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Abstract 

The disposal of nuclear waste is highly regulated and the disposal option will be 

dependent on the radionuclide content of the waste. The encapsulation of nuclear 

waste to prevent migration of radionuclides into the environment and as a safe 

means of long term storage and disposal can be achieved using ordinary Portland 

cement (OPC) and various additives such as blast furnace slag (BFS) or 

pulverised fly ash (PFA). Treated radioactive wastes in this manner are 

characterised by good thermal, chemical, physical stability and compressive 

strength. In addition the alkaline chemistry of concrete renders most 

radionuclides highly insoluble. The ultimate destination of some of these 

encapsulated wastes is in a Deep Geological Facility (GDF), where for many 

years the wastes will remain inert to their environment. In the longer-term the 

environmental conditions will change and the inertness of these waste forms 

could be affected from the seepage of water into the facility along with microbial 

activity. The diffusivity or leaching behaviour of cement encapsulated radioactive 

waste is crucial to ensure the overall safety of a storage/disposal system.  

The research presented in this thesis evaluates the diffusivity of strontium, 

caesium and cobalt when added as inactive forms to BFS:OPC and PFA:OPC 

formulation as their chlorides and for strontium when added as chloride and 

carbonate. The cylindrical cement paste samples (CPS) having diameter of 3.2 

cm and height 5.3 cm  were immersed in re-circulating test solutions consisting 

of de-ionised water, concentrated Sellafield pore water (CSPW), diluted Sellafield 

pore water (DSPW) and bacterial inoculated water, John Innes Soil Solution 

(JISS). Strontium carbonate was selected to determine the influence of a water 
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insoluble compound on diffusivity of the cation. Freshly cured and aged BFS:OPC 

samples were also studied to evaluate the impact of carbonation on cation 

diffusivity. Chloride salts were used, as these would be benign to 

microorganisms, i.e. would not stimulate or support growth unlike nitrate or 

sulphate anions. The outcome of this study indicate that the make-up water 

composition affected the segregation of inherent and added cations in the cement 

paste samples and also both the bleed water volume and physical characteristics 

of the cement paste samples. Strontium when added as a soluble salt to the 

make-up water influenced the rate of diffusivity. Depending on the type of 

formulation (BFS:OPC, PFA:OPC), a direct correlation was observed between 

diffusivity of Sr2+ and total amount of Ca2+ present in the CPS. The rate of 

diffusivity and the depth of cation diffusion was significantly higher in 3% SrCl2 

PFA:OPC having lower concentration of Ca2+ compared to its BFS counterpart. 

The concentration of the added salt to the make-up water also affected the 

diffusivity. The difference in the diffusivity was observed between closed and 

open diffusivity system. The solubility limits were not a factor in open circuit which 

was comparable with the pH values; contrary to the closed circuits. The 

concentration of cations and anions in the test solution influenced strontium and 

caesium diffusivity. The diffusivity of sulphate was influenced by the nature of the 

cation added to the make-up water. Strontium had the greatest effect on lowering 

the diffusion primarily due to the formation of sparingly soluble strontium sulphate. 

The pH values of the circulating JISS test solutions from all the contaminated 

cement samples were lower in comparison with control, which was comparable 

with viable population in the circulating system. There was no significant viable 
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population measured in the JISS from control CPS.  The JISS test solution 

composition retard strontium diffusivity but accelerated caesium diffusion in 

comparison with distilled water values, this retardation could be due to the 

inherent sulphate content (≈8600 ppb) of the JISS test solution.  

This work provides fundamental understanding of the physic-chemical factors 

influencing the diffusivity of cations from BFS:OPC and PFA:OPC formulations. 

The scheme i.e. closed circuit recirculation adopted in this research would be 

more fitting of the real situation i.e. stagnation followed by percolation and 

therefore diffusivity of ions will be greatly influenced by the test solution chemistry 

and composition. 
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1.1 Radioactive waste 

At each and every stage of the Nuclear Fuel Cycle (NFC) wastes/effluents are 

produced either in liquid, or solid or gaseous form from normal daily operations 

(Figure 1.1) [1]. 

 

 

Figure 1.1 Illustration of the Uranium Nuclear Fuel Cycle 

(NFC) [2] 

 

In the future, decommissioning wastes will become the major contributor, as most 

of the currently operating reactors will be retired by 2023 [3]. Radioactive waste 

is also produced from other sources such as medicine, universities, military 

operations and industries. Radioactive waste can be defined as “material that 

contains or contaminated with radionuclide at concentrations or activities greater 

than clearance level as established by individual countries and regulatory 

authorities” [4]. The difference between any other non-radioactive 
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waste/chemical waste and radioactive waste is that the latter can be 

accompanied with significant levels of ionising radiation and may require 

immobilisation to prevent spreading around the biosphere.  During the normal 

operation of a typical reactor over 200 radionuclides are produced; most of the 

radionuclides are relatively short-lived and decay to low levels within a few 

decades [5]. Some radioactive waste has the potential to specifically target 

aquatic and terrestrial ecosystems, due to their long half-lives and damaging 

effects on cells as compared to other chemical pollutants [6]. The radioactive 

wastes consist of various irradiated materials, which is a subject of concern. The 

main objective of radioactive waste management is to deal with it in a manner 

that protects human health and the environment. It is sensible to understand 

various classifications of wastes to execute the appropriate management system. 

1.1.1 Composition and classification of waste radioactive waste 

The options for disposal of nuclear waste will be dependent on the radionuclide 

content of the waste (Table 1.1). These wastes/effluents can be classified as Low 

Level Waste (LLW), Intermediate Level Waste (ILW) and High Level Waste 

(HLW) depending on their radioactive content [7].  
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Table 1.1 Classification of radioactive waste in the UK [8] 

 

LLW 
 

The largest volume of wastes produced is LLW, from cooling 

waters, plant operations, and across the nuclear fuel cycle 

including some parts of fuel reprocessing cycle (>4 MBq/m2 

alpha, to 12 MBq/m2 beta/gamma), which contain only small 

levels of radionuclides and certain nuclide which decay in 

relatively short period of time.  

ILW ILW wastes, from laboratory operations and fuel reprocessing, 

contain higher amounts of radioactivity than LLW and may 

require special shielding. It mainly comprises resins, chemical 

sledges and reactor components, graphite from reactor cores, as 

well as contaminated materials from reactor decommissioning.  

HLW HLW consists of highly radioactive fission products, used fuel 

itself and some transuranic elements generated in the reactor 

core and are the type of nuclear waste with the highest activity (> 

3.7 x 106 kBq/m2 alpha, to > 37 x 106 kBq/m2 beta/gamma). Due 

to the high level of radioactivity, the heat produced by the 

radioactive decay of the material requires cooling, as well as 

special shielding during handling and transport 
 

 

Most of the wastes/effluents arising at the front end of the cycle contain natural 

occurring radioisotopes and are likely to be categorised as low level wastes but 

the quantities involved will be significant.  After the fuel has undergone irradiation, 

wastes/effluents are produced that fall into the Intermediate and High Level 

Waste categories. These wastes are substantially smaller in quantity but as they 



 

4 
 

contain fission products and other actinides require more engineered treatment 

and disposal systems.  

LLW has a comparative short half-life with 90% of the elements becoming 

harmless after 100 years and is currently disposed of at the Drigg landfill site in 

Cumbria. Most ILW that has been produced since 1990 is currently being held in 

temporary surface storage facilities at various locations within the UK. The period 

of risk to public spans from hundred years to over one thousand years. The spent 

fuel is reprocessed; the separated waste is vitrified by incorporating it into 

borosilicate (Pyrex) glass which is sealed inside stainless steel canisters for 

eventual disposal [8]. 

1.1.2 UK radioactive waste inventory 

The Radioactive Waste & Materials Inventory, updated every three years, 

provides the latest national record on radioactive wastes and materials in the UK. 

An overview of these data is given in Table 1.2. The negative number for HLW 

future arising indicates that the volumes will fall in the future due to two reasons, 

one being vitrification of waste which is one third of the volume of the original 

waste. Secondly, the UK is returning processed HLW to overseas customers in 

vitrified forms [9].  

Table 1.2 UK Radioactive Waste inventory at 1 April 2013 [9] 

Waste category 

Volume (m3) 

Reported at  

1 April 2013 
Estimated future 

arisings 
Lifetime 

Total 

HLW 1,770 -700 1,080 

ILW 95,600 190,000 286,000 

LLW 66,700 1,300,000 1,370,000 

Total 164,070 1,489,300 1,657,080 
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1.2 Radioactive waste disposal 

Nuclear waste disposal is highly regulated with in many instances decades of 

proven experience, but for ILW and HLW research is still underway to ensure the 

selected routes i.e. deep geological disposal can meet stringent requirements 

[10]. There have been emphases on the disposal of irradiated graphite (i-

graphite) that will arise from the decommissioning of UK graphite moderated 

reactors; Magnox and AGRs. All ILW waste such as Magnox swarf, i-graphite etc. 

will be encapsulated in cement within a suitable metal container, stored prior to 

being deposited in a Geological Disposal Facility (GDF) [11]. I-graphite is 

categorised as ILW largely due to its 14C content (10 to 100ppm) as the Drigg’s 

(LLW repository for the UK) 14C authorisation is so restrictive that only a fraction 

of the UK’s i-graphite (~ 95,000 tones Magnox and AGR) could be disposed of 

[12].  

ILW contain enough radioactivity that it requires special treatment to minimise 

any potential release into environment. Nuclear Decommissioning Authority 

(NDA) has developed Phased Geological Repository concept (PGRC) (Figure 

1.2) for safe and long-term management of radioactive waste, which is a multi-

barrier, multi-phased approach based on placing the waste deep underground, 

beyond any disruption from any man – made events.  

The phased nature of the PGRC involves number of processes/stages in the 

management and eventual disposal of radioactive waste. Figure 1.3 shows the 

summary of key stages involved in the radioactive waste management in PGRC. 
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Physical  
Containment 
 
Interim surface 
storage: 
ILW and LLW in 
steel or concrete 
boxes,  
ILW and LLW 
immobilised in 
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Geological  
Isolation 
 
 
No backfill 
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Conditioning 
 
 
Alkaline Sorbing 
 
Cement-based 
backfill  
Material 
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Containment 
 
      
Low water flow 
Physical stability 
 
 
 
 
 
 
 

 

 

Figure 1.2 Phased geological repository concept [13] 
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Figure 1.3 The PGRC for long term management of HLW/ILW 

 

1.3 Immobilisation of waste 

Immobilisation of waste is essential part of waste management in order to convert 

the waste into to a form suitable for further handling, transport storage and 
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disposal. Technically, the purpose of stabilisation is to convert the waste to a 

physically and chemically more stable form, by binding the waste into the cement. 

Cementation is considered as a most widely robust and cost-effective technology 

for conditioning of ILW [14]. For most ILW, the waste will be immobilised in 

cement-based materials within stainless steel drums.  

Encapsulation of wastes using Ordinary Portland Cement (OPC) has several 

benefits, which include:  

(a) inexpensive and mechanically, physically and chemically stable for 

handling, transport and disposal. 

(b) provide radiation shielding  

(c) maintain a high pH which in turn decreases radionuclide solubility 

(d) can incorporate many ions into solid solution and are tolerant to a wide 

variety of wasteforms. 

Although cementation is widely used within the civil nuclear industry worldwide 

for encapsulation of higher activity wastes (such as ILW), some of the waste 

streams generated by the industry are difficult to encapsulate using this method 

and other techniques have been evaluated [15]. Most fall into the category of 

polymeric encapsulation and studies have shown that they provide a number of 

advantages for treatment of contentious waste streams. Their superior 

mechanical properties allow for good waste loadings (up to 75 % by weight for 

graphite, for example), allowing the number of packages to be reduced, while 

maintaining the integrity of the waste forms. The potential for polymers to degrade 

radiolytically whilst stored or even worse during disposal liberating gaseous 

products is a major consideration of the regulatory authorities. 
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1.4 Cement 

Cement or Ordinary Portland Cement (OPC) in particular, can be defined as a 

bonding material having adhesive and cohesive properties used in conjugation 

with additives such as stones, sand and other additives/aggregates [16]. The term 

hydraulic cement derives from the fact that the cement have properties of setting 

and hardening in presence of water. The name “Portlanland” originates from a 

trade name used by Joseph Aspdin (1779-1835) in 1824 who patented the clay 

and limestone cement, because it looked like the stone quarried on the isle of 

Portland. Portland cement was first used in the civil engineering project by 

Isambard Kingdom Brunel (1806 -1856), as the lining for Thames Tunnel [16].  

OPC is produced by burning limestone and clay or shale (source of 

aluminosilicates) at high temperature (1500°C) to produce cement clinker. The 

final product consist of ground 95% cement clinker with 5% gypsum to produce 

the final product cement. The process can be carried out dry or mixed with water; 

depending on the technique employed, it’s classified as dry or wet.  About 78% 

of cement produced in Europe is generated using the dry process. Calcium 

sulphate which is commonly referred to as gypsum controls the rate of settling 

and influences the rate and strength development. A typical clinker has a 

composition of 67% CaO, 22% SiO2, 5% Al2O3, 3% Fe2O3 and 3% other materials  

[16]. The composition of OPC depends on the origin of the limestone and clay 

used in the manufacturing process. Cement is categorised into five different types 

under European standard EN 197-1 [17] (Table 1.3 ).  
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Table 1.3 Categorisation of cement under European standard EN-197-1[17] 

Category Description Proportion of 
cement clinker 

Proportion of 
other 
constituents 

CEM I Portland cement 
 

95-100% 0-5% 

CEM II Blended cement (sub-divided 
depending on the material 
used, e.g. ‘Portland fly ash 
cement’,  
‘Portland slag cement’, 
‘Portland limestone 
cement’, etc.) 
 

65-94% 6-35% 

CEM III Blastfurnance cement 
(incorporating ground 
granulated blastfurnance slag 
or G.G.B.S.) 
 

5-64% 35-95% 

CEM IV Pozzolanic cement 
(incorporating natural or 
synthetic pozzolanic material, 
e.g. volcanic ash) 
 

45-89% 11-55% 

CEM V Composite cement 
(incorporating both G.G.B.S. 
and pozzolanic material) 

20-64% 18-50% G.G.B.S 
18-50% 
Pozzolanic 
material. 

 

 

1.4.1 Cement Composites 

The term blended cement refers to composites of cements that are hydraulic 

cements composed of OPC and one or more inorganic materials that play an 

important role in cement hydration reaction and hydration/final products. 

Admixtures such as CaCl2, also influences the cement hydration process but do 

not contribute to the final product. The most important additives are Blast Furnace 

slag (BFS) and Pulverised Fly Ash (PFA) (Table 1.4). Blended cement with up to 

90% BFS and 75% PFA, are currently being employed in nuclear industry for 

encapsulation [18, 19].  
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1.4.1.1 Blast Furnace Slag (BFS) 

BFS is a by-product generated during iron making process. The limestone that 

has been used to remove the acidic impurities from iron ore are broken down to 

form carbon dioxide and calcium oxide in the high temperature of blast furnace. 

