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Abstract 

Video projectors have advanced from being tools for only delivering presentations on flat or planar 

surfaces to tools for delivering media content in such applications as augmented reality, simulated 

sports practice and invisible displays. With the use of non-planar surfaces for projection comes 

geometric and radiometric distortions. This work dwells on correcting geometric distortions 

occurring when images or video frames are projected onto static and deformable non-planar 

display surfaces.  

 

The distortion-correction process involves (i) detecting feature points from the camera images and 

creating a desired shape of the undistorted view through a 2D homography, (ii) transforming the 

feature points on the camera images to control points on the projected images, (iii) calculating 

Radial Basis Function (RBF) warping coefficients from the control points, and warping the 

projected image to obtain an undistorted image of the projection on the projection surface. 

 

Several novel aspects of this work have emerged and include (i) developing a theoretical 

framework that explains the cause of distortion and provides a general warping pattern to be 

applied to the projection, (ii) carrying out the distortion-correction process without the use of a 

distortion-measuring calibration image or structured light pattern, (iii) carrying out the distortion-

correction process on a projection display that deforms with time with a single uncalibrated 

projector and uncalibrated camera, and (iv) performing an optimisation of the distortion-

correction processes to operate in real-time.  

 

The geometric distortion correction process designed in this work has been tested for both static 

projection systems in which the components remain fixed in position, and dynamic projection 

systems in which the positions of components or shape of the display change with time. The results 

of these tests show that the geometric distortion-correction technique developed in this work 

improves the observed image geometry by as much as 31% based on normalised correlation 

measure. The optimisation of the distortion-correction process resulted in a 98% improvement of 

its speed of operation thereby demonstrating the applicability of the proposed approach to real 

projection systems with deformable projection displays. 
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CHAPTER ONE  

Project Overview 

1.1 Aims and Objectives  

The aim of this work is to correct geometric distortion observed when undistorted images 

and video frames are projected onto both static and dynamic/deformable non-planar 

projection surfaces or displays. The work features a projection system consisting of a 

projector projecting images and video from a computer onto the projection surface, a single 

uncalibrated camera that monitors the projections on the surface, and the computer 

providing image processing and system control.  

 

Homography Shaping is a term used in this work to describe the derivation of the shape of 

the distortion-corrected projection. Through homography shaping, the desired observed 

projection is made to look like the projection was done on a planar surface. The 

homographies or 2D transformations between the image being projected, the desired 

image on the projection surface, and the camera image of the projection are defined in 

Section 3.3 and the distortion correction process through homography shaping is explained 

in Section 4.3.  

 

Image Warping is generally a transformation that changes the spatial configuration of an 

image [1]. In this work image warping is the process of transforming the spatial 

configuration of the image being projected in order to observe its non-distorted projection 

on the non-planar projection surface.  The term pre-warping is also used in this work to 

refer to the warping of the image being projected for the same purpose. The simple-to-

apply Radial Basis Function (RBF) interpolation is used to implement the warping of images.  

 

The objectives set out to be met include the following: 



2 
 

(i) The distortion-correction system developed will work automatically without needing a 

calibration image or structured light pattern to first estimate or measure the level of 

distortion on observed projections brought about by the non-planar surface.  

 

(ii) The distortion-correction system will be able to operate in real-time in order to be used 

to correct distortions in practical projection systems including optical camouflage systems 

deployed in vehicles and computer-simulated golf systems, both described in the following 

paragraphs.  

 

The arrangement of a projection system using cameras for feedback and computer for 

processing and control is shown in figure 1 while the block diagram describing the system 

functionality is shown in figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The components of a projector-camera system consisting of multiple projectors 
(P1, P2 ... Pn), two cameras (C1, C2), a computer and projection surface/display. 
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Figure 2: Block diagram of a projector-camera system showing its components and their 
functions. 

Conventional standalone projectors are used to provide visual content from computers 

onto planar or slightly curved surfaces to audiences. These projection systems do not 

introduce noticeable geometric distortion to the observed visual content as straight 

projected lines and curves are viewed respectively as straight lines and curves with 

perspective transformation brought about by the relative position of the projector, 

projection surface and viewpoint of the observers. 

 

Apart from delivering presentations to audiences, projectors have been used in a variety of 

ways to either enhance the functionality of some existing systems or form integral parts for 

others. For example in a prototype system described in [2] a projector is used to deliver 

structured light pattern to a laparoscope (a surgical device for viewing internal structures 

of the body) to aid in the acquisition of 3D video data of a surgery site. Through an enhanced 

Head Mounted Display the user can perform operations having 3D video data from both 

the enhanced laparoscope and an augmented video source. Projectors are used to project 

images onto real objects to enhance their appearance and make them more compelling to 

viewers. In such systems [3] video cameras are used to acquire projected images and images 

of the environment for system calibration and measurement of the environment in order 

to provide seamless registration of images on the target objects from multiple projectors.  

Similarly, the authors in [4] describe a projection system that changes the appearance of 

objects by making them look like other objects. With the images of the target object 
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acquired by the camera, a compensation image is derived from photometric properties of 

the object, its environment, and that of the camera and projector.   

 

An optical camouflage system [5] allows users ‘see through’ opaque objects like the rear 

seat of a vehicle. For its vehicular application, the system consists of video cameras 

mounted at the back of the car, a projector mounted behind the front seats, and a rear-

facing half mirror mounted above the projector. The projector projects the portion of the 

view of the outside of the car provided by the camera but not visible to the driver onto the 

half mirror which reflects the projection onto the back seat. This results in a complete view 

of the rear of the car. 

 

Figure 3: Optical ‘see-through’ camouflage system applied to the backseat of a vehicle. 

 

Computer-based golf simulators enable golfers to practice golf indoors. They consist of a 

loose screen attached to a housing onto which the image of a fairway or part of a golf course 

is displayed by a projector, arrays of sensors (usually infrared) to sense the movement of 

the ball from the tee to the screen after being struck by the player, and a computer which 

collects and processes the ball-tracking signals and performs other image processing and 

control functions for the system [6]. The projector also projects the computer-generated 

video of the flight of the ball through the section of golf course. The illustration of a golf 

simulator is given in figure 4.  
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Figure 4: An aboutGolf ltd golf simulator showing its projector, loose screen, and tee area 
[7] 

Projecting images and video on non-conventional (for example non-planar, coloured and/or 

textured) projection surfaces may introduce undesirable forms of distortion. Geometric 

distortion whereby shapes of projected images become altered to the observer would occur 

on the non-planar backseat of a car having the optical camouflage system (figure 3) and on 

the non-planar simulated golf screen as it is struck by the golf ball. Radiometric distortion 

whereby projected colours change as a result of the mixing of colours between the 

projection and the projection surface would also occur in both systems. Both forms of 

distortion need correcting for better user satisfaction and many researchers have 

developed various approaches to mitigating them. A discussion of the most relevant 

distortion-correction approaches is presented in the literature review of Chapter 2. 

 

1.2  Methodology 

The block diagram describing the connection of components and highpoints of the 

processing done by the computer in correcting geometric distortion for projected displays 

is given in figure 5. An elaborate description of the whole process is given in Section 4.3. 

The process starts by projecting an image or video from the memory of the computer onto 

the non-planar surface and obtaining a snapshot of the projection with the camera. This 

snapshot represents the image seen by the observer. Next, feature points including edges 

and corners of the image obtained by the camera are detected. The detected feature points 
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are then used to measure the amount of geometric distortion in the image. A significant 

amount of distortion informs the choice of the decision of the system to carry out the 

distortion correction and the appropriate image warping direction. Next, the feature points 

are used to construct the desired non-distorted image (the standard) and obtain a 2D 

homography between the camera image and the projected image (the input image). 

Transformation of the same feature points from the camera image to the projected image 

yield control points. These control points are used to calculate the RBF coefficients needed 

to warp them in the predetermined image warping direction. The RBF coefficients so 

obtained are then used to warp all the pixels of the projected image. The system then re-

projects this warped image to give a non-distorted view of the projection. An image of the 

distortion-corrected projection may be obtained by the camera and compared with the 

standard to measure the effectiveness of the correction process.  
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Figure 5: Components of a geometric distortion-correction system and process 

 

1.3  Novelty of the Distortion-correction Approach 

This work has a number of novelties when compared with some other distortion-correction 

systems discussed in Section 2.3. The individual novelties are presented in Chapters 4 and 

5 and include: 
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(i) This work presents a geometric and algebraic explanation on how geometric distortion 

occurs when projecting an image from a plane to a non-planar surface in Section 4.2. The 

derivation of the direction of warping of the projected image is also given. This treatment 

of the distortion generation and correction process for projected displays can be developed 

further into a standard distortion-correction simulation tool for future applications.  

 

(ii) The distortion-correction process for a dynamic system with a deformable projection 

surface whose shape changes with time presented in this work is monocular, does not 

require the calibration of neither the projector nor the camera, and does not require the 

3D measurement or construction of the projection surface. It is therefore a less costly 

alternative in terms of system components and processing requirements than the 

calibrated binocular dynamic distortion-correction system described in Section 2.3.  

 

(iii) By taking advantage of the nature of the projection surface, important assumptions on 

the distortion pattern of the non-planar projection surface are made in Section 4.5.3 of this 

work. The resulting distortion-correction system developed does not therefore require the 

projection and detection of any structured light pattern or calibration image on the 

projection surface as some other systems like [8] do. The need for developing imperceptible 

patterns and detection algorithms for them is also avoided. Imperceptible patterns are very 

difficult to extract because of the radiometric modulations that the projection surface and 

noise add to the camera-captured image. The distortion-correction system developed in 

this work can therefore be used in static and dynamic projection systems without any 

interruptions.  

 

(iv) A much simpler RBF interpolation approach to warping as opposed to other processing-

demanding warping methods like Bezier patches used in other systems is presented in this 

work. The optimisation of the RBF image warping algorithm yielding a time saving of 99.32% 

(Section 5.6) for real-time operation is also presented in this work. Practical applications 

include possible presentations in places where there is no planar projection surface. For 

viewers to enjoy a distortion-free view they should have similar field of view as the camera 

used to observe the surface because the distortion correction is carried out through the 
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viewpoint of the observing camera. A method by which distortion correction may be 

achieved for more than one view is given in Chapter 6. In simulated golf practice the user 

plays the golf ball against a deformable surface that dampens the motion of the golf ball 

and prevents injury to the player as the ball rebounds off the surface. The trajectory of the 

golf ball and some text telling its measured speed may also be displayed on the surface. The 

player’s experience will also be improved by removing the geometric distortion from the 

entire projection as the ball strikes the projection surface.  

 

1.4  Organisation of Thesis 

Chapter 2 is a combined review of already-developed techniques for solving image 

distortion problems in some areas of computer vision including projector-camera systems. 

It also includes popular image warping techniques. 

 

Chapter 3 presents the theories behind all the projective transformations and image 

processing techniques used in this work. It discusses the 2D image homography 

transformations, popular techniques for detection of feature points in images, various 

methods of warping an image with illustrations, important concepts of straight-line 

geometry and its application in measuring geometric distortion in an image, and various 

methods used in matching or comparing images that give an indication of how much the 

geometries of a set of images differ from each other.  

 

Chapter 4 presents the techniques developed in this work to correct geometric distortion 

for static projection displays. It begins by explaining the cause of distortion when a straight 

line is projected onto a non-planar surface and develops a framework on how this sort of 

distortion can be solved by warping or changing the shape of the original projected line. It 

also presents a method to evaluate the distortion/straightness of ‘straightest’ lines in an 

image in order to create a basis to compare the distortion values of detected lines in real 

images.  
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It combines the warping framework developed earlier with image feature point detection 

methods, 2D image transformations and the RBF image warping method presented in 

Section 3.6 to solving geometrical distortion problems in actual projected displays.  

Geometric distortion-correction techniques presented in Chapter 4 include one that relies 

on a calibration image and others that do not require its use. The results of various tests 

performed with the projector-camera distortion-correction system are also presented. 

 

Chapter 5 extends techniques developed in Chapter 4 to correcting geometric distortion 

problems in deformable projected displays. It discusses ways by which image processing 

algorithms used for the correction process can be optimised for real-time operation. It also 

presents various tests and results to validate these techniques including their application to 

simulated golf, where the golf system is simulated by striking the projection surface with a 

projectile. 

 

A general discussion of the whole work including techniques developed and the results 

obtained is given in Chapter 6. Recommendations for improvement of this work concludes 

the chapter. Image processing methods not elaborately mentioned in the main body of this 

thesis are presented in an appendix. 
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CHAPTER TWO 

Literature Review 

2.1 Introduction 

In this chapter a survey is carried out to identify the important aspects of this work: (i) the 

prevailing problem of geometric distortion in images acquired by a typical computer vision 

system and (ii) the techniques developed to correct it. In Section 2.2 the concept of 

geometric distortion in images is defined and a survey on its causes and methods developed 

by researchers to correct it is presented. The focus of this work is correcting geometrically- 

distorted projections from images of the projection acquired by a camera. Section 2.3 

therefore gives a survey of similar projector-camera systems. The survey discusses the 

projector-camera system calibration and various techniques developed to correct similar 

geometric distortion problems. Techniques developed to correct geometric distortion on 

projected displays involve a number of parametric and non-parametric geometrical image 

transformation or warping techniques. A brief description of these warping techniques is 

given in Section 2.4. A more detailed description of specific image processing techniques 

with their underlying mathematical expressions is given in Chapter 3. Image processing 

techniques used to measure the similarity between images are presented in Section 2.5.  

A summary of the main discussions in this chapter is presented in Section 2.6.  

 

2.2 Image Geometric Distortion: Causes and Correction  

Geometric distortion in an image occurs when the geometry of objects in the image differ 

from the geometry of respective objects in the scene, in ways that the intended purposes 

of the vision system, such as measurements or object recognition tasks may not be able to 

be performed because of the distortion. Geometric distortion may present itself as straight 

lines from the source scene appearing as curves in the image caused by the lens of the 

camera, the change in perspective such that relative dimensions of objects in the image are 

not represented as they are in real life because their respective shapes become skewed, 

objects in the image appearing blurred due to the motion of the camera or the objects in 
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the scene, or the occlusion of important objects in the image by unwanted objects in the 

scene may occur. 

 

Geometric distortion occurs in various fields that utilise imaging systems to acquire and 

analyse images and it may be caused by any of three elements of imaging systems: (i) the 

nature of the scene or image source, (ii) the medium through which light rays travel to get 

to the image acquisition device, and (iii) properties of the target acquisition device (a 

camera for example). The following paragraphs describe various forms of geometric image 

distortions caused by the various elements of imaging systems and techniques developed 

to correct them. 

   

The source of the imaging system is the scene object being photographed or studied. 

Various image sources are encountered in computer vision. In [9] geometric distortion is 

caused by the non-planar or rumpled paper documents from which images are acquired. To 

solve the distortion problem, the 3D shape model of a document is constructed from a 

smooth shading image acquired by Digital In-painting and a 2-pass Shape-From-Shading 

technique, then flattened to restore the shape of the document to its assumed pleasant 

planar view. As stated in [9], this type of geometric correction can be used as a preliminary 

restoration step in Document Image Analysis (DIA) systems. Several other methods to 

correct the geometric distortion of images of documents caused by the non-planar shape 

of the source objects have also been developed in [10], [11], and [12]. In [10] for instance, 

the surfaces of the documents whose images were rectified were modelled as cylindrical 

surfaces. The geometrical rectification of the images was achieved by estimating the extent 

of bending of the document surfaces using the mapping of points from the scene to points 

in the image and using this information to digitally lay the image out to make it appear flat.   

 

A typical area where the transmission medium causes geometric distortion of acquired 

images is underwater imaging. Distortion of the image of an object in water may be caused 

by the rapid flow of water in the scene, image noise caused by floating particles, or motion 

blur or refraction of light waves at the water-air interface.  
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In [13] it is assumed that geometric image distortion is only caused by dynamic refraction 

at the water surface and presents itself as motion blur in the acquired images. The dynamic 

refraction was caused by both unidirectional cyclic waves and circular ripples. The 

distortion-correction or ‘deskewing’ process therefore involved correcting distortions 

caused by both kinds of water waves. While carrying out 3D measurements of objects in 

water using a fish-eye stereo camera, [14] used a ray-tracing method involving modelling 

the refraction of light from air to the water surface by Snell’s law to account for the 

geometric distortions present in the stereo images. On the other hand, by utilising the 

distortion phenomenon caused by the refraction of light rays through an air-water medium 

differently, a method of reconstructing the surfaces of transparent non-rigid bodies like 

water by measuring the geometric distortion of objects lying underneath them was 

developed in [15]. This method first models the apparent movement of the object 

underneath the transparent surface using optical flow, extracts the optical flow parameters 

and then reconstructs the surface using the estimated surface normals. 

 

Geometric distortions in images introduced by the target camera can either be caused by 

the camera lens or sensor. Lens distortion is caused by the spherical shape of the camera 

lens and it manifests as straight lines in the scene appearing as curved lines in the image. 

Lens distortion can be grouped into 3 types according to [16]: (i) shift of optical centre which 

occurs when the camera sensor is shifted in the optical plane, (ii) radial distortion which 

includes barrel distortion when straight lines appear curved and bend away from the centre 

of the image or pincushion distortion when straight lines appear curved and  bend towards 

the centre of the image, and (iii) decentering distortion, which occurs when the fixation of 

the lens is not orthogonal with respect to the image sensor and optical axis thereby causing 

image distortion in a direction that is tangential to radial distortion.  The more prevalent 

radial lens distortion has been modelled in various ways in reducing its effects in imaging 

systems and it is essentially part of the camera calibration process. Examples are seen in 

[17], where distortion in the two image directions is approximated to a 2nd degree 

polynomial in 𝑟  the radius of distortion, and [18] where higher-degree polynomials are 

obtained and solved through a covariance line-rectification method.  
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2.3  Projector-Camera Systems 

Cameras are incorporated into the computer-projector loop (figures 1 and 2) to monitor the 

display of a projector. Such systems may also be called smart projection systems because 

of the automatic problem-solving functions they perform. A projector-camera system 

consists of one or more projectors, one or more cameras, and one display surface either 

planar or curved, plain or patterned, or consisting of a combination of a number of surfaces. 

The purpose of the camera is to monitor what is being projected onto the display surface 

by the projector by capturing projected images. Further processing can be done on the 

captured images by appropriate software running on a computer. This processing may 

involve projector-camera system calibration, radiometric and geometric distortion 

correction of the projected images, shadow elimination from the display surface [19], or 

creating a seamless arrangement on the display surface of multiple images from multiple 

projectors. 

 

2.3.1  Projector-Camera System Calibration 

Projector-camera system calibration involves estimating the intrinsic and extrinsic 

parameters of the projector and camera or deriving their respective calibration matrices. 

Projectors and cameras are usually modelled with the same calibration parameters as the 

pinhole camera. Various methods of calibrating a projector-camera system exist depending 

on what is to be achieved in each application. Examples are seen in [20] and [21] where the 

projector-camera system is calibrated for 3D measurements and modelling respectively. 

The two-step calibration method described in [20] estimates the intrinsic and extrinsic 

parameters of the camera and projector. A structured light pattern or calibration image 

consisting of a grid of black squares on a white background is pasted on the bottom half of 

a planar projection surface.  The 3D coordinates of the corners of the square with respect 

to the coordinate frame of the projection surface are known. The projector is used to 

project a calibration image consisting of the same gridded pattern on the top half of the 

projection surface. Several images of the patterns on the top and bottom halves of the 

projection surface are captured by the camera at different poses. Correspondences 

between the coordinates of the feature points of the pasted pattern on the bottom half of 
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the projection surface and the feature points on the camera images are used to estimate 

2D homographies between the camera planes and the projection surface. These 

homographies are then used to estimate the intrinsic and pose parameters of the camera. 

The 3D coordinates of the feature points of the projected pattern on the top half of the 

projection surface are estimated by back-projecting the 2D feature point coordinates 

obtained from the camera images using the camera calibration parameters so obtained. 

The correspondences between the coordinates of the feature points on the projected image 

and the back projected ones are used to estimate 2D homographies between the projector 

planes and the projection surface. Finally these homographies are used to estimate the 

intrinsic and extrinsic parameters of the projector. 

  

The calibration method described in [21] first uses the coordinates of corner points in 

camera images of a checkerboard pattern pasted on the projection surface to estimate the 

calibration parameters of the camera. It then uses the coordinates of corner points in 

images of a ray code pattern projected onto the checkerboard pattern to obtain the 

parameters of the projector. This calibration method also estimates radial lens distortion 

parameters for both the camera and projector. 

 

A radiometric calibration of a projector can also be carried out to compensate for colour 

differences between the image being projected and what is observed on the display surface. 

An example of this kind of calibration is seen in [22] where the fast colour compensation is 

achieved by colour filters attached to the projector. 

 

2.3.2  Correction of Geometric Distortion for Projected Displays 

When projectors are used on flat or planar surfaces and the plane of projection is not at 

right angles with the principal axis of the display surface, rectangular shapes lose their 

squareness and appear distorted. Straight lines however remain straight. This type of 

distortion known as keystone distortion [23] is caused by the pose of the projector with 

respect to that of the projection surface. Several methods have been developed to 

automatically correct keystone distortion and two of them are reported in [23] and [24].   
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With such applications as virtual and augmented reality or the Office of the Future and 

Transportation of the Future, it has become imperative to have projectors display content 

on surfaces that are non-planar or undulating. This kind of projection display however 

comes with a problem: the surface topography causes a shift in the direction of incident 

and reflected light, causing the observer to observe geometrically distorted images. Several 

techniques of correcting geometric distortion on projected displays have been developed 

over the years. All of these correction techniques involve the drawing up of mappings or 

correspondences between at least two of three images involved in the projection: (i) the 

projected image whose coordinate system corresponds to pixel coordinates of the 

generating computer and projector (ii) the image appearing on the display or projection 

surface with coordinates corresponding to a world coordinate system, and (iii) the image of 

the projection with coordinates corresponding to the pixel coordinates of the observing 

camera. The required mappings are obtained by applying a suitable parametric model to 

corresponding features of the respective images and obtaining the parameters of the model.  

 

A generalised block diagram of the distortion correction process common to these 

techniques is shown in figure 6. Some techniques rely on easily-detectable features of a 

calibration image or structured light pattern projected onto the non-planar projection 

surface in order to apply the parametric model but others do not. The mapping parameters 

obtained are then used to transform the projected image in order to obtain a non-distorted 

view of the projection. The following discussion divides techniques developed to solve the 

distortion-correction problem into two groups depending on whether or not they use a 

calibration image or structured light pattern in the distortion-correction process.  
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Figure 6: Generalised block diagram describing the distortion-correction process for 
projected displays  

 

In [25] the structured light pattern used to generate piecewise linear forward and reverse 

mappings between points on the projected image and the camera image of the projection 

consists of horizontal and vertical sets of alternating black and white stripes. The system 

makes use of a single uncalibrated projector and obtaining the mapping between the 

images does not require a full 3D reconstruction of the projection surface. Although the 

authors presented results for structured light patterned images, they did not mention how 

the system would deal with dynamic projection systems.  

 

In [26] a projection system consisting of 4 to 8 projectors and a camera is used to display an 

image on non-planar surfaces to create a consistent appearance across a large zone of 

viewing locations in 3D space. The non-planar surfaces include cylindrical, conic and 

intersecting planar surfaces. A 2D mesh-based method is combined with 2D lookup tables 

to derive the geometric mappings from the image being projected to the projection surface 

and from the image of the projection to the projection surface. In this method, 

checkerboard strips are attached to the borders of the projection surface to surround the 
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projection. These strips are used in the detection of important regions of the projection 

surface in the camera image and the subsequent derivation of geometrical mappings 

between the images.  

