Data, Fig. S3). 

HPLC analysis confirmed a significant drop in drug content (86%) (Table I). These 

findings suggest that, unlike talc which acts as an inert filler, TBP tends to react with 

theophylline at an elevated temperature leading to a significant drug degradation. 

Hence, talc was considered as the filler of choice for this study. 

Raman spectral mapping was utilised to generate a detailed chemical image of the flat 

surface of a 50% complete 3D printed tablet (Fig. 3D1). Interrogation of individual 

spectra to produce false colour representations of distribution for theophylline (green) 

and Eudragit L100-55 (red) elucidated a definitive separation between the core and 

the shell (Fig. 3D2), suggesting the presence of theophylline in the core of the tablet 

with no signs of it diffusing into the Eudragit L100-55 shell. 

In order to prove the suitability of the system to different APIs, two other model drugs, 

budesonide or diclofenac sodium, were also examined by including them individually 

in the PVP based filament. TGA thermographs (Figs. 4A-B) showed a mass drop of 

PVP filaments around 100 oC due to water loss whilst a second major mass drop was 

also apparent at 400 oC due to the degradation of PVP. The thermal stability of both 

model APIs, similar to earlier studies, showed no further weight loss at temperatures 

<200 oC for budesonide (20) and diclofenac sodium (33).  

Analogous to TGA results, DSC thermographs of PVP displayed a large endothermal 

event in the range of 50-110 oC due to polymer dehydration as established in our 

previous study (18). This was attributed to the hygroscopic nature of PVP (34). Our 

previous investigation using modulated heat-scan and heat-cool-heat scan indicated 

that water content plays a major role as a plasticizer for PVP filament (18). The Tg of 

PVP filament (plasticised with TEC) were in much lower range (19-35 oC) than 

expected from Gordon-Taylor equation (Tg =82.3 oC). However, the Tg obtained in the 

second heat flow (following water evaporation) was 93 oC. 

The addition of budesonide appeared to have a limited effect on the Tg of the filament 

and the tablet (Fig. 5A). This might be due to the limited concentration of budesonide 

in the product (2.3%). In case of diclofenac sodium, when same level of plasticization 
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was initially investigated (12.5%), a brittle filament was produced with a higher Tg 

(44.89 oC) (Supplementary Data, Fig. S4). In fact, a high level of plasticization (TEC 

17.5%) was deemed necessary to produce a compatible filament, this was reflected 

with a shift of Tg upon the addition of diclofenac sodium to 16.27oC (Fig. 5B). The 

addition of theophylline on the other hand as reported in our earlier work led to a 

depression in the Tg of the filament (18). Such a shifts can be attributed to the 

plasticizing effect of theophylline (35).  

The XRPD patterns of budesonide loaded filament and tablets (Fig. 6) exposed the 

absence of peaks at (2θ) = 6.2, 12.1, 15.5, 16.1, 22.9 indicating no crystalline presence 

in the PVP matrices (36, 37). For diclofenac sodium, XRPD spectra demonstrated 

several diffraction peaks at (2θ) =11.3, 15.3, 23.5 (38). However, the absence of such 

peaks in the XRPD of the API loaded filament matrix and tablet suggests that the 

majority of diclofenac sodium remained in the amorphous form. On the other hand, as 

reported in our earlier study (18) theophylline remained in a crystalline form in the 

PVP-talc based matrix.  

The dissolution pattern of all tested APIs indicated a pH-dependant drug release (Fig. 

7A). When these tablets were assessed in more physiologically relevant dissolution 

medium (28), a slower dissolution pattern was noted (Fig. 7B). Such effect might be 

related to the lower buffer capacity of bicarbonate buffers in comparison to phosphate 

based ones (39). The faster drug release of diclofenac sodium in comparison with 

budesonide might be related to its higher drug loading as well as solubility of (26 

mg/mL) (40) in comparison to budesonide (0.0429 mg/mL) (41).  

The disintegration test indicated that all tablets remained intact after 1 h in the 

disintegration medium (Table II). However, upon pH change the disintegration time 

was significantly longer than the Pharmacopeial standards (9). Such behaviour is 

related to the nature of core, where polymeric matrices erodes slowly upon exposure 

to media rather than the exploding of the core in tablets produced by powder 

compression. The acid uptake behaviour indicated a relatively high acid uptake (Table 

II). However, these results should be interpreted with caution when compared to 

coated tablets, where weight gain of 3-7% is usually applied of the enteric coating to 

achieve protection. In presented example, the shell represents approximately 50% of 

the tablet total weight.  
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In summary, by adapting FDM 3D printing to two polymeric matrices and co-

coordinating the construction of core and shell structures, the potential of 3D printing 

technology in fabricating patient-specific pH-responsive tablets has been 

demonstrated.  

CONCLUSION 

It was possible to fabricate tablets based on shell-core structure with increasing shell 

thicknesses using dual FDM 3D printing. Following pH change dissolution test, it was 

necessary to obtain a shell thickness ≥0.52 mm in order to achieve sufficient core 

protection in the acid medium. To the author’s knowledge, this is the first report of 

producing delayed release tablets based on a 3D printing technology. The process 

presents a single step production method for gastric-resistant products. This work 

illustrates the potential of employing dual FDM 3D printing to overcome the rigidity of 

traditional techniques of manufacturing delayed release solid dosage forms in 

response to demands from clinical and industrial sectors.  
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Fig. 7 In vitro release pattern of APIs; budesonide, diclofenac sodium or theophylline from 3D 

printed tablets using a USP II pH change dissolution test in (A) phosphate buffer and (B) 

bicarbonate buffer. 
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Figure 

Figure S1 Impact of lubricants on (A) TGA thermal degradation profiles of PVP filament and 

(B) the in vitro release pattern of theophylline from core. 
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Figure S2 DSC thermographs of Eudragit L100-55, TEC and talc (raw materials), filament and 

3D printed shell. 
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Figure S3 TGA thermal degradation profiles of the raw materials of; theophylline, PVP, 

TBP, TEC as well as the physical mixture, the filament and the 3D printed tablets. 
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Figure S4 Reversing DSC thermographs of PVP, PVP: TEC (12.5%) filament, as well as 

diclofenac-loaded filaments (first heat-scan). 

 