The calcium oxide reacts with the acidic impurities in molten steel to transfer them 

into blast furnace slag. The composition of slag varies depending on the nature 

of ore, the composition of limestone flux and the kind of iron being made. The 

major constituents of BFS include lime, silica, alumina and magnesia. The 

chemical composition of BFS is CaO (30%-50%), SiO2 (28%-38%) and Al2O3 

(8%-24%). In the UK, BFS is produced in three steel making facilities at Teesside, 

Scunthorpe and Port Talbot [16]. 

1.4.1.2 Pulverised Fly Ash (PFA) 

PFA is obtained by electrostatic or mechanical precipitation of dust from flue gas 

that are generated after combustion of coal in coal fired power station. PFA falls 

into subdivision of artificial pozzolanas and consist of silica and alumina. The 

chemical composition depends on the inorganic mineral composition of the coal 

gangue. Based on calcium content,  PFA is categorised into two types:  low –

calcium flyash (Class F), containing less than 10% of analytical CaO and high-

calcium flyash (class C), containing 15-40% analytical CaO [20]. Low-calcium 

flyash is predominantly being used due to technical benefits and economic factors 

[21, 22].  
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Table 1.4 Composition of OPC, BFS and PFA (%) (literature values) [23-25] 

Material CaO SiO2 Al2O3 Fe2O3 MgO SO3 Na2O K2O 

OPC 61.3 20.1 4.2 2.5 3.1 4.0 0.2 0.4 

BFS 45.3 33.9 13.1 1.7 2.0 trace n.d. n.d 

PFA 3.1 46.2 27.0 10.4 2.0 1.6 0.9 3.3 
 

From the Table 1.5, the main constituents of cement can be seen to be di and tri 

calcium silicate/aluminosilicates. Thus addition of water forms major component 

which include calcium silicate hydrates (C-S-H) and portlandite Ca(OH)2. The 

chemistries of these components must be considered when determining the 

stability of cement and concrete. 

Table 1.5 Composition of Portland cement [16] 

Cement Compound Chemical Formula 

Tricalcium silicate (C3S) Ca3SiO5 or 3CaO.SiO2 

Dicalcium silicate  (C2S) Ca2SiO4 or 2CaO.SiO2 

Tricalcium aluminate (C3A) Ca3Al2O6 or 3CaO .Al2O3 

Tetracalcium aluminoferrite   (C4AF) Ca4Al2Fe2O10 or 4CaO.Al2O3
.Fe2O3 

Gypsum CaSO4
.2H2O 

 

 

1.5 Degradation of concrete 

The ultimate destination of some of these encapsulated wastes is in a deep 

geological facility (GDF), where for many years the wastes will remain inert to 

their environment. The integrity of the waste form will have to meet stringent 

conditions, not least timeframe; for a deep geological repository the integrity will 

be considered over a 100,000 years, due to the GDF conditions as they present 

significant challenges with the varying environment conditions from operation to 
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post closure. These varying conditions will also influence the presence, growth 

pattern and impact of microorganisms on encapsulated waste. The ability of 

cement-based materials to resist the deterioration depends on the environmental 

conditions as well as material properties. Most cement hydration phases are 

unstable below pH 10. This raises a concern in regard to interaction of hardened 

cement paste in natural water which is near neutral pH  and may have low mineral 

content, it is one of the worst case scenario which can be envisaged [14, 26], this 

poses a risk to thermodynamic equilibrium of cement paste solids with its pore 

solution may lead to dissolution. In GDF of seeping water, concrete durability will 

be potentially affected by pH, redox condition and the salinity of incoming ground 

water. This produces a progressive neutralisation of the alkaline nature of the 

cement paste, removing alkalis and dissolving portlandite, i.e. calcium hydroxide 

and calcium silicate hydrate (C-S-H) gel [27]. Not surprisingly, the interactions 

between the nuclear waste, cement, steel container, ingress of pore water and 

leaching of radionuclides, have received extensive studies [28-32] . However, 

most of these studies are of short duration and have used distilled/deionised (d/d) 

water which characterises the concentration gradient, diffusion leaching type of 

studies. The influence of salinity and presence of ions in leachate is not well 

known despite the fact that several countries (Canada, Finland, Sweden, possibly 

UK) are planning to emplace the waste in GDF which may likely have ingress of 

saline water and/ or brine.   Few of these studies have been carried out using 

accelerated leaching [33-37] . Although such studies have generated data on long 

–term leaching scenario, they do not replicate the actual leaching process that 

might take place in GDF facilities. There have been few studies carried out on 

leaching concrete material in the presence of aqueous medium with high salinity 
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and ionic concentration, which may represent the ground water leaching scenario 

in GDF. However, such studies have been carried out cementitious materials 

which have been subjected to harsh marine environment [30].  There are few 

studies that have addressed the implications of microbial activity on pore water 

chemistry and hence on the mobility of radionuclides under investigation. Those 

studies that have included microbial activity have tended to concentrate on the 

implications to encapsulated spent fuel in a thick-walled copper cylinder (direct 

disposal) [38].  

The use of cement and potential effect of groundwater and minerals has raised 

many concerns and assurance is needed in terms of their integrity and 

subsequent release of radionuclide from the encapsulated waste form.  Although 

cement (in the form of concrete) has been used for underground constructions 

for many years, scant information is known about its long-term integrity as an 

encapsulated wasteform, the nature of chemical interactions between hardened 

cement paste and groundwater in particular, saline water and brine. Although the 

durability of the cementitious material has been confirmed over periods in excess 

of 100 years; has primarily been designed for civil engineering purposes. The use 

of OPC was not designed for the purpose of waste encapsulation for disposal.  

The vulnerability depends on both internal properties of the material and the 

external environmental factors that contribute to the degradation process. 

Degradation of concrete can take place by various mechanisms such as alkali -

silica reaction, carbonation, chloride or sulphate attack, leaching, abrasion, 

corrosion etc. [16].  
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1.5.1 Dissolution in ground water 

Cement paste degradation takes place due to combined effect of diffusion-

transport effects and chemical reactions. One of the major factor contributing 

towards the dissolution of hardened cement paste is its porous nature, in which 

case a large amount of water flow may be able to dissolve the sparingly soluble 

components present in the cement paste. This transportation is diffusion 

controlled when the pore size distribution of cement paste is small. As the volume 

of the flow paths increases it becomes convection controlled  [39, 40]. 

The difference in the concentration causes the net transfer of ions from higher 

concentration (concrete) to lower concentration (aqueous solution) in the case of 

diffusion. This relevant property of concrete is referred to as diffusivity [16].  

Steady-state diffusion is normally assumed to be the controlling step when 

determining the leachability of nuclear wastes, when encapsulated into 

cements/binders, hence Fick’s law is assumed to be the rate controlling 

mechanism for release [41].  

This diffusion is best described by Fick’s Law; where no pressure head exists and 

the magnitude of mass transfer by diffusion is dependent on the concentration 

gradient across the medium concerned:  

  

 Where  

F = mass flux (mass of solute per unit area per unit time)  

D is diffusion coefficient (area per unit time) and  

dD/dx is the concentration gradient. 
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The dissolution and effective migration of encapsulated cations/radionuclides 

from cement matrix to surrounding aqueous media will take place once the 

dissolution of C-S-H gel and change in pH takes place. 

 

 

Figure 1.4 Predicted evolution of pore solution pH during leaching by pure water 

[42]. 

 

The chemical changes taking place due to the movement of water into the porous 

structure can be explained by using Figure 1.4. The contents of pore water is 

highly charged with Na+ and K+ and Ca2+ and OH-, this creates a concentration 

gradient between a aqueous solution with low mineral content and interstitial 

solution. The movement of water into the hardened cement paste will bring down 

the pH by initially dissolving the most soluble species i.e. Na+ and K+ which 

controls the pH of the pore solution above 13 at initial stages of dissolution. This 

stage will produce high plume of pH in the surrounding ground water (if stagnant 

conditions exist). The stability and the thermodynamic equilibrium of pore solution 

with its solid is disturbed once the pH of the pore water is changed [26].The 
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presence of strong alkali (NaOH and KOH) are dominant in pore water solution 

which gives the pH values of 13.5; at high pH, the solubility of Ca2+ is controlled 

by Na+ and K+ in the pore fluid. Once the alkali have been leached out, the pH of 

pore fluid which comes down to 12.5 is controlled by Ca(OH)2 [37]. The relatively 

high content of unreacted Ca(OH)2 in the hardened cement paste maintains this 

pH for a longer time. The presence of Mg2+ and CO32- ions in the ground water 

may precipitate to give brucite (Mg(OH)2). Once all the unreacted Ca(OH)2 has 

been removed, the Ca/Si ratio falls down to about 1.8 from its initial value of 4.5. 

At this point depending on the Ca2+ and SiO44- content of the leachate, two 

possible processes may take place: 

(a) In low salinity ground water or distilled water, slow congruent dissolution of 

CSH takes place which drops the pH continuously to around 10.8, until all the 

CSH is removed. This process takes considerable time. 

(b) The ground water containing significant amount of Ca2+ and SiO44-; 

incongruent dissolution of CSH takes until Ca2+ and SiO44- are completely 

removed. The presence of Ca2+ and SiO44- may form minerals such as ettrigent 

and brucite, until the buffering capacity of the cement is consumed.  Brucite can 

form protective layers on cement paste, hence may slow down the dissolution 

process in saline ground water. The high plume of pH will persist in stagnant 

water and will influence the absorption of cations/radionuclides except some of 

the alkaline metals such as Cs+ and Sr2+ which are poorly absorbed into the 

cement [43]. 
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1.5.2 Carbonation 

Deterioration of cement paste takes place due to its reaction with carbon dioxide. 

Dissolved species of carbonate and bicarbonate react with main cement 

hydrates, i.e. calcium silicate hydrate, calcium hydroxide and various calcium 

aluminate or ferro-aluminate hydrates, in three ways, depending on its mode of 

delivery and surrounding environment [14]:  

(a) Added as an aggregate, calcium carbonate, a supplementary cementing 

material or with waste [44] 

(b) In gaseous form, as carbon dioxide from local environment [27]. 

(c) Dissolved in ground water [27] 

Carbonation of cement paste takes place in following sequential manner 

 

Ca(OH)2 (s)  + CO2(g)  → CaCO3 (s) + H2O  (1.1) 

 

Calcium hydroxide plays a predominant role in the carbonation process, however, 

other hydration products of cement such as C-S-H and unhydrated cement 

compounds can react with CO2 in following manner.  

 

CxSyHz + (x-x')CO2 → Cx'SyHz' + (x-x')CaCO3 + (z-z')H2O   (1.2) 

 

As shown in the reaction 1.2, the composition of C-S-H changes upon its 

depletion of calcium content. As the carbonation process continues, Ca:Si ratio 



 

19 
 

decreases until C-S-H is completely decalcified and finally transformed into 

calcium carbonate and highly polymerised silica gel. (1.3) 

 

CxSyHz + xCO2 → xCaCO3 +ySiO2 + zH2O (1.3) 

 

The carbonation doesn’t proceed to other hydrates until the pH has dropped 

below 12.4 [45]. 

1.5.2.1 Carbonation of unhydrated cement 

Carbonation can also accelerate the hydration process of cement paste by 

converting C3S and C2S into calcium carbonate and C-S-H, thus 

 

C3S + yH2O + (3- x)CO2 → xCSy H + (3- x)CaCO3  (1.4) 

 

C2S + yH2O + (2- x)CO3 → xCSy H + (3- x)CaCO3 (1.5) 

 

Carbonation affects the physical properties of the hardened cement paste. The 

conversion of soluble cement hydrates to relatively insoluble phases, leads to 

alteration of microstructure of hydrated paste [46, 47], thus reduces the 

permeability and hence leaching of some of the waste form [48]. However, the 

dissolution of Ca(OH)2 and C-S-H buffer brings down the pH of pore solution. 

This may increase the solubility of some of the cations/radionuclides from 

encapsulated waste form [49]. Reference studies have shown that the totally 

carbonated layer will have a pH of about 8.3 [50]. Carbonation may also lead to 
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shrinkage due to the evaporation of waste generated from the carbonation 

reaction [45], hence cracking of the cement paste. This would influence the 

leaching and mobilisation of encapsulated waste form. 

1.5.3 Chloride interaction 

The interaction of chloride and cement has received significant attention [51, 52] 

in relation with corrosion of steel reinforced concrete materials. Possibilities of 

chloride in concrete arises if it is made up with seawater or saline groundwater or 

use of sea-dredged aggregates. Chloride present in the mixture generally enters 

the AFm (ferroaluminate) phase with 60% of the Cl- bound to the cement paste 

as monochloroaluminate and the remainder dissolved in the pore water [53, 54]. 

When Cl- in combination with the AFm phase, results in the formation of Friedel’s 

salt (4CaO.Al2O3.(Cl,OH)10), above 40°C, below 20°C, the trichloride complex 

(AFt) is formed. The degradation by chloride ingress mostly affects the corrosion 

of reinforcement steel bars in the concrete [16]. The high pH of the pore water 

maintains the passivation of steel. However, chloride ion in the presence of water 

and oxygen destroys the protective oxide film; causing chloride induced corrosion 

of steel [27, 54]. 

1.5.4 Reaction with sulphate ion 

Interaction with sulphate ion with cement paste takes place as internal sulphate 

(derived with in the cement matrix), as well as external sulphate attack. Sulphate 

is commonly found in ground water with calcium, magnesium and to lesser extent 

sodium [27, 30]. There have been several studies on sulphate attack on cement 

paste leading to physical expansion, leading to cracking and spalling. Both the 

mechanisms, internal and external sulphate attack will produce gypsum from the 
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reaction with free Ca(OH)2. The gypsum produced may further react with C-S-H 

to produce ettringite and may degrade the cement paste [54].  

1.5.5 Organic interaction 

The other possibility of affecting the pH of cement paste is interaction of  

encapsulated organic material and subsequent production of HCO3-, from the 

degradation of cellulose and gloves and HCl, due to radiolysis of chlorinated 

polymers such as PVC, will react with OH groups and lower the pH [54, 55], hence 

affecting the stability of encapsulated waste. 

1.5.6 Microbial degradation 

The use of cementitious material in the building industry goes back for centuries. 

Thus, there is a relatively large body of data available on the susceptibility of 

concrete to microbial attack [56]. One of the concerns raised is the 

survival/existence of a viable population of microorganisms at a pH value 

equivalent to that of repository concrete that  can possibly influence  by its 

performance by degrading activities such as acid production [57]? Research 

evidence has shown that extremophiles can survive at a pH as great as 12 in 

laboratory conditions [58]. A number of studies  on underground sewers , roads 

and bridges, have shown that that the integrity of concrete over extended 

timescales can be influenced by microorganisms [59, 60]. These studies have 

shown the presence of sulphur-oxidizing bacteria such as Acidithiobacillus 

thiooxidans, which produces sulphuric acid under aerobic conditions through the 

oxidation of reduced sulphur, sulphide, and thiosulfate compounds [60]. The 

sulphuric acid produced dissolves the C-S-H and portlandite cement constituents 

[61]. Another example of acid-mediated degradation, is that mediated by acid 
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nitrifying bacteria that use inorganic nitrogen compounds (i.e., ammonium, 

nitrite). However, there will be a limited supply of oxygen in GDF in contrary to 

sewers and roads and bridges. It is envisaged that , oxygen would no longer be 

available once utilised for corrosion, mineral dissolution and microbial redox 

reaction [56]. Microbial growth in any habitat will depend on the availability of 

nutrients and is  usually controlled by growth-limiting factors such as the presence 

of the  macronutrients, carbon, nitrogen and phosphorus [62]. 