 

The authors in [27] designed ways of inserting imperceptible patterns into the projected 

image to aid the detection of image features needed to develop geometric mappings 

between the projected image and the camera image of the projection. The system makes 

use of a calibrated camera and projector and requires the synchronisation of both devices 

in order for the system to function properly. A synchronisation pulse provided by an 

external trigger initiates the projection and capture of the embedded pattern by the 

projector and camera respectively.   

 

A distortion-correction system that relies on the projection of video frames whose 

luminance have been altered according to a coded image composed of many pattern (or 

shape) primitives is described in [28]. These luminance-altered video projections are 

captured by a carefully-synchronised camera. The coded pattern primitives are recovered 

by decoding the result of subtraction of two consecutive frames. Next, the decoded 

patterns are matched with a reference code to determine the visible area of the projected 

frame and the geometric mapping between the projected and captured images and the 

projection surface. The following input frames are then warped appropriately to correct the 

distortion on the projection surface.     

 

The authors of [29] developed a simple auto-geometric correction method for non-planar 

projections from one or more projectors using an uncalibrated camera and a cylindrical 

surface. The process involves projecting a checkerboard pattern on the screen, capturing 

the projection with the uncalibrated camera and then detecting features (checkerboard 

pattern corners) of the camera image. The detected features on the camera image are then 

mapped to the corresponding features on the projected image using a rational Bazier patch. 

A region on the surface where the corrected projection should appear on the camera image 

is defined by a rectangle and a similarity transformation between the input image and this 

target rectangle is obtained. The similarity transformation is used to transform detected 
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image features to corresponding positions on the projected image. The Bezier patch 

transformation 𝑅 is then used to transform these corners to obtain a warped image which 

when projected onto the screen produces a geometrically-corrected display.  They 

proposed an extension of their method to accommodate more than one projector whereby 

the geometric registration of each projector is carried out one at a time. They suggested 

using intensity blending techniques to remove unwanted intensity fluctuations between 

each projection. 

 

In [30] a markerless view-independent registration of multiple distorted projections on 

extruded surfaces using an uncalibrated camera by creating a pasted wallpaper display with 

the respective image projections is described. A cylindrical vertically extruded surface was 

used.  Two important priors were imposed on the surface: that the surface is formed by a 

2D curve and that the aspect ratio of a planar rectangle formed by four corners of the 

surface is known. The method is reported to ensure a geometric registration of the 

projected imagery devoid of stretching or distortion by parameterising the display surface 

in 3D rather than in the 2D camera image space as described in [26].  Assumptions were 

also made on the world coordinates of the corners and edges of the rectangle and an 

implied vertically-symmetrical display surface.  They then used a single camera image of the 

display, the focal length of the camera extracted from the Exchangeable Image File Format 

(EXIF) tag of the image format and its sensor size, and the known aspect ratio of the surface 

to estimate the intrinsic and extrinsic parameters of the camera by a non-linear 

optimisation method. The estimated parameters of the camera were then used to back-

project the top and bottom image curves to obtain estimates of the 3D top and bottom 

profile curves of the display surface. The next task involved developing a mapping from the 

projector to the display surface via the camera. By projecting a pattern from each projector 

onto the display surface, rational Bezier patches were used to define mappings from the 

projected images to the camera images of the projections. Each patch was back-projected 

from the camera image to obtain its 3D surface point and subsequently its 2D Bezier patch 

parameter. The area of the display spanned by each projection was therefore defined in a 

single camera image.      
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Various distortion-correction techniques that do not rely on the projection of calibration 

images or structured light patterns to obtain geometric mappings between the projected 

image, the image on the projection surface and the camera image of the projection have 

been developed. Most of these methods however require that the camera(s) and projectors 

used in the systems are calibrated either online during the projection or offline in a separate 

projector-camera calibration stage. The authors in [31] for example developed a method of 

correcting the geometric distortion of images projected on a non-planar surface using a 

previously-calibrated projector and a previously-calibrated camera. The calibration process 

of both devices however uses a calibration image as described in [32]. This calibration stage 

is used to estimate the fundamental matrix of the projector and camera. The estimated 

fundamental matrix enables point correspondences between the projected image and the 

camera image of the projection to be found by tracing corresponding epipolar lines from 

both images to their 3D points of intersection on the projection surface that is modelled as 

a B-spline surface. With point correspondences between the projected image with the 

projection surface, and the camera image of the projection with the projection surface 

respectively known, the point correspondences between the camera image and the 

projected image can be found. These correspondences are used to update the projected 

image to correct geometric distortions observed by the camera and the viewer. The success 

of this method depends on: (i) fixed positions of the camera and projector throughout the 

process, (ii) the accuracy of the B-spline surfaces in approximating the shape of the 

projection surface, (iii) the use of a calibrated camera-projector pair, and (iv) the use of 

structured patterns for calibration of the camera and projector.   

 

The authors of [8] describe a geometric correction system for projected displays using 

calibrated stereo cameras. The system is reported to adapt itself to changing shape or 

position of the display surface and eliminates the use of structured light patterns. This 

system does the correction in 3 steps. First, the perspective projection matrix of the 

projector is estimated from point correspondences between the projected (input) image, 

and the pair of images obtained by the stereo camera. This projector calibration process 

involves the use of Scale-Invariant Feature Transform (SIFT)-based feature matching to 

obtain correspondences between the projected image and one of the stereo camera images. 
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Random Sampling and Consensus (RANSAC) is used to eliminate such distorted image points 

that pose as outliers. With Phase-only Correlation (POC), correspondences between the 

same points of the stereo camera images correctly matched by SIFT are found, leading to a 

complete feature-point correspondence between all three images.  Second, a dense high-

accuracy 3D measurement of the display surface is carried out using phase-based 

correspondence matching to correct the geometric distortion of the projection. During this 

step, the rectified images of the stereo camera are obtained from the camera calibration 

parameters and correspondences between points on both images are found. Third, the 3D 

coordinates of the points on the projection surface are back-projected to the projected 

image to create a mesh. The mesh is used to transform the projected image to obtain a 

geometrically-correct projection on the projection surface. Avoiding 3D surface 

reconstruction of the display surface is possible because the warped  image at the input of 

the projector and the image obtained by the camera are 2D and can be modelled by a 2D 

projective transformation. This idea is also supported by [33] with static screen and 

viewpoint but argue that 3D reconstruction of the screen and dynamic warping are 

inevitable when the viewpoint changes. 

 

2.3.3  Correction of Geometric Distortion for Projected Displays Developed in 

this Work 

In this section comparisons are made between the distortion-correction techniques 

discussed in Section 2.3.2 with the technique developed in this work. First, the distortion-

correction technique developed in this work functions automatically, without the need for 

first projecting a calibration image or structured light patterns as reported in [25], [28], and  

[29]. In situations where the shape of the projection surface changes or the pose of the 

projector or/and the observing camera change, the projection in these systems has to be 

interrupted to allow for the calibration image to be reprojected onto the surface in order 

to maintain a distortion-corrected view of the projection. The technique developed in this 

work can therefore work without interruptions for projecting video frames and in situations 

where the projection surface shape and poses of the observing camera and projector do 

not remain constant.  
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Second, the technique developed in this work uses the homography between natural 

features of the projected image and the camera image of the projection to work out the 

transformation of the projected image to obtain a non-distorted view of the projection. This 

technique can therefore work with a single uncalibrated camera and projector as opposed 

to distortion-correction techniques described in [8], [27], and [31]. The use of the 2D 

homography also eliminates the need for estimating and reconstructing the 3D projection 

surface as seen in [31], and [30]. Eliminating extraneous operations in the distortion-

correction process makes the method developed in this work capable of performing 

distortion-correction in real-time.  

 

Third, none of the distortion-correction techniques discussed in this section presented 

results for deforming surfaces or changing projector and camera positions. A few authors 

however mentioned the capabilities of their techniques to handle such situations without 

any results to support their claim. The technique developed in this work to cope with such 

situations is given comprehensive treatment in Chapter 5.  

 

It is important to note that non-planar projection displays or surfaces used by the various 

authors for testing include smooth cylindrical surfaces, hung curtains and intersecting 

planar surfaces. Tests performed in this work were done using a hung curtain and 

intersecting planar surfaces as well. Results presented in Chapters 4 and 5 show significant 

improvement from distorted to distortion-corrected projections for the same surfaces.  

Some of the projection surfaces used in the literature discussed in this section are shown in 

Figure 7.  
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(a) Hung curtain  [8] 

 

(b) Cylindrical projection surface [26] 

 

 

 

(c) Warped piece of paper [29] 

 

(d) Warped projection surface [31] 

 
Figure 7: Various projection surfaces used to test distortion-correction techniques 
mentioned in literature 

 

2.4  Image Warping Techniques 

Image warping or deformation is described by [34] as the transformation of the image plane 

to itself, with the grey values of the image transformed according to the transformation of 

their respective coordinates. Image warping has been used for geometric image distortion 

correction and image registration tasks whereby one image is warped to align it with 

another image. When an undistorted image is projected onto a non-planar surface, the 

irregularity of the surface would result in a geometrically-distorted view of the image. The 

observed pattern of distortion of the image depends on the profile of the projection surface. 

To restore a non-distorted view of the projection, a warping function can be used to pre-



24 
 

distort the input image before projection. Image warping techniques can be grouped into 

parametric and non-parametric transformations [35]. Examples of parametric 

transformations include: (i) Translation where the only difference between the original 

image and the warped image is a displacement along one (horizontal or vertical) or both 

directions, (ii) Procrustes Transformation which is a four-parameter transformation causing 

scaling, rotation, and translation in the horizontal and vertical directions, (iii) Affine 

Transformation which is a six-parameter generalisation of the Procrustes Transformation 

[35] allowing stretching, shearing and translation along both image directions, (iv) 

Perspective Transformation, an eight-parameter transformation typical of the appearance 

of an image being viewed from a fixed point in space, (v) Bilinear Transformation which also 

has eight parameters, generalises the affine transformation but invariant to rotation, and 

(vi) polynomial transformations including quadratic, biquadratic, cubic and bicubic as 

examples. Parametric transformations for image warping have been observed to perform 

poorly with local distortions [36].  

 

Non-parametric image warping techniques are more localised techniques that are derived 

from matching interest points (also referred to as control points or landmarks) in an original 

image and corresponding points in a warped version of the image. Having known the 

correspondence between these points, a function is sought which transforms the interest 

points exactly from their initial to final positions and estimates the transformation of all 

other points in the image [37]. This is an interpolation process and the function is known as 

an interpolating function or interpolant. Smoothness constraints are imposed on the 

interpolating function [35], with each parameter of the function having only a local impact 

on the shape of the warped image [38]. Examples of non-parametric image warping 

techniques include 2D and 3D splines specifying curves and their respective patches 

specifying 2D and 3D surfaces, Bezier curves, double quadratic curves, B-splines, rational B-

splines, non-uniform rational B-splines (NURBS) and thin-plate splines [39]. Radial basis 

functions (RBFs) and a Bayesian approach offering further possibilities for specifying 

smoothness constraints are also examples of non-parametric image warping techniques.   

Rational Bezier patches have been used in [40] to model radial and tangential distortions of 

the projector lenses while calibrating planar multi-projector displays. The registration of 
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images of the human pelvis with large distortion using thin-plate splines is mentioned in [41] 

and used for 3D face registration in [42].  

 

An RBF is a sum of basis functions whose respective values depend on the distance of the 

point of evaluation and the interest points plus an affine transform. RBFs have been 

effective for multivariate interpolation of scattered data [34]. The use of RBFs to model 

free-form surfaces in optics design and applied to Head Worn Displays (HWD) is described 

in [43]. In [44], RBF interpolation is used to correct for distortion created by the optics of an 

off-axis eyeglass display, (a type of HWD). The distortion correction process involves using 

RBFs to pre-warp input images to be displayed on the device’s microdisplay in a way that 

counteracts the distortion introduced by its optics to give the user an undistorted view of 

the input image. While working to design cranial implants for the repair of defects in the 

skull, [45] used RBFs to interpolate incomplete surfaces derived from depth maps of CT 

scans of the skull. The choice of use of RBFs for this purpose as against other methods like 

global and piecewise polynomial fitting, include: (i) RBFs adaptability to interpolate 

scattered data even with large data-free regions, (ii) the relative ease of obtaining an inverse 

mapping with RBFs, and (iii) the fact that RBF interpolation does not require that known 

data points be in a regular grid. [46] applied compact RBFs with local support to the 

restoration of images and videos having corrupted pixels. The method relies on the prior 

knowledge of the actual pixels corrupted by noise.  RBF interpolation has also been used for 

aerodynamic applications as in the gradient-based shape optimisation of an aircraft wing 

[47]. Since the optimisation process involves deforming computational fluid dynamics (CFD) 

meshes to map CFD parameters to optimisation cost functions, the authors used RBF 

interpolation to perform mesh deformation because it can be used on arbitrary meshes and 

it is capable of saving computational cost. RBF interpolation has been applied to animated 

deformation of the human face to produce facial expressions by manipulating a number of 

facial feature or mesh points [48]. The advantages gained by the RBF method include it 

providing a smooth geometric deformation, eliminating the need for modelling mechanisms 

like muscles as in the case of Mass-Spring deformation systems, can easily be automated 

and can work on any mesh without modification.  
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In this work warping of the projected image through RBF interpolation is done to obtain a 

distortion-corrected projection as described in Sections 1.3, 3.6 and 4.3.4. The reasons for 

using RBF interpolation include the following:  

(i) It is relatively easy to obtain the coefficients without using any recursive algorithms. All 

that is required to deploy RBF interpolation in this work is a well-distributed set of control 

points in the projected image with initial coordinates specifying the positions of these points 

in the undistorted state and final coordinates specifying their positions in the warped state. 

The computation time required to warp the projected image is further reduced by as much 

as 98% by approximating the evaluation of the RBF by linear interpolation as shown in 

Section 5.5.3.  

 

(ii) Warping the projected image by RBF interpolation has not previously been used to 

correct distortion in non-planar projected displays and this work presents a good addition 

to its numerous applications. 

 

2.5  Image Similarity Measurement 

Image similarity measurement techniques evaluate how closely two images match with 

each other. Some image similarity measurement techniques include:  

(i) Image normalised cross-correlation (NCC), an area-based method that measures the 

similarity of two images as a lag of one relative to the other [49]. The better the match of 

both images, the higher the peaks of the normalised cross-correlation function. Normalised 

cross-correlation has been used for general template matching, to obtain the location of a 

template in a larger image [50] [51], matching of MRI images [51], and remote sensing 

images [52].  

 

(ii) Fourier transform-based image similarity measurement techniques which compare 

images in the frequency domain. These techniques are preferred to the normalised cross-

correlation techniques when acceleration of computation is desired and the images are 

corrupted by frequency-dependent noise [49]. The phase correlation technique is an 

example of a Fourier transform-based image similarity measure. It obtains the cross-power 
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spectrum of the image set by multiplying the Fourier transform of the first image with the 

complex conjugate of the second image and calculating the inverse Fourier transform of the 

normalised result. A distinct peak of the phase correlation indicates a good match of the 

images.   

 

The Normalised Cross Correlation (NCC) is used in tests in Chapters 4 and 5 to evaluate the 

effectiveness of the distortion-correction process. Its mathematical expression is given in 

equation 47 of Section 3.7.1. A desired non-distorted camera image of the projection is 

obtained through homography shaping. This desired image is used as a matching template 

for the camera images of the distorted and distortion-corrected projections. The increase 

in the peak NCC resulting from matching the distorted and distortion-corrected images with 

the template serves as an indication of the improvement of the distortion-correction 

technique carried out in this work.  

 

2.6 Chapter Summary 

The aim of this chapter was to highlight the important aspects of this work including the 

problem of geometric distortion in images acquired by a typical computer vision system and 

image processing techniques developed to correct it. The following discussions were 

presented: 

(i) The definition of image geometric distortion, its causes, and the techniques developed 

to correct it in imaging systems including document restoration, underwater imaging, and 

solving camera lens distortion. 

 

(ii) A survey of projector-camera systems including system calibration and distortion-

correction techniques. The various improvements of the distortion-correction process 

carried out in this work were also presented. 

 

(iii) A discussion of various parametric and non-parametric image transformation or 

warping techniques that may be used to correct geometrical image distortion. A description 

of the RBF warping technique with application areas including modelling of surfaces 
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encountered in medicine, entertainment, computational fluid dynamics and animation was 

also presented. 

 

(iv) The presentation of Normalised Correlation Coefficient (NCC) and Fourier transform-

based methods as techniques used to measure the similarity between images. A more 

analytical treatment of the various aspects of this work mentioned in this chapter  is given 

in Chapter 3. 
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CHAPTER THREE 

Theory of Image Processing Techniques 

3.1 Introduction 

This chapter presents useful theoretical principles upon which the processing carried out in 

this work are based. A description of image feature detection techniques including edge, 

corner and blob detectors is given in Section 3.2. The various image feature detectors were 

used in this work to enable image registration and matching. The level of geometric 

distortion in an image can be determined by measuring the deviation of originally-linear 

image features such as the corners of a calibration image from straight lines. An algebraic 

treatment of the geometry of the straight line is therefore presented in Section 3.4. 

Important geometrical principles of 2D projections and the general concept of the 2D 

homography and its extension to projector-camera systems are presented in Section 3.3. 

The mathematical description and illustrations of parametric image warping techniques 

that may be used to solve image distortion problems discussed in Section 2.4 are given in 

Section 3.5. Section 3.6 describes the RBF image warping technique and derives 

mathematical expressions for obtaining RBF coefficients to be used in warping projected 

images in order to correct the observed distortions on projected displays. Section 3.7 

discusses image similarity measurement techniques that can be used to evaluate the 

effectiveness of the distortion-correction process. A summary of the main discussions in 

this chapter is presented in Section 3.8.  

 

3.2 Image Feature Detection Techniques 

A feature is an interesting part of an image such as a corner, edge, blob, or line. Changes or 

discontinuities of luminance values in an image are very important image characteristics as 

they usually provide information about the extent of features of individual objects within 

the image [53]. Numerous image feature detectors have been developed and a few of them 

were used in this work to extract the control points needed to correct geometric distortion 

of projected displays through image warping by RBF interpolation. The following 
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subsections describe the theories underlying the techniques used to extract the needed 

image features.    

 

3.2.1  Image Edge Detection 

Edges are curves that follow the rapid change of intensity in an image and they are usually 

associated with boundaries of objects in a scene [54]. Techniques used to perform image 

edge detection are divided into two categories: (i) gradient-based methods that locate 

edges by finding maxima and minima in the first derivative of the image function in one or 

more directions defined by a set threshold (figure 8(b)), and (ii) Laplacian-based methods 

which locate edges by searching for zero-crossings in the second derivative of the image 

function (figure 8(c)) [55].  

 

The magnitude of gradient of a 2D image in the horizontal (𝑢)  and vertical (𝑣) directions 

is given as 

|𝐺| = √𝐺𝑢
2 + 𝐺𝑣

2                                                                                               (1) 

and the orientation of the edge is given as 

𝜃 = tan−1 (
𝐺𝑣

𝐺𝑢
)                                                                                                 (2)  

The calculation of the gradients for an image is approximated by finite differences in the 

respective directions. This is achieved by a set of convolution filter kernels. Examples of 

convolution kernels are given in Table 1. A gradient image is produced when the kernels are 

convolved with an input image and a threshold value is applied to the gradient image to 

obtain the required edges. The output of gradient-based edge detectors is therefore heavily 

dependent on the value of the threshold [56].  
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(a) plot of 𝒇(𝒖) showing a rapid change in 𝒇(𝒖) 

  

(b) Plot of  
𝒅𝒇(𝒖)

𝒅𝒖
 showing a maximum indicating an edge 

 

(c) Plot of 
𝒅𝟐𝒇(𝒖)

𝒅𝒖𝟐
 showing a zero-crossing indicating an edge 

Figure 8: Rapid change of univariate function 𝒇(𝒖) indicates an edge and shown by the 

maximum value of its first derivative 𝒇’(𝒖)  and zero-crossing of its second derivative 

𝒇’’(𝒖). 
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Table 1: Convolution kernels for gradient-based edge detectors 

No. Name Convolution kernels 

 

 

1 

 

 

Sobel 

 

-1 0 +1 

-2 0 +2 

-1 0 +1 

  

 

+1 +2 +1 

0 0 0 

-1 -2 -1 
 

 

 

2 

 

 

Prewitt 

 

-1 0 +1 

-1 0 +1 

-1 0 +1 

  

 

+1 +1 +1 

0 0 0 

-1 -1 -1 
 

 

3 

 

Roberts 

 

+1 0 

0 -1 

  

 

0 +1 

-1 0 
 

 

Each kernel in Table 1 responds to edges in a particular direction. While the Sobel and 

Prewitt kernels respond to edges in the respective horizontal and vertical directions of the 

image, the Roberts kernels detect edges occurring at 45o to the respective image directions. 

The two kernels from a particular set may be applied separately to the image and the output 

of both kernels combined to obtain the magnitude of the image intensity gradient [55].  

 

The Laplacian is a 2D measure of the second derivative of an image. It is used for edge 

detection because it highlights image regions of rapid intensity change [57]. The Laplacian 

of an image with intensity values 𝐼(𝑢, 𝑣) is given by equation 3 and usually approximated 

by the two discrete convolution kernels in figure 9.  

𝐿(𝑢, 𝑣) =
𝜕2𝐼

𝜕𝑢2
+

𝜕2𝐼

𝜕𝑣2
                                                                                      (3) 
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-0 -1 0 

-1 4 -1 

0 -1 0 
 

-1 -1 -1 

-1 8 -1 

-1 -1 -1 
 

 

Figure 9: Laplacian Convolution Kernels [57]. 

 

To counter the sensitivity of the Laplacian kernels to noise, the input image is usually 

smoothed first by a Gaussian smoothing filter before the application of the Laplacian kernel.  

Since the convolution operation is associative, the Gaussian kernel can first be convolved 

with the Laplacian kernel to produce a hybrid kernel. The convolution of the hybrid kernel 

with the input image produces the same result as applying the kernels in the usual order 

separately. The hybrid kernel or filter is called the Laplacian of Gaussian (LoG) filter. A 2D 

Gaussian with standard deviation 𝜎 centred about the origin (0,0)  of a (𝑢, 𝑣)  image 

coordinate system is given by the expression 

𝐺𝜎(𝑢, 𝑣) =
1

√2𝜋𝜎2
𝑒

−(
𝑢2+𝑣2

2𝜎2 )
                                                                        (4) 

and a 2D LoG filter obtained from its convolution with a Laplacian kernel is given as [55] 

𝐿𝑜𝐺 =  
−1

𝜋𝜎4
(1 −

𝑢2 + 𝑣2

2𝜎2
)𝑒

−(
𝑢2+𝑣2

2𝜎2 )
                                                       (5) 

 

Canny Edge Detector 

The Canny Edge Detector is an optimum edge detector [57] that was designed to achieve 

three purposes [58]: (i) providing good detection with low probabilities of detecting false 

edges and failing to detect real edges, (ii) providing good localisation by detecting edge 

points that are as close as possible to the centre of the true edge, and (iii) providing only a 

single response to a single edge. These are achieved in a four-step process [59].  

The first step involves convolving the input image with a Gaussian filter to reduce image 

noise.  

The second step involves convolving the noise-filtered image from the first step with the 

Sobel kernels in Table 1 and determining the respective edge directions according to 

equation 2. Where gradient values in the 𝑢-direction is zero, the edge direction is taken as 
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90o. Local non-maximal suppression is carried out in the third step such that all edge 

directions are rounded off to the nearest 45o and magnitudes of edges in all same and 

opposing directions are compared. Pixels with the greatest magnitudes are preserved over 

those with smaller gradient magnitudes. Maximal suppression results in thin edges.  