1.5.6.1 Micro-organisms involved in the biodegradation of concrete 

The deterioration of cementitious material is caused by biotic and abiotic factors 

and can be categorised by their mechanism of attack. A summary of microbial 

degradation of concrete is shown in Figure 1.5. The first report of concrete 

degradation dates back to 1900 [63] by Olmstead and Hamlin who reported the 

corrosion of concrete sewage pipes due to their exposure to the hydrogen 

sulphide gas. Early workers reported that this corrosion resulted from a chemical 

reaction between the sewage and the walls of sewage pipes. A range of chemical 

by-products/species produced as a result of microbial metabolism have a 

detrimental impact on cementitious material. 
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Figure 1.5 Microbial deterioration of cementitious material 
 

 Sulphur Species 

Microbial metabolism plays an important role in mineral transformation, and 

global cycling of the elements throughout nature by Sulphur bacteria, have a 

significant role in metabolising sulphur (Figure 1.6). Depending on their metabolic 

activities, sulphur bacteria are classified as sulphide oxidising bacteria (SOB) and 

sulphate reducing bacteria (SRB). Sulphur is a major microbial metabolite of 

Sulphur bacteria.  

(a) sulphide oxidising bacteria (SOB)  

Sulphur oxidation involves the oxidation of reduced sulphur compounds, such as 

sulphide, inorganic sulphur, and thiosulfate to form sulphuric acid. SOBs, 

chemolithotrophs , are able to carry out a reaction, coupling the reduction of 

carbon dioxide to sulphide oxidation; reduced sulphur compounds are converted 

to sulphite and subsequently converted to sulphate by the enzyme sulphite 

oxidase [64]. These organisms are blue-green or purple as a result of presence 
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of photosynthetic pigments. Beggiatoa, Chromatiium and Chlorobium are some 

of the examples of sulphur oxidising bacteria.  

(b) The sulphate reducing bacteria (SRB) 

SRBs are a group of anaerobic bacteria commonly involved in degradation of 

materials such as concrete structure and metals. As a result of their unique form 

of respiration, these group of organisms use sulphur as biological pathway and 

expel the resulting hydrogen sulphide as waste. The resulting hydrogen sulphide 

may combine with oxygen to form a product which may be utilised by aerobic 

Thiobacilli, this may eventually lead to the formation of sulphuric acid which can 

be detrimental to concrete [59]. 

 

 

Figure 1.6 The microbial sulphur cycle [65] 
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 Nitrogen bacteria 

Nitrogen is a major microbial metabolite and microbial nitrogen transformations 

have the potential to significantly influence the degradation of concrete [59, 65]. 

These bacteria form nitric acid, and obtain energy needed for carbon dioxide 

reduction by a two-step (Figure 1.7). Some of the examples of nitrifying bacteria 

are Nitrosomonas, Nitrosovibrio and Nitrobacter [59]. 

 

 

Figure 1.7  The microbial nitrogen cycle [65] 

 

 Heterotrophic Fungi 

A wealth of information exists on the weathering and deterioration of concrete by 

hyphal penetration and bio- corrosive activity of heterotrophic fungi [60, 66-69]. 

The production of organic acids by fungi play an important role in degradation of 

cementitious material. Some of the examples of fungal genera known to degrade 

concrete structures are Exophilia, Penicillium, Aspergillus, Cladosporium, 

Alternaria, Aureobasidium, Ulocladium and phoma [68, 69].  
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1.6 Potential for microbial activity under conditions within GDF 

Any GDF will have a period before closure and post-closure. The pre-closure 

phase involves storage and packaging at a nuclear facility, which will then be 

transported to an ILW surface handling facility and subsequently placed in the 

underground repository in the GDF awaiting closure/backfilling. The period prior 

to closure may last from ten years to few hundred years. Post-closure period will 

involve backfilling and sealing, during which no further human management will 

be involved.  

A recent review on Microbiologically Influenced Corrosion (MIC) induced in waste 

packages by Humphreys et al. [70], indicated that the UK’s geological 

environment that could plausibly hold a GDF will have an indigenous population 

of microorganism. Although microbes will be present in both pre- and post- 

closure phases, depending upon the particular conditions they may not be 

metabolically active [65]; microorganisms will vary spatially and temporarily. The 

report also talks about presence of SRBs in severely hyper-alkaline conditions 

within “supercontainers”. The report further says that that micro-organisms will 

occur within at least some parts of most waste forms, on the surfaces of metal 

waste canisters and within the natural environment of a GDF, possibly as a 

dormant form of bacteria. These micro-organisms may be active to greater or 

lesser degrees, depending upon the particular physic-chemical conditions within 

the waste, engineered barrier or rock-water system within which they occur [65].  

1.6.1 The potential microbial activity during pre-closure period 

It is likely that the potential microbial activity will be present during the pre-closure 

phase of GDF, in particular within ILW areas, rather than the HLW.  areas 
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Absence of free water, organic matter and heat producing high radiation from a 

HLW, may restrict the growth of some microorganism, however, evidence has 

shown the presence of viable population of micro-organism in the nuclear ponds 

which confirms that some of the micro-organism have high resistance to radiation 

[71-73]. Most aerobic microbial activity will occur during pre-closure phase and 

may subsequently affect the handling and transport of waste packages. During 

pre-closure period, aerobic degradation will be encouraged involving fungi and 

acidophilic bacteria, producing organic acid, from cellulose degradation, very 

unlikely that the GDF will become anaerobic during this phase [65]. The presence 

of artificial light may influence the phototrophic microbial growth (algae and 

photosynthetic bacteria) in the presence of moisture, eventually resulting in 

biofilm formation and this may influence the anaerobic microbial activities. The 

potential source of sulphate would likely be ground water, which will influence the 

SRB and SOB growth. Summary of initial screening of the ILW pre-closure 

environments (Table 1.6) [65] indicates, in all the three phases of pre-closure 

(interim storage, pre-backfilling and post-backfilling pre final) microbes, a source 

of sulphate and energy will be present. 
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Table 1.6 Initial screening of the ILW pre-closure environments [65] 

 Microbes 
Present 

Sulphate Present Energy Sources 

Interim 
Storage 

Yes - wide range 
of organisms 
dominated by 
environmental 
isolates 
transported by 
air, human contact 
activity and 
associated with 
the waste. 

Low levels of 
sulphate present 
external to the waste 
form. Potential 
sources include 
vehicle emissions. 
Potential sulphate 
sources present in 
waste. 

The energy 
sources available 
to drive microbial 
activity include: 
light, organic waste 
components; 
organic additive in 
the encapsulants; 
reduced N and S 
compounds in the 
waste; corrosion; 
organic 
contamination e.g. 
diesel fumes. 

Pre- 
backfilling 
GDF 
Storage 

As above plus 
some potential 
contamination by 
microbes present 
in the rocks and 
groundwater. 

As above. 

Post- 
backfilling, 
pre- final 
GDF closure 

As above plus 
greater potential 
contamination by 
microbes present 
in the rocks and 
groundwater. 

As above plus 
sulphate available in 
the groundwater and 
associated with the 
rocks (which may be 
mobilised by 
groundwater). 

As above, but no 
light or further 
organic 
contamination from 
operations (e.g. 
from diesel fumes). 

 

 

1.6.1.1 Microbiologically Induced Corrosion (MIC) and biofilm  

Localised corrosion/degradation is initiated by aerobic microorganisms when they 

form biofilms.  Biofilms are a heterogeneous structures that, trapping dirt and 

other particulate materials, increasing the disfiguring effects of the biofilm and 

making the structures more difficult to clean [68]. Biofilm consist of consortia of 

micro-organisms embedded in extracellular polymeric matrix (EPM). The 

polymers are generally of polysaccharides which act as a glue for trapping dirt 

and other particulate matter [60, 68], thus creating a wide variety of 

electrochemical environments. In addition the sedentary or sessile (attached) 
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organism can utilise different carbon sources than free floating (planktonic) 

organism and produce different degrading enzymes and may become more 

resistance to anti-microbial agents. Studies have shown that biofilms can be 

formed under a variety of conditions including those with low nutrition levels [74] 

including spent nuclear fuel ponds [75]. Numerous features and biofilm formation 

are described by Busscher and Van der Mei [76].  

A relatively large variety of micro-organisms may affect overall performance of 

deep GDF [65] that may facilitate: 

(a) potential for direct damage to storage container by creating corrosion-

aggressive environment, hence 

(b) deterioration of concrete and engineered barrier system (EBS) 

components and this may 

(c) influence the mobility and transfer of leached cations/radionuclides from 

near to far-field environment. 

1.6.2 The potential microbial activity during post-closure period 

The post-closure period will initially have a period of oxidation, this will occur 

immediately after GDF closure and the availability of reduced sulphur and 

nitrogen compounds. The late post-closure period will be anaerobic, where 

sulphate reduction to sulphide may lead to increased degradation of concrete. 

The presence of ground water may contribute significantly as a source of sulphate 

[56]. The potential source of sulphate would be from buffer and backfill material 

which will influence the activity of SRBs and biofilm formation. In an anaerobic 

environment, microbes can generate both inorganic (sulphuric and nitric acids) 

and organic acids e.g.  (acetic acid) [61]. The summary of potential organic and 
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inorganic acid generated by microorganisms is listed in Table 1.7. These acids 

produced by micro-organisms are detrimental to integrity of cement paste in 

particular CSH phase. Studies by BNFL scientists demonstrated that sulphur-

oxidising bacteria (SOB) could degrade concrete structures by up to 8mm/year. 

Two of the supervisors (Eccles and Morton) involved with this project patented 

this work [77] . 

Table 1.7 Potential organic and inorganic acids produced by microorganism 

[65]. 

Inorganic Acids 

 

 

 

 Organic Acids 

Substrates Products  Substrates Products 

Reduced nitrogen 
and sulphur 
compounds e .g . 
NH4, mineral 
sulphides, and 
elemental sulphur. 
Nitrogen and sulphur 
containing wastes 
e.g. ion exchange 

 

Nitric and 
sulphuric 
acids. 

 Dissolved organic carbon, 
alkaline cellulose 
d egradation products e.g. 
Iso- saccharinic acid (ISA), 
organic waste components 
e.g. cellulose, cement   
additives e.g. plasticisers, H2 
and CO2. 

Volatile  fatty 
acids e. g. 
acetic, 
propionic, 
butyric. 

 

 

1.7 Cations/radionuclides of interest 

The selection of the three cations/radionuclides in the present research was 

based on their chemistries, importance in nuclear waste management and 

interactions with cement paste [78, 79]. 

1.7.1 Strontium  

Strontium is an alkaline earth metal, a mirror of calcium [80]. 90Sr is a by-product 

of the fission of uranium and plutonium in nuclear reactors. It is classified as one 

of the long lived component of nuclear waste, with a half-life of 30 years. Due to 

its similarities with Ca2+, it is easily taken up as a calcium into the human body. 
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This raises a concern if radioactive 90Sr is absorbed. In this case, it concentrates 

in teeth and bones and continues to emit radiation causing severe damage. In 

cement paste, Sr2+ forms sparingly soluble strontium or calcium/strontium 

carbonate or sulphate, which is well retained in the cement matrix. Reference 

studies have shown that the hydration products of C4AF and C3A can completely 

accommodate low Sr2+ levels [80].  

1.7.2 Caesium 

Caesium, alkali earth metal is very similar to potassium and sodium. It is 

accumulated in biological system by potassium pathways. 137Cs is a major 

constituent of nuclear spent fuel and has a relatively long half-life of 30 years. 

Chernobyl accident released large amount of 137Cs into the environment and 

subsequent research has highlighted the fate of caesium in the natural 

environment [67]. Caesium ion is highly soluble in the pore water of hardened 

cement paste [79] and thus is a matter of concern  in regard to encapsulation of 

wasteform containing caesium. 

1.7.3 Cobalt 

Cobalt is an essential transition metal having biological function for growth of all 

organism, in particular cyanocobalamin, vitamin B12. 60Co is generated in nuclear 

facilities by neutron bombardment of steel, concrete and graphite. It is a short-

lived radionuclide with a half-life of 5.27 years. Studies have reported that 

ettringite accommodating Co2+ at the M2+ site in the crystal structure [81], while 

other studies have indicated that it was strongly sorbed onto CSH gel [82]. 
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1.8 Aims and objective of project 

Predicting the diffusivity of radio-nuclides from encapsulated waste during 

disposal is a crucial consideration in selecting an immobilisation technique. Low 

matrix solubility confers minimal release of radio-nuclides. The diffusivity or 

leaching behaviour of cement encapsulated radioactive waste is crucial to ensure 

the overall safety of a storage/disposal system. Experiments to identify leaching 

behaviour of cementitious waste forms and to demonstrate their acceptance for 

storage and disposal have been undertaken. These have included both 

laboratory-scale [36, 83] and larger-scale studies that try to replicate conditions 

similar to those expected in a disposal environment [84]. For these latter studies 

the long term performance of the waste form and implications to the near-field 

environment is needed.  

The earlier cement waste form experiments were in sixties [84] that used water 

as the infiltration medium; since then the experiments have become more 

representative of conditions both waste form and geological. Nonetheless very 

few studies have addressed the implications of microorganism activity on the 

diffusivity of radio-nuclides from encapsulated waste.  

This project evaluates the diffusivity of strontium, caesium and cobalt when added 

as inactive forms to OPC:BFS and PFA:OPC formulation as their chlorides and 

for strontium when added as chloride and carbonate. 

The objectives/aims of this project were to measure the rate of diffusivity of three 

cations simulating their fission products. These measurement would require 

studying the influence of: 

(a) Cement paste composition (BFS:OPC and PFA:OPC) 
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(b) Hydration of cement  

(c) Added chloride salt to the makeup water 

(d) These salts on pore water composition 

(e) The design of the diffusivity experiments e.g. open and closed systems 

(f) The test solution composition e.g. distilled water (DW), concentrated 

Sellafield pore water (CSPW), diluted Sellafield pore water (DSPW) and 

John Innes soil solution (JISS). 

 



 

 
 

Chapter 2:  Materials and methods 
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2.1 Materials and chemicals 

The chemicals utilised in the experiments (listed below) were analytical grade 

and purchased from Sigma-Aldrich (UK). The Ordinary Portland cement (OPC), 

Blast Furnace Slag (BFS) and Pulverised Fly Ash (PFA) were kindly supplied by 

National Nuclear Laboratory, Preston Laboratory. These materials were received 

without detailed specification sheets and therefore production batch numbers, 

date of manufacture etc. cannot be reported. However, the analysis of as 

received OPC, BFS and PFA are given in Table 4.2 and Table 5.2  

2.2 Preparation of cement paste samples 

Cement paste samples were prepared using two different types of additives. 

These included, Blast Furnace Slag (BFS) and Pulverised Fly Ash (PFA) in order 

to study the comparative leaching pattern and capability of retention of 

encapsulated inactive cations representing strontium, caesium and cobalt 

radionuclides. A cement paste with consistency w/c = 0.37 was prepared by using 

a similar methodology to that employed by the National Nuclear Laboratory in 

Preston [85]. This was achieved by mixing required quantity of Ordinary Portland 

Cement (OPC), additives (BFS or PFA) and water or solutions of inactive cations 

(Sr2+, Cs+ and Co2+) as chloride or carbonate, in a mixer as shown in Table 2.1. 

The required percentage of cobalt chloride solution i.e. 3% could not be achieved 

because of the solubility of cobalt chloride in the water.  The metals were selected 

based on the content of the major radionuclides present in the nuclear waste and 

also for their different chemical properties. A required quantity of distilled water 

or cation chloride/carbonate solution was poured into the mixer (Rachel Allen 

stand mixer™, 650 watts) container. OPC was added to the mixer container in 

increments of one-fifth of total quantity taking 1 minute for each addition followed 
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by BFS to the OPC slurry in a similar manner to OPC addition. The final, paste 

after stirring for a further 2 minutes, was then spooned into small plastic bottles 

of 60 ml capacity (CPS dimensions 32 mm dia by 50 to 57 mm height), tapped 

several times to remove entrapped air bubbles and finally capped and agitated 

for a further for 4 minutes to ensure uniform mixing and minimal air entrapment.  

A total of 9 sets of each BFS:OPC and PFA:OPC cement paste samples were 

prepared, i.e. (i) control; (ii) ≈3% strontium chloride; (iii) ≈0.3% strontium chloride; 

(iv) ≈3% caesium chloride; (v) ≈0.3% caesium chloride; (vi) ≈3% strontium 

carbonate; (vii) ≈0.3% strontium carbonate; (viii) ≈1.3% cobalt and (ix) combined 

metal chloride (≈3% SrCl2, ≈3% CsCl and ≈1.3% CoCl2).  After 7 days the caps 

were removed to allow the bleed water either to evaporate or re-adsorb. After 45 

days, the cement paste samples were removed by gently tapping the base of the 

plastic bottle and left standing in the laboratory (Figure 2.1, Table 2.2) until 

employed in the diffusivity experiments. Detailed summary of sample dimensions, 

cation concentration, and specific gravity of cation solution of each CPS is 

mentioned in appendix 2.1 and 2.2. 

Table 2.1 Cement paste mixture proportions 

CPS BFS OPC PFA Water Total mass 
  (Kg) 

BFS:OPC 1.2 0.4 0 0.59 2.19 
PFA:OPC 0 0.4 1.2 0.59 2.19 
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Figure 2.1 (a) freshly prepared CPS, (b, c) caps were removed after seven days 

(d) samples left open for further curing 

 

Table 2.2  Dimensions of cement paste samples (CPS) 

  Height (cm) Diameter (cm) weight (g) 

CPS 5.0 - 5.7 3.2 77.7 -  100.6 
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2.3 Analysis of cement materials and hardened cement paste 

Analysis of the whole CPS (cylinder) was not undertaken, but the composition of 

cation/anion was estimated from EDAX analysis of OPC, BFS and PFA. 

However, to measure the uniformity of the samples, they were dissected into 

three equal sections, i.e. top, middle and bottom (Figure 2.2), using a tile cutter 

(Erbauer ™ 750W Tile Saw 230V, UK). The sectioning was carried out on three 

different occasions during the course of this research, prior to the start of new 

diffusivity experiments, to understand the pore size distribution along the vertical 

column of cement cylinder and also to examine the distribution of metal ions.  

 

 

 

Figure 2.2 Dissected CPS named as top; middle bottom; side and base layer for 

elemental analysis. 

2.3.1 Analysis of OPC, BFS and PFA 

Elemental analyses of cement materials (OPC, BFS and PFA) were carried out 

using a Scanning Electron microscope/Energy dispersive X-ray spectroscopy 

(SEM/EDX). A Quanta 200™ SEM with EDAX™ EDX system was used for 

SEM/EDX analysis at the accelerating voltage of 20 kV. Each material was fixed 
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to an adhesive carbon pad attached to an aluminium stub. These stubs were 

placed upon the stage in line with the electron beam into the vacuum chamber of 

the SEM and the analysis was carried employing a magnification of 140x. EDX 

analysis was carried out by using a semi quantitative programme Genesis EDAX 

SEM Quant ZAF version 3.51. 

2.3.2 Chemical analysis of CPS 

Crushed CPS of ≈100 mg from each layer was boiled in 25 ml of concentrated 

HNO3 at 130°C for 30 minutes. The resulting solution was diluted with de-ionised 

water to 500 ml in standard volumetric flask. The solution was analysed by 

Inductively Coupled Plasma Mass Spectrometry (ICP-MS, Thermo X series™, 

UK) for Na+, K+, Ca2+, Sr2+ and Cs+.  

2.3.3 Water content of CPS 

The water content of the CPS was measured as follows: Approximately 1 gram 

of crushed CPS from each section was weighed using a calibrated balance and 

placed in a crucible in a conventional oven for (≈ 14-16 hours) at 105°C. The dried 

sample was then transferred to desiccator before measuring the weight loss. The 

difference in weight (before and after) was calculated and expressed as the water 

content of CPS. 

2.3.4 Surface and pore-size area 

The nitrogen adsorption method (BET) [86] which is based on the physical 

adsorption of gas molecules on a solid surface, was employed to measure the 

surface area and porosity of cement paste samples. There are numerous 

methods used for the surface area and porosity measurements [87]. The most 

common method is BET method based on the work of Brunauer, Emmett, and 



 

39 
 

Teller [86]. The basic concept behind the gas sorption technique is physical 

adsorption of gases or vapours on surfaces of solids and to the walls of the pores 

within the studied solid.  The surface area is determined by the amount of gas 

absorbed at the given pressure. The standard BET equation is written as: 

 

Where  

Prel is the pressure of the gas in equilibrium with the specimen P, relative to the 

saturation vapour pressure P0. V is the amount of gas adsorbed at pressure P. 

CBET is a constant and Vm is the amount of gas required for a monolayer of 

coverage. The specific surface area, S (m2/g), may then be calculated using 

following equation  

 

Where Nm is the number of gas molecules in one monolayer and may be 

substituted for (Vm/v) where v is one molecular volume. σ is the cross sectional 

area of a gas molecule and m is the mass of the specimen.  

To determine the surface area and porosity, ≈ 1.5 grams of crushed cement paste 

sample from each section was weighed using a calibrated weighing balance and 

placed in a sample tube and degassed overnight at 105˚C [88], until the vacuum 

reached 5 mm Hg. After degassing, samples were weighed and placed in the 

analysis chamber (Micrometric ASAP 2010™). The nitrogen BET surface area 

and pore size area values were calculated automatically by the system software 

and reported as m2/g. 
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2.4 Experimental setup and procedure 

2.4.1 Closed circuit diffusivity system 

Dynamic diffusivity measurements of cations and two anions from the prepared 

cement paste samples were achieved using the following experimental 

arrangement. A polypropylene diffusivity vessel (d-v) and polypropylene reservoir 

vessel (r-v) each of 120 ml volume, were connected via plastic tubing to a 

peristaltic pump (Watson Marlow™ 323 series).  Each specimen (3.2 X 5. ± 0.4 

cm) was placed inside the d-v containing a plastic platform to prevent the cement 

paste sample blocking the bottom liquor inlet. A polypropylene air-tight lid with a 

top outlet connected the d-v to the r-v as illustrated in Figure 2.3. A constant flow 

rate of 5ml per minute of test solution over the cement paste sample was 

maintained using the peristaltic pump.  The pump was capable to supplying test 

solution to 5 d-vs. The vessels were placed on wooden racks i.e. without stirring, 

shaking or agitation. Sampling of the test solution was achieved via the r-v at 

planned time intervals, at seven day intervals 20 ml of test solution was pipetted 

from all the r-vs and an equivalent volume of test solution was added to maintain 

constant volume in the circuit (200 ml). This volume was sufficient to ensure the 

cement paste sample was completely submerged at all times.  
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Figure 2.3 Experimental setup of closed circulating leaching system showing 

diffusivity vessel containing CPS and reservoir vessel. 

 

2.4.2 Open circuit diffusivity system 

Open circuit diffusivity studies were carried out using tap water; which was 

continuously supplied to the diffusivity vessel. A constant pump flow rate of 10 

rpm (equivalent to 5ml per minute), was maintained using a peristaltic pump. Test 

solutions were collected in 40L plastic reservoir vessel. Sampling of test solutions 

was carried out after every 3rd and 4th day; the remaining test solution was 

discarded due to the limited capacity of the reservoir (Figure 2.4). Analysis of tap 

water was carried out using ICP-MS and Ion chromatography for cations and 

anions respectively, which was cross checked with water analysis data published 

by United Utilities for Preston area code PR1. 
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Figure 2.4 Experimental setup of open leaching system showing diffusivity vessel 

containing CPS and reservoir vessel. 

 

2.4.3 Nature of test solution 

Diffusivity studies were carried using five different types of test solutions: distilled 

water (DW); diluted Sellafield pore water (DSPW); concentrated Sellafield pore 

water (CSPW), tap water and John Innes No 3 soil solution (JISS). 

2.4.3.1 Preparation of simulated Sellafield pore water 

The simulated pore waters, diluted Sellafield water (DSPW) and concentrated 

Sellafield pore water (CSPW) were prepared in accordance with compositions 

reported by King et al. given in Table 2.3 [65]. The CSPW was prepared by 

dissolving the salts in de-ionised water using the following recipe: MgCl2 (29 

mmol/L), CaCl2 (7.5 mmol/L), Na2SO4 (51.15 mmol/L), Na2CO3 (0.35 mmol/L), 

NaCl (3060 mmol/L) and KCl (8.40 mmol/L). To prepare DSPW, 1 ml of stock 
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CSPW solution was diluted with de-ionised water to 1L in standard volumetric 

flask.  

Table 2.3 Nominal composition of the test solution used.  

    1 2 
  Concentrated  Diluted  

Parameter Units 
Sellafield pore 

water 
Sellafield pore 

water 
  (CSPW) (DSPW) 
  Sellafield  Sellafield 
    BH3, DET1 BH9B, SPFT3 

pH pH 6.8 6.8 
Na+ mg/L 71600 19.3 
K+ mg/L 327 1.47 

Mg2+ mg/L 696 13 
Ca2+ mg/L 300 40.7 

SiO4
4- mg/L 2.67 5.24 

Cl- mg/L 108000 14.5 
SO4

2- mg/L 4910 4.01 
 

 

2.4.3.2 Preparation of John Innes Soil Solution (JISS) 

The John Innes soil solution was prepared by following protocol. Approximately 

5 grams of John Innes no 3 soil compost was suspended in 1L of deionised sterile 

water. This soil suspension was agitated for 2 minutes and allowed to settle 

overnight, which was then filtered through glass wool. The viable count of bacteria 

present in this solution was determined by using serial dilution techniques and as 

colony forming units (cfu), per ml of solution [89].  

2.5 Chemical analysis of test solutions 

2.5.1 pH measurement 

The pH values of the test solutions were measured for all sampling points using 

a HANNA™ HI 2215 pH/ORP Meter. The pH electrode was calibrated prior to 

every measurement using buffer solutions of pH 4, 7 and 10.  



 

44 
 

2.5.2 ICP-MS  

Inductively Coupled Plasma Mass Spectrometry (ICP-MS, Thermo X series™, 

UK) was used to measure the concentration of Na+, Ca2+, Co2+, Sr2+ and Cs+ 

present in test solution, using 0.1 mg/L of rhodium as an internal standard. All the 

samples were diluted with 2% (v/v) nitric acid. The instrument was calibrated 

using multielement standard solution for ICP-MS (Sigma-Aldrich, UK) (0.01 to 2 

ppm), with calibration checks and blanks run after every 10 samples to check the 

instrument drift was within 10%, if the drift was over 10% samples were rerun. All 

calibrations gave R2 values > 0.99.  

ICP-MS was tuned on weekly basis with 10 ppb standard multielement tune A 

solution (Thermo Scientific, UK). 

2.5.3 Ion Chromatography 

Ion chromatography (Dionex ICS-2000 series™, UK) was used for the 

determination of Cl- and SO42-. All the samples were diluted 20 fold in de-ionised 

water before analysis. The instrument was calibrated using Cl- and SO42- 

standard solutions (2 - 250 ppm) diluted from a stock solution (500 ppm), 

prepared from salts (KCl and K2SO4). Standards were regularly re-run (after 

every 10 samples) and if instrumental drift was > 10%, samples were rerun. 

Instrument parameters are shown in Table 2.4. 
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Table 2.4 Instrument parameters for Dionex ICS-2000 for the determination of 

Cl- and SO42- in test solution 

Instrument  Dionex ICS-2000  

Eluent 5 mM KOH 

Column Dionex IonPac ASII 

Flow rate 1 ml min-1 

Detection 50 mA current 

Temeperature 25°C 

Injection volume 25 µL 

Software Chromeleon 6.80 
 

 

2.6 General growth media for the isolation and propagation of 

microorganisms 

Media used for the general isolation of bacteria and fungi were: Nutrient Agar 

(NA), Nutrient broth (NB), Malt extract Agar (MA). Each medium was autoclaved 

at 121ºC for 20 minutes. Agar plates and slopes were prepared as required and 

stored at 4ºC until further use. 

2.7 Characterisation of heterotrophic bacterial isolates 

The bacterial isolates were tentatively identified in to broad microbial categories 

using primary diagnostic tests including their Gram reaction (positive or negative); 

morphology (rods or cocci), endospore formation (present or absent), and motility 

(by hanging-drop preparation) [90]. Where possible all isolates were sub-cultured 

and stored on slopes for future work.  

 



 

46 
 

2.8 Characterisation of fungal isolates 

The characterisation of fungal isolates was achieved by examining the colony 

morphology, hyphal nature and the sporing structure using lactophenol cotton 

blue (LPCB) wet mount technique [91]. The identification of fungi was carried out 

by Professor L.H.G Morton, University of Central Lancashire, Preston. 

2.9 Viable counts of bacteria 

The presence of viable communities in the JISS test solution was carried out by 

using serial dilution technique and was expressed as colony forming units (cfu), 

per mL of solution [89].  

2.10 Statistical analyses 

As the data sizes were small (n< 30), the nonparametric Mann-Whitney U-test 

[92] was employed for the comparisons between two data sets of CPS and test 

solutions. Any correlations between variables were determined using the 

Pearson correlation coefficient. The statistics had an acceptance criteria of being 

statistically significant when P < 0.05. 

2.11 Diffusion coefficient  

The diffusion coefficient values for various ions at various stages of our 

experiments were calculated using semi-infinite media diffusion model. This 

model assumes that the contaminant concentration in the solid remains uniform, 

where leaching is diffusion controlled, and that the concentration at the solid-

liquid interface is zero. In addition, this model applies to a situations where the 

cumulative fractional release is less than 20% [93], which was typical of our 

datasets. 
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Using this model, the diffusivity co-efficient of cations were calculated using 

following expression 

 

where  

an = amount of cations released during time interval n;  

Ao = initial amount of cations in CPS;  

V = volume of CPS;  

S = surface area of the CPS; 

De = effective diffusion coefficient; and  

t = time period of diffusivity/leaching (days) 

 

2.12 Rate of diffusivity 

The rate diffusivity was calculated using the following expression 

 

 

The rate of diffusivity values (µg/cm2/day) quoted in the numerous graphs in the 

chapters 4 to 9 are a reflection of parametric changes on the release of cations 

and anions from the cement paste samples. These values are not diffusion 

coefficients as discussed in chapter 3 page 92 as they have not taken in to 
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consideration the initial content of the cement paste sample of the particular 

cation/anion. 