The fourth step, called hysteresis thresholding [59], is carried out to remove the leftover 

pixels from the non-maximal suppression step brought about by noise. Here, two different 

thresholds – a low one and a high one are set. Pixels whose magnitudes are lower than the 

lower threshold are discarded. Pixels whose magnitudes are greater than the higher 

threshold value are kept. If pixel magnitudes fall between the two threshold values, and any 

of the pixel’s neighbours within a 3x3 region is greater than the higher threshold, that pixel 

is preserved as an edge.  

 

The performance of the various edge detectors were compared in [55], [56].  In [55] the 

Canny edge detector was proven to perform better than the Prewitt, Sobel and Roberts 

detectors as it was able to detect the edges present in a noiseless artificial image of a wheel. 

It also performed better in detecting the edges of a noisy natural image than the Roberts 

and Sobel detectors, with its performance heavily dependent on the standard deviation of 

the Gaussian filter and values of the lower and upper hysteresis thresholds used. In [56] the 

authors also concluded that the Canny edge detector performed best. The Sobel edge 

detector was chosen over the Canny, Roberts and Prewitt detectors in this work because of 

its relatively high speed of operation and it yielded satisfactory results that suited the 

purpose of detecting the most important features as shown in figure 10. As shown in figure 

10, the most important edges to be obtained from the image of the projection for further 

distortion-correction processing are those forming its outer periphery.   
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(a) Original image 

 

 

(b) Prewitt edge detection (0.069s) 

 

 

(c) Canny edge detection (0.132s) 

 

  

(d) Sobel edge detection (0.039s) 

 

 

(e) Roberts edge detection (0.042s) 

 

Figure 10: Comparison of various edge detectors to test their suitability for detecting 
projected image features 
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3.2.2  Image Corner Detection 

An image corner is an interest point formed where two or more distinct edge segments 

meet [60]. Image corners of interest have been used in camera calibration [61], stereo 

matching [62], object tracking [63], image registration [64], stitching panoramic 

photographs [65] and robot navigation [66].  Figure 11 shows an example of an image corner 

and its constituent edges.  

 

 

Figure 11: An Image corner. 

 

The various image corner detectors can be divided into two classes: contour-based 

detectors and intensity-based detectors [67].  

 

Contour-based corner detection is based on the amount of curvature of the respective 

constituent contours, edges or curves. An example is found in [68], where significant 

changes in the curvature of contours are described by the convolution of the first and 

second derivatives of a Gaussian kernel at different scales with a parameterised model of 

the contour segment. A typical corner is detected by either the steepness of the curve 

produced by the convolution of the model with the first derivative of the Gaussian or the 

zero-crossing of the curve derived from the convolution of the model with the second 

derivative of the Gaussian.  

 

Intensity-based image corner detectors work by estimating a ‘cornerness’ measure for 

every pixel in an image to indicate the presence of a corner for each pixel. Examples of 
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intensity-based detectors include the Moravec method described in [69], Harris and 

Stephens/Plessey corner detector [70], originally described in [71], Smallest Univalue 

Segment Assimilation Nucleus (SUSAN) [72], Features From Accelerated Segment Test (FAST) 

[73] , and Shi and Thomasi minimum eigenvalue method [74].  

 

Harris and Stephens/Plessey Corner Detector    

Consider an image with pixel values 𝐼(𝑢, 𝑣). If an image patch of size 𝑛 × 𝑛 pixels is placed 

over a patch of the image and shifted by amount (𝑥, 𝑦), the weighted sum of squared 

differences (SSD) 𝑆(𝑢, 𝑣) between the two patches is given as 

𝑆(𝑢, 𝑣) = ∑∑𝑤(𝑥, 𝑦)(𝐼(𝑢 + 𝑥, 𝑣 + 𝑦) − 𝐼(𝑥, 𝑦))2

𝑦𝑥

                              (6) 

where 𝑤(𝑥, 𝑦) is a weighting window (eg Gaussian or rectangular) function.  

Taking 𝐼𝑢  and 𝐼𝑣  as partial derivatives, by Taylor’s expansion which eliminates 𝐼(𝑥, 𝑦) , 

equation 6 can be approximated to 

𝑆(𝑢, 𝑣) ≈ ∑ ∑𝑤(𝑥, 𝑦)(𝐼𝑢(𝑥, 𝑦)𝑢 + 𝐼𝑣(𝑥, 𝑦)𝑣)2

𝑦𝑥

                                     (7) 

Equation 7 can be written in matrix form as 

𝑆(𝑢, 𝑣) ≈ [𝑢 𝑣 ] 𝑨 [
𝑢
𝑣
]                                                                                    (8)  

𝑨  is a structure tensor called the Harris matrix [75] 

𝑨 = ∑∑𝑤(𝑥, 𝑦) [
𝐼𝑢
2 𝐼𝑢𝐼𝑣

𝐼𝑢𝐼𝑣 𝐼𝑣
2 ]

𝑦𝑥

                                                                     (9) 

The two eigenvalues 𝜆1 𝑎𝑛𝑑 𝜆2 of matrix A can be found for each point and a conclusion 

can be derived from the relative size of the two eigenvalues: 

(i) when 𝜆1 and 𝜆2 are both small, the point (𝑢, 𝑣) has no feature of interest 

(ii) when 𝜆1 (or 𝜆2 ) is small and 𝜆2 (or 𝜆1 ) is large, an edge is found 

(iii) when both 𝜆1 and 𝜆2  are large, a corner is found. 

 

The Harris and Stephens corner detector was used in this work to track the extreme corners 

of the camera image because of its relatively high speed and suitability in detecting the 

important corners as compared with the Shi and Thomasi minimum eigenvalue method.  

The results of the comparison are shown in figure 12.  
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The most important corners in the images of the projection needed for distortion-

correction processing are the four outermost corners of the projected image.  

 

 

(a) Harris and Stephens corner detection 

(0.256s) 

 

 

(b) Shi and Thomasi minimum 

eigenvalue corner detection (0.319s) 

Figure 12: Comparison of the Harris and Stephens corner detector with Shi and Thomasi 
minimum eigenvalue corner detector in terms of detected corners and algorithm speed. 
Detected corners are shown as dots. 

 

3.2.3  Blob Detection 

A blob (Binary Large Object) is a connected set of image pixels in an image in which some 

properties such as brightness or colour are approximately constant and differ in these 

properties to other surrounding regions in the image [76]. A typical blob detection method 

developed in [77] and named the Scale Invariant Feature Transform (SIFT) is said to be 

invariant to scale, rotation, illumination, camera viewpoint and noise. SIFT is divided into a 

number of steps described below:    

  

(i) Scale-space extrema detection 

Candidate feature points which are invariant to scale change are located using a cascaded 

filter approach: The input image is successively down-sampled by a factor of 2, forming 

octaves of the input image. Each image octave has a fixed number of Gaussian filters 

(𝐺(𝑢, 𝑣, 𝜎)) which successively differ in scale by a scale factor 𝑘. The input image in each 

octave is convolved with the set of Gaussian filters and the difference of the result of 

convolution for adjacent filter scales is obtained according to the equation: 
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𝐷(𝑢, 𝑣, 𝜎) = (𝐺(𝑢, 𝑣, 𝑘𝜎) − 𝐺(𝑢, 𝑣, 𝜎)) ∗ 𝐼(𝑢, 𝑣) ≈ (𝑘 − 1)𝜎2∇2𝐺    (10) 

where 𝜎 is the filter scale and ∇2𝐺 is the Laplacian of Gaussian (LoG). 

𝜎2∇2𝐺   is a scale-normalised Gaussian and it is required for true scale invariance. 

Local extrema points are respectively obtained by comparing pixels in the Difference of 

Gaussians (DoG) image with their immediate 8 neighbours, 9 neighbours above and 9 

neighbours below in the stack of DoG images and selected if their respective values are 

higher or lower than those of their neighbours. These candidate feature points are also 

known as candidate keypoints.  

 

 (ii) Keypoint localisation 

In this step candidate keypoints are subjected to a further test that rejects keypoints that 

are found to be sensitive to noise as exhibited by their low contrast and poor localisation 

along an edge. This test involves fitting the data surrounding each keypoint to a 3D 

quadratic function that is a Taylor expansion of a shifted version of 𝐷(𝑢, 𝑣, 𝜎) having its 

origin at the keypoint. The quadratic function is given by  

𝐷(𝒖) = 𝐷 +
𝜕𝐷𝑇

𝜕𝒖
𝒖 +

1

2
𝒖𝑇

𝜕2𝐷

𝜕𝒖2
𝒖                                                               (11) 

  

(iii) Orientation assignment 

This step involves assigning keypoints with consistent orientation based on local image 

properties. These values are used to form an orientation histogram for regions around each 

keypoint for each scale and peaks in the histogram correspond to prominent local gradient 

directions. The highest peak forms the orientation of the particular keypoint. New keypoints 

are formed if their orientation peaks are within about 80% of the highest peak. This 

produces multiple keypoints with the same location and scale but different orientations. A 

parabola is fit to the 3 histogram values closest to each peak to obtain the interpolated peak 

position.  

  

(iv) Keypoint description 

Keypoint description involves assigning a distinctive descriptor to each keypoint that is 

invariant to changes in illumination and 3D viewpoint. Gradient magnitudes and 



40 
 

orientations in neighbourhood regions around keypoints are then weighted by a keypoint 

scale-dependent Gaussian window. This produces 16 histograms each consisting of 

magnitudes in 8 orientations over 360o and spanning a 16 × 16  region in the 

neighbourhood of each keypoint.  Each keypoint is therefore represented by a 128-length 

vector with components consisting of the orientation magnitude entries of the 

representative histograms. The vector is then normalised to unit length to reduce the 

effects of changes in illumination. The SIFT blob detection was used in this work to detect 

common features between the projected image and the camera image of the projection as 

shown in figure 13.  

 

 

Figure 13: Detecting common blob features between a projected image and the camera 
image of the projection. Common features are linked by points and coloured lines. 

 

3.3 Projections on Planar Surfaces  

3.3.1  2D Homography 

Rays of light reflected from points on an object in a 2D or 3D space are seen as points in a 

2D image when projected onto the planar sensor of the camera. This projection of points 

from a 2-or 3-D space can be described by 3 × 3  or 3 × 4  projective transformation 

matrices respectively.  A 3 × 3 projective transformation may be called a 2D homography. 

In general terms, a homography is defined as a linear mapping of points in an N-dimensional 

space to points in another N-dimensional space, and it is given up to an unknown scale.  
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A 2D homography can be a transformation of points from a planar surface to the plane of 

the camera sensor or a transformation of points from one image to another. The illustration 

is shown in Figure 14. In a homography collinear points remain collinear [78].  

 

                

Figure 14 [79]: The projection of points 𝒙 from a plane surface to respective points 𝒖𝟏 
and 𝒖𝟐 in two image planes.  2D homographies are established between the points on 
the planar surface and respective points on each image plane. 2D homographies also 
exist between points in both images. 

 

If a 2D point in one plane represented in homogeneous coordinate as (𝑥, 𝑦, 1)𝑇  is 

transformed by a 3 × 3  homography 𝑯  to a 2D point (𝑢, 𝑣, 1)𝑇  also in homogeneous 

coordinates with an unknown scale factor 𝑎, then the mapping is written as 

𝑎 [
𝑢
𝑣
1
] = [

ℎ11 ℎ12 ℎ13

ℎ21 ℎ22 ℎ23

ℎ31 ℎ32 ℎ33

] [
𝑥
𝑦
1
]                                                                (12)   

 

Expanding the right side of equation 12, eliminating the unknown scale factor from the left 

side and making 𝑢 and 𝑣 subjects, a pair of simultaneous equations are obtained: 

𝑢 =
ℎ11𝑥 + ℎ12𝑦 + ℎ13

ℎ31𝑥 + ℎ32𝑦 + ℎ33
                                                                           (13) 

 

𝑣 =
ℎ21𝑥 + ℎ22𝑦 + ℎ23

ℎ31𝑥 + ℎ32𝑦 + ℎ33
                                                                            (14) 
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Expanding equations 13 and 14, taking all the terms to the left side and converting back to 

matrix form, the simultaneous equations can be written as 

[
𝑥 𝑦 1
0 0 0

     
0 0 0
𝑥 𝑦 1

     
−𝑢𝑥 −𝑢𝑦 −𝑢
−𝑣𝑥 −𝑣𝑦 −𝑣]𝒉 = 𝟎                             (15)   

 

where 𝒉 = [ ℎ11 ℎ12 ℎ13     ℎ21 ℎ22 ℎ23     ℎ31 ℎ32 ℎ33]
𝑇  

The desired elements of the homography H can be obtained by using at least 4 pairs of point 

correspondences to populate equation 15 and applying the Singular Value Decomposition 

(SVD) of the matrix. h will be the eigenvector corresponding to the smallest eigenvalue. 

When there are more than 4 pairs of point correspondences, the refinement of the 

estimates of h can be done by least square error optimisation techniques. 

 

Subgroups of a homography may be defined depending on the kind of constraints imposed 

on the form of the matrix H [78]. These constraints give rise to geometric invariants 

between the original points and the transformed points. Examples of subgroups of the 2D 

homography include: 

(i) the affine transform where parallel lines remain parallel, and ratios of lengths on parallel 

lines and ratios of shape areas are constant;  

(ii) similarity transforms which preserve angles and ratio of lengths as well as all affine 

invariants, and   

(iii) isometric transforms which preserve lengths, angles and areas [78] [79].  

 

The most important property of all the subgroups is that they preserve collinearity of 

transformed points when there are no sources of geometric distortion in the imaging 

system. This important property shall be used in the correction of geometric distortion 

through homography shaping in subsequent Chapters 4 and 5.  

 

3.3.2  2D Projection onto the 2D Sensor Plane of a Camera 

The transformation of points from a scene in 3D space represented in homogeneous world 

coordinates as (𝑥, 𝑦, 𝑧, 1)𝑇  onto 2D image points represented in homogeneous pixel 

coordinates of the camera sensor as (𝑢, 𝑣, 1)𝑇  is modelled by a 3 × 4 camera projection 
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matrix 𝑷. The matrix 𝑷 is the product of a 3 × 3 intrinsic property matrix 𝑲 of the camera 

and a 3 × 4 extrinsic property matrix that defines the pose (rotation and translation) of the 

coordinate system of the camera with respect to the reference world coordinate system. 

𝑎 [
𝑢
𝑣
1
] = [

𝛼 𝑠 𝑢𝑜

0 𝛽 𝑣𝑜

0 0 1
] [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

     

𝑡𝑥
𝑡𝑦
𝑡𝑧

] [

𝑥
𝑦
𝑧
1

]                                         (16) 

 

In equation 16, 𝛼 and 𝛽 are scaling factors along the horizontal (𝑢) and vertical (𝑣) axes of 

the image, 𝑢𝑜 and 𝑣𝑜 are pixel coordinates of the centre of the image, and 𝑠 is called the 

skew parameter that accounts for non-square camera sensor elements. The skew 

parameter may be approximated to zero. 

𝑹 = 𝑟𝑖𝑗 is the 3 × 3 rotation matrix and 𝒕 = [𝑡𝑥 𝑡𝑦 𝑡𝑧]𝑇 the translation vector while 𝑎 is 

an unknown scale factor and 𝑷 = [𝑲][𝑹|𝒕].  

 

When points from a plane are projected onto the camera image plane, the planar surface 

can be assumed to be at location 𝑧 = 0 of the reference world coordinate system [61]. 

Equation 16 therefore reduces to the form 

𝑎 [
𝑢
𝑣
1
] = [

𝛼 𝑠 𝑢𝑜

0 𝛽 𝑣𝑜

0 0 1
] [

𝑟11 𝑟12

𝑟21 𝑟22

𝑟31 𝑟32

    

𝑡𝑥
𝑡𝑦
𝑡𝑧

] [
𝑥
𝑦
1
] = 𝑯 [

𝑥
𝑦
1
]                                      (17) 

 

Equation 17 is also observed to be in the form of a 2D homography between the plane of 

projection and the sensor plane of a camera, defined up to an unknown scale 𝑎.  

 

3.3.3  2D Transformations between a Projector, a Planar Projection Surface and 

a Camera 

The model of a projector is assumed to be the same as that of the pin-hole camera but with 

the direction of projection reversed [80] [81]. Therefore, the projective transformation of a 

point from a scene in 3D space with homogeneous coordinates (𝑥, 𝑦, 𝑧, 1)𝑇  to its 

corresponding point with homogeneous coordinates (𝑢, 𝑣, 1)𝑇 in the 2D projected image is 

given by the equation  
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𝑎 [
𝑢
𝑣
1
] = [

𝛼 0 𝑢𝑜

0 𝛽 𝑣𝑜

0 0 1

] [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

     

𝑡𝑥
𝑡𝑦
𝑡𝑧

] [

𝑥
𝑦
𝑧
1

]                                          (18) 

 

The elements of the intrinsic and extrinsic parameter matrices are identical to those defined 

in equation 16, with the skew parameter s assumed to be zero. The planar projection 

surface used for simplicity during the calibration of a projector is assumed to be located at 

𝑧 = 0  of the reference world coordinate system [81]. Equation 18 therefore reduces to the 

form of equation 17 so that the 2D homography which transforms points from the projected 

image to points on the projection surface is defined. The respective 2D homographies 

between the projector, planar projection surface and a camera are shown in figure 15. 

            

Figure 15: Image 𝑰𝒑 is projected from the Projector Plane 𝑷 to form an image 𝑰𝒔  on the 

projection surface plane 𝑺  and image 𝑰𝒄  of the projection is captured on the camera 
sensor plane 𝑪. 2D homographies 𝑯𝒑𝒔, 𝑯𝒔𝒄 and 𝑯𝒑𝒄 exist between the images formed on 

the three respective planes. 

 

Considering figure 15, the 2D transformations are defined: (i) 𝑯𝑝𝑠  transforms points 

(𝑢𝑝, 𝑣𝑝)𝑇 from the projected image to points (𝑥, 𝑦)𝑇 on the planar projection surface, (ii) 

𝑯𝑠𝑐  defines the transformation of points (𝑥, 𝑦)𝑇 from the planar projection surface to 

points (𝑢𝑐, 𝑣𝑐)
𝑇on the camera image, and (iii) 𝑯𝑝𝑐  transforms points (𝑢𝑝, 𝑣𝑝)𝑇 from the 

projected image to points (𝑢𝑐 , 𝑣𝑐)
𝑇on the camera image with the respective equations. 

𝑎𝑝𝑠, 𝑎𝑠𝑐 and 𝑎𝑝𝑐 are the respective unknown scale factors. 
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𝑎𝑝𝑠 [
𝑥
𝑦
1
] = 𝑯𝑝𝑠 [

𝑢𝑝

𝑣𝑝

1
]                                                                                         (19) 

𝑎𝑠𝑐 [
𝑢𝑐

𝑣𝑐

1
] = 𝑯𝑠𝑐 [

𝑥
𝑦
1
]                                                                                          (20) 

𝑎𝑝𝑐 [
𝑢𝑐

𝑣𝑐

1
] = 𝑯𝑝𝑐 [

𝑢𝑝

𝑣𝑝

1
]                                                                                       (21) 

Combining (19), (20) and (21), we have 

1

𝑎𝑠𝑐𝑎𝑝𝑠
𝑯𝑠𝑐𝑯𝑝𝑠 =

1

𝑎𝑝𝑐
𝑯𝑝𝑐 

to give 

𝑯𝑝𝑐 =
𝑎𝑝𝑐

𝑎𝑠𝑐𝑎𝑝𝑠
𝑯𝑠𝑐𝑯𝑝𝑠                                                                                    (22) 

 

Estimating the elements of the respective homographies in equations 19, 20 and 21 

depends on the information available for drawing point correspondences from the images 

at the projector, planar projection surface and the camera and for the particular purpose. 

For example in [82] probes attached to a Coordinate Measuring Machine (CMM) are used 

to obtain point coordinates on the planar projection surface to calibrate a video projector, 

and in [83], a calibrated camera is used to obtain these coordinates also for projector 

calibration. In [84], a relationship similar to that of equation 22 between the 3 

homographies is given and used for the automatic correction of keystone distortion of the 

projected display.            

 

3.4  Straight Line Geometry 

In this work, geometric distortion correction requires that straight edges of the projected 

image are observed as straight edges.  Sampled points along straight lines from this image 

have to be matched with approximate corresponding points on distorted lines or edges 

from the camera image of the projection. The need to estimate the parameters of straight 

lines therefore became necessary to develop a measure of distortion for lines in acquired 

distorted images. 
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Figure 16: A straight 2D line 𝒍 described by the equation 𝒗 = 𝒎𝒖 + 𝒄 and points 𝑨, 𝑩 and 
𝑫 lying on it. Point 𝑷 lies on perpendicular line 𝒍’  and 𝒅 is the distance from point 𝑷 to 
line 𝒍.  

 

3.4.1  The Equation of a Straight 2D Line 

The equation of a straight 2D line 𝑙 of figure 16 is given in the form 

𝑣 = 𝑚𝑢 + 𝑐                                                                                                        (23) 

𝑚 is the slope or gradient of the line and 𝑐 is its intercept on the 𝑣 axis. 

The 𝑚 and 𝑐 parameters of this line can be obtained from 2 points that lie on the line.  

 

In figure 16, suppose the points  𝐴  with coordinates (𝑢1, 𝑣1 ), and 𝐵  with coordinates 

(𝑢2, 𝑣2), and any other arbitrary point 𝐷  with coordinates (𝑢, 𝑣) lie on the line 𝐴𝐵 , the 

expression for its slope is given as 

𝑣2 − 𝑣1

𝑢2 − 𝑢1
=

𝑣2 − 𝑣

𝑢2 − 𝑢
                                                                                            (24) 

 

Rearranging equation 24 and making 𝑣 its subject we have 

𝑣 =
𝑣1 − 𝑣2

𝑢1 − 𝑢2
𝑢 +

𝑢1𝑣2 − 𝑢2𝑣1

𝑢1 − 𝑢2
                                                                     (25) 

 

Comparing equations 23 and 25, slope 𝑚 =
𝑣1−𝑣2

𝑢1−𝑢2
 and intercept  𝑐 =

𝑢1𝑣2−𝑢2𝑣1

𝑢1−𝑢2
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In equation 25 if the line is parallel to the 𝑣 axis, so that 𝑢1 − 𝑢2 = 0, 𝑣 will be undefined. 

In such a case, the equation of the line will be expressed as  

𝑢 = 𝑘                                                                                                                   (26) 

where 𝑘 is a constant. 

 

3.4.2  Estimating the Distortion of a Straight 2D Line 

The distortion of a straight line can be estimated by measuring the distance of displaced 

points from their respective positions on the straight line. A good measure of this sort is the 

perpendicular distance of the displaced points from the line. The perpendicular distance of 

a point from a straight line is the shortest distance between the point and the line and it 

can be estimated from the coordinates of the point and the parameters of the line.  

 

Referring to figure 16, the distance 𝑑  of point 𝑃(𝑢𝑝, 𝑣𝑝) to the line 𝑎𝑢 + 𝑏𝑣 + 𝑐 = 0  is 

given as 

𝑑 =
|𝑎𝑢𝑝 + 𝑏𝑣𝑝 + 𝑐|

√(𝑎2 + 𝑏2)
                                                                                       (27) 

If the line is parallel to the 𝑣 axis such that its equation is given as 𝑢 = 𝑘, then the distance 

of point 𝑃(𝑢𝑝, 𝑣𝑝) from the line will be 

𝑑 = |𝑘 − 𝑢𝑝|                                                                                                       (28) 

 

Sometimes it is desirable to determine the equation of the perpendicular line 𝑙’ drawn from 

the point 𝑃. In such cases, if the gradient of the line 𝑙 is given as 𝑚, then the gradient of line 

𝑙’ will be −
1

𝑚
. The equation of the line 𝑙’ will therefore be 

𝑣 = −
1

𝑚
𝑢 +

𝑢𝑝

𝑚
+ 𝑣𝑝                                                                                       (29) 

 

From the standard equation of line 𝑙 the gradient 𝑚 = −
𝑎

𝑏
. Equation 29 will become  

𝑣 =
𝑏

𝑎
𝑢 −

𝑏𝑢𝑝

𝑎
+ 𝑣𝑝   or in standard form, 

𝑏𝑢 − 𝑎𝑣 − 𝑏𝑢𝑝 + 𝑎𝑣𝑝 = 0                                                                              (30) 
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If line 𝑙 is parallel to the 𝑢 axis its gradient would be zero, line 𝑙′ would be parallel to the 𝑣 

axis and its gradient would be undefined. In such a case, the equation of 𝑙’ would simply be 

𝑢 = 𝑢𝑝                                                                                                                  (31)  

The equations of lines 𝑙 and 𝑙’ can be solved simultaneously to obtain the point at which 

they both intersect.  

 

3.5  Image Warping Techniques 

Several methods of warping an image were discussed in Section 2.4. This section presents 

their parametric equations and respective images to which they were applied. In all the 

examples given, an image 𝐼  with coordinates (𝑥, 𝑦)  is warped to image 𝐼′  with new 

coordinates (𝑢, 𝑣) by a warping function 𝑓(𝑥, 𝑦). The following transformations were done 

using normalised image coordinates in the interval (−1,1). 

 

3.5.1  Translation 

Translation of image coordinates either along rows or columns is given as: 

𝑢 = 𝑥 + 𝑎,    𝑣 = 𝑦 + 𝑏                                                                                   (32) 

a and b are respective constant pixel displacements along the columns and rows of the 

image.   

 

  

    (a) Original image     (b) Transformed image 

Figure 17: Translation of a region of pixels in an image. The pixels in the checker board 
pattern in the upper left region of the image in (a) are translated by 𝒂 = 𝟓𝟎 𝒂𝒏𝒅 𝒃 = 𝟏𝟎𝟎 
pixels horizontally and vertically respectively to produce the image in (b).  
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3.5.2  Procustes Transformation 

The Procustes transformation involves uniform magnification, rotation, and scaling of the 

original image [35]. It is given as 

𝑢 = 𝑐𝑥 cos 𝜃 + 𝑐𝑦 sin 𝜃 + 𝑎,    𝑣 = −𝑐𝑥 sin 𝜃 + 𝑐𝑦 cos 𝜃 + 𝑏              (33) 

where a and b are constant translation parameters, c is a constant scaling parameter and 𝜃 

represents angular rotation of image coordinates in degrees.  

 

  

     (a) Original image       (b) Procustes-transformed image 

Figure 18: Procustes transformation of an image where 𝒂 = 𝟐𝟎, 𝒃 = 𝟏𝟎, 𝒄 = 𝟏. 𝟐, 𝜽 =
𝟏𝟎𝒐. 

 

3.5.3  Affine Transformation 

The affine transformation of an image is the generalisation of the Procustes transformation 

and is given as  

𝑢 = 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3,    𝑣 = 𝑏1𝑥 + 𝑏2𝑦 + 𝑏3                                             (34)  

The affine transformation permits different degrees of stretching and shearing along the 

rows and columns of an image [35]. 
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(a) Original image (b) Affine-transformed image 

Figure 19: Affine transformation of an image where 𝒂𝟏 = 𝟏, 𝒂𝟐 = 𝟎. 𝟐, 𝒂𝟑 = 𝟏𝟎 and  

𝐛𝟏 = 𝟎. 𝟑, 𝐛𝟐 = 𝟏, 𝐛𝟑 = 𝟐𝟎. 

 

3.5.4   Perspective Transformation 

The perspective transformation of an image has the form 

𝑢 =
𝑎1𝑥 + 𝑎2𝑦 + 𝑎3

𝑐1𝑥 + 𝑐2𝑦 + 1
,           𝑣 =

𝑏1𝑥 + 𝑏2𝑦 + 𝑏3

𝑐1𝑥 + 𝑐2𝑦 + 1
                                     (35) 

It generalises an affine transformation [79]. It maps straight lines to straight lines and 

preserves conic sections [35].  

 

  

(a) Original image (b) Perspective-transformed image 

Figure 20: Projective-transformed image with 𝒂𝟏 = 𝟏. 𝟓, 𝒂𝟐 = 𝟎. 𝟐, 𝒂𝟑 = 𝟎. 𝟏; 𝒃𝟏 =
𝟎. 𝟑, 𝒃𝟐 = 𝟏, 𝒃𝟑 = 𝟎. 𝟒; 𝒄𝟏 = 𝟎. 𝟓, 𝒄𝟐 = 𝟎. 𝟓, 𝒄𝟑 = 𝟎. 𝟗 
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3.6 Image Warping with Radial Basis Function Interpolation 

A Radial Basis function (RBF) ∅ is defined as a real-valued function of the distance of a point 

to the origin, or the distance of the point from some other point. An RBF satisfies the 

property ∅(𝑥) = ∅(‖𝑥 − 𝑐‖) where ‖𝑥 − 𝑐‖ defines the distance of the point 𝑥 from the 

reference point c [85]. Radial basis functions are used to interpolate a continuous function 

whose value is known only at a set of discrete points at other points where the value of the 

continuous function is unknown. An RBF interpolant is a linear combination of translates of 

a Radial Basis Function ∅(‖. ‖)  with a low-degree polynomial [45]. According to the 

explanation given in [47], a deformable structure at rest will have control points 𝑃 with 

coordinates 𝒙𝑘
0 . When the structure is deformed, the control points will have coordinates 

𝒙𝑘. An interpolating function 𝑓 is needed to approximate the coordinates 𝒙 of other points 

on the deformed structure that also have coordinates 𝒙0 when the structure is at rest so 

that 

𝒙 = 𝑓(𝒙0, 𝒙𝑘
0 , 𝒙𝑘)                                                                                             (36)    

 

Warping an image with an interpolating function 𝑓 involves calculating the approximate 

coordinates of points in the image from the coordinates of the control points with known 

displacement. According to [47] the interpolating function 𝑓 should satisfy the following 

conditions: 

(i) Translation and rotational invariance. 

(ii) The interpolation condition given in equation 36 must be satisfied for all control points. 

(iii) The displacement of any point should depend linearly on the displacement of the 

control points. 

The realisation of interpolation function 𝑓 that also satisfies the conditions (i) to (iii) above 

can be given by a linear combination of 𝑛 translates of an RBF with a polynomial to give 

𝑠(𝒙) = ∑𝜆𝑖𝜙(‖𝒙 − 𝒙𝑖
𝑘‖) + ∑𝛽𝑗

𝑚

𝑗=1

𝑔(𝒙)                                                 (37)

𝑛

𝑖=1

 

where 𝜆𝑖 𝜖 ℝ are coefficients of the RBF translates 𝜙, 𝑔(𝒙) is a low degree polynomial with 

coefficients 𝛽𝑗, and 𝑛 is the number of control points used. The coefficients are chosen so 

that for all polynomials 𝑞 of degree less than or equal to that of 𝑔, the following condition 

must be satisfied [45], [86]:  
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∑𝜆𝑗𝑞(𝒙) = 0                                                                                                  (38)

𝑛

𝑗=1

 

The equations 37 and 38 can be combined into matrix form to yield 

[
𝑨 𝑷
𝑷𝑇 𝟎

] [
𝝀
𝜷
] = [

𝒉
𝟎
]                                                                                          (39) 

where 𝑨 is an 𝑛 × 𝑛 matrix with elements 𝐴𝑖𝑗 = ∅(‖𝑥𝑘𝑖
− 𝑥𝑘𝑗

‖)    (40)     

𝑷 is a matrix defined by the constraint in equation 38 for first-degree polynomials. 

𝑷 =

[
 
 
 
 
 
1 𝒙𝑘1

0

1 𝒙𝑘2

0

1
⋮
1

𝒙𝑘3

0

⋮
𝒙𝑘𝑛

0
]
 
 
 
 
 

                                                                                                   (41)         

When matrix 𝑨 is invertible, the 𝝀 and 𝜷 coefficients are obtained by solving [47] 

𝝀 = 𝑨−1𝒗 − 𝑨−1𝑷𝑨𝑝𝑷𝑇𝑨−1𝒉                                                                      (42) 

𝜷 = 𝑨𝑝𝑷𝑇𝑨−1𝒉                                                                                                (43) 

where  𝑨𝑝 = (𝑷𝑇𝑨−1𝑷)−1                                                                             (44)  

 

For a 2D image, Equations 42 and 43 are solved to obtain the set of coefficients 𝝀𝑥, 𝝀𝑦   and 

𝜷𝑥, 𝜷𝑦  from respective displacement of points in each of the 𝑥 and 𝑦 dimensions of the 

image. Equation 37 can be rewritten to reflect the new coordinates of points in a warped 

2D image as 

𝑠𝑥(𝒙) = ∑𝜆𝑖
𝑥𝜙(‖𝒙 − 𝒙𝑘𝑖

‖) + 𝛽1
𝑥 + 𝛽2

𝑥𝑥 + 𝛽3
𝑥𝑦

𝑛

𝑖=1

                                  (45) 

𝑠𝑦(𝒙) = ∑𝜆𝑖
𝑦
𝜙(‖𝒙 − 𝒙𝑘𝑖

‖) + 𝛽1
𝑦

+ 𝛽2
𝑦
𝑥 + 𝛽3

𝑦
𝑦

𝑛

𝑖=1

                                  (46) 

There are various RBFs in literature that can take the place of 𝜙   in the interpolating 

equations above, and a number of them were compared for efficiency in [86]. Four of them 

are listed in Table 2. The test to determine the effectiveness of the first three RBFs in Table 

2 in pre-warping a projected image to correct geometric distortions in projected displays is 

carried out in Section 4.3. Results are presented in Section 4.4. 
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Table 2: Examples of Radial basis functions [86] 

No. Name 𝜙(𝒙) 

(i) Thin plate spline 𝑥2 log(𝑥) 

(ii) Multiquadric Biharmonics √𝑎2 + 𝑥2 

(iii) Inverse Multiquadric Biharmonics 
√

1

𝑎2 + 𝑥2
 

(iv) Gaussian 𝑒−𝑎𝑥2
 

 

The parameter 𝑎 in (ii) to (iii) of Table 2 is a scaling factor which controls the shape of the 

RBF. The value of 𝑎 also affects the coordinates of the warped pixels. By using normalised 

pixel values in the range (-1,1) in both image directions, the value of 𝑎  is determined 

experimentally and set to 0.01 to ensure that all warped pixels stayed within the specified 

range. 

 

3.7  Image Similarity Measurement 

After correcting the geometric distortion of a projected image, there is need to objectively 

measure the effectiveness of the correction system. A typical way of doing this is to 

compare the image of the geometrically-corrected projection with a desired standard 

derived from the homography-transformed projected image. There are several ways to 

measure the similarity between two images and two of them are presented below. 

 

3.7.1  Normalised Cross-correlation Coefficient (NCC) 

Normalised cross-correlation is a commonly used metric in evaluating the degree of 

similarity or dissimilarity of a set of images being compared.  It is less sensitive to changes 

in illumination in the images being compared than the ordinary cross correlation [87]. 

According to [88], let 𝑓(𝑥, 𝑦) be the intensity value of the image 𝑓 of size 𝑀𝑥 × 𝑀𝑦 at any 

point. Let template 𝑡 of size 𝑁𝑥 × 𝑁𝑦 represent a pattern whose position in image 𝑓 is to be 

determined. The NCC value 𝛾 at each point (𝑢, 𝑣) of 𝑓 is given by the expression 
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𝛾 =
∑ (𝑓(𝑥, 𝑦) − 𝑓�̅�,𝑣)(𝑡(𝑥 − 𝑢, 𝑦 − 𝑣) − 𝑡)̅𝑥,𝑦

√∑ (𝑓(𝑥, 𝑦) − 𝑓�̅�,𝑣)2 ∑ (𝑡(𝑥 − 𝑢, 𝑦 − 𝑣) − 𝑡̅)2
𝑥,𝑦𝑥,𝑦

                         (47) 

𝑓�̅�,𝑣 is the mean value of 𝑓(𝑥, 𝑦) calculated over the area of the template 𝑡 shifted to (𝑢, 𝑣) 

and given by the expression 

𝑓�̅�,𝑣 =
1

𝑁𝑥𝑁𝑦
∑ ∑ 𝑓(𝑥, 𝑦)

𝑣+𝑁𝑦−1

𝑦=𝑣

𝑢+𝑁𝑥−1

𝑥=𝑢

                                                              (48) 

𝑡̅ is the mean value of template 𝑡 given by the expression 

𝑡̅ =
1

𝑁𝑥𝑁𝑦
∑ ∑ 𝑡

𝑣+𝑁𝑦−1

𝑦=𝑣

𝑢+𝑁𝑥−1

𝑥=𝑢

                                                                              (49) 

The value of 𝛾  ranges between -1 and 1. When the NCC is used as a measure of the 

effectiveness of the geometric distortion process, the value of 𝛾  for the geometrically-

corrected template should be closer to 1 than that of the geometrically-distorted template.  

 

3.7.2  Phase Correlation 

Phase correlation is an example of a Fourier-based image similarity measurement method. 

It computes the cross-power spectrum of a reference image and a template, and looks for 

the peak in its inverse. It is based on the Fourier shift theorem that states that a shift in the 

coordinate frame of two functions represents itself in the Fourier domain as linear phase 

differences between the functions [89]. It is a good choice where images are corrupted by 

frequency-dependent noise [49]. If 𝑓1(𝑥, 𝑦)  and 𝑓2(𝑥, 𝑦) = 𝑓1(𝑥 − 𝑥𝑜 , 𝑦 − 𝑦𝑜)  are two 

images and 𝑓1(𝑢, 𝑣) and 𝑓2(𝑢, 𝑣) are their respective Fourier transforms, then according to 

Fourier shift property, 

𝑓2(𝑢, 𝑣) = 𝑓1(𝑢, 𝑣)𝑒−𝑖(𝑢𝑥𝑜+𝑣𝑦𝑜) 

 

The normalised cross power spectrum for both images is given as 

𝑓2(𝑢, 𝑣)𝑓1(𝑢, 𝑣)∗

|𝑓1(𝑢, 𝑣)𝑓1(𝑢, 𝑣)∗|
= 𝑒−𝑖(𝑢𝑥𝑜+𝑣𝑦𝑜)                                                               (50) 

where * indicates complex conjugate.  
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3.8 Chapter Summary 

The main focus of this chapter has been to present the theories underlying the image 

processing techniques used in this work. It included the following discussions: 

(i) A discussion of image feature detection techniques including edge, corner and blob 

detection techniques.  Detected image features are used in drawing up correspondences 

between geometrically transformed versions of an image.  

 

(ii) Projections on planar surfaces including the 2D homography and its use in modelling the 

geometrical transformations between image points on the projection plane of the projector, 

the planar projection surface, and the sensor plane of the camera.  

 

(iii) The geometry of the straight line including the derivation of its equation and that of the 

distance of a point from the line to be used as a measure of the level of distortion of the 

straight line.  

 

(iv) Illustrative examples of parametric image warping techniques discussed in Section 2.4.  

 

(v) The derivation of the RBF coefficients used to estimate the warping of points (pixels) in 

an entire image from displacements of a set of control points in the image. 

 

(vi) The presentation of the Normalised Correlation Coefficient (NCC) and Phase Correlation 

as respective spatial and frequency domain techniques used as measures of similarity 

between transformed versions of an image.    
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CHAPTER FOUR 

Geometric Distortion Correction for Static Projection Displays 

4.1  Introduction 

This chapter presents the techniques developed in this work to correct geometric 

distortions when non-distorted images are projected onto static non-planar displays or 

surfaces. It begins in Section 4.2 by presenting a simple illustration of the projection of a 

straight line onto a quadric surface, the form of distortion of the line on the surface, and 

the derivation of the kind of warp to be applied to the line in order to obtain its undistorted 

view on the quadric surface. The methods used to measure and correct geometric distortion 

of projections on static non-planar surfaces using a projector-camera system are presented 

in Section 4.3 through Section 4.6. While one method uses a calibration image the other 

does not. The tests carried out to determine the effectiveness of each method in correcting 

geometric distortion of images projected onto static non-planar surfaces are described and 

results of these tests are presented in the subsequent sections. The static projection system 

used in the tests consist of the following: (i) An Epson EMP-S3 projector mounted on a fixed 

platform, (ii) A white window curtain used as a non-planar projection surface, with the top 

end attached to and hanging from a string and the bottom end left free, (iii) A Logitech C615 

webcam with a 640 × 480 (VGA) pixel resolution held in place on a rigid support, (iv) A 

computer with a Windows 10 Operating System and an Intel Celeron N2830 2.16GHz 

processor. A GUI was developed in Matlab to control the projection, acquisition and 

processing of images respectively from the projector and camera connected to the 

computer through VGA and USB 2.0 ports respectively. The GUI is shown in appendix A3. 

The system setup is shown in figure 21. 
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Figure 21: A projection system consisting of a projector, camera, projection surface and 
computer 
 

4.2  Illustrating Geometric Distortion of a Straight Line Projected onto a Non-

planar Surface 

4.2.1  Pictorial Illustration 

This section illustrates how geometric distortion occurs when a straight line is projected 

onto a non-planar surface and how the geometric distortion created can be corrected.  

A simple illustration in figure 22 shows the profile of the projection of a straight line on a 

quadric surface. The illustration using a cylindrical surface can be generalised for other 

quadric and non-parametric non-planar surfaces. The illustration is described as follows: 

(i) The line 𝑙 in the figure represents a horizontal line in an image being projected onto the 

surface 𝑆 of a cylinder, and only the profile of the orthographic projection of section 𝐴𝐵 of 

the line is seen according the viewpoint illustrated. 

 

(ii) The cylinder stands upright so that its base is parallel to the 𝑥𝑦 plane. The projector is 

assumed to be tilted at an acute angle 𝑎 to the horizontal 𝑥𝑦 plane. 
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(iii) Rays of light forming a plane emanating from 𝑙 strike 𝑆 to form an elliptical curve 𝐶1 on 

𝑆. 𝐶1 represents the distorted profile or image of the line that needs to be corrected so that 

what should be observed on 𝑆 is circle 𝐶2.  

 

(iv) The light rays emanating from the back-projection of 𝐶2 from 𝑆 to the image plane 𝑃 of 

the projector form section 𝐴′𝐵′ of arc 𝑙′on 𝑃. These rays are actually sections of a collection 

of horizontally-stacked parallel planes, all forming acute angle 𝑎 with the 𝑥𝑦 plane. The 

shape of 𝑙′ in this case is seen to be opposite to that of 𝐶1. 

 

(v) The back-projection process described in (iii) and (iv) may be reversed in order to 

observe an undistorted projection of line 𝑙 . For this to take place, line 𝑙  should first be 

warped to arc 𝑙′ and then projected. 

 

The illustration in figure 22 is an orthographic representation but in reality the projector-

surface-camera system is a perspective projective system. The principles would also apply 

in actual systems as projective transformations also transform quadric curves to quadric 

curves. An algebraic explanation and solution to the geometric distortion problem caused 

by an inclined projection of a line onto a non-planar surface is given in the following section 

4.2.2.  

 

4.2.2   Algebraic Representation of a Plane and a Cylinder 

The equation of a cylinder of radius r as seen in figure 22 is given as 

𝑥2 + 𝑦2 = 𝑟2                                                                                                     (51) 

where 𝑥 = 𝑟 cos 𝜃,     𝑦 = 𝑟 sin 𝜃                                                                 (52) 

𝜃 is the angle of projection of a point on the surface of the cylinder onto the 𝑥 axis. 

 

The general equation of a plane is given as 

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑                                                                                            (53) 
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To obtain the points of intersection of a plane with a cylinder, the simultaneous equations 

51 to 53 are solved. Substituting for 𝑥 and 𝑦 in equation 53 and solving for 𝑧 gives 

𝑧 =
𝑑 − 𝑟(𝑎 cos 𝜃 + 𝑏 sin 𝜃)

𝑐
                                                                        (54) 

 

Equation 54 shows that the 𝑧 coordinates of the points of intersection of the plane with the 

surface of the cylinder vary with the value of 𝜃 as the other parameters 𝑎, 𝑏, 𝑐, 𝑑, and 𝑟 are 

constant. With reference to figure 22, it is assumed that the range of 𝜃  on the visible 

surface of the cylinder is   −
𝜋

2
≤ 𝜃 ≤

𝜋

2
 . 

 

 

Figure 22: Geometric illustration of the projection of a 2D image line onto a 3D or non-
planar surface𝑺. 𝑪𝟏 represents the distorted profile of the line 𝒍 projected onto quadric 
surface 𝑺. 𝑪𝟐 is the corrected profile of the line after pre-warping it from 𝒍 to 𝒍′. 
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The pose of a projector 

The effect of the pose of a projector with respect to a quadric surface can be observed by 

tracing the plane of light rays being projected from a straight horizontal line onto the 

surface of the cylinder. The amount of inclination of the projector determines the amount 

of inclination of the plane of light rays emanating from the projected line. The equation of 

this plane containing the light rays can be derived from the coordinates of a point on the 

plane and a vector specifying a line that is perpendicular to the plane [90], and both can be 

derived from the angles of inclination of the plane to the respective coordinate axes. The 

equation of a plane containing the rays of light from the projected line that is inclined to 

the 𝑥 and 𝑦 axes by angles 𝛽 and 𝛼 respectively can be given as 

 

 sin(𝛼) 𝑥 − cos(𝛼) sin(𝛽) 𝑦 + cos(𝛼) cos(𝛽) 𝑧 = 0                (55) 

 

Comparing equations 53 and 55,  𝑎 = sin 𝛼, 𝑏 = − cos𝛼 sin 𝛽 , 𝑐 = cos 𝛼 cos𝛽 , 𝑑 = 0.  

These can be substituted into equation 54 to obtain the profile of the projection on the 

surface of the cylinder. Figure 23 shows the plotted profiles for different values of 𝛼 and 𝛽. 

 

Deriving the warp to be applied to the projected line 

The warping of line 𝑙 to correct the observed geometric distortion for this system can be 

derived as follows: 

From the illustration in figure 22, it is desired that the 𝑧 coordinate of curve 𝐶1at 𝜃1 equals 

the 𝑧 coordinate of the curve at another angle 𝜃2. Equation 54 becomes 

 

𝑑1 − 𝑟(𝑎 cos 𝜃1 + 𝑏 sin 𝜃1)

𝑐
=

𝑑2 − 𝑟(𝑎 cos 𝜃2 + 𝑏 sin 𝜃2)

𝑐
        (56) 

rearranging and solving for 𝑑2, 

𝑑2 = 𝑑1 − 𝑎𝑟(cos 𝜃1 − cos 𝜃2) − 𝑏𝑟(sin 𝜃1 − sin 𝜃2)                 (57) 

 

Equation 57 gives an expression for the translation of plane 𝑑1 = 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 to  

𝑑2 = 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧.  By making 𝜃1 the target and varying 𝜃2, a set of new planes can be 

derived. Note that all the planes in the set are parallel.  
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In conclusion, the resulting warped line is the locus of sections of the set of parallel planes 

defined by angle 𝜃, and obtaining 𝑑2 for the respective planes is tantamount to deriving the 

shape of the warped line. Figure 23(b) shows the respective shapes of the warped lines as 

obtained by evaluating 𝑑2 from equation 57, and making the values of 𝑧 at other angles 𝜃2 

equal to 𝑧 at 𝜃1 =
𝜋

2
 (90𝑜). The respective values of 𝑑2 thus obtained can be substituted 

back into equation 54 to obtain the desired profile of the projection of the warped line on 

the quadric surface. Figure 23(c) shows the respective profiles of the projected warped lines 

on the surface of the quadric.  

 

 

(a) The profile curves for various inclinations of the plane of rays to the horizontal 𝒙 and 

𝒚 axes 

 

(b) the derived warped shapes of the horizontal line required to change the respective 

observed profiles on the quadric surface 
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(c) the derived respective projection profiles after projecting the warped lines in (b) 

Figure 23: Plots of the profile curve of a horizontal line projected onto a quadric 

(cylindrical) surface.  