 

All the steps were taken to ensure quality of data, weighing balanced was 

checked with standard weights before weighing the sample; all the glassware 

were thoroughly washed and triple rinsed with de-ionised water and dried at 80˚C. 

Standardised aseptic techniques were followed while carrying out microbiological 

procedures and analysis.  

 



 

 
 

Chapter 3:  Cement chemistry discussion 
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3.1 Introduction 

This chapter encompasses both:  

a. a description of the fundamentals of cement chemistry to allow the reader 

to understand and appreciate some of the subtleties that influence this 

chemistry prior to engagement with the results.  

b. some results/data that have been generated in this PhD project are 

included to emphasise and underpin this understanding.  

The chapter has been formatted in this manner also for the ease of reading and 

for ergonomic reasons, i.e. to minimise the reader flicking from one chapter to 

another and to minimise duplication of data/results in more than one chapter. The 

bulk of the diffusion data is reported in subsequent chapters that are devoted to 

a specific parametric topic. 

 

3.2 Physical properties of cement paste composition 

 

3.2.1 Preparation/ composition confirmation 

The measured compositions of the as received OPC, BFS and PFA from the NNL 

were similar with other cements, slags and fuel ash used in waste encapsulation  

[94]. The cation (Sr2+, Cs+ and Co2+) concentrations selected were based on likely 

compositions of encapsulated nuclear waste [4]. Cation chloride and carbonate 

compounds were selected taking into consideration experiments involving 

influence of microorganisms on the diffusivity of cations from the CPS. Use of 

other cation compounds such as their nitrates or sulphates would influence the 
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genera and metabolic activity of microorganisms present in the test solution, not 

necessarily reflecting a realistic situation.  

The hydration of OPC and additives such as BFS and PFA has received 

significant attention for a variety of reasons. Some of these studies have 

addressed the ratio of water to cement (w/c) and its impact on the formation of 

the various phases produced during hydration, strength, porosity, tortuosity, pore 

size etc. of the cement pastes [95, 96].  Other studies have concentrated on the 

chemistry of make-up water and how for example the inclusion of salts in this 

water influences the pore water chemistry [97]. Although our studies are restricted 

to only one w/c namely 0.37 and two formulations with BFS:OPC and PFA:OPC 

(3:1 ratio for each), the composition of the make-up water has been varied due 

to the inclusion of cation chlorides (Sr2+, Cs+, Co2+ and mixture of all three) and 

largely at two concentrations (≈120 g/L and ≈12 g/L). These different water 

compositions (pore and free), their chemistries and subsequent impact on the 

diffusivity/leachability of added and inherent ions (such as Na+, K+, Mg2+, Ca2+ 

and SO42-) in BFS/PFA:OPC have been studied. It is sensible at this stage of the 

thesis to consider cement hydration, pore water chemistry and their impacts on 

cation/anion diffusivities. 

3.2.2 Hydration 

The hydration of cement is a series of irreversible exothermic chemical reactions 

between cement and water. The reaction of water with the cement in concrete is 

extremely important to its properties and may continue for many years. Portland 

cement consists primarily of calcium aluminates and calcium silicates as 

illustrated in Table 3.1and Figure 3.1 below: 
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Table 3.1 Typical composition of Portland cement with chemical composition 

and weight percentage [16]. 

Cement Compound Weight 
Percentage Chemical Formula 

Tricalcium silicate (C3S) 50% Ca3SiO5 or 3CaO.SiO2 

Dicalcium silicate  (C2S) 25% Ca2SiO4 or 2CaO.SiO2 

Tricalcium aluminate (C3A) 10% Ca3Al2O6 or 3CaO .Al2O3 

Tetracalcium aluminoferrite   (C4AF) 10% Ca4Al2Fe2O10 or 
4CaO.Al2O3

.Fe2O3 
Gypsum 5% CaSO4

.2H2O 
 

 

Gypsum controls the rate of setting and influences the rate of strength 

development.  

  

Figure 3.1 composition of cement clinker [98] 

 

Addition of water allows each of the compounds to undergo hydration process 

contributing to the final concrete product. During this process, tri-calcium silicate 

(C3S) reacts quickly and is responsible for most of the early strength (first 7 days). 

The reaction products calcium hydroxide (Ca(OH)2) and calcium silicate hydrate 

(C-S-H) phase are formed [95]. Di-calcium silicate (C2S), rather reacts slowly and 

contributes only to the strength at later times. Similar reaction products with 

significantly lower amount of Ca(OH)2 are formed in comparison with C3S 
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hydration. C3A reacts much faster than C3S and C2S liberating a large amount of 

heat during first few days. However, calcium sulphate present in the cement 

retards the hydration rate of C3A [16]. Tetracalcium aluminoferrite (C4AF) reduces 

the heat of hydration and also helps the setting properties of cement [99]. 

The hydration process takes place via two mechanisms: 

(a) through solution hydration 

(b) solid state hydration. 

These hydration reactions are illustrated in the Figure 3.2 [100] 

 
Cement grain in water 

 

 
Growth of colloidal coating calcium 
 silicate (CSH) gel 

 
Local disruption and secondary growth of 
CSH gel with some crystallisation of 
Calcium 

 
Continued growth of CSH gel  with 
infilling by CSH gel and calcium 
hydroxide crystals. 

Figure 3.2 Cement hydration process [100] 
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There are five stages of cement hydration that occur comparatively quickly (stage 

1 less than 15 minutes) to stage 5 that can occur over many years. These stages 

are reported in  

Table 3.2: The five stages of concrete curing 

 

Stage 
no 

Reaction Kinetics of 
reaction 

Chemical 
process 

Time 
period 

Illustration[100] 

1 Initial 
hydrolysis 

Chemical 
control; rapid 

Dissolution 
of ions 

< 15 
minutes 

 

 
 

2 Induction 
period 

Nucleation 
control; slow 

Continued 
dissolution 

of ions 

2 – 4 
hours 

 

 
 

3 Acceleration Chemical 
control; rapid 

Initial 
formation of 

hydration 
products 

2 – 4 
hours 

 

 
 

4 Deceleration 
Chemical 

and diffusion 
control; slow 

Continued 
formation of 

hydration 
products 

Several 
hours 

 

 
 

5 Steady state Diffusion 
control 

Slow 
formation of 

hydration 
products 

years 

 

 
 

Stage 
no 

Reaction Kinetics of 
reaction 

Chemical 
process 

Time 
period 

Illustration[100] 

1 Initial 
hydrolysis 

Chemical 
control; rapid 

Dissolution 
of ions 

< 15 
minutes 

 

 
 

2 Induction 
period 

Nucleation 
control; slow 

Continued 
dissolution 

of ions 

2 – 4 
hours 

 

 
 

3 Acceleration Chemical 
control; rapid 

Initial 
formation of 

hydration 
products 

2 – 4 
hours 

 

 
 

4 Deceleration 
Chemical 

and diffusion 
control; slow 

Continued 
formation of 

hydration 
products 

Several 
hours 

 

 
 

5 Steady state Diffusion 
control 

Slow 
formation of 

hydration 
products 

years 
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The hydration reactions of silicates, aluminates and aluminoferrites are: 

a. 2Ca3SiO5 + 11 H2O → 3 CaO.2SiO2.8H2O + 3 Ca(OH)2 
Calcium silicate hydrate 

(C-S-H) 
 

b. Ca2SiO4 + 9H20 → 3 CaO.2SiO2.8H2O + 3Ca(OH)2 
Calcium silicate hydrate 

(C-S-H) 
 

c. Ca3Al2O6 + 3CaSO4.2H2O + 26H2O →6CaO. Al2O3. 3SO3. 32H2O 
Ettringite 

 
d. Ca3Al2O6 + 6 CaO. Al2O3. 3SO3. 32H2O + 4H2O →3 (4CaO.Al2O3. SO3. 12H2O) 

Calcium mono-sulphoaluminate 
 

e. Ca3Al2O6 + Ca(OH)2 + 12H2O  → 4CaO.Al2O3. 12H2O 
Tetra-calcium aluminate hydrate 

 
 

f. 4CaO.Al2O3.Fe2O3 + 10H2O +Ca(OH)2  → 6CaO. Al2O3. Fe2O3. 12H2O 
Calcium aluminoferrite hydrate 

 

Several factors influence the process of hydration: 

• chemical composition of cement 

• cement type 

• sulphate content 

• fineness of aggregates/additives 

• water: cement ratio 

• curing temperature 

• effects of additives (BFS, PFA etc.) 

 

All of the above factors except nature of additives remained unchanged in our 

studies, however the nature and concentration of the salt added to the makeup 

water was changed as previously described. It was anticipated that using different 

salts in makeup water would affect chemical reactions with the various phases 

during curing and the formation of calcium hydroxide and hydrates. Cement 
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hydration in the presence of chloride, as is the case for the majority of our 

diffusivity experiments, Friedel’s salt (3CaO.Al2O3.CaCl2.10H2O) and Kuzel’s salt 

(3CaO.Al2O3.0.5CaSO4.0.5CaCl2.10H2O) can be formed in concrete [101]. 

Formation of these salts could be accentuated by the Cl- in the makeup water in 

our studies. Inherent Cl- present in OPC (0.11 wt%), BFS (0.26 wt%) and PFA 

(0.05 wt%) also contributes to formation of these salts (Table 4.2 and Table 5.2). 

It has been demonstrated that there is a chemical equilibrium between the 

chloride concentration in hydration products and the chloride concentration in the 

pore water solution [102]. The distribution of chloride in concrete depends on the 

total chloride content. The amount of bound chloride decreases with decreasing 

content of dissolved chloride in the pore solution [103]. It has also been shown 

that the amount of chloride in the pore solution increases significantly on 

carbonation [104].  

The CPSs that had been aged in the laboratory environment for 240 days would 

undergo some carbonation, but as this conversion is a relatively slow process 

and the depth of penetration, would be insignificant for this time period i.e. only a 

few mm.  

It is unlikely that the solid SrCO3 added at the cement paste make-up stage 

interacted during curing/post-curing with other materials/hydrates as on 

dissection of the appropriate cement paste samples, the SrCO3 particles were 

clearly visible and relatively uniformly distributed throughout the cylinder. This is 

not surprising as the SrCO3 is only partially soluble in water (Ksp =10-10). 
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3.2.3 BFS v/s PFA 

The influence of cement paste composition on the leaching of radionuclides has 

received some attention, but with the greater number of publications targeting the 

influence of the water to cement ratio [105-108]. Various compositions excluding 

the water ratio have included incorporating other minerals such as Blast Furnace 

Slag (BFS), Pulverised Fly Ash (PFA) and others to variety of superplasticisers 

[109-112]. As reported in this thesis only the impact of incorporating BFS and 

PFA with a water to cement ratio of 0.37 in cement paste samples on the 

diffusivity of simulated radionuclides (Cs+, Sr2+ and Co2+) have been addressed. 

Although the chemical composition of BFS or PFA in the cement paste ought to 

have marginal impact on the diffusivity of cations and anions from the cement 

paste samples; the data reported later indicates this is quite contrary. 

Addition of siliceous materials, such as BFS and PFA to cement has number of 

benefits such as to increase strength of the wet mix, to reduce heat evolution 

during set and to improve the durability and resistance to chemical attack 

[25]. PFA, artificial pozzolanas, contain un-melted residual minerals such as  

quartz as well as mullite, graphite, spinel which are thermally generated, 

contained within a glassy matrix [113]. These additives have a profound 

impact on the mineralogy of the cement paste composition during and post- 

curing. The engineering benefits include enhanced resistance to thermal 

cracking due to lower heat of hydration, improvement of ultimate strength, 

reduced permeability due to pore refinement, and a better durability to chemical 

attacks such as chloride, sulphate water, soil and alkali- aggregate expansion. 

Replacement of cement by BFS reduces the C3A content of the material and 

decreases the CH content and the permeability of the mortar/concrete [114]. The 
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reaction of pozzolanic material with calcium hydroxide liberated by the hydrating 

Portland cement which forms cementitious compounds generally known as C-S-

H gel can be represented as: 

C3S + 6H → C3S2H3+ 3Ca(OH)2 

3C3S + 4H → C3S2H3+3Ca(OH)2 

Ca(OH)2 + (SiO2 +Al2 O3) → C3S2H3+ other components 

Thus increases the properties of hardened cement paste. In our studies, the 

cement paste mixture preparation of PFA:OPC showed high fluidity in 

comparison to the BFS: OPC mixture. During the curing stage, loss of liquid 

(bleed) was more prominent in BFS:OPC cement paste samples in contrary to 

the PFA:OPC cement paste samples, lost considerably smaller quantity.  

3.2.4 Distribution of water 

Make-up water distributes via three different interactions: water that was 

chemically bound into the cement paste, the physically bound or “glassy water” 

that interacted with the surface of the gel pores in the paste (free water), and 

unbound water molecules that are restrained within the larger capillary pores of 

cement paste (pore water) [115]. Free water and pore water of all the cement 

paste samples were measured by weight loss at 1050C (section 2.3.3) [16]. Some 

workers have suggested that gel water may also be lost at this temperature [116]. 

Although the volume of make-up water gave a w/c of 0.37 this ratio excluded the 

moisture associated with the OPC, BFS and PFA which was measured 26.2%, 

0.2% and 0.1% respectively (Table 4.2 and Table 5.2). This moisture content 

represents in the cement paste cylinders about 4% w/w average which is 
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equivalent to 3.4 g and 3.0 g for BFS:OPC and PFA:OPC CPSs respectively. The 

actual influence of this moisture content will remain consistent throughout. This 

is due to the fact that higher percentage of moisture comes from OPC, which was 

constant along with the amount of water used in all the CPS preparations. It is 

generally accepted that a w/c of about 0.25 is required to fully hydrate the calcium 

silicates but complete hydration rarely occurs below a w/c of 0.38 [117] cf our 

ratio of 0.37 but excludes moisture levels of the original materials. At this point 

hydration will proceed leaving a small amount of water in fine gel pores. The 

hydrated cement is a porous mass of C-S-H gel comprising of both hydrated and 

unhydrated cement particles along with several different types of water. A 

chemically combined “bound water” is non evaporable and forms a definite part 

of hydrated compounds, whereas unbound water is free and evaporable present 

in the different types of pores [117]; the moisture content of the original materials 

must fall into unbound water. The hydration process will stop if there is insufficient 

water to fill the gel pores. Water also fills the capillary pores between the hydrated 

cement particles. As hydration proceeds, the formation of more hydration 

products decreases the amount of water in capillary pores and grow into the 

space while the gel water increases, reducing overall porosity. Studies have 

shown that at complete hydration, 1 g cement binds 0.23 g water and 0.19 g of 

strongly physically bound water, so complete and uninhibited hydration requires 

a w/c of ≈0.42 [117]. If the moisture levels in the original feed materials are 

included with make-up water volumes then w/c is very close to this number.  

In addition to the w/c other factors can influence porosity, in our study the 

composition of make-up water and subsequent reactions of dissolved salts with 

C-S-H gels and other hydrates were considered. Although the hydration process 



 

59 
 

of cement continues over many months if not years with implications to chemistry 

and diffusivity of ions, the distribution of make-up water within the cement paste 

samples will reach a steady state within the first few weeks of curing. It is the 

distribution of this water and its corresponding composition that can influence the 

kinetics and thermodynamics of ion diffusivity [118].  