 

4.3 Geometric Distortion Measurement of Image Lines and Geometric 

Distortion Correction using a Calibration Image 

4.3.1  The Calibration Image and Measure of Distortion of its Grid Lines 

The calibration image shown in figure 24 was used to estimate the geometric distortion 

suffered by straight image lines projected on the non-planar projection surface. It consisted 

of white rectangles arranged in equal number of rows and columns against a uniform black 

background. The corners of the rectangles forming rows and columns of horizontal and 

vertical lines respectively represented distinctive image features to be used for the 

estimation of distortion of straight projected image lines caused by the shape of the 

projection surface. Corresponding corner points were obtained from the camera-captured 

image of the projection of the calibration image on the non-planar surface. A series of 

horizontal and vertical lines were formed by linking the two points at the end of each row 

and column of feature points formed as shown in figure 25. The parameters of each line 

was estimated and its distortion measured by calculating the deviation of each member 

point from the line and finding the average as described in Section 3.4.2. The plot of the 

average deviation of points from each line of the camera-captured projection of the 

calibration image is shown in figure 25. It is used as an indication of the amount of distortion 

that each line of the calibration image suffered as the calibration image was projected onto 
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the non-planar surface.  The approximate minimum and maximum average deviation values 

in pixels in both image directions obtained for the 640 x 480 pixel image of the calibration 

image shown in figure 25 and plotted in figure 26 are compared in Table 3. The figures and 

table all reveal that projected horizontal lines of the calibration image with larger average 

deviation values suffer greater distortion on the projection surface than the vertical lines of 

the calibration image. Note that because both types of image lines slant their deviation 

values are represented in horizontal and vertical pixel components.  
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Figure 24: Calibration image consisting of 𝟏𝟒 × 𝟏𝟒 feature points projected onto the non-

planar surface to measure and correct the distortion of the projected image 

  

          

 
Figure 25: Camera capture of the calibration image projected onto the non-planar 
projection surface showing the detected corner points, horizontal and vertical lines 
formed by linking two extreme corner points, and the quadrilateral formed by linking the 
corner points at the four extreme corners of the image. 
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Figure 26: A plot of average deviation of member feature points from the horizontal and 
vertical lines shown in figure 25. Normalised pixel values in the range (-1,1) were used 

 

Table 3: Comparing approximate minimum and maximum deviations in 2 image directions 
for horizontal and vertical lines of the projected calibration image 

 Horizontal (u) and vertical (v) image 

directions 

Min deviation (px) Max deviation (px) 

Horizontal  

image line 

 

1.06 

 

1.64 

Vertical  

image line 

 

0.10 

 

0.27 

 

 

4.3.2  Measure of Distortion/Straightness of Straight Lines in an Image  

Lines observed to be perfectly straight in an image also have geometric distortion errors 

associated with them as their member points may have very small non-zero deviation 

values from the lines. This deviation is caused by quantisation errors in representing the 

constituent points of the lines as discrete image pixels.  
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The test carried out to estimate the level of distortion of the straight lines in an image 

involved the following:  

(i) Randomly choosing two distinct points with absolute and normalised pixel coordinates, 

and finding the parameters of the line joining them as described in Section 3.4.1, (ii) Using 

the equation of the line to determine the absolute pixel coordinates of all the points in a 

640 × 480  pixel-sized image that belong to the line, (iii) Converting the absolute pixel 

coordinates of the member points found to normalised coordinates and calculating the 

deviation of each point from the line using  equation 27, and (iv) calculating the average 

deviation of the points from the line to use as a measure of distortion for each random 

image line drawn. The plot of average deviation for 200 randomly-generated image lines in 

figure 27 is shown in figure 28. The average deviation plot shows that the straightest lines 

in an image with normalised pixel values in the interval (−1,1) can have average deviation 

values ranging from 0 for perfectly horizontal and vertical lines to about 0.0011 for slanted 

lines. The distribution of average deviations is also shown as a histogram in figure 29.  

 

Figure 27: 200 Randomly-generated image lines 
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Figure 28: Plot of average deviations for lines shown in figure 27 

 

Figure 29: Histogram showing the distribution of average deviation values for the 200 
randomly-generated lines in figure 27. 

 

4.3.3  Measuring the Distortion of Projected Horizontal and Vertical Lines of the 

Calibration Image  

When the calibration image projected onto the non-planar surface was captured by the 

camera, it was observed that the horizontal lines formed by the feature points on the image 

appeared to be more distorted than the vertical ones. This was due to the crests and troughs 

on the projection surface lying largely in the horizontal direction as the surface hung freely 

and naturally from a horizontal string. In the presence of these crests and troughs, the 
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surface normals from feature points of the calibration image projected onto the non-planar 

surface are largely parallel in the case of vertical lines and non-parallel in the case of the 

horizontal lines. The respective distortions of horizontal and vertical lines in the camera 

image of the projection were compared with the distortions of the standard straight image 

lines described in Section 4.3.2. Average deviation values were obtained from 196 

horizontal and vertical lines by projecting the calibration image onto the surface, capturing 

the projection with the camera and calculating the distortion of each line for different poses 

of the camera and projector and shapes of the projection surface. The calibration image 

used consisted of 14 horizontal and vertical lines respectively. The distribution histograms 

of deviations of member points of the projected horizontal and vertical lines of the 

calibration image and straight image lines are shown in figures 30, 31 and 32 to illustrate 

the similarities and differences between them.  

 

Figure 30: Histograms of distributions of average deviations of points from the projected 
vertical lines of the calibration image (brown) and average deviations of points from 200 
randomly-generated straight image lines (blue). 

 

The histogram in figure 30 shows that the distribution of average deviation for projected 

vertical lines of the calibration image has values in the region of that of straight image lines. 

Therefore for simplicity during the geometric distortion correction process, the distortion 

of vertical lines may be ignored. The distribution of deviation errors of points from the 

horizontal lines of the projected calibration image in figures 31 and 32 shows much greater 

average deviation values than those of vertical lines of the calibration image and randomly-
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generated lines respectively, and a clear separation of the two distributions. The projected 

horizontal lines are significantly more distorted than the other sets of lines. The geometric 

distortion of horizontal lines of the grid would therefore require correcting. 

 

Figure 31: Histograms of distributions of average deviations of points from the projected 
horizontal lines of the calibration image (brown) and average deviations of points from 
200 randomly-generated straight image lines. 

 

Figure 32: Histograms of distributions of average deviations of points from the projected 
horizontal lines (yellow) and vertical lines (brown) of the calibration image and average 
deviations of points from 200 randomly-generated straight image lines (blue). 
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4.3.4  The Geometric Distortion-correction Process 

The projected horizontal lines of the calibration image have been shown to be the most 

distorted group. They will therefore be candidates for rectification. Two different methods 

may arise for carrying out the selection of lines for rectification. The first would generally 

rectify all horizontal lines and ignore the vertical ones, and the second will set a threshold 

distortion value for all lines and those lines whose distortion values go above the threshold 

will be rectified while other lines will not be rectified. The first method of line rectification 

used in this work rectifies only the horizontal lines of the calibration image. Repeated 

distortion-correction tests on the static projection surface using this method show that 

vertical lines of the calibration image remain relatively undistorted before and after the 

correction. The results of the various geometric distortion-correction tests carried out with 

the calibration image are presented in Section 4.4.  

 

The process of distortion correction of static non-planar projection surfaces using a 

calibration image is outlined as follows: 

(i) Generate the calibration image with an appropriate number of feature points with known 

horizontal and vertical pixel coordinates and project it onto the surface. Normalise the pixel 

coordinates of its feature points. 

 

(ii)  Capture the image of the projection with the camera. 

 

(iii) Use a suitable corner point detector to obtain the required feature points of the 

captured image and arrange them in rows and columns according to the order in which they 

appear in the original calibration image. Also normalise the pixel coordinates of these 

feature points.   

 

(iv) With the coordinates of the feature points arranged in their correct positions, form a 

series of horizontal and vertical lines by linking together the first and last points of each row 

and column formed by feature points. Also form the desired undistorted quadrilateral by 

linking the four extreme feature points of the captured image. 
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(v) Calculate the parameters of each horizontal line and the deviation of each of its member 

points from the line as described in Section 3.4.2. Also calculate the parameters of each 

vertical line and the deviation of each of its member points from their respective lines. Also 

calculate the average deviation value for each line and set a threshold for distortion if 

desired. If a threshold is set, make a decision to correct the geometric distortion of those 

lines whose average deviation values are equal to or above the set threshold. If no threshold 

is set, correct the distortion of only the horizontal lines.  

 

(vi) Use the parameters of each line calculated in (v) to calculate the desired observed 

coordinates of each member feature point on the captured image of the projection. The 

desired coordinates of a distortion-corrected feature point on the distortion-corrected line 

will be the coordinates of the point of intersection between it and a perpendicular line 

drawn from the distorted feature point. The distortion-corrected feature point also 

coincides with the midpoint of the perpendicular line drawn from the distorted feature 

point to another point opposite the distorted feature point and equidistant to the 

distortion-corrected line.  

Let the distorted feature point be labelled as 𝑃𝑑, the distortion-corrected point as 𝑃𝑟, and 

the point equidistant to the distortion-corrected line 𝑙 but opposite 𝑃𝑑 be 𝑃𝑑′. 

Let the line perpendicular to 𝑙 be 𝑙′. The illustration given in figure 33 shows the positions 

of the points and lines so described.  

 

 

Figure 33: Illustration of the respective positions of the distortion-corrected line 𝒍, a line 
𝒍′ perpendicular to it, and distorted feature point 𝒑𝒅, opposite point 𝒑𝒅

′ and distortion-
corrected point 𝒑𝒓. Point 𝒑𝒓 is the midpoint between 𝒑𝒅 and 𝒑𝒅′ and also the point of 
intersection of lines 𝒍 and 𝒍′. 
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(vii) Use the four extreme feature points of the captured image of the projection and the 

four corresponding feature points of the calibration image to estimate a desired 2D 

homography between both images. This desired homography defines the 2D mapping of 

distortion-free feature points from the captured image of the projection to the feature 

points of the calibration image. 

The homography may also be estimated by using more than four feature points from both 

images but with an optimisation method used to determine the best overall transformation. 

  

(viii) The next task will be to device a way to warp the calibration image in order to observe 

a geometrically undistorted projection of the image. The warping scheme used is derived 

from that developed in Section 4.2 where the directions of warping of the lines of the 

calibration image are opposite to the respective directions of the observed distortions of 

these lines. The 2D homography estimated in step (vii) is used to transform member feature 

points 𝒑𝑑′ of each distorted line to respective control points 𝒘𝑑′ on the calibration image. 

The distortion-corrected points 𝒑𝑟 are transformed by this homography to points 𝒘𝑟 on the 

calibration image. These points should ideally coincide with the known feature points of the 

calibration image, but do not always do so as a result of projection errors. 

To complete the warping of the calibration image, points 𝒘𝑟 are warped to control points 

𝒘𝑑′. 

 

(ix) Estimate the RBF coefficients using the method outlined in Section 3.6 where the set of 

coordinates of 𝒘𝑟 are the initial control point positions and the set of coordinates of 𝒘𝑑′ 

are final control point positions. 

 

(x) Use the estimated RBF coefficients to warp the whole calibration image as described in 

Section 3.6. 

 

(xi) Finally substitute the calibration image with a natural image and warp the entire natural 

image using the same estimated RBF coefficients. Care must be taken to ensure that the 

camera, projector, and projection surface remain fixed in position and the projection 

surface does not deform within the time leading to the estimation of the RBF coefficients 



73 
 

and the time of substitution with the natural image, otherwise the process of distortion 

measurement with the calibration image and substitution with the natural image will have 

to be repeated for the new positions of the projector, camera and projection surface. 

 

The geometric distortion-correction procedure described above was used to correct the 

static non-planar projection system described for various poses of the projector and camera 

and various shapes of the projection surface. Image-matching tests including NCC and 

Average Deviation Errors were used to objectively measure the effectiveness of the 

distortion-correction process. The following parameters were varied during the tests 

conducted on the static non-planar projection system: 

(i) The number of feature points on the calibration image: This was done to determine the 

optimum number of control points needed to carry out effective geometric distortion 

correction with the calibration image. Distortion correction was carried out for calibration 

images with a number of feature points ranging from 36 (6 horizontal x 6 vertical) to 196 

(14 horizontal x 14 vertical) while keeping the positions of the projector and camera, and 

the position and shape of the projection surface fixed.  

 

(ii) The type of RBF used for warping: Three RBFs were compared in these tests namely, 

Multiquadric, Inverse Multiquadric and the Gaussian to determine the RBF with the best 

performance in terms of least deviation errors and average time taken to warp an image of 

size 640 x 480 pixels. 

  

(iii) The pose of the projector and camera: The positions of the projector and camera and 

the shape of the projection surface were changed from one test to the next in order to 

investigate the effectiveness of the geometric distortion-correction methods for various 

projector/camera poses and different observed levels of distortion. The average deviation 

of points from each horizontal and vertical line was calculated for the distorted and 

distortion-corrected calibration image projections. The calibration image was substituted 

with a natural image and the NCC for the distorted and corrected images were obtained 

and compared. The whole process was repeated after changing the positions of the 
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projector, camera and the projection surface. The results of these tests are presented in 

Section 4.4.  

 

4.3.5  Experimental Considerations 

(i) Detection and arrangement of image feature points: The success of this geometric 

distortion-correction system is largely dependent on the correct detection and 

arrangement of corners of the calibration image. Sometimes during the projection of the 

calibration image some true corner points may not be detected by the corner point detector 

while other false corner points may be detected by the detector. Both problems are 

illustrated in figure 34.  

 

Figure 34: Image of a calibration image showing correctly detected feature (corner) points, 
missing and unwanted feature points 

It was observed in this work that sufficient illumination of the projection environment, 

elimination of creases and unwanted shadows on the projection surface reduced the 

chances of missing and unwanted corner points. Where such problems are inevitable, the 

algorithm designed to arrange these points in the correct order must be robust enough to 

recognise unwanted and missing feature points.  

 

(ii) Effects of Noise: The effect of noise on the distortion-correction system was not 

investigated. It is evident that added noise hampers the accurate detection and matching 

of feature points and subsequently negatively affects the distortion-correction results. 

20
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However the visual quality of the images of the projection acquired in all tests served the 

distortion-correction purpose.   

 

(iii) Visibility of the whole projection surface: Another precaution observed while testing 

the distortion-correction system was making sure the whole projection surface was visible 

to the camera and without objects or markings on the projection surface capable of 

influencing the detection of unwanted feature points.  

  

4.4  Results of Distortion-correction Tests with the Calibration Image  

4.4.1  General Distortion-correction Results 

The first set of results presented in figures 35 and 36 were obtained using a calibration 

image consisting of 196 feature points forming 14 horizontal and 14 vertical lines and 

warping done with the multiquadric RBF.  The figures are arranged in groups of four. Each 

group consists of the non-distorted and pre-warped pair of projected images and the 

respective camera images of their observed projections. They show that the geometric 

distortion of the observed projection of the calibration image and the natural images was 

achieved after pre-warping both images before projecting them onto the non-planar 

surface.  
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(a) Non-distorted calibration image with 196 feature points projected onto the projection 

surface 

 

 

(b) Pre-warped calibration image projected onto the non-planar projection surface 
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(c) Observed distorted projection of the non-distorted calibration image 

 

 

(d) Observed distortion-corrected projection of the pre-warped calibration image 

Figure 35: Geometric distortion correction of the projection of a calibration image 
consisting of 196 feature points. (a) and (b) show the non-distorted and pre-warped 
calibration image while (c) and (d) show the corresponding observed distorted and 
distortion-corrected projections of the calibration image.  
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(a) Non-distorted projected image 

 

 

(b) Pre-warped projected image 
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(c) Observed distorted projection of the natural image 

 

 

(d) Observed distortion-corrected projection of the projected natural image 

Figure 36: Geometric distortion correction of the projection of a natural image replacing 
the calibration image and using the warping coefficients obtained from the calibration 
image. (a) and (b) show the non-distorted and pre-warped image while (c) and (d) show 
the corresponding observed distorted and distortion-corrected projections of the natural 
image. 

 

The results presented in figure 37 show the average deviation errors of feature points from 

each horizontal and vertical line of the observed projection of the calibration image before 

and after the distortion-correction process was carried out. Average deviation values were 

reduced by as much as 78.8% for horizontal lines. This represents a significant improvement 

for the horizontal lines. The deviation values for the vertical lines show that the distortion-
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correction process improved the straightness of some lines with lower average deviation 

values but worsened the straightness of others. The average deviation values of the 

affected vertical lines however still remained significantly lower than those of the least 

distorted horizontal lines, proving that the distortion-correction process for horizontal lines 

did not significantly distort the vertical lines. 

 

 

Figure 37: Average deviation of feature points from their respective horizontal and vertical lines 
on the observed images of projection of the calibration image (figures 35(c) and 35(d))  before and 
after geometric distortion correction. Average deviation values of points for distortion-corrected 
lines are lower than the average deviation values for distorted lines. 

 

The results for the Normalised Correlation Coefficient (NCC) test for both distorted and 

distortion-corrected images of the projection in figures 36(c) and 36(d) are shown in figures 

38(a) and 38(b) respectively. An increase in the peak NCC value from 0.855 to 0.928 shows 

that the geometric distortion-correction process improved the match between the distortion-

corrected image of the projection and its desired non-distorted image.   
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(a) NCC for distorted observed image of the projection. Peak NCC value is 0.855.    

 

(b) NCC for distortion-corrected observed image of the projection. Peak NCC value is 0.928. 

Figure 38: Normalised Correlation Coefficients (NCC) of the observed distorted and 
distortion-corrected projections.  The NCC was calculated using the cropped non-
distorted homography-transformed image of figure 36(a) as template and the distorted 
and distortion-corrected observed images of its projection of figure 36(c) and 36(d) 
respectively. An improvement in NCC indicates a better match between the template and 
the distortion-corrected image than the template and the distorted image, also revealing 
satisfactory distortion-correction.   

 

Figure 39 (a)-(c) shows sets of peak NCC values obtained from distortion correction tests 

performed using calibration images with 100, 144 and 196 feature points with the 

multiquadric, inverse multiquadric and Gaussian RBFs used for warping for various poses of 

the projector and camera and shapes of the projection surface. 
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The red lines in the plots show an improvement in peak NCC for distortion-corrected images 

over distorted images represented by the blue lines, by as much as 1.66% to 7.45% with 196 

feature points, 1.58% to 31.03% with 144 feature points, and -0.66% to 7.20% with 100 

feature points. The negative sign indicates a lower peak NCC for the distortion-corrected 

image than that of the distorted image. The results also demonstrate that geometric 

distortion correction can be achieved with calibration images having an appropriate 

number of feature points and warping with any of the three RBFs considered. The results of 

tests performed to determine the appropriate number of feature points for the calibration 

image and the type of RBF to use for warping are presented in the following subsections.  

 

(a) 196 feature and control points 

 

(b) 144 feature and control points 
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(c) 100 feature and control points 

Figure 39: Peak NCC values for distorted and distortion-corrected projections using 196 
(a), 144 (b), and 100 (c) feature points for the calibration image and 3 different RBFs for 
warping 

 

4.4.2  Results of Tests to Determine the Number of Feature Points to Use in the 

Calibration Image 

By varying the number of feature points of the calibration image from 36 (6 rows x 6 

columns) to 196 (14 rows x 14 columns) in performing geometric distortion correction, it 

was observed that while the calibration image lines were being straightened with fewer 

number of feature points, the substituted natural image still suffered significant geometric 

distortion as shown in the images of figure 40. Using more feature points for the calibration 

image is shown here to produce better distortion-correction results because more points 

produce a better sampling and representation of the distortion of the surface. Using more 

points would however impact negatively on the speed of the warping process as more 

computations would be involved.  
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(a) Distorted output image 

  

(b) Average deviation plots for 36 feature points and corresponding insufficiently 

distortion-corrected image 

 

  

(c) Average deviation plots for 64 feature points and corresponding insufficiently but  

slightly better distortion-corrected image 
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(d) Average deviation plots for 100 feature points and corresponding better  

distortion-corrected image 

 

  

(e) Average deviation plots for 144 feature points and corresponding better  

distortion-corrected image 

 

  

(f) Average deviation plots for 196 feature points and corresponding better  

distortion-corrected image 

Figure 40: Results to demonstrate the need for having a sufficiently high number of 
feature points for the calibration image to achieve better geometric distortion correction.  



86 
 

A test to determine an optimum number of feature points per line of the calibration image 

was carried out with a typical section of a composite curve containing three points of 

inflexion: two points at each end (where the section would link to another) and one crest 

(turning point). The section so described is shown in figure 41. It involved assigning a 

number of feature points to be used as RBF control points to warp the curve into a straight 

line and calculating the average deviation of the resulting line from the desired line. The 

feature points dividing the section of a composite curve into 3, 4, and 5 parts respectively 

are shown as red dots in figures 41(a), (b) and (c). Average deviation values for each of them 

were calculated to be1.405 × 10−16  1.1238 × 10−16 , and  9.1154 × 10−17  respectively 

revealing that the deviation value decreases with the number of feature points used. More 

importantly, the negligible deviation values show that each section of the composite curve 

should have at least 3 evenly-distributed feature points.   

 

 

(a) Section of composite curve with 3 feature points 

 

 

(b) Section of composite curve with 4 feature points 

 

 

(c) Section of composite curve with 5 feature points 

 

Figure 41:  Curve sections with varying number of feature points to be used as RBF control 
points to warp the curve sections into the straight horizontal lines 
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The shape of the projection surface determines the number of feature points needed for 

the calibration image for effective distortion correction. A calibration image with 196 

feature points was found to be sufficient in this work for all shapes of the projection surface 

while 100 (10 rows x 10 columns) and 144 (12 rows x 12 columns) feature points were 

sufficient in most cases. Using more than 196 feature points caused instability in the 

distortion-correction process by introducing falsely-detected feature points.  

 

4.4.3  Results of Tests to Determine the Type of RBF to Use for Distortion 

Correction 

The Gaussian, multiquadric and inverse multiquadric RBFs were compared based on the 

quality of geometric distortion correction they produced (represented as peak NCC values) 

for calibration images consisting of 144 and 196 feature points and various poses of the 

projector and camera. The results in figure 42 shows that no one RBF performed 

outstandingly better than the other two, as they each exhibited relatively high and low peak 

NCC values in different tests. 

 

Figure 42: Comparison of three RBF types based on the NCC values of distortion-corrected 
images 

 

The 3 RBF types were also compared on Matlab running on Windows 10 OS with an Intel 

Celeron N2830 2.16GHz processor based on the average computation time from 5 trials 

required to warp a 640 × 480 pixel image with 196 control points. The result in Table 4 
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shows that the multiquadric RBF performed best with the lowest average computation time 

of 19.9716s.  This is attributed to the relatively short time taken by the processor to perform 

a square-root operation compared with the inverse-of-a- square-root and exponential 

operations. 

Table 4: Comparison of three RBF types based on the average computation time to warp 
a 𝟔𝟒𝟎 × 𝟒𝟖𝟎 pixel image on Matlab 

 

RBF type 

Average 

Computation time 

using Matlab (s) 

Gaussian 23.3876 

Inverse 

Multiquadric 

22.7238 

 

Multiquadric 19.9716 

 

 

4.4.4  Results of Distortion-correction Tests for Other Non-planar Surfaces, eg 

Two Planar Surfaces Meeting at Right Angles 

The geometric distortion correction process was also tested on a static non-planar 

projection surface consisting of two planar surfaces (walls of a room) meeting at right angles. 