The first partitioning of make-up water occurs due to bleed loss, which is 

dependent on both the w/c value and cement paste composition i.e. ratio of OPC 

to additives [119]. From previous concrete bleed water studies the information 

suggests that our w/c of 0.37 (but corrected to near 0.42 due to the moisture 

content of original feed materials) would be about 0.9 g [120] i.e. 0.9 cm3 which 

represents a height of about 1mm in the moulds used to prepare our cement 

paste samples. Observations after 7-day curing recorded a height of 2 to 3mm of 

bleed water on the surface of the cement paste cylinder, this difference could be 

due to the presence of cations in the make-up water as previously reported in this 

thesis. The addition of cations not only influenced bleed water volume but the 

surface of the cement paste cylinder. The loss of bleed water took shorter 

duration of time from ≈3% SrCl2 CPS in comparison with control CPS which was 

substantially slower than all other CPSs. However, there was no bleeding noticed 

from 3%SrCO3 CPS.  

Although the same ratio of water to cement/additive was used for all the studies, 

the influence of added chloride salt affected both free water value and the pore 

volume and consequently would affect the pore water value. The bound water, 

free water and pore water values calculated from the moisture content (section 

2.3.3) of their respective ≈86 g BFS:OPC CPS used in our diffusivity experiments 

are reported in Table 3.3. The corresponding values in Table 3.4 are for 
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PFA:OPC, but in this case the weight of cement paste samples was on average 

≈74g. 

Table 3.2 Water distribution in some BFS:OPC CPSs 

CPS 
Makeup water 

+ moisture 
Free water and 

pore water  
  Bound water  

(g) (g) (%)   (g) (%) 

control 26.2 11.9 45.4  14.3 54.6 

≈3% SrCl2 25.5 19.3 75.7  6.2 24.3 

≈3% CsCl 25.8 16.7 64.7  9.1 35.3 

≈1.3% Co Cl2 26.2 17.9 68.3  8.3 31.7 

combined cation 
chlorides 24.6 17.6 71.5  7 28.5 

 

Table 3.3 Water distribution in some PFA:OPC CPSs 

CPS Makeup water + 
moisture 

Free water and pore 
water 

  Bound 
water  

   (g)  (g) (%)    (g) (%) 

control 23.2 3.2 13.8   20 86.2 

≈3% SrCl2 23.2 5.6 24.1   17.6 75.9 

≈3% CsCl 22.6 3.8 16.8   18.8 83.2 

≈3% SrCO3  21 3.9 18.6   17.1 81.4 

 

3.2.5 Segregation and bleeding 

The differences in the size of particles and specific gravity may cause the 

segregation of aggregates during the settling and curing stage of  cement mixture 

[16]. Segregation is generally overcome by adequate vibration, but not over-

vibration of the cement mix, to prevent the lighter and denser materials 

partitioning [121]. As hydration processes also occur during the first phases of 

curing, the segregation of aggregates will also lead to differences in the water 
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profile. Although our cement paste samples were agitated only for 4 minutes after 

mixing the OPC, BFS or PFA and make-up water; segregation was evident on 

dissection of the cured CPS cylinders. Segregation affected cation distribution of 

both added cations in the make-up water such as Cs+ and Sr2+ but also inherent 

cations present in both OPC and BFS or PFA such as calcium (Figure 3.3). This 

segregation was also instrumental in affecting water (Table 3.3 to 3.4) and pore 

size distribution (Figure 3.4 to 3.5). As few, if any, previous studies have 

monitored segregation with make-up water composition, we postulate that the 

following sequence is likely to occur: 

(a) hydration of OPC, BFS or PFA particles, not necessarily complete 

hydration, which allows   

(b) the cations present in make-up water to be absorbed on to the surface of 

OPC, BFS or PFA particles and/or to react with these particles resulting in; 

the chemistry of hydrates being influenced, producing either increased gel 

formation and/or further insoluble matter that impacts on pore size and pore 

volume. 

From the distribution of cations i.e. enrichment in the upper regions would 

suggest that adsorption on to less dense additives occurred and/or a chemical 

reaction occurred between the added cations and hydrates to produce lighter, 

slightly more voluminous solids and smaller, denser particulate material settled 

to the lower regions affecting pore size and water distribution. This segregation 

could have been exacerbated by the density of the make-up water which ranged 

from 1.0 g/cm3 for distilled water to 1.3 g/cm3 for mixed cations (Cs+ plus Sr2+ and 

Co2+), with densities of 1.14 and 1.08 for strontium chloride and caesium chloride 

make-up water respectively. The more dense liquors will uphold the less dense 
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particles with more dense and possibly smaller particles settling to achieve a 

better packing fraction with a reduction in pore volume.  

 

Figure 3.3 Segregation of Ca2+ and added cations 

 

Figure 3.4 Micropore area of BFS:OPC CPSs 

% Sr % Ca % Cs % Ca
Sr contaminated CPS Cs contaminated CPS

Top 2.96 31.6 3.11 26.6
Middle 3.13 26.1 2.93 23.1
Bottom 1.75 16.2 2.2 21.1
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Figure 3.5 Micropore area of PFA:OPC CPSs 

 

3.2.6 Pore water composition 

The composition of pore water is influenced by: 

(a) composition of make-up water, 

(b) formulation of cement paste, 

(c) curing time. 

At initial stages, the pore water contains largely alkali hydroxides which will 

become depleted at the surface due to the recirculation of test solution in our 

experiments as the diffusivity of sodium and potassium first, but then replaced by 

calcium hydroxide liberated from the solid cement phases. This transformation 

reduces the pH of pore water from a peak of about 14.0 to around 12.0. Hydroxyl 

concentration of pore water also decreases with increasing level of cement 

substitution by PFA; this hydroxyl reduction also occurs when BFS substitutes for 

cement but the effect is less marked than for PFA because of calcium content. 
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When chloride as sodium chloride is incorporated into the make-up water the 

dissolved chloride concentration of pore water decreases with hydration over a 

short timescale i.e. 4 days and is also reduced by a higher w/c [121]. This is 

attributed to the incorporation of Cl- in to Friedel’s salt, the formation of this salt 

increases over the period of time.  

In the early stages of hydration the concentration of sodium and potassium 

cations are typically 0.05 to 0.2M and 0.1 to 0.6M respectively depending on the 

OPC formulations but for calcium ions a fraction of these concentrations (<0.05M) 

[16, 54].  Sulphur possibly as sulphate in pore water is generally a few thousand 

micro-molar concentration, with the hydroxyl concentration significant around 

0.2M. The presence of these ions affects the ionic strength of pore solution and 

hence the solubility of cement hydrates, but total dissolution of these hydrates is 

highly unlikely and presents challenges in determining which are physically or 

chemically bound. 

Understanding the pore water chemistry will assist in the interpretation of cation 

diffusivity from the cement paste samples. 

3.3 Chemistry of solid and liquid system 

In the present research, the experiments were designed to simulate two leaching 

conditions: 

(a) diffusivity occurring in stagnant water where the reaction can reach 

equilibrium and 

(b) diffusivity in mobile or stirred water where the reaction may not reach 

equilibrium. 
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Cementitious material in an aqueous solution is an excellent example of salt in a 

solvent. De-ionised water is the most aggressive aqueous surrounding for 

concrete because of its lower ionic strength. Dissolution of concrete occurring in 

stagnant water can reach equilibrium resulting in a saturated solution. The 

reaction quotient (Q) is equal to the solubility product (KSP) of respective 

reactants. The reactant with lower KSP will most likely to dissolve first in 

comparison with the reactants with higher KSP values. 

If “Q” is greater than KSP, the solution reaches to over-saturation state and the 

dissolved salt will precipitate until the reaction equilibrium (K) is reached. If the 

“Q” is smaller than KSP, there is under-saturation and the salts will dissolve until 

the KSP is reached [39].  

In the case of mobile phase, the mobile water, rate of reaction and diffusion 

velocities play an important role.  

The steps involved in the mobile phase can be represented as follows: 

(a) The time taken for water to reach the reaction place 

(b) The chemical reaction taking place (e.g. Ca(OH)2 → Ca2+ + 2OH-) 

(c) The time taken for products (Ca2+, 2OH-) to leave the reaction place.  

Step 1 and 3 are the rate determining steps and depend on the dissolution 

velocities of the reaction and products [39]. However, ion strength and common 

ion effect also influences the reaction.  

All the solid substance in hardened cement paste and in the pore solution are in 

thermodynamic balance with each other and surroundings. This balance is 

disturbed in a leaching process and the dissolution of these substance depend 

on their solubility products.  
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The soluble compounds that could have been present in the test solution and 

their respective Ksp and K values are provided in Table 3.5. The solubility product 

values are designated to the compounds which are sparingly soluble.   

Table 3.4 The Ksp and K values of possible soluble compounds present in the 

test solution 

Cation Compound Solubility 
product 

 

 solubility at 
room 

temperature  
in water 

 Equilibri
um 

constant 

 Ksp  g/L mmol/L  (K) 
Ca2+ CaSO4.2H2O→ Ca2+ + SO42- 

+2H2O 
10-4.58  2.49 14.0  10 2.3 

 Ca(OH)2 →Ca2+ + 2OH- 10 -5.2  1.85 24.9  10 1.22 

 CaCO3→Ca2+ + CO32- 10 -8.48  0.01 0.35  103.22 

 CaCl2→ Ca2+ + 2Cl-   595 5,360   

Sr2+ SrSO4→ Sr2+ + SO42- +2H2O 10-7  0.11 0.6   

 Sr(OH)2  →Sr2+ + 2OH- 10-3  4.1 33.7   

 SrCO3 →Sr2+ + CO32- 10-10  0.01 31.3   

 SrCl2  +  Sr2+ + 2Cl-   435 2,744   

Mg2+ MgSO4→Mg2+ + SO42- +2H2O   260 2,159   

 Mg(OH)2 →Mg2+ + 2OH-   0.01 0.2   

 MgCO3→Mg2+ + CO32-   0.11 1.3   

 MgCl2  + Mg2+ + 2Cl-   542.5 5,698   

Na+ NaOH →Na+ + OH-   420 10,652   

 NaCl →Na+ + Cl-   357 6,102   

 Na2SO4  →2Na+ + SO42-   47.6 335   

 Na2CO3  →2Na+ + CO32-   71 700   

K+ KOH  →K+ + OH-   970 17,290   

 KCl  →K+ + Cl-   347 4,657   

 K2SO4  →2K+ + SO42-   68.5 393   

 K2CO3  →2K+ + CO32-   1120 8,104   

Cs+ CsOH  →Cs+ + OH-   3995 26,367   

 CsCl  →Cs+ + Cl-   1617 9,650   

 Cs2SO4  →2Cs+ + SO42-   1670 4,615   

 Cs2CO3  →2Cs+ + CO32-   2605 7,996   
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Table 3.5 Chemical equilibrium expression for each solid phase [122, 123] 

Phase  Chemical composition 
Chemical equilibrium 

expression 

log 

Ksp 

CH Ca(OH)2 Ksp = [Ca][OH]2  -5.2 

C-S-H (1.65)CaO.SiO2.(2.45)H2O Ksp = [Ca][OH]2 * -5.6 

Ettringite 3CaO.3CaSO4.Al2O3.32H2O Ksp = [Ca]6[OH]4[SO4]3[Al(OH)4]2 -44 

Hydrogarnet 3CaO.Al2O3.6H2O Ksp = [Ca]3[OH]4[Al(OH)4]2 -23.1 

Gypsum CaSO4.2H2O Ksp = [Ca][SO4] -4.6 

Friedel’s salt 3CaO.CaCl2.Al2O3.10H2O Ksp = [Ca]4[OH]4[Cl]2[Al(OH)4]2 -29.1 

Brucite Mg(OH)2 Ksp = [Mg][OH]2 -10.9 

Mirabilite Na2SO4.10H2O Ksp =[Na]2[SO4] -1.2 

Halite NaCl Ksp = [Na][Cl] 1.6 

*C-S-H is assumed to decalcify like CH with a lower solubility constant 

The major constituents of cement paste are calcium silicate hydrate (C-S-H), 

calcium hydroxide (CH) and aggregates as previously described and illustrated. 

In a leaching process, it is mainly CH that is dissolved and transported away with 

a diminishing CH, C-S-H will also start to dissolve (Table 3.6). 

3.3.1 Influence of test solution composition 

The diffusivity test solutions varied from deionised water to deionised water 

having been contacted with John Innes No 3 soil. The former has been the most 

frequently used to measure the diffusivity and leaching of radionuclides from 

cement paste samples. It does not however represent the most realistic liquid 

that is likely to come into contact with nuclear waste in a GDF or even shallow 

burial repository. The Sellafield pore water solutions (CSPW and DSPW) may be 

more representative, providing of course the GDF was sited within the vicinity of 

that site, but could be a good representation of the water that comes into contact 
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with nuclear waste buried at the low level site at Drigg. Nonetheless none of these 

solutions contained a key ingredient, namely microorganisms. This was certainly 

not true for the JISS. The chemical compositions of the various test solutions is 

provided in Table 3.7 for comparative purposes. 

It is interesting that Preston tap water is far richer in chloride and sulphate than 

the JISS extract, but even these concentrations (0.32 and 0.30 mmoles/L) 

respectively are unlikely to have influenced the chemistry of ions in solution and 

diffusivity of ions from the cement paste, as the solubility of say strontium 

sulphate (most insoluble sulphate of the cations under investigation) in water at 

room temperature would be 1.75 mmoles/L (Ksp 3.5 x 10-7). 

Table 3.6 Concentration of some ions in the various test solutions (ppb) 

Parameter 

Test solution 

DW 
Tap 

water 
CSPW DSPW JISS 

pH 7 7.3 6.8 6.8 7.21 

Cl- - 11425 108000000 14500 62 

SO4
2- - 28862 4910000 4010 8588 

Na+ - 5098 71600000 19300 1541 

K+ - 313 327000 1470 3576 

Cs+ - - - - 5 

Mg2+ - 1058 696000 13000 1009 

Ca 2+ - 7037 300000 40700 29 

Sr2+ - 13 - - 11 

 

From the published ‘recipe’ of John Innes No 3 soil [124], it is more than likely 

that the water extract contained in addition to the ions reported in Table 8.3, 

nitrate and phosphate. The former would have little or no effect on the chemistry 

of all the cations in solution, as all nitrates are soluble, but phosphate could be 
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more influential than all other anions as the Ksp for strontium phosphate for 

example is 4 x 10-28 which is a far smaller than for strontium carbonate (5.6 x10-

10). This very low solubility of strontium phosphate did not hinder the release of 

strontium from the ≈3% strontium chloride cement paste into solution (maximum 

Sr2+ concentration in the JISS test solution for the closed system 0.34 mmoles, 

i.e. about 0.6% of Sr2+ leached from the cement paste). 

3.3.2 pH effect 

The pH values of the test solution during the diffusivity experiments varied from 

≈7 to over 12. The initial pH value for most of these experiments was 7 (deionised 

water) and 7.03 (tap water), but others for example the simulated CSPW and 

JISS affected by the make-up salts or the ions leached from the soil, had a pH 

value of 6.8 and 7.21 respectively. Although pH values were regularly and 

routinely measured during the course of the experiments the concentration of 

hydroxide and carbonate were not. 