The results presented in figure 43 also shows that geometric distortion correction using this 

method performed well with improved average deviation values and higher peak NCC 

values for images of the distortion-corrected projection than for images of the distorted 

projection.  
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(a) Observed distorted projection of the non-distorted calibration image 

 

 

(b) Observed distortion-corrected projection of the pre-warped calibration image 

 

(c) Average deviation plots of feature points from their respective horizontal and vertical 

lines on the observed images of projection of the non-distorted calibration image  
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(d) Improved average deviation plots of feature points from their respective horizontal 

and vertical lines on the observed images of projection of the pre-warped calibration 

image 

 

 

(e) Observed distorted projection of the natural image 
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(f) Observed distortion-corrected projection of the natural image 

 

 

 

(g) NCC values for distorted observed image of the projection. Peak NCC value is 0.874. 
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(h) NCC values for observed distortion-corrected image of the projection. Peak NCC value 

is 0.929. 

Figure 43: Distortion-correction results for two planar surfaces meeting at right angles 

 

4.5 Automatic Geometric Distortion-correction Without Using a Calibration 

Image 

The limitation in using a calibration image to estimate geometric distortion before 

correcting it is that if the surface changes shape or deforms, or the camera or projector 

change position, the calibration image will have to be projected again in order to update 

the system to produce desirable results. This type of distortion correction will be very 

difficult to implement in video projection systems because the streaming video will have to 

be interrupted for recalibration of the system with the calibration image to take place. It 

will also be a practically impossible distortion correction technique for projection systems 

that use deforming surfaces as it will be impossible to achieve a seamless projected display 

while tracking the shape of the projection surface in real time with a calibration image. A 

scheme for distortion correction that would eliminate the need for projecting the 

calibration image is therefore important in these cases. Three methods of correcting 

distortion without the use of a calibration image were tested in this work. The first two 

methods rely on detecting and matching corresponding features of the projected natural 

image and the image of its projection captured by the camera to be used in estimating the 

RBF coefficients to pre-warp the projected image.  
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The third method relies on the characteristics of the projection surface. This method states 

that if the projection image is to be warped along defined grid lines to correct the distortion 

of the observed display, then the deviation of the coordinates of the points along these lines 

is assumed to be a linear function of their respective positions on these lines. The 

description of each technique tested is presented in the following subsections. In all the 

techniques 𝒘𝒓 and 𝒘𝒅′  respectively represent the initial and final warped coordinates of 

the control points of the projected natural image.  

 

4.5.1  Edges and Corners at the Periphery of the Projected and Captured 

Images Used as Feature Points for Distortion Correction 

For this method, the edges at the periphery of the camera image of the projection were 

detected and sampled. The four corner points at the extreme corners were also detected. 

The straightness of the pair of horizontal edges at the top and bottom of the image was 

used as criterion for correction of distortion. In this test, 14 points at the top and another 

14 at the bottom distorted edges were used. The correction scheme used is similar to that 

described in Section 4.3.4, the only differences being that the feature points used are not 

transformed points from a calibration image and the RBF coefficients so obtained are from 

a pair of distorted lines. The particular steps used in this method are outlined as follows: 

(i) The top and bottom edges of the projected image are divided into the required number 

of points with normalised pixel coordinates. 14 points were used in this work.  

 

(ii) An appropriate edge detector and image segmentation technique is used to extract the 

top and bottom edges of the captured image of the projection on the projection surface. A 

suitable corner detector is also used to obtain the coordinates of the four extreme corner 

points of the captured image. All feature point coordinates are normalised.  

 

(iii) The four corner points so obtained are linked to form the desired undistorted 

quadrilateral. The top and bottom edges of this quadrilateral are the straight lines to which 

the correction of the distorted projection is based.  
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(iv) The homography between the projected image and the undistorted quadrilateral is then 

estimated using the four pairs of matching corner points and all points obtained in step (i) 

are transformed with this homography to respective points lying on the top and bottom 

edges of the desired undistorted quadrilateral.  

 

(v) The parameters of the top and bottom horizontal lines of the undistorted quadrilateral 

are calculated and these parameters are used to calculate the coordinates of distorted 

points that coincide with the distorted edges from the coordinates of the undistorted ones. 

This step is similar to step (vi) in Section 4.3.4 and illustrated in figure 33. In this case 

however, the desired feature point 𝒑𝑑 has to be determined from a group of points that 

form the undistorted edge. Points 𝒑𝑑′  and 𝒑𝑟  are also obtained in the same way as 

described in Section 4.3.4 and illustrated in figure 33. 

 

(vi) The inverse homography estimated in step (iv) is used to transform the coordinates of 

distorted points 𝒑𝑑′ to 𝒘𝑑′ and the RBF warping coefficients required for transforming 𝒘𝒓 

to 𝒘𝒅′ are also calculated.  

 

(vii) The RBF coefficients thus obtained are used to warp the entire projected image. The 

results of this warping process are presented in Section 4.6.1. 

 

4.5.2  Blobs in the Projected and Captured Images Used as Feature Points for 

Distortion Correction 

The method of using blob features matched from the projected image and the distorted 

image of the projection attempts to restore image points to their original non-distorted 

positions. RBF warping coefficients can be calculated using the coordinates of these points.  

The Speeded-Up Robust Features (SURF) implementation of SIFT was used to detect blobs 

in both images and match them with each other. Feature points along the periphery of the 

distorted image obtained in Section 4.5.1 were also added to the feature points obtained 

from SIFT.  
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Precautions taken in matching these points to minimise the harmful effects of mismatching 

feature points include the following: 

(i) Using a maximum distortion threshold after transforming the camera image to the 

projected image with the homography. The distortion threshold used was the maximum 

absolute distance calculated between the set of 𝑤𝑟 and 𝑤𝑑 points.  

 

(ii) Points too close to each other were excluded to prevent singularity in the estimation of 

the RBF transformation matrix 𝑨 of equation 39. Where there is a cluster of points only a 

pair of matching points is chosen. 

 

(iii) All matched points falling outside the boundary of the projected image were excluded 

as they do not represent any significant features. The results of this correction are 

presented in Section 4.6.2. 

 

4.5.3  Linear Modelling of Distortion 

The results presented in Sections 4.6.1 and 4.6.2 relating to automatic geometric distortion 

correction by using only edges and corners of the periphery of the image and/or using blob 

features (derived from the SIFT algorithm) as feature points show that both methods are 

inadequate in solving the problem because of the insufficient number and distribution of 

the feature points they present around the distorted image.  

 

The method of linear modelling of geometric distortion assumes that the series of 2D curves 

on the surface that cause the distortion of straight lines projected onto the surface observed 

as a series of crests and troughs, is uniform from top- to- bottom and left-to- right ends of 

the surface. A close observation of previous results of the trend of warping of the projected 

image onto the surface to correct the observed distortion show that the warping trend 

appears uniform horizontally and vertically. Using this observed uniformity, a linear model 

relating the horizontal and vertical coordinates of respective control points to the amount 

of displacement they go through in the warped projected image can be applied to obtain a 

sufficient number of well-distributed control points all over the image.   
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The illustration in figure 44 will be used to explain this concept.  

 

 

 

Figure 44: Illustration of a warped projected image showing the initial edges (black), the 
final edges after warping and the initial and final points along each edge.  

 

Figure 44 represents a natural image to be pre-warped, projected, and observed 

undistorted on the projection surface. The coordinates of points are calculated as explained 

in previous Section 4.5.1. According to figure 44  𝒘𝒓 and 𝒘𝒓′ are corresponding points on 

the top and bottom edges of the unwarped projected image respectively, and 𝒘𝒅 and 𝒘𝒅′ 

are respective points to which they would be transformed after warping the image. 

 𝒘𝟏𝒓 and 𝒘𝟏𝒓′ are corresponding points on the same horizontal line and lying on the left 

and right edges of the unwarped projected image respectively. 

 𝒘𝟏𝒅 and 𝒘𝟏𝒅′ are respective points to which they are transformed after warping the image. 

The difference between the vertical coordinates of 𝑤𝑑 and 𝑤𝑟 and 𝑤𝑑′ and 𝑤𝑟′ is given as 

𝒅𝒘𝒗  and 𝒅𝒘𝒗′  respectively while the difference between the horizontal coordinates of 

𝒘𝟏𝒅 and 𝒘𝟏𝒓 and 𝒘𝟏𝒅′ and 𝒘𝟏𝒓
′  is 𝒅𝒘𝒖and 𝒅𝒘𝒖′respectively.  

The task is to determine the horizontal and vertical coordinates of point 𝑝𝑑 resulting from 

warping of the already-known coordinates of the point 𝑝𝑟 that lies between extreme points 

𝒘𝒓  and 𝒘𝒓′ and 𝒘𝟏𝒓  and 𝒘𝟏𝒓′. To do this, a linear relationship is assumed between the 
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coordinates of the extreme points and the displacement they suffer after warping in the 

form 

𝑑𝑝𝑢 = 𝑎𝑢𝑝𝑢 + 𝑏𝑢 and 𝑑𝑝𝑣 = 𝑎𝑣𝑝𝑣 + 𝑏𝑣                                               (58)  

where 𝑎𝑢 =
(𝑑𝑤𝑢

′ −𝑑𝑤𝑢)

(𝑤𝑢
′ −𝑤𝑢)

 , 𝑏𝑢 = 𝑑𝑤𝑢 − 𝑤𝑢
(𝑑𝑤𝑢

′ −𝑑𝑤𝑢)

(𝑤𝑢
′ −𝑤𝑢)

 

and 𝑎𝑣 =
(𝑑𝑤𝑣

′−𝑑𝑤𝑣)

(𝑤𝑣
′−𝑤𝑣)

 , 𝑏𝑣 = 𝑑𝑤𝑣 − 𝑤𝑣
(𝑑𝑤𝑣

′−𝑑𝑤𝑣)

(𝑤𝑣
′−𝑤𝑣)

 

 

The final coordinates of the warped point  

𝑝𝑢′ = 𝑝𝑢 + 𝑑𝑝𝑢 , 𝑝𝑣
′ = 𝑝𝑣 + 𝑑𝑝𝑣                                                             (59) 

 

The assumed linear relationship between the coordinates of the points in the unwarped 

image and their respective displacements in the warped image is illustrated in figure 45. 

The results of the distortion-correction tests using this method to obtain control points 

inside the image for warping are given in Section 4.6.3.  

 

(a)Vertical image coordinates 

 

(a) Horizontal image coordinates 

Figure 45: Illustration of the assumed linear relationships between coordinates of points 
in the unwarped and warped images. 

It is observed that very negligible changes occur in the horizontal coordinates from the 

unwarped to the warped images.  
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4.6 Results of Tests of Automatic Geometric Distortion-correction Without 

Using a Calibration Image 

The results of various tests described in Section 4.5 performed to automatically solve the 

geometric distortion problem of images projected onto static non-planar display surfaces 

by using features of the natural image being projected are presented in the subsections 

following.  

4.6.1  Edges and Corners at the Periphery of the Projected and Captured Images 

Used as Feature Points for Distortion Correction 

The results presented in figure 46 obtained from warping the entire image using a total of 

28 control points derived from the top and bottom distorted edges of the image of the 

projection show that this distortion-correction procedure does not achieve the desired 

objective. Figure 46(e) shows that while distortion correction is achieved for the top and 

bottom edges, other features inside the image remain geometrically distorted. This is 

because RBFs are inherently local warping functions so that image points that are far away 

from control points along the periphery of the image do not get warped. The need to 

generate enough corresponding control points from important features inside both the 

projected image and the image of its projection in order to achieve distortion correction by 

warping the entire projected image is inevitable.    

 

 

(a) Non-distorted projected image 
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(b) Distorted camera image of the projection of the image in (a) showing the 28 control 

points at the top and bottom edges (red and blue dots) and the image corner points (blue 

dots) that are linked to form the desired undistorted view of the projection (undistorted 

quadrilateral). 

  

 

(c) The desired undistorted view of the projection 
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(d) The prewarped projected image showing that only its top and bottom edges undergo 

warping while points inside the image remain unaffected by warping 

 

 

(e) The camera image of the projection of the prewarped input showing that distortion 

correction affects only the top and bottom edges of the image.  

Figure 46: Results of auto geometric distortion correction by RBF warping using 28 control 
points from the top and bottom edges of the projected image 

 

4.6.2  Distortion-correction Using Blob Features 

The results of geometric distortion correction by using blob features as control points 

obtained from the SURF implementation of the SIFT detection algorithm in addition to 28 

other control points obtained from the periphery of the captured projection are presented 

in figure 47. The results show that this method still remains inadequate in solving the 
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geometric distortion problem because the arrangement of the resulting control points lack 

an identifiable geometric structure to which effective warping is based and the distribution 

of these points within the image is unpredictable and uncontrollable. Figure 47(a) illustrates 

the undesirable mismatch of blob features in two images and figures 47(b) and (c) illustrate 

the results of the process of eliminating unwanted control points after setting control point 

discrimination thresholds described in Section 4.5.2.  

 

 

(a) The projected image and its captured display on the surface showing 29 correctly-

matched sets of features and 1 incorrectly-matched set marked with an ‘x’. 

 

 

(b) The projected image showing all detected features in blue and red dots. Red dots 

represent the blob features remaining from the elimination process and additional 

control points obtained from the periphery of the image. 
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(c) Camera image of the projection showing all detected blob features in blue and red 

dots. Red dots represent the features remaining from the elimination process and 

additional control points obtained from the periphery of the image 

 

 

(d) Pre-warped projected image. The figure shows that some regions inside the image 

have also been warped 
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(e) Distortion-corrected image of the projection. Regions inside the image are observed 

to still remain geometrically distorted 

Figure 47: Results of auto geometric distortion correction by RBF warping using blob 
features obtained from the SIFT algorithm.  

 

4.6.3  Linear Modelling of Distortion 

The results of distortion-correction by using a combination of feature points from the edges 

of the periphery of the image, its corners, and feature points inside the image obtained by 

linear interpolation of the horizontal and vertical displacements of extreme feature points 

with known displacement are presented in figures 48 through 51. Figures 48 (a) and (b) 

show box and whisker plots of the difference between horizontal and vertical pixel 

coordinates of feature points obtained by using the interpolation method to estimate 144 

control points from 52 peripheral points. The plots show that an interpolation error of 1 

pixel and less is obtained in the horizontal direction and less than 6 pixels in the vertical 

image direction. The average error in the vertical direction ranges between 0 and 2 pixels.  

The RBF coefficients used to warp the projected images shown in figures 49 (a) and (b) were 

obtained by using a calibration image and linear interpolation respectively. Both images 

show very identical warping trends for the two methods. The latter figure also shows that 

internal control points obtained by linear interpolation produced satisfactory warping. The 

similarity between both images is also revealed by a peak NCC value of 0.9548.  
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The quality of the observed outputs obtained from both methods is shown in figures 50(a), 

(b) and (c). The illustration in figure 50 (c) obtained from linear interpolation shows 

appreciable correction of the observed distorted projected image shown in figure 50(a) and 

close similarity to the distortion-corrected projection in figure 50(b) obtained from using a 

calibration image. The peak NCC value obtained by matching the desired observed 

projection with the distortion-corrected projection obtained by linear interpolation of 

control point displacement was 0.9368, an improvement from 0.8898 obtained from 

matching the observed distorted projection with the desired observed projection.   

The NCC matching between observed projections from both methods of distortion 

correction gave a good peak value of 0.9921. Figure 51 shows the improvement of peak 

NCC values for distortion correction for 10 different projector/camera poses and projection 

surface shapes.  
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(a) Absolute differences for horizontal pixel coordinates 

 

(b) Absolute differences for vertical pixel coordinates 

Figure 48: Box and whisker plots for a single image showing the absolute difference 
between horizontal and vertical pixel coordinates obtained from using a calibration image 
and coordinates obtained from linear interpolation of coordinate displacements.  

 

(a) Warp obtained from the calibration image 
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(b) Warp obtained from linear estimation of control point displacements 

 

(c) Plot of NCC matching values between images in (a) and (b). Peak NCC = 0.9518.  

Figure 49: Comparison between pre-warped projected images by RBF coefficients 
obtained from using a calibration image (a) and RBF coefficients obtained from linear 
interpolation of deviation of control points on the periphery of the projected image (b), 
with the surface plot of NCC matching values for both images (c).  



107 
 

 

(a) Observed geometrically-distorted projection 

 

 

(b) Observed distortion-corrected projection using a 196 point calibration image 
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(c) Observed distortion-corrected projection using linear interpolation of displacement of 

control points. Peak NCC between (b) and (c) is 0.9921. 

Figure 50: Observed geometrically distorted projection (a) and distortion-corrected 
projections for methods involving the use of the 196-point calibration image (b) and that 
obtained from using 52 known control point displacements and 144 linear interpolated  
control point displacements. 

 

Figure 51: Improvement of peak NCC matching values between the desired observed 
projection and the observed distorted projection and distortion-correction by linear 
interpolation of control point displacement for 10 different poses of the projector, camera 
and shapes of the projection surface.  
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4.7 Chapter Summary 

The main focus of this chapter has been the correction of geometric distortion for 

projections on static non-planar displays or surfaces. The highlights drawn from the 

discussions in this chapter include the following: 

(i) The development of a simple pictorial and algebraic model of a straight line projected 

onto a cylinder used to illustrate the geometric distortion that occurs when non-distorted 

shapes are projected onto non-planar surfaces. It was shown that in order to observe a non-

distorted projection on the quadric surface, projected lines have to be warped in directions 

that oppose the directions of the observed distortion.   

 

(ii) The use of a projected calibration image consisting of a grid of feature (corner) points to 

measure the amount of distortion suffered by projected horizontal and vertical lines on the 

projection surface. The distortion of these lines was measured by calculating the average 

perpendicular distance between points on the observed distorted lines and the desired 

observed straight lines.    

 

(iii) Comparing distortion histograms of observed distorted horizontal and vertical lines of 

the projected calibration image with distortion histograms of a random selection of 

standard straight image lines showed the horizontal lines were significantly more distorted 

than both the vertical lines and standard straight image lines. The vertical lines were found 

to be very close (within 1 pixel) in distortion measures to the standard straight lines. 

 

(iv) The first technique developed to correct distortion for static non-planar surfaces relied 

on projecting the calibration image to measure the observed distortion of feature points 

from their respective lines. The features of the distorted camera-captured view of the 

projected calibration image were used to work out the warping trend of the projected 

calibration image through straight line geometry and 2D homography transformations. The 

entire calibration image was warped using RBF coefficients obtained from the coordinates 

of its initial non-distorted control points and its final warped control points.  
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The same coefficients were used to warp an entire projected natural image to correct the 

distortion of its observed projection while the position of components of the projection 

system remained static.  

 

(v) The peak Normalised Cross-correlation Coefficient (NCC) obtained from matching 

respective camera images of the distorted and distortion-corrected projections with the 

standard non-distorted homography-shaped image was used as the measure to indicate the 

effectiveness of the distortion-correction technique developed.  

 

(vi) Distortion corrections with calibration images having 144 and 196 control points yielded 

better correction results with peak NCC values improved as much as 31% than calibration 

images with 36, 64, and 100 control points revealing that distortion-correction is achieved 

with calibration images having a sufficient number and distribution of control points. A 

guide to determining the number of control points to use is having at least 1 control point 

per point of inflexion of a crest or trough per distorted line.   

 

(vii) The three RBFs compared yielded similar distortion-correction results but the 

multiquadric RBF was chosen over the other two (inverse multiquadric and Gaussian) 

because of its shorter operation time of 19.97s.  

 

(viii) The distortion-correction technique was also successful on the non-planar projection 

surface formed by two intersecting planar walls as it was on a freely-hanging curtain. 

 

(ix) An effective automatic technique used to correct distortion for static non-planar 

surfaces relies on estimating the displacement of gridded control points from their non-

distorted positions by applying a linear interpolating model between the observed 

displacement of the control points on the peripheral edges of the projected image. It 

eliminates the need to project a calibration image and performs the distortion-correction 

task better than using natural image features from the SIFT technique for blob detection 

and using only feature points on the periphery of the projected image. 
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(x) Peak NCC values as high as 0.95 were obtained from matching warped projected images 

whose displaced control points were obtained by the linear modelling technique with 

warped projected images whose displaced control points were obtained by projecting the 

calibration image. Peak NCC values as high as 0 . 99 were also obtained from matching 

observed distortion-corrected projections from both techniques.  
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CHAPTER FIVE 

Geometric Distortion Correction for Deformable and Dynamic 

Projection Systems 

5.1  Introduction 

This chapter deals with techniques developed to solve geometric distortion for non-planar 

projection systems that are deformable and/or dynamic. 

Dynamic projection systems are characterised by components of the system changing with 

time. These include a projector and camera whose positions change with respect to the 

projection surface or a projection surface whose position changes with time. The shape of 

a deformable projection surface could also change with time. The discussion in Section 5.2 

begins with the illustration similar to that given in Section 4.2 of an upright cylindrical 

projection surface whose shape changes while the state of a previous projection remains 

the same. It demonstrates a method of warping that can be generalised for typical systems 

and applied in experiments described in Section 5.3 and the results presented in Section 5.4.  

An example of a typical dynamic projection system is one utilised in simulated golf where 

the player hits the ball against a non-planar deformable surface. The impact of the golf ball 

on the surface causes the image and text being projected onto the surface to become 

distorted. The correction of this type of distortion will therefore require the distortion-

correction system to work in real-time. Code profiling and optimisation for real-time 

performance is treated in Sections 5.5 and 5.6. Experiments involving striking the projection 

surface with a projectile and correcting distortion in real-time are presented in Section 5.7 

and results of these are presented in Section 5.8. The control points of projected images 

warped in this chapter were obtained by the method of linear modelling of distortion 

developed in Section 4.5.3. A summary of the main discussions and findings in this chapter 

is presented in Section 5.9. 
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5.2  Illustrating Geometric Distortion of a Warped Image Line Projected onto 

a Deformable or Dynamic Quadric Surface 

Following the algebraic illustration of geometric distortion of the projection of a line on a 

cylinder given in Section 4.2.2, the reintroduction of a distorted view of the projection by 

changing the shape of the surface is shown in figure 52.  To begin with, the projection of a 

straight line onto the cylinder produces a distorted view on the cylinder’s surface. The 

correction of this distorted view involves warping the line to a shape that is opposite to that 

of the observed distortion. The orange curve in figure 52(a) has been warped from its 

original shape (blue curve) to the orange curve in the same figure to produce the non-

distorted view (orange curve) in figure 52(b). The observed projection becomes distorted 

again with the radius of the cylinder changing from 𝑟1 = 0.1 to 𝑟2 = 0.15 as shown by the 

brown curve in figure 52(b). The shape of this distorted curve is significantly different from 

that observed when a straight line is projected onto the surface of the cylinder of radius 𝑟2 

as shown by the blue curve in figure 52(b). Two different strategies may be used to correct 

the distortion reintroduced by changing the shape of the projection surface: The first 

strategy involves warping the already-warped line to its new shape while the second 

involves warping the straight line to the same new shape.  The re-warping strategies applied 

to a real dynamic projection system and their advantages and disadvantages are discussed 

in the following Section 5.3. 

 

(a) Profile curves of the warped and unwarped projected line  
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(b) Profile curves of the observed warped and unwarped projected line before and after 

the change of shape of the projection surface 

Figure 52: Curves showing the profiles of the warped and unwarped projected lines and 
their respective profiles on the quadric projection surface before and after the change of 
shape of the projection surface   

 

5.3  Distortion Correction for Real Dynamic Projection Systems 

The distortion-correction technique used when the projector and/or the camera and/or the 

shape of the projection surface change after the projected image is warped to a new state 

is described in this section. The images of the projection captured by the camera for the 

dynamic projection system have to be treated differently than those of a static system 

because these distorted images are obtained from an already-warped projected image 

rather than an unwarped one as is the case of a static projection system. 