The alkalinity (hydroxide concentration) can be calculated from the formula: 

 

[OH-] = Kw/[H+] = 10-14/[H+] 

 

Assuming an ideal situation i.e. vey dilute solution, then for the following pH 

values the concentration of hydroxide ions (Table 3.8) will be  

  



 

70 
 

Table 3.7 Predicted hydroxide concentration based on pH value 

pH value OH- (moles/L) 

7 10-7 

8 10-6 

9 10-5 

10 10-4 

11 10-3 

12 10-2 

 

One of the highest variation in pH value was for the 0.3% strontium chloride 

contaminated BFS:OPC; the initial pH value after 7 days was 7.50 increasing to 

11.85 after 105 days (Figure 4.9). This would require about 10 mmoles of 

hydroxide i.e. about 5 mmoles of Ca(OH)2. The maximum calcium concentration 

measured for this experiment was 2.24 mmoles/L which suggest some of the 

other alkali/alkaline earth metals (Na+, K+, and Mg2+) contributed to the pH 

increase.  

At pH values above 12, the concentration of hydroxide ions will be equivalent to 

if not greater than the chloride and/or sulphate concentrations due to the anions 

diffused from the cement paste (for both these cations for the majority of the 

experiments the maximum concentration was significantly less than 10 mmoles). 

As will be discussed latter this concentration of hydroxide would influence the 

solubility of the cations; Ca2+, Sr2+, Co2+ etc. 

From the Bjerrum plot (Figure 3.6) below (which is for a water with a total carbon 

value of 1mmole/L) the concentration of both carbonate and bicarbonate can be 

predicted. At pH values of about 10 and above, the concentration of HCO3- rapidly 

decreases with a corresponding increase of CO32- concentration. If anything a 

1mmole total carbon value for this work is an over estimation as the diffusivity 
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circuit was a closed system with air ingress unlikely. Even if carbon dioxide 

ingress into the diffusivity experimental circuit had occurred with subsequent 

adsorption then conversion to carbonate would have been low at pH values under 

8 (less than 1mmole/L) but at higher pH values would increase to about 10 mmole 

at pH 9.5. Making an allowance for this adsorption/conversion at the higher pH 

values monitored in these experiments then the impact of carbonate on the 

speciation of calcium would predominate but significantly less so for Sr2+ and Co2+ 

when compared with hydroxide and sulphate anions Ksp data (Table 3.9). 

Table 3.8 Ksp values for selected salts 

anion 
cation 

Ca2+ Sr2+ Co2+ 
OH- 5.02. x 10-6 6.4.x 10-3 1.1.x 10-15 

CO3
2- 3.36.x 10-9 5.6.x 10-6 1.x 10-10 

SO4
2- 4.93 x 10-5 3.44.x 10-7   

 

 

Figure 3.6  Bjerrum plot showing the activities of inorganic carbon species as a 

function of pH for a value of total inorganic carbon of 10-3 moles L-1 [125]. 
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Attempts to demonstrate the influence of pH alone on the diffusivity of 

cations/anions were hindered and complicated by other contributors. The 

changes with time of cement hydrates composition in equilibrium with pore water 

coupled with the impact of added salts to the make-up water on the release of 

alkali metals and subsequently Ca2+ are not easily isolated. It is reasonable to 

assume that at lower pH values of the test solution i.e. 7 to 8 could interact with 

the surface of the CPS leading to leaching of alkali metals (Na+, K+, Cs+) that 

produce soluble salts. At higher pH values (>11.0) diffusivity via pore water would 

predominate. 

3.3.3 Diffusion/leaching 

The leaching process begins when solid compounds in concrete are dissolved by 

surrounding aqueous phase and then transported away, either due to 

concentration gradients (diffusion),  by the flow of water (convection) or 

electromigration [39]. This process occurs in a sequence of stages, which are 

dependent on the solubility product values of the compounds. The most soluble 

elements such as alkali hydroxides are removed first from the solid sample. In 

the second stage, the calcium hydroxide (i.e. portlandite) is dissolved, followed 

by the dissolution of the calcium-silicate-hydrate (C-S-H) gel phases. In a final 

stage other cement phases, such as ettringite are dissolved [40]. Solid materials 

are dissolved depends on theirs solubility (Ksp) and where they are located in the 

pore system in relation to pure water and each other. When dissolved, the ions 

will diffuse towards water with less content of the ions. Leaching of lime originates 

from the calcium hydroxide Ca(OH)2, due to its large amount in cement paste and 

comparative easy solubility. At the same time, but to a much less amount, as long 

there is Ca(OH)2 left, lime will also be dissolved from the other hydration products 
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calcium silicate hydrate (C-S-H), calcium aluminium hydrates (C3A) and calcium 

aluminium iron hydrate (C4AF), viz: 

 

H2O + [Ca(OH)2; C-S-H; AFT; AFM]  = Ca2+aq 

 

Convection flow of ions is totally governed by the water flow; generally the 

quickest leaching degradation of a concrete structure occurs when ions are 

leached by convection. Diffusion flow of ions is probably influenced by 

concentration gradients, inter-molecular forces between dissolved ions and 

intermolecular forces between dissolved ions and solid walls. 

The design of the diffusivity experiments in the present research was based on 

the cement paste sample surface area ( ≈ 71 cm2), the volume of test solution 

(200 cm3) in the circuit and the test solution flow rate (300 cm3/hour). This flow 

rate was sufficient for good mixing but not excessive to create erosion of the 

cement paste samples. The data generated from the diffusivity experiments 

carried out on BFS:OPC and PFA:OPC CPSs with different test solutions 

revealed that there are number of factors which contribute towards the rate of 

diffusivity of cations: 

(a) The nature and the concentration of added cation  

(b) The composition of cement paste sample (BFS:OPC and PFA:OPC). 

(c) Nature of test solution used in diffusivity experiments 
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3.3.3.1 Nature of added cation  

The rate of diffusivity of Cs+ was higher than Sr2+ and Co2+ (Figure 3.9 to Figure 

3.12). Caesium ion as Na+, will be highly soluble in the pore water of OPC grout, 

which has been measure in pore water [118] and thus, leaching is diffusion 

controlled, whereas Sr2+ forms sparingly soluble strontium or calcium/strontium 

carbonate or sulphate, which is well retained in grout. Strontium ion is likely to 

substitute for Ca2+ in some of the compounds highlighted in Table 3.1. However, 

the number of Ca2+ present in OPC:BFS CPS (602 mmoles) were more in 

comparison with PFA:BFS CPS (147 mmoles) (Table 3.14). The higher content 

of Ca2+ in BFS:OPC comes from Ca2+ content of BFS (38.22 wt%). As mentioned 

earlier, the dissolution and solubility of species will depend on Ksp values of salts 

formed by Sr [SrSO4 (Ksp=10-7); Sr(OH)2 (Ksp=10-3), SrCO3 (Ksp=10-10)]. Caesium 

is readily soluble and therefore Ksp values do not apply. The similar behaviour of 

Sr2+ and Ca2+ can be explained in terms of their electronic configuration. From 

concrete degradation experiments, it has been shown that Sr2+ is strongly linked 

to Ca(OH)2 [126]. Strontium becomes chemically bonded to concrete by the 

exchange of Sr2+ for Ca2+ in hydrated silicate or ettringite [127, 128]. This makes 

Sr2+ relatively less soluble in the pore water of concrete [129]. Leaching studies 

carried out on 137Cs and 60Co radionuclides from both ordinary Portland cement 

and cement mixed with two ratios of silica fume and ilmenite produced a 

decreasing pattern of diffusivity as 137Cs >60Co, indicating the larger diffusion 

coefficient for caesium in waste matrices [83].  

The diffusivity of cations is dependent on the age of the cement paste sample. 

The rate of diffusivity of Sr2+ from non-aged CPS (Figure 4.2) was higher than the 

aged 3% SrCl2 (Figure 4.7) and 3% SrCO3.(Figure 4.16). Similar results were 
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found in case of Cs+ diffusivity (Figure 4.3 and Figure 4.8). This could be due to 

the effect of aging and carbonation process that may have decreased the porosity 

and hence lowered the diffusion of cations. The carbonation reaction leads to the 

reduction in the porosity of cement paste and contributes to formation of 

protective layer at the surface of cement paste [27, 130]. Studies have shown 

that the formation of calcite as a result of carbonation, reduces the porosity due 

to higher molar volume (36.9 cm3/mol compared to 33.1cm3/mol for CH) [27]. 

The micro-pore areas of aged and SrCO3 CPSs were lower than the non-aged 

CPSs (Table 4.5). As mentioned earlier, carbonation leads to the formation of 

calcium carbonate, silica gel and metallic oxides which over the period of time 

begin to accumulate in the pores of concrete grout resulting in the physical and 

chemical changes to cementitious waste forms. Much of the research on 

carbonation of cementitious materials, however, has focused upon structural 

aspects i.e., compressive strength, permeability and creep in reinforced concrete 

[131-134]. Nevertheless, scant information exists regarding the influence of 

carbonation on the chemical properties of cement-based materials with respect 

to the diffusivity of encapsulated waste. Few of such studies have been carried 

out on accelerated carbonation process [135-139] that produced  lowered 

diffusional release of strontium but increased the release of other metal ions 

[139]. Lower diffusivity of Sr2+ from aged CPS could be attributed to formation of 

SrCO3 (Ksp= 10-10). 

There is a strong correlation between the diffusivity of metal ions through a 

cement paste and w/c. As mentioned earlier, the w/c determines the porosity of 

the cement paste sample. Studies have shown that the change in the w/c 
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between 0.2 and 0.7 could increase the diffusivity of Cs+ by up to 3 order 

magnitude [140]. 

Incorporation of Sr2+ as an insoluble salt such as carbonate has affected the 

physio chemical features of the CPS. Calcium carbonate, similar to SrCO3   

enhances the hydration of cement paste. Portland–limestone cements are the 

most widely used cements according to the European cement standard ENV 197-

1 [141]. Since early 1980, the Canadian cement standard (CSA 1998 - CAN/CSA-

A5) permits the use of 5% ground limestone in Portland cement [142] and in more 

than 25 countries. The considerable lower rates of diffusivity of Sr2+ from CPS 

incorporated with SrCO3 (Figure 4.12) compared to the SrCl2 (Figure 4.2) is 

attributed to the difference in their solubility which is significantly higher for SrCl2. 

The outcome from the diffusivity experiments with CPS incorporated with SrCO3 

suggests that further research is required with CPS incorporating carbonate in 

cement paste samples to ascertain the rates of diffusivity of Cs+ and Sr2+, when 

fillers are used in the formulation. It is envisaged that addition of CaCO3/ 

limestone as a filler will reduced the rates of diffusivity of encapsulated cations to 

an insignificant level. Caesium carbonate is quite soluble and therefore any effect 

will have to be due to pore blocking. 

Incorporation of Sr2+ as a carbonate has also affected the pH of the test solution. 

The pH of the test solution starts to fall after 100 days of diffusivity in both the 

0.3% and 3% incorporated SrCO3 CPS (Figure 4.11 and 4.12). The surface wash-

out rather than the diffusion could be attributed towards the lower rates of 

diffusivity of cations and anions after 100 days. The use of filler/CaCO3 may be 

beneficial for waste disposal/cement encapsulation of waste, our experiments 

have shown the lower rate of diffusivity of cations.  



 

77 
 

It is suggested that the effect of CaCO3 is only physical [16]. Presence of 

carbonate salt in the CPS has also lowered the rate of diffusivity of Ca2+, Na+, 

SO42- in both the formulations. The presence of carbonate salt reduced the 

diffusivity of Ca2+ by a factor of ≈ 27 in comparison with CPS chloride salt of Sr2+. 

The effect is more pronounced in PFA:OPC; the rate of diffusivity was reduced 

significantly in comparison with BFS:OPC 3% SrCl2. This is due to the effect of 

mass action; the amount of Ca2+ present in PFA:OPC CPS (147 mmoles) which 

was significantly smaller than BFS:OPC CPS (602 mmoles) (Table 3.14).  

Another interesting feature observed; incorporation of Cs+ in the CPS has 

lowered the rate of diffusivity of Ca2+  by a factor of ≈ 12 in comparison with control 

CPS and 54 times slower in comparison with 3% SrCl2 (Figure 4.1 to Figure 4.3). 

The diffusivity of Cs+ is comparable with measured pH values of the test solution 

(DW). Cs+ is highly soluble in the pore water, it is more than likely that Cs+ will 

behave like Na+ and K+ in the pore water because of their similarities in solubility 

properties and position in the periodic table. Caesium diffused out much before 

other alkali metal ions. This attributed to the concentration of Cs+ (21.31 mmoles) 

present in the CPS which was far greater than the Na+ (12.6 mmoles) and K+ 

(11.3 mmoles). The sequence of diffusivity of metal ions shown in 3% CsCl CPS 

in both the formulation is similar i.e. Cs+> Cl->K+>SO42->Na+>Ca2+. However the 

sequence of diffusivity shown in the 3%SrCl2 CPS is Cl->Ca2+>Sr2+>K+>SO42-

>Na+, this demonstrates the binding nature of both Sr2+ and Cs+ is one of the 

major factor contributing their rate of diffusivity. When both the Cs+ and Sr+ 

incorporated together in cement paste sample the sequence of diffusivity of metal 

ions was Cl->Cs+>Ca2+>K+>Sr2+>SO42->Na+ (Figure 4.5) indicating that Cs+ 
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diffuses faster than Ca2+ which is significant and needs special attention to lower 

its diffusivity. 

An interesting feature is, the rate of diffusivity of Cs+ remains the same when 

added as a single cation or as a cation combined with battery of cations (Sr2+, 

Co2+). There was no significant difference (p >0.05) observed in the rate of Cs+ 

from 3% CsCl and combined metal CPS. However such pattern is not observed 

with Sr2+ and Co2+. When strontium encapsulated/added in combination with 

other cations of interest; the diffusivity reduced by a factor of 1.5. This suggests 

that the diffusivity of Sr2+ changes based on its status how it’s been added, single 

cation or a as a mixture with other cations/ radionuclide. The same is not 

applicable to Cs2+. This attributes to the nature of binding of Cs2+. Caesium ion is 

highly soluble in pore water like other alkali cations Na+, K+ [31, 143]. The degree 

of chloride binding is influenced by the nature of cation chloride added to the 

make-up water. Due to their similar chemistry (dictated by their electronic 

configuration and hence position in periodic table, group II), Sr2+ would be 

expected to behave similarly to Ca2+ and hence the cement paste would bind 

more chloride, unlike Cs+ if comparable with Na+ that would have less bound 

chloride, as explained earlier. The addition of caesium chloride, if behaviour is 

similar to sodium chloride, would also result in higher pore solution pH in 

comparison with strontium chloride addition. This pH increase for CsCl addition 

may be explained by the following: 

 

2NaCl (aq) + Ca3Al2O6.6H2O (s) + Ca(OH)2 (aq) + 4H2O → Ca3Al2O6.CaCl2.10H2O (s) + 

2NaOH (aq) 
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Increasing pH will also disfavour the formation of the sparingly soluble calcium 

hydroxide (1.859/L at room temp). This will explain why chloride binding is higher 

for alkaline earth metals (Ca2+, Sr2+) when used as the chloride source: 

 

CaCl2 (aq) + Ca3Al2O6.6H2O (s) + 4H2O → Ca3Al2O6.CaCl2.10H2O (s) 

Both C3A and C4AF bind chloride. The ability of calcium hydroxide to bind chloride 

when exposed to a calcium chloride solution has been demonstrated simply by 

adding Ca(OH)2 to the calcium chloride solution and analysing the solid and liquid 

phases. A similar experiment but using sodium chloride solution indicated that 

NaCl did not form compounds with calcium hydroxide to any significant extent. 