An illustration of this dynamic case is given in figure 53. According to figure 53, let the edges 

of the projected and observed images be denoted by 𝑃 and 𝐶, and the coordinates of points 

on these edges be 𝑷 and 𝑪 respectively. For convenience the horizontal and vertical image 

coordinates increase in the rightward and downward directions respectively.  

 

(i) Suppose the unwarped projected edge 𝑃0 is observed as distorted edge 𝐶0. 𝑃0 will then 

be warped to 𝑃1in order to observe the distortion-corrected edge 𝐶1. 
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(a) Projected edges                                (b) Observed edges 

Figure 53: Distortion-correction image warping strategy for dynamic projection systems 

 

(ii) Let a change in the projection system cause 𝐶1 to be observed as distorted edge 𝐶2. 𝐶2 

transforms to 𝑃2  by the homography 𝑯 between the observed image and the projected 

image. To correct for this new distortion, the projected edge should be warped to 𝑃3 from 

𝑃0.  

 

(iii) In determining the coordinates of 𝑃3 the amount of distortion-causing deviation 𝑫 that 

accounts for the difference between the distortion-corrected view and the distorted view 

in the projected image domain is given as 

𝑫 = 𝑷1 − 𝑷2                                                                                          (60) 

where 𝑷1and 𝑷2 represent the coordinates of the points on edges 𝑃1 and 𝑃2 respectively. 

 

(iv) 𝑫 is added to 𝑃0 to obtain 𝑷3, the coordinates of points on the edge 𝑃3. 

𝑷𝟑 = 𝑷0 + 𝑫                                                                                            

or 𝑷𝟑 = 𝑷0 + 𝑷1 − 𝑷𝟐                                                                         (61) 

Equation 61 implies that the coordinates of the present warp must be memorised in order 

to be available to use in the next warp for a continuously-changing projection system.  

Also according to the analysis of the system given, two re-warping strategies of the 

projected image exist to correct the distortion and they include:  

 

(i) Re-warping the already-warped image: This is equivalent to warping the projected image 

from already-warped position 𝑃1 to 𝑃3 in figure 53.  
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This strategy works well when applied to the same image once or twice. Beyond this number 

of corrections the quality of observed projection deteriorates because of cumulative errors 

introduced by successive RBF and bilinear interpolations applied to the image. It will also 

not be possible to apply this strategy for correcting the distortion of projected video, 

because the source video frames are always played back undistorted with only the 

unwarped control points known. Video frames therefore need to be pre-warped from their 

original undistorted position.     

 

(ii) Warping the unwarped projected image each time the projection system changes: This 

is equivalent to warping the projected image from position 𝑃0  to 𝑃3  in figure 53. This 

method prevents the build-up of geometric errors from one image frame to the next.   

The results of distortion correction using the two dynamic projection system image re-

warping strategies described above are given in Section 5.4 following. The two distortion-

correction processes carried out here were done with the automatic warping technique 

based on linear modelling of distortion described in Section 4.5.3 

 

5.4  Results of Tests Carried Out for Distortion-correction Techniques on Real 

Dynamic Projection Systems  

The set of results shown in figures 54 through 57 were obtained by successively correcting 

the distortion and changing the shape of the projection surface and/or changing the pose 

of the camera or projector to re-distort the observed projection. The results for the two re-

warping strategies described in Section 5.3 support the claims that warping the projected 

image each time from its undistorted state performs better than warping it from its already-

warped state with observed straighter edges and higher peak NCC values. Figure 54 shows 

the resulting observed projections after warping the projected image from its already-

warped state upon each dynamic projection system state change. Figure 55 shows a plot of 

peak NCC values obtained from one dynamic projection state change to another. The graph 

reveals that distortion-correction by warping the projected image from its already warped 

state sometimes yields worse observed distortions with lower peak NCC values than the 

previously-observed distorted projections.  
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Figure 56 shows the resulting observed projections after warping the projected image from 

its unwarped state upon each dynamic projection system state change. The accompanying 

figure 57 shows a plot of the peak NCC values obtained for each dynamic projection state 

after distortion-correction. The graph reveals that distortion-correction by warping the 

projected image from its unwarped state after every dynamic projection state change 

always yields distortion-corrected projections. 

 
 

  
(a, i) Undistorted projected image  (a, ii) Observed distorted projection (I),  

peak NCC = 0.8885 

  
(b,i) Pre-warped projected image (I) (b,ii) Observed distortion-corrected  

projection (I) peak NCC = 0.9213 
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(c,i) Pre-warped projected image (I) (c,ii) Observed distorted projection (II)  

peak NCC = 0.9038 

  
(d,i) Pre-warped projected image (II) (d,ii) Observed distortion-corrected  

projection (II) peak NCC = 0.9025 

  
(e,i) Pre-warped projected image (II) (e,ii) Observed distorted projection (III),  

peak NCC = 0.8904 
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(f,i) Pre-warped projected Image (III) (f,ii) Observed distortion-corrected  

Projection (III), peak NCC = 0.8991  
 

  
(g,i) Pre-warped projected Image (III) (g,ii) Observed distorted projection (IV),  

peak NCC = 0.9097 

 

 

 

 
(h,i) Pre-warped projected image (IV) (h,ii) Observed distortion-corrected  

projection (V), peak NCC = 0.9064 
 
Figure 54: Results for successively correcting, distorting, and correcting the observed 
projection by warping the projected image from its previously-warped state  
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Figure 55: Graph showing peak NCC values for successively correcting, distorting, and 
correcting the observed projection by warping the projected image from its previously-
warped state.  

  

(a, i) Undistorted projected image  (a, ii) Observed distorted projection (I),  

peak NCC = 0.8693 

  

(b, i) Pre-warped projected image (I) (b,ii) Observed distortion-corrected  

projection (I), peak NCC = 0.9292 
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(c, i) Pre-warped projected image (I) (c, ii) Observed distorted projection (II),  

peak NCC = 0.9014  

  

(d, i) Pre-warped projected image (II) (d,ii) Observed distortion-corrected  

projection (II), peak NCC = 0.9245 

  

(e, i) Pre-warped projected image (II) (e, ii) Observed distorted projection (II),  

peak NCC = 0.9082 
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(f, i) Pre-warped projected image (III) (f, ii) Observed distortion-corrected  

projection (III), peak NCC = 0.9291 

  

(g, i) Pre-warped projected image (III) (g,ii) Observed distorted projection (III), 

peak NCC = 0.8944 

  

(h,i) Pre-warped projected image (IV) (h,ii) Observed distortion-corrected 

 projection (IV) peak NCC = 0.9207 

Figure 56: Results for successively correcting, distorting, and correcting the observed 

projection by warping the projected image from its unwarped state 



123 
 

 

Figure 57: Graph of peak NCC values obtained from successively correcting, distorting, and 
correcting the observed projection by warping the projected image from its unwarped 
state. 

 

5.5  Code Profiling and Optimisation towards Real-time Operation 

For the distortion-correction technique designed in this work to correct every frame of 

observing video of a continuously-changing projection system designed to operate at 15fps 

(frames per second), the processing time required for each frame should be less than 0.06s. 

Table 5 lists the eight (groups of) operations necessary to correct distortion for dynamic 

projection surfaces and the average time each operation took to complete on the 

processing platform used. For the whole distortion-correction process to complete within 

the target time of 0.06s each operation has to complete in less than 0.00375s on the 

average including overheads. The table shows that no one operation meets the target as 

the current capability of the distortion-correction system stands at 0.047fps.  

Necessary time-saving changes must however be made to individual operations to improve 

performance of the overall system to meet the target framerate. Possible time-saving 

changes to the operations shaded in table 5 were carried out in this work. The strategies 

employed are presented in the following subsections. Results of the changes are presented 

in Section 5.6. 
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Table 5: Average time taken for critical image distortion-correction operations to 
complete on Matlab 

Image Description 

of group of 

operations 

Total 

time (s) 

Description of 
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Detection and 
arrangement of 4 corner 
points 
 

 
0.2112 

 
0.99% 

Detection and 
arrangement of 48 other 
edge points 
 

 
0.1371 

 
0.64% 

Estimation of projected- 
observed image 
homographies and 
transformation of 52 
feature points from the 
observed image to the 
projected image 
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20.9906 

Estimation of 144 other 
control points from the 
previous 52 to produce 
196 control points 
 

0.0006 

 

 
0.003% 

Calculation of 398 RBF 
coefficients from 196 
control points  
 

 

0.0289 

 

 
0.14% 

Calculation of the warped 
coordinates of the 
projected image 
 

20.6773 

 

 
96.84% 

Bilinear interpolation of 
warped image values: R,G 
and B components 
 

0.2752 

 

 
1.29% 

Updating projected image 
display on computer 

 0.0086 

 
0.04% 
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5.5.1  Creating a Region-of-Importance (ROI) for Edge and Corner Detection 

Defining an ROI for the image or video being projected reduces processing time because 

the ROI presents a smaller region of pixels for processing than the entire image does. Time 

savings may however be hampered by the time required to derive and apply the ROI in the 

processing. The figures 58(a) and (b) show illustrations of ROIs developed for quicker 

detection of edges and corners.  

 

 

(a) ROI for edge detection 

 

(b) ROI for corner detection 

Figure 58: Illustrating the principle of developing ROIs for faster edge and corner detection  
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For a particular application, for example when striking the projection surface with a 

projectile, a suitable ROI for edge and corner detection can be created with knowledge of 

the expected maximum deviation that the edges and corners of the observed projection 

suffer in both image directions after the projectile strikes the surface. Figure 59 shows 

observed projected images before and after the projection surface was hit by a projectile.  

 

 

 

 

(a) Observed projection before a  

projectile strike 

(b) Observed projection after a  

projectile strike 

Figure 59: Observed consecutive frames of a projection on a surface hit by a projectile in 
an experiment to investigate the deviation of feature points from one frame to the next 
on a deforming projection surface.  

The following terms were defined for the development of an ROI for edge detection as 

shown in figure 58.  

𝑢𝑚𝑖𝑛 = Smallest horizontal coordinate value of all edge points lying on the periphery of the 

image  

𝑣𝑚𝑖𝑛 = Smallest vertical coordinate value of all edge points lying on the periphery of the 

image. 

𝑢𝑚𝑎𝑥 = Largest horizontal coordinate value of all edge points lying on the periphery of the 

image. 

𝑣𝑚𝑎𝑥 =  Largest vertical coordinate value of edge all edge points lying on the periphery of 

the image 

𝑢𝑚𝑖𝑛, 𝑣𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥, 𝑣𝑚𝑎𝑥  were obtained from the previous frame 

𝑑𝑢 =  A value subtracted from 𝑢𝑚𝑖𝑛  and added to 𝑢𝑚𝑎𝑥  to account for the amount of 

displacement suffered in the horizontal direction in the present frame 
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𝑑𝑣 =  A value subtracted from 𝑣𝑚𝑖𝑛  and added to 𝑣𝑚𝑎𝑥  to account for the amount of 

displacement suffered in the vertical direction in the present frame. The values of 𝑑𝑢 and 

𝑑𝑣  are influenced by the estimated maximum displacements suffered by the distorted 

image in the respective horizontal and vertical directions. They are application-dependent.   

In this work tests to determine 𝑑𝑢 and 𝑑𝑣 were carried out by striking the projection surface 

with a squeezed paper projectile and recording the respective absolute maximum 

displacements of feature points from frame to frame. Figure 61 shows a plot of absolute 

maximum displacements for 16 tests. Each test consisted of a minimum of 27 video frames. 

The figure shows that the maximum displacement recorded in all tests was 29 pixels 

horizontally and 19 pixels vertically. Intuitively 30% of the greatest absolute displacements 

in each direction was added to or subtracted from the respective displacements to arrive at 

values for 𝑑𝑢 and 𝑑𝑣 to make the ROI for edge detection span from max (1, (𝑢𝑚𝑖𝑛 − 𝑑𝑢)) 

to min (640, (𝑢𝑚𝑖𝑛 + 𝑑𝑢))  horizontally and max (1, (𝑣𝑚𝑖𝑛 − 𝑑𝑣))  to min (480, (𝑣𝑚𝑖𝑛 +

𝑑𝑣)) vertically to ensure the entire ROI is contained within the image.  

 

Figure 60: Observed displacement of edge pixels in the horizontal and vertical image 
directions after striking projection surface with a projectile 

The same 𝑑𝑢 and 𝑑𝑣 values obtained for edge detection were used to determine an ROI for 

each of the four corners of the image. This was done by adding the values of the estimated 

maximum displacement in each direction to the actual pixel coordinates of each corner 

from the previous frame. ROI spanned from max (1, (𝑢𝑋 − 𝑑𝑢)) to min (640, (𝑢𝑋 + 𝑑𝑢)) 

horizontally and from max (1, (𝑣𝑋 − 𝑑𝑣)) to min (480, (𝑣𝑋 + 𝑑𝑣)) vertically where 𝑢𝑋 and 
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𝑣𝑋 represent the horizontal and vertical pixel coordinates of each corner respectively. The 

results in Table 6 in Section 5.6 show the factors by which the application of ROIs for edge 

detection and corner detection shortened the calculation of feature points. To improve on 

the performance of this method, two separate but smaller ROIs can be created for edge 

detection and the detection of corners by a corner detection algorithm may be entirely 

avoided. This method is presented in Section 5.5.2 following.  

 

5.5.2  Estimating Corners from Edge Information  

Because the detection of corners takes a considerably long time of about 0.21s to complete, 

the edge detection can be performed and the four needed corners estimated from the 

detected edge pixels as a corner is formed where two distinct edges going in different 

directions meet. It is observed that when the projectile strikes the projection surface the 

edges of the distorted image are not displaced too many pixels from their mean position as 

shown in figure 61. Because these corners also form part of the detected edges, their 

displacements from the mean positions may be estimated by determining the shortest 

distances of detected edges from pre-determined mean corner pixel positions.   

 

Figure 61: Two-dimensional variation of the four corners of observed projected video 
frames on a deforming surface.      
 

Consider the corner in figure 62 at its mean position 𝑃1(𝑢, 𝑣) is part of the edge 𝑒1 also 

shown in its mean position. It is assumed that the corner will always be detected with the 
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edge whenever the edge changes position to 𝑒2 or 𝑒3 for example as long as the edge does 

not wrap around itself such as to occlude the view of the corner. The corner is also displaced 

to positions 𝑃2 and 𝑃3 as the edge moves to 𝑒2 and 𝑒3 respectively. From the illustration, it 

is can be seen that the distance 𝑟12 from 𝑃1 to its displaced position 𝑃2 will be the shortest 

between the corner and any point on the edge, assuming the corner and edge do not suffer 

too large a displacement. The same shortest-distance principle applies to 𝑟12 and 𝑒3. The 

positions of displaced corners in frames of an observed projection can therefore be 

estimated by calculating the distances between the points on the displaced edge and the 

mean position of the corner. The position of the corner will be that point with the shortest 

distance from the mean position of the corner. In this work the mean positions of the 

corners are taken as those of the corners at rest in the first frame. Therefore the corner 

detection is carried out only once and the prediction is taken from a single measurement. 

This method therefore replaces longer gradient-finding computations involved in corner 

detection with much fewer multiplications and additions. Table 6 shows the closeness 

between the coordinates of corner points in the first frame of a video and their actual 

means obtained throughout the duration of the video in a test to measure the displacement 

of edge and corner points of a projected image when the projection surface was struck by 

a projectile.   

` 

 

Figure 62: Illustration of how to estimate corners from edges 
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Table 6: Comparison between estimated mean coordinates of corners obtained from the 
first frame of a video and their actual mean coordinates obtained from the whole video 
duration of 24 frames 

Corner A B C D 

𝒖 coordinate first frame 135.0 422.0 425.0 141.0 

Mean 𝒖 coordinate 135.2 422.5 425.8 141.5 

𝒖 coordinate estimation error 0.14% 0.12% 0.19% 0.35% 

(𝒖) coordinate range  3.0 3.0 6.0 6.0 

𝒗 coordinate first frame 76.0 58.0 287.0 289.0 

Mean 𝒗 coordinate value 75.7 57.4 286.0 288.9 

𝒗 coordinate estimation error 0.4% 1.04% 0.35% 0.03% 

𝒗 coordinate range  2.0 4.0 11.0 7.0 

 

A method to test the closeness of the estimated positions of the corners to their true 

positions is to compare the respective magnitudes of the estimated and true corners and 

the angle between them when they are represented as vectors. Equations  62 and 63 define 

the desired closeness measure 

|𝒑| − |𝒄| = 0                                                                                              (62) 

cos 𝜃 =
𝒑 ∙ 𝒄

|𝒑||𝒄|
= 1                                                                                   (63) 

Where 𝒑 and 𝒄 are the estimated and true position vectors of the corners respectively and 

𝜃 is the angle between them. The results of tests to determine the amount of time savings 

of computations using this method and the accuracy of estimating corner points with 

information from edges are presented in Section 5.6.2. 

 

5.5.3  Using Linear Interpolation to Approximate the Warping of the Projected 

Image  

The extremely long time used to calculate the new pixel coordinates by directly evaluating 

equations 45 and 46 can be considerably shortened by applying linear interpolations similar 

to that used in the estimation of internal control points of the projected image as described 

in Section 4.5.3. In this case the equations are fully evaluated for the top and bottom rows 
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of the image. All other warped coordinates between them are estimated using linear 

interpolations to obtain the new pixel positions for the rest of the image.  

Results for tests obtained by employing this method to evaluate the coordinates of the 

warped projected image are presented in Section 5.6.3.  

 

5.5.4   Greyscale versus RGB Processing 

When warping an RGB image, the grey values of each component in the warped image have 

to be calculated through bilinear-interpolation separately so that the total time used in 

processing the RGB image is about 3 times the time required for processing a greyscale 

image with only one component. Projecting and processing a greyscale image therefore 

reduces the bilinear interpolation processing required for a hole-free warping by a factor of 

3. Greyscale projection and processing is only considered as a potential processing-time 

reduction measure because of the quality of the observed projection that could ultimately 

affect the viewer’s satisfaction. Results are shown in code-optimisation summary Table 10. 

 

5.5.5  Parallel Processing 

This option parallelises routines that can be performed in parallel using the resources of the 

computer and compatible programming language and processor. The Graphics Processing 

Unit (GPU) having up to thousands of processors on one chip, or the main processor on a 

PC having much fewer processors than the GPU can be used for parallel processing. Parallel 

processing operations with the GPU are possible in Matlab only with GPUs made by NVIDIA. 

Unfortunately only high-end PCs so far have the NVIDIA GPUs. Parallelising operations on a 

standard PC can be done by coding with multithreading-capable programming languages 

like C, C# and C++. Parallelising routines is also only possible for routines that have individual 

mutually-exclusive operations. Routines designed for gridded data in this work have 

individual operations that can be parallelised. These routines include (i) edge and corner 

detection of the projected image using clearly-defined ROIs, (ii) camera image-to-projection 

image homography transformations, (iii) calculation of RBF warping coefficients, (iv) 

calculating the warped coordinates of the projected image, (v) bilinear interpolation of grey 

values of the warped projection image. 
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5.6  Results of Code Profiling and Optimisation for Real-time Performance 

The results presented in this section follow the order in which they are treated in Section 

5.5. In each case only the relevant operations from Table 5 and their respective timings 

appear in the tables that follow. There are negligible differences in timings of the same 

operations in Table 7 and Table 8 compared with Table 5 because each operation differs in 

time from one run of the operation to another possibly due to the computer's operating 

system-controlled scheduling of processes. 

 

5.6.1  Code Profiling Results Obtained for Creating an ROI for Edge Detection 

and 4 ROIs for Corner Detection.  

Table 7 shows that creating ROIs for edge and corner detection reduced the times required 

for the detection of feature points by more than 45%. The times recorded for the detection 

of features with the use of ROIs include the time spent creating the ROIs in order of around 

10−4s. 

 
 

Table 7: Processing time saving resulting from creating ROIs for edge and corner detection 

Operation Time to complete (s) 

Without ROI 

(1) 

With edge 

& corner 

ROI (2) 

% Reduction 

= 
(𝟏)−(𝟐)

(𝟏)
× 𝟏𝟎𝟎  

Detection of 52 feature points, 

Homography estimation and 

transformation 

 

0.3588 
 
 
 
 

 
0.1946 
 
 
 
 

 
45.8% 
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5.6.2  Code Profiling Results Obtained from Estimating Four Corners from 

Detected Edges.   

Table 8: Processing time saving resulting from creating 2 ROIs for edge detection and 
estimating corners from detected edges 

Operation Time to complete (s) 

Without  

ROI (1) 

With edge 

 & corner 

ROIs (2) 

With 2 edge 

ROIs & corner 

estimation (3) 

% Reduction 

= 
(𝟏)−(𝟑)

(𝟏)
× 𝟏𝟎𝟎  

Detection of 52 feature points, 

Homography estimation and 

transformation 

0.3588 
 
 
 

0.1946 
 
 
 

 
 
0.0524 85.40% 

 
 
 

 

Table 8 shows that the estimation of corner points from detected edges using ROIs defined 

for the top and bottom edges is the best option for time saving by yielding a time saving of 

85.4%.  

 

Figure 63 shows two frames from a test with a projectile hitting the projection surface. The 

estimated corner points shown in red dots are seen to be very close to the actual corner 

points obtained from the Harris corner detector marked with blue dots.  

 

Figure 64 shows the absolute difference in magnitudes of the estimated and true corner 

vectors and cosine of angles of separation between them obtained from a projectile test 

with 26 frames. They show a good estimation with maximum absolute magnitude 

differences of maximum of 5.8 pixels and maximum angle of 1.8o. 
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Figure 63: Pictorial illustrations to show the closeness between estimated corners and 
actual corners. Estimated corners are red dots while actual corners are blue dots. 

 

 



135 
 

 

(a) Cosines of angles between estimated corner point vectors and true corner point 

vectors.  

  

(b) Absolute differences in magnitudes between estimated corner point vectors and true 

corner point vectors 

Figure 64: Comparison between values of estimated and true corner points using cosines 
of angles and absolute magnitude differences between their respective vectors. 
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5.6.3  Code Profiling Results Obtained from Using Linear Interpolation to 

Approximate the Warping of the Projected Image 

Two sets of results are presented in this section. The first result in Table 9 shows that using 

linear interpolation to approximate the warping of the projected image having calculated 

the warped coordinates of the top and bottom edges using the warping function in 

equations 45 and 46 reduces the operation time drastically by about 98.8%.  

More time saving can be achieved by approximating the warp for only the vertical 

coordinates because of the prevalent distortion in the vertical direction over the horizontal 

direction. This yields an enormous time saving of about 99%. The second set of results 

shown compare images warped by (i) evaluating the warping function of equations 45 and 

46 directly, (ii) using linear interpolation that approximates warping in both image 

directions, and (iii) using linear interpolation that approximates warping in only the vertical 

direction. Peak NCC values obtained from figures 65 (a), (b) and (c) reveal that time-saving 

image warping approximation methods (2) and (3) are excellent choices to use for this work.  

Table 9: Processing time saving resulting from using linear interpolation to warp most of 
the projected image of size 640 x 480 pixels rather than evaluating the warping function 
to warp the whole image 

Operation Time to complete (s) 

Direct 

evaluation of 

equation 45 

and 46 (1) 

Linear 

interpolation in 

2 directions (2) 

Linear 

interpolation 

in vertical 

direction  (3) 

% Reduction 

= 
(𝟏)−(𝟑)

(𝟏)
× 𝟏𝟎𝟎  

Calculation of the warped 
coordinates of the 
projected image 
 

20.6773 
 
 
 

0.2504 
 
 
 

 
 
0.1408 99.32% 
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(a) Warped projected image obtained from evaluating the RBF warping function of 
equations 45 and 46 directly 

 

(b) Warped projected image obtained from evaluating the RBF warping function of 
equations 45 and 46 for only the top and bottom edges of the image and applying linear 
interpolation to approximate the warping of the pixels in between.  
Peak NCC = 0.9998. 
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(c) Warped projected image obtained from evaluating the RBF warping function of 
equations 45 and 46 for only the top and bottom edges of the image and applying linear 
interpolation to approximate the warping of only vertical pixel coordinates. Peak NCC = 
0.9998. 

Figure 65: Comparison between 3 methods used to warp the 640 x 480 pixel sized 
projected image show that combined evaluation of the RBF warping function with linear 
interpolation yields very identical results.  

 

Table 10 is a summary of the operations with their timings. Comparing Table 10 with Table 

5 shows that significant improvement has been made to operations like RBF warping, and 

corner and edge detection which took too long to run. The total distortion-correction 

processing time achieved after code profiling as seen in Table 10 is 0.3829s, yielding an 

operating framerate of about 2.6fps. This framerate is 60 times higher than the previous 

framerate of 0.047fps achieved without optimising the distortion-correction process. More 

significant improvement on the framerate may be achieved by a faster machine and taking 

advantage of parallel processing capabilities.  

 

 

 

 

 

 



139 
 

Table 10: Summary table showing all image processing time savings obtained from code 
profiling for real-time performance 

Image Description of 

group of 

Operations 

Total 

Time (s) 

Description of 

Operation 

Time 

taken  to 

run (s) 

% Total 

time taken 

to run 

C
A

M
ER

A
-O

B
SE

R
V

ED
 IM

A
G

E 

D
et

ec
ti

o
n

 o
f 

52
 f

ea
tu

re
 p

o
in

ts
, 

 H
o

m
o

gr
ap

h
y 

es
ti

m
at

io
n

 a
n

d
 t

ra
n

sf
o

rm
at

io
n

 
 
 
 
 
 

0.0705 
 
 

 

Detection and 
arrangement of 4 corner 
points 

0.0009 0.23% 

Detection and 
arrangement of 48 other 
edge points 
 

 
0.0420 
 

 
10.97 % 

Estimation of 
projected/observed image 
homographies and 
transformation of 52 
feature points from the 
observed image to the 
projected image 
 

 
 
 

0.0276 
 

 
 
 

7.21% 

P
R

O
JE

C
TE

D
 IM

A
G

E 

Es
ti

m
a

te
 C

o
n

tr
o

l p
o

in
ts

, R
B

F 
co

ef
fi

ci
en

ts
 a

n
d

 

w
a

rp
 R

G
B

 im
a

g
e 

 
 
 
 
 
 

0.3124 

Estimation of 144 other 
control points from 52 to 
produce 196 control points 
 

0.0008 
 

 
0.21% 

Calculation of 398 RBF 
coefficients from 196 
control points  
 

0.0399 
 

 

 
10.42% 

Calculation of the warped 
coordinates of the 
projected image 
 

0.1619 
 

 
42.28% 

Bilinear interpolation of 
warped greyscale image 
values  

0.0917 
 

 
23.95% 

Updating projected image 
 0.0181 

 
4.73% 

 Total time   0.3829 
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5.7  Golf simulation 

In simulated golf, the player strikes the golf ball with the club and the ball strikes the non-

planar projection surface. It is desired that the image of the golf course on the projection 

surface remains geometrically undistorted typically from the view of the player.  In this work 

the golf system is simulated by striking the projection surface with a squeezed paper 

projectile and correcting the resulting geometric distortion of the projected image before, 

during, and after the surface is hit by the projectile. The block diagram of figure 66 shows 

the distortion-correction process.  

 

 

Figure 66: Geometric distortion correction process for simulated golf 
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The process of geometric distortion correction outlined in figure 66 is similar to figure 5. 

The difference between both processes is that the system is made to continuously monitor 

significant distortion of the image frames of the projection obtained by the camera. This 

condition coincides with when the projectile strikes the projection surface. The system 

continues to monitor the distortion from frame to frame until the projection surface comes 

to rest. The distortion-correction routine is activated when the displacement of feature 

points from their mean position goes higher than a set threshold of 4 pixels horizontally and 

vertically.  This threshold was determined by striking the projection surface with the 

projectile and recording horizontal and vertical displacements of edges of the observed 

projection as described in Section 5.5.1. The results of this simulation are presented in 

Section 5.8. 

 

5.8  Results from Golf Simulation 

The results in Figure 67 show the projected greyscale image of the golf course, one distorted 

frame and three consecutive distortion-corrected frames of the projection in greyscale. The 

corrected images reveal that the distortion-correction system worked well with improved 

peak NCC values. Figure 68 shows a plot of peak NCC values for consecutive video frames, 

with 1 frame captured before, 3 frames captured during, and 3 others captured after the 

projectile hit the projection surface. The red curve with higher peak NCC values reveals 

successful distortion-correction while the projectile hit the surface.  

 

 

(a) Projected image of golf course 
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(b) Distorted image of the projection of the image of the golf course 

 

 

(c) Distortion-corrected frame 1 of the projection of the golf course. The projectile 

(marked ‘X’) can be seen in the middle of the image. 

 

X 
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(d) Distortion-corrected frame 2 of the projection of the golf course. The projectile can be 

seen in the middle of the image. 

 

 

(e) Distortion-corrected frame 3 of the projection of the golf course. The projectile has 

now disappeared from view.  

Figure 67: Projected image of a golf course and distortion-corrected frames of the 
projection after projectile hits the projection surface 
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Figure 68: Peak NCC values for distorted (blue) and distortion-corrected frames of the 
golf-simulation test 

 

5.9  Chapter Summary 

The main focus of this chapter was the correction of geometric distortion for projections on 

dynamic/deformable non-planar displays or surfaces. The highlights drawn from the 

presentation include the following: 

(i) The extension of the simple algebraic model of a straight line projected onto a cylinder 

presented in Chapter 4 to illustrate the reintroduction of observed distortion in the system 

distortion when the radius of the projection surface changes. 

 

(ii) The derivation of a re-warping formula for the warped projected image to correct the 

observed distortion reintroduced by either changing the position of the projector and/or 

the observing camera or the shape of the projection surface.  

The re-warping of the projected image from its original unwarped state was shown to 

perform better than re-warping from its already-warped state with better distortion-

corrected views and consistently higher peak NCC values.  

 

(iii) The technique of finding control points by the linear modelling of their displacements 

was used throughout this chapter.   
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(iv) Code profiling and optimisation to shorten the processing time of the distortion-

correction process was carried out in this chapter.  

 

(v) Successful optimisation strategies included introducing regions of importance (ROIs) for 

feature detection and estimating image corners from image edges, bilinear interpolation of 

a single greyscale projected image component rather than three RGB components and the 

calculation of warped projected image control points by linear interpolation rather than 

evaluating the RBF expression. Time savings from these optimisation methods achieved 

were 85.4%, 66.67% and 99.32% respectively. Achievable framerate was increased from 

0.047fps to 2.6fps by optimisation. 

 

(vi) All distortion-correction strategies developed for dynamic projection systems were 

tested on a non-planar projection surface struck by a projectile. This system was used to 

simulate a real projection system used in simulated golf practice. The distortion-correction 

process with improved peak NCC values proved to be successful in this case. 
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CHAPTER SIX 

Conclusion and Recommendations 

6.1  Conclusion 

The correction of geometric distortion occurring when non-distorted images are projected 

on both static and dynamic/deformable non-planar surfaces has been successfully carried 

out in this work. By incorporating a camera as a feedback element in the projection system, 

images of the projection were obtained and processed to obtain geometrically non-

distorted views of the projected displays.  

 

The methods developed in this work detect feature points from both the non-distorted 

image being projected and the distorted image of the projection captured by the camera, 

derive a working homography between both images and uses this homography to shape 

the desired undistorted view of the projection. This process is referred to as Homography 

Shaping. The derived homography was used to work out the positions of the undistorted 

feature points on the desired camera image of the projection. It was also used to transform 

feature points from the camera image to control points on the projected image to be used 

to obtain RBF coefficients for warping the projected image to obtain an undistorted view of 

the projection. This method of warping the projected image to obtain an undistorted view 

of the projection is supported by a theoretical framework developed in this work to explain 

the cause and correction of the projection of a straight onto a quadric surface.  

   

Results of tests involving the use of a calibration image consisting of a grid of white 

rectangles on a black background with detectable feature (corner) points show the 

distortion-correction method to work very well for an undulating projection surface of a 

freely-hanging curtain and a projection surface made of two planar surfaces intersecting at 

right angles. For the distortion-correction method to be successful there must be a 

sufficient number and distribution of feature points on the projected image and camera 

image of the projection. Test results also showed that the three RBFs compared performed 

satisfactorily in warping the projected image and correcting the distortion, but the 
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computing speed for the Multiquadric RBF is at least 1.14 times faster than the Inverse 

Multiquadric and Gaussian RBFs.  

 

The need to have an automatic geometric distortion-correction method that adapts itself 

to quickly-changing projection images and projection surface shapes was emphasised in this 

work. A method involving the use of feature points around the periphery of the projected 

image and captured image of the projection, with points inside the projected image 

obtained by linear interpolation to meet the challenges of the dynamic projection system 

was developed. Tests performed with this method on both static and dynamic projection 

systems showed satisfactory distortion-correction results with the distortion-corrected 

images of the projection having consistently higher peak NCC values than the distorted 

images of the projection.  

 

Drawing ROIs for feature point detection, implementing the warping function by linear 

interpolation rather than fully evaluating its mathematical expression, processing greyscale 

projected images instead of RGB images were among strategies used in this work to speed 

up image processing operations for geometric distortion-correction for real-time operation. 

By doing this, the much lower process operation time of about 21.352s was massively 

reduced by about 98% to 0.3592s using a Matlab GUI running on Windows 10 Operating 

System with an Intel Celeron N2830 2.16GHz processor. The initial frame rate of 0.04fps 

increased to 2.6fps. Further operating framerate increase from 2.6fps may be achieved by 

running the individual operations in parallel on higher specification computing platforms.  

 

Finally, the method of distortion correction for dynamic systems was applied to a projection 

surface struck by the squeezed paper projectile. This test was to investigate the application 

of distortion-correction for projected displays of simulated golf.  Very good results were 

also obtained from these tests with higher average peak NCC values of 0.913 obtained for 

captured distortion-corrected frames than average peak NCC values of 0.866 obtained for 

distorted frames. 
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6.2  Original Contributions 

As mentioned in Sections 1.3 and 2.3.2, and demonstrated in Chapters 4 and 5, the novel 

successfully-tested distortion-correction techniques for non-planar projected displays 

developed in this work are again highlighted in this section.  

 

(i) This work presents a geometric and algebraic explanation on how geometric distortion 

occurs when projecting from a plane to a non-planar surface. Here, it is shown that 

distortion-correction for non-planar surfaces can be achieved by the 2D homography 

mappings existing between the projected image and the distorted image of its projection 

on the projection surface captured by the camera. The warping technique of the straight 

line developed theoretically can be extended to projected images as well. This distortion-

correction technique requiring a single uncalibrated camera and an uncalibrated projector 

is much simpler than systems described in [8], [27], and [31] that use calibrated projectors 

and cameras. This technique also eliminates the need for estimating and reconstructing the 

3D projection surface as seen in [8], [31], and [30]. Eliminating these reconstruction 

operations and replacing them with simpler 2D homographic transformations makes it 

more capable of performing the distortion-correction process in real-time.  

 

(ii) The distortion-correction technique developed in this work functions without the need 

for first projecting a calibration image or structured light patterns as described in [25], [28], 

and  [29]. It was made possible by taking advantage of the nature of the non-planar 

projection surface that allowed for linear interpolations to be applied to displacements of 

already-detected distorted points from their non-distorted positions in the projected image 

in order to estimate the displacement of other unknown distorted points from their 

respective non-distorted positions. The advantage of eliminating the projection of a 

calibration image or structured light patterns is that in situations where the shape of the 

projection surface changes or the pose of the projector or/and the observing camera 

change, the projection does not have to be interrupted to allow for the calibration image 

to be re-projected onto the surface in order to maintain a distortion-corrected view of the 

projection.  
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(iii) The technique developed in Section 5.3 for correcting the distortion of dynamic 

projection systems comprising systems where the positions of the projector and/or the 

camera change and/or the shape of the projection surface changes with time is novel. A few 

authors ([8] and [33] for example) however mentioned the capabilities of their techniques 

to handle such situations without presenting any supporting results.  

 

(iv) A much simpler RBF interpolation approach to warping as opposed to other processing-

demanding warping methods like Bezier patches used in other systems is used in this work. 

The optimisation of the RBF image warping algorithm for a 640 x 480 pixel-sized image 

yielded a time saving of 99.32% (from 20.99s to 0.1619s), enhancing the potentials for the 

approach to be applicable to real-time operation. 

 

6.3  Practical Considerations  

6.3.1 Practical Applications 

Practical applications of the distortion-correction system for non-planar projected displays 

include possible presentations in places where there is no screen and the simulated golf 

practice system simulated in Section 5.7. The distortion-correction system developed in this 

work usually applies to a single or a few viewers who share the same view of the projection 

surface as that of the observing camera. For viewers to enjoy a distortion-free view in a 

place where a non-planar projection surface is used instead of a standard planar surface, 

they should have similar field of view as the camera used to observe the surface. The 

algebraic simulation of a non-planar projection system carried out in Section 4.2 can also 

be used to estimate possible distortion-free viewing positions for a particular pose of the 

projector, camera and non-planar projection surface. 

 

In simulated golf practice the user plays the golf ball against a deformable surface that 

dampens the motion of the golf ball and prevents injury to the player as the ball rebounds 

off the surface. The trajectory of the golf ball and some text telling its measured speed may 

also be displayed on the screen. The player’s experience can be improved by removing the 

geometric distortion from the entire projection as the ball strikes the projection surface. 



150 
 

Incorporating the distortion-correction system with a head-worn device that tracks the 

position of the player’s viewpoint could also improve the user’s experience he/she will likely 

move his/her head during play.  

 

6.3.2  Image Processing Considerations 

In all tests the homography between the camera image of the projection and the projected 

image was obtained by 4 corner point correspondences between both images. More 

undistorted points may have been used to estimate this homography with a refinement to 

the estimated homography done by suitable least-square optimisation techniques. Such 

techniques were not used in this work because the estimated homography proved to be 

good enough for the purpose and because of the increased enormous processing 

requirements required to implement them.  

 

Additional control points inside the projected image had to be generated for effective pre-

warping of the projected image and geometric distortion correction.  These additional 

control points were obtained from already-detected control points located at the top and 

bottom edges of the projected image by linear interpolation (Sections 4.5.3 and 4.6.3. Other 

methods like inserting invisible patterns (watermarks) in the projected image may be used 

to create such additional control points. To do this a very robust method for correctly 

extracting the watermark from the projection must be developed to overcome the 

enormous radiometric modulation and geometric deformation that the projected image 

would go through right from the projector through the projection surface to the camera. 

Another method which may be used to generate additional control points is by colour 

segmentation and matching between the projected image and the image of the projection 

captured by the camera. This kind of segmentation and matching using the Hue-Saturation-

Value (HSV) colour space has been reported in [91] for example.  

 

The surface used in this work was such that images projected on it suffered geometric 

distortion predominantly in the vertical direction. For more complex projection surfaces 

with significant distortion in both directions, distortion correction may be done in one 
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direction first, then the other. The Linear Interpolation method developed in Section 5.5.3 

used to approximate the RBF warping of the projected image may only be used in this 

application because of the nature of the projection surface, but it may also be worthwhile 

to test it in other applications where speed of operation will be of essence.  

 

The treatment given to lens distortion would include the lens of the projector and that of 

the camera. The ultimate aim in all treatments given to lens distortion is to restore curved 

(distorted) image lines caused by the physical properties of the lens to straight lines. In this 

work no explicit treatment is given to lens distortion because it is assumed that the 

components of lens distortion add up to and are indistinguishable from the distortion 

caused by the shape of the projection surface, and the ultimate aim in this work is to restore 

distorted image lines to straight lines. With this assumption however, the lens distortion 

caused by the camera still causes the distortion of distortion-corrected lines in camera 

images of the projection and accounts for much of the unresolved distortion (relatively large 

average deviation values) in the results presented in chapters 4 and 5. The presence of this 

so-called unresolved distortion of lines in camera images of the projection is however 

inconsequential because the distortion-correction system is designed for human observers 

looking at the projection surface and the human psychovisual system corrects such 

geometric distortions.   

  

6.4  Recommendations 

The following recommendations given are ways of improving the technique developed in 

this work to correct the observed geometric distortion of non-distorted images and video 

projected onto static and deformable displays or surfaces. They include distortion-

correction topics not addressed in this work.  

 

(i)  More complex surfaces with predominant distortion in both image dimensions: It is 

recommended that geometric distortions of projections on such surfaces be corrected with 

one dimension first, and then the other. Difficulties may arise from the area where the pre-

warped projected image is being projected to as this could as well cause its own distortion. 
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In such a case there should be recursive correction whereby the observed projection is 

always monitored for distortion followed by correction by warping the projected image. 

 

(ii) Strategies to improve viewer satisfaction:  In the case of a single viewing experience, 

multiple feedback cameras may be used with a single projector and each camera would be 

used to observe and correct its respective distortion of the projection. If possible, each pre-

warped image should be beamed onto the projection surface at a refresh rate that will not 

be noticed by the audience.  

 

(iii) Improvement of the quality of the projection: It is observed that the quality of images 

of the distortion-corrected projection presented in this work are deteriorated by shadows 

caused by the shape of the projection surface. Some photometric enhancements like 

shadow suppression and contrast, colour and brightness enhancements may be used to 

enhance the quality of the distortion-correction system.   
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APPENDIX 

A1  Detection and Arranging Detected Corner Points of the Distorted Projected 

Calibration Image 

The success of the use of a calibration image in the distortion-correction process greatly 

depends on the accurate detection and arrangement of the feature (corner) points of the 

captured image of its projection. Unfortunately the output of the inbuilt Harris corner 

detector function in Matlab produces the detected corners in an unordered form. A 

technique of correctly arranging the detected corner points was carried out in this work and 

is described as follows: 

 

Problem 

An unordered list of corner point (𝑢, 𝑣) pixel coordinates. The task is to arrange them 

according to the way they appear in the projected image.  

  

Solution 

(i) First arrange them in increasing distance from the origin by calculating the distance 

between each point and the image origin (0,0) by calculating the square root of the sum of 

the square of the coordinates of the respective points.  This step simplifies the whole 

process by ensuring that the first point on the list is the corner point at the top left corner 

of the image.  

𝑠𝑜𝑟𝑡√(𝒖𝟐 + 𝒗𝟐)                                                                                   (64) 

Since the actual distance of each point from the origin is not required, computation time 

may be saved by simply ranking the points by the sum of their respective coordinates. 

Next, calculate the mutual distances between the respective points as  

 √(𝒖𝑖 − 𝒖𝑗 )2 + (𝒗𝑖 − 𝒗𝑗)2                                                              (65) 

The aim of this step and others following is to have all points arranged according to the 

horizontal (or vertical) lines they belong to by finding their closest horizontal and vertical 

neighbours. An alternative to equation 65 is to calculate the sum of the unsigned 

differences between the coordinates of the respective points.  
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(ii) Select a point and find its horizontally, vertically diagonally-aligned neighbours by sorting 

results obtained from equation 65 for the chosen point.  Three or four points connected to 

the chosen point are obtained from this step. A corner point and its four closest neighbours 

are shown in figure 69. 

 

 

Figure 69: A chosen corner point (blue) and its four closest neighbours 

 

(iii) If horizontally-aligned points are being sought for example, sort the closest neighbours 

obtained in step (ii) according to their respective vertical distances to the point of interest. 

The desired horizontally-aligned neighbour will be the point with the smallest vertical 

distance to the point of interest. If a vertically-aligned neighbour is required, sought-after 

vertical neighbour will be the point with the smallest horizontal distance to the point of 

interest.  

 

(iv) As one of the selected neighbours has been found as a collinear point to the reference 

point, exclude the reference point from the list of points to be searched, and make the 

collinear point just found the new reference. Return to step (ii) and continue until the set 

number of points per line is reached.  
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(v) Sort the points on the line according to value of their horizontal pixel coordinates to 

arrange them from left to right.  

Next, calculate the average vertical coordinate of all the vertical coordinates of the points 

on the line. This is used as a summary statistic representing the position of the line in a stack 

of horizontal lines. 

Return to step (ii) and continue the same process for other horizontal lines, finding 

neighbouring points and arranging them according to how they are located along the line.  

 

(vi) When the required number of horizontal lines is reached, use the summary statistic 

calculated in step (v) to arrange the lines from top to bottom in increasing order of the 

statistic. 

 

A flow diagram representing the process described is shown in figure 70. 

Note that this method produces the correct results only in the absence of false or noisy 

corner points and/or missing corner points. 

Figure 71 shows the captured view of the calibration image with misarranged corners in (a) 

and arranged corners in (b).  
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Figure 70: Flow diagram of steps used in producing an ordered (arranged) set of corner 
points from an unordered (misarranged) set of points 

 

(a) Misarranged corners 
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(b) Correctly arranged corners 

Figure 71: Camera view of the calibration image showing misarranged and correctly-
arranged corners 

 

A2  Obtaining Feature Points along a Distorted Edge 

In Section 4.5 and subsequently, the homography between the projected image and camera 

image of the projection was used to obtain non-distorted feature points on the latter image 

by transforming the points from an ordered phantom grid of equal size with the projected 

image. These non-distorted points are then used to obtain their respective distorted points 

along the top and bottom edges of the image of the projection (as described in steps (iv) 

and (v) of Section 4.5.1).  

 

Figure 72: Edge image of the projection showing red non-distorted points of the blue top 
and bottom edges 
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The edge image shown figure 72 is the input image to the algorithm, consisting of the edges 

in white and the non-distorted sampled points in red. Only a single point out of thousands 

of edge points must be selected for each non-distorted point. A typical (top) section of the 

periphery of figure 72 is redrawn in figure 73 for clarity. It illustrates the respective lines 

and points described in the following guide to selecting the required feature.   

 

Figure 73: A typical top peripheral section of the camera image of the projection showing 
the distorted edge with the blue distorted feature point, the desired non-distorted edge 
(line AB) with the green non-distorted feature point, the perpendicular line 𝒍’, and other 
detected feature points in the image. 

The guide to selecting the appropriate points is given as follows: 

(i) Obtain the equation of the line linking the two extreme corner points forming the ends 

of the non-distorted top and bottom edges of the image with equation 25. (Line 𝐴𝐵 of 

figure 73). 

 

(ii) Obtain the equation of the perpendicular line 𝑙’ to line 𝐴𝐵 passing through the point 𝑃 

(equation 29). 

 

(iii) Test each feature point to see which one falls on the line by inputting its horizontal and 

vertical coordinates into the equation of the perpendicular line. The few eligible points (blue 

and brown points in figure 73) are those whose coordinates satisfy the equation of the line, 

or are close enough to a set threshold. 

From equation 25, 
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|𝑣 −
𝑣1 − 𝑣2

𝑢1 − 𝑢2
𝑢 −

𝑢1𝑣2 − 𝑢2𝑣1

𝑢1 − 𝑢2
| ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑                               (66) 

 

(iv) From the selected points in step (iii) calculate the distance of each point to the line 𝐴𝐵 

(with equation 27) and select the 2 points with the shortest distances from the line. These 

will be the blue point and the topmost brown point in figure 73. Selecting 2 points in this 

work arises from the fact that depending on the extent of distortion, a point from any of 

the enhanced edges (edges forming an inner and outer boundary in figure 73) would be 

detected.  

 

(v) The required point on the top edge (blue point in figure 73) would be one of the points 

from step (iv) with the lower vertical coordinate while the required point on the bottom 

edge would be the point from step (iv) with the higher vertical coordinate.  

A3  Graphical User Interface (GUI) 

The GUI created in Matlab and used for all the tests in this work is shown in figure 74.  
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Figure 74: GUI created in Matlab 
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