The workers postulated the following reactions: 

 

2NaCl (aq) + 4Ca(OH)2 (s) + 12H2O → CaCl2.3Ca(OH)2.12H2O (s) + 2NaOH (aq) 

 

The above reaction is negligible, but the following reaction is thermodynamically 

favourable: 

 

CaCl2 (aq) + 3Ca(OH)2 (s) + 12H2O → CaCl2.3Ca(OH)2.12H2O (s) 

 

Other reactions, in addition to chloride ion substitution reactions identified above, 

occur in cement hydrate and between the various hydrates. The inherent sulphur 

particularly in BFS influences the sulphate content and alkalinity of pore solution.  
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Preliminary analysis of the test solution (DW) in contact with the ≈1.3% CoCl2 

CPS revealed that the concentration of Co2+ in the recirculating solution was just 

slightly higher than the detection limits of ICP-MS (Figure 4.4). This very dilute 

solution of cobalt i.e. low diffusivity supported previous leaching studies involving 

cobalt sludges encapsulated in cement [144]. The low diffusivity will be influenced 

by the Ksp values of sparingly soluble salts such as hydroxide and carbonate (1.1 

x 10-15, 1.0 x 10-10 respectively). It was decided therefore at an early stage of the 

project that further analysis of test solution samples would only produce 

qualitative data for cobalt; consequently cobalt sampling/analysis was 

discontinued.  

3.3.3.2 Nature of test solution and influence on diffusivity of added cations 

The diffusivity data of first 50 days were taken in consideration for comparative 

purpose. The mechanism of diffusivity of cement paste is dependent on nature of 

aqueous medium. When cementitious material is in contact with surrounding 

deionised aqueous medium, concentration gradient is established. This causes 

transport of ions from the core of the material into the surrounding aggressive 

solution through its porous network system. This reduces the amount of Ca2+ in 

pores, leading to disruption of portlandite and Afm, ettringite and calcite [27, 145]. 

The cement hydrate diffuses out depending on their solubility properties. The 

dissolution of Ca(OH)2 is dependent on the period of exposure to aggressive 

solution [27, 32, 36, 146-148]. 

In the case of Sellafield pore water solutions, the mechanism is different. Due to 

its higher ionic concentration than deionised water; CSPW dissolve/s Ca(OH)2 in 

the form of exchange reaction [27, 149]. The calculated ionic strength of this 

solution (3.3), which is 60 times stronger that the test solutions produced from 
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leaching of ions from cement paste samples, 90% of the strength comes from the 

sodium chloride. The ingress of sulphate from Na2SO4 or K2SO4 present in the 

CSPW and DSPW water into the cement paste takes place due to the pH which 

is around neutral. This may lead to the formation of gypsum on the layer close to 

which gives rise to the dissolution of Ca(OH)2 [149]. The dissolution of Ca(OH)2 

and sulphate ingress leads to expansion of C3S hydrate paste  However, this 

effect is solubilised by presence of Cl- [30].  The diffusivity of Ca2+ from BFS:OPC 

and PFA:OPC 3%CsCl increased in the presence of CSPW from  by a factor of 

171 and 14 respectively in comparison with DW (Figure 3.7and 3.8), this is 

attributed to the difference in the Ca2+ BFS:OPC and PFA:OPC as mentioned 

earlier. Lower pH values of CSPW and DSPW in comparison with DW, could also 

be a contributing factor towards leaching. There was no significant difference 

(p>0.05) in the diffusivity of Sr2+ from BFS:OPC in CSPW in comparison with DW 

(Figure 3.9); contrary to the effect of DSPW, which lowered the diffusivity of Sr2+ 

by a factor of 5.  

In the case of 3%SrCl2 PFA:OPC CPSs, the effect of CSPW is reversed in 

comparison with its BFS:OPC counterpart. The rate of diffusivity of Sr2+ from 

3%SrCl2 PFA:OPC decreased by factor of 5 in the presence of CSPW (Figure 

3.10). The effect of CSPW is seen more prominent on 3% SrCO3; in both the 

formulation BFS:OPC and PFA:OPC, the diffusivity of Sr2+ from 3%SrCO3 

increased significantly. This could be due to the presence of carbonate. However, 

the rates were in much smaller magnitude in comparison with other CPSs. 

The lower diffusivity of Ca2+ and Sr2+ from BFS:OPC in DSPW may be due to the 

formation of brucite (Mg(OH)2. The magnesium ion present in the saline water 

substitute for the Ca2+ present in cement paste resulting in the formation of 
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magnesium hydroxide, known as brucite which precipitates in the pores of the 

cement paste. 

  

MgSO4 (aq) + Ca(OH)2 → CaSO4 . 2H2O + Mg(OH)2  

This brucite forms the protective surface layer which obstructs the further action 

of ions present in the aqueous medium. The pH values (9 -10) in the DSPW from 

3% SrCl2 were favourable for the formation of brucite. These results are 

comparable with Heikola’s work [40]. Similar effect is noticed in other research 

where the diffusivity of the added cations was lowered in synthetic sea water [28].  

In the case of Cs+, the increase in the ionic concentration of the test solution has 

shown a positive correlation with the rate of diffusivity of Cs+ (Figure 3.11). The 

diffusivity of Cs+ increased by a factor of 1.7 and 2.5 in the presence of DSPW 

and CSPW respectively in comparison with DW. However, no such diffusivity 

patterns were observed in the case of PFA:OPC 3% CsCl experiment (Figure 

3.12). There was no significant difference (p>0.05) in the diffusivity of Cs+ from 

DW and CSPW.  

The diffusivity of weaker concentration of cation CPSs i.e. 0.3% Sr2+ and Cs+ 

showed lower rates of diffusivity in comparison with their 3% counterpart. 

However, the rates of diffusivity of the added cations were similar to the diffusivity 

of cations from control CPS. This suggests that the mineralogical transformations 

in conjunction with physical (porosity, pore size etc.), concentration of cations, 

test solutions (aqueous environment) and chemical factors (release of Ca(OH)2 , 

pH etc.) have influenced the diffusivity of ions from the cement paste samples. 
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Figure 3.7 Comparative average rate of diffusivity of calcium from BFS: OPC 

CPSs in DW, DSPW, CSPW and JISS. 

 

 

Figure 3.8 Comparative average rate of diffusivity of calcium from PFA: OPC 

CPSs in DW, CSPW and JISS. 
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Figure 3.9 Comparative average rate of diffusivity of strontium from 3% SrCl2 and 

3% SrCO3 BFS:OPC CPSs  in DW, DSPW, CSPW and JISS. 

 

 

Figure 3.10 Comparative average rate of diffusivity of strontium from 3% SrCl2 

and 3% SrCO3 PFA:OPC CPSs in DW, CSPW and JISS. 
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Figure 3.11 Comparative average rate of diffusivity of caesium from 3% CsCl 

BFS:OPC CPSs in DW, DSPW, CSPW and JISS.  

 

 

Figure 3.12 Comparative average rate of diffusivity of caesium from 3% CsCl 

PFA:OPC CPSs in DW, CSPW and JISS. 
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3.3.4 Open vs closed system 

At the outset the closed circuit arrangement was selected as the initial work 

programme involved a significant number of parameters to be undertaken and it 

was considered at the time the experiments could continue for a significant time 

period (>100 days). In addition even at this early stage the implications of 

introducing microorganisms in to the circuit and subsequent mode of operation 

were considered, knowing that removal of samples from the circuit with addition 

of an equivalent amount of test liquor would disturb the equilibrium and likely to 

create challenges in analysing the data. The size of the cement paste samples 

and vessels (diffusivity vessel and reservoir vessel) and circuit design were also 

addressed to ensure: 

(a) a realistic cement paste sample size (surface area) was used 

(b) an appropriate volume of test solution that could accommodate the 

removal of a representative sample for analysis 

(c) the volume of microbial extract (JISS) to be added to the circuit was 

sufficient to produce an effect 

(d) the ratio of surface area of the cement paste samples to the volume of the 

test solution was acceptable 

(e) the circulation of the test solution through the diffusivity vessel was 

sufficient for good mixing (0.002cm/sec) but without creating erosion of the 

cement paste sample walls. 

(f) The test solution in the diffusivity vessel was replenished at least once per 

hour. 

These flow conditions were replicated for the open circuit arrangement. 
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The design of open circuit arrangement was such that the data produced could 

be as comparable as possible with the closed circuit experiments. This required: 

(a) the same size of cement paste samples  

(b) a similar flowrate of test solution 

but this open arrangement would have a significantly different surface area to 

volume ratio for final test solution volume.  

The logistics of accommodating nearly 50 litres/week of test solution for each 

open circuit experiment in the laboratory for about 30 to 40 days was a significant 

factor. This volume of solution influenced the decision to use tap water, but the 

data would be comparable with the closed circuit experiment using tap water 

results.   

The concentrations of ions in the test solutions from the closed and open circuit 

experiments were significantly different; the closed circuit as seen from the results 

section had on three or four perturbations due to some of the cations/anions 

reaching their solubility limits, but with a new equilibrium when fresh test solution 

was added to the circuit. Solubility limits were not a factor in the open circuit, as 

the concentration of ions were significantly lower but the total quantity of ions 

leached were significantly higher and consequently the total quantities of ions 

leached were far greater (Table 3.10 and 3.11). 

  



 

88 
 

Table 3.9 Comparison of total cations removed from the BFS:OPC cement paste 

samples with tap water 

BFS:OPC 

CPS 

arrange

ment 

pH mmoles* 

Na+ K+ Cs+ Ca2+ Sr2+ Cl- SO4
2- 

control Closed 
circuit 

10.7-12.1 4.2 13 - 13.9 - 4.2 2.7 

≈3%SrCl2 11.2- 2.03 5.2 6.2 - 13.2 3.8 43. 2.2 

≈3%CsCl 9.01-11.59 1.7 2.6 7.8 0.6 - 3.2 0.5 

≈3%SrCO3 7.78-12.27 3.15 1.1 - 2.5 <0.05 2.6 0.5 

 

control Open 
circuit 

7.28-7.5 0.18 <0.05 - 0.2 - 0.08 0.45 

≈3%SrCl2 7.26-7.54 0.02 <0.05 - 0.27 <0.05 0.01 0.48 

≈3%CsCl 7.1-7.67 0.17 0.01 0.05 0.26 - 0.21 0.5 

≈3%SrCO3 7.22-7.79 0.19 <0.05 - 0.17 <0.01 0.07 0.49 

*at maximum concentration of ion measured during the experiment 

 

Table 3.10 Comparison of total cations removed from the PFA:OPC samples with 

tap water 

PFA:OPC 

CPS 

arrange

ment 

pH mmoles* 

Na+ K+ Cs+ Ca2+ Sr2+ Cl- SO4
2- 

control Closed 

circuit 

11.98- 2.13 8.3 6.8 - 0.3 - 1.2 2.8 

≈3%SrCl2 7.47-8.69 20.4 14  34.6 11.6 263.5 1.0 

≈3%CsCl 1.95-12.02 7.2 7.1 21.1 0.4 - 52.8 2.6 

≈3%SrCO3 1.99-12.02 7 5.7 - 0.3 <0.05 3.7 2.7 
 

control Open 

circuit 

7.63-8.08 0.28 0.04 - 0.21 <0.01 0.24 0.28 

≈3%SrCl2 7.56-7.87 0.28 0.08 - 0.38 0.03 1.26 0.29 

≈3%CsCl 7.62-7.87 0.28 0.05 0.12 0.20 - 0.42 0.28 

≈3%SrCO3 7.22-7.81 0.19 <0.01 - 0.17 <0.01 0.07 0.49 

*at maximum concentration of ion measured during the experiment 

As solubility factors were not controlling parameters and diffusion gradients would 

be common for all open comparable systems, analysis of the data was relatively 

straightforward. The development of diffusion gradients within the diffusivity 
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vessel for the closed circuit between the CPS surface and test solution at the 

interface were worthy of consideration as this could give rise to the re-sorption of 

cations, particularly the alkali metals (Na+, K+ and Cs+) onto mineral sites in the 

cement paste sample. This is discussed in more detail in a following section.   

The ultimate consideration in the design of the experiments was to simulate the 

likely interaction of ground water with a wastes in a GDF. It was considered that 

a more ebb and flow arrangement would occur in preference to a continuous flow 

through. The closed circuit arrangement with removal of saturated solution and 

addition of fresh test solution would best resemble the former and more than likely 

produce more realistic data of value to the nuclear industry.  

The experimental conditions/arrangements used in this work provide worst case 

and best (real) case scenarios when considering mobility of radionuclides from a 

GDF. The worst case scenario is for the open circuit when solution equilibria are 

unlike to be achieved thus allowing for near continuous diffusion of ions from the 

cement paste into the flowing water. With a closed circuit arrangement (real case 

scenario) various equilibria (Ksp) will be established which will impinge on the 

solubility of sparingly soluble compounds such as calcium hydroxide, carbonate, 

sulphate as well as some of these salts of strontium and magnesium. At this time 

of reporting this diffusion data it is not possible to give a more precise prediction 

as the flow of water into/through a GDF will be governed by numerous factors not 

least time.  
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3.4 Chemistry and interaction of anions  

3.4.1 Chloride interaction 

If the concrete is made up with seawater or other saline waters or as used in our 

case incorporated chloride salt in the makeup water, the resulting concrete will 

have a comparatively low chloride content. Any chloride in the mixture generally 

enters the AFm (ferro-aluminate) phase with 60% of the chloride bound to the 

cement paste as mono-chloro-aluminate and the remainder dissolved in the pore 

water [53, 54]. At comparatively high chloride concentrations, other salts such as 

3CaO.CaCl2.15H2O, can form [129] . When chloride is combined with the AFm 

phase, the resulting compound is known as Friedel's salt (4CaO.Al2O3.(Cl, OH)10) 

which is stable at higher pH and above 40 °C. Below 20°C, the tri-chloride 

complex (AFt) is formed [150].  

3.4.2 Internal sulphate attack 

The diffusion of internal sulphate has received less attention. Internal sulphate 

arises from oxidation of sulphide to sulphate present in the additives [54, 151-

153]. Most of the research has concentrated on the degradation of cementitious 

material by external sulphate attack [154, 155]. This internal sulphate may react 

with free portlandite to give gypsum  

 

Ca(OH)2 + MSO4 = CaSO4 + M(OH)2 

where M may be a monovalent or bivalent cation 

Alternatively, sulphate may react with the hydrated calcium aluminates to form 

calcium sulpho-aluminate followed by sparingly soluble ettringite. The gypsum 
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produced in the above equation may further degrade the concrete by reaction 

with CSH to produce ettringite.  

From the diffusivity experiment; the cumulative concentration of diffused sulphate 

in the presence of various test solution is significant; taking into consideration 

aerobic and facultative anaerobic microbial species having abilities to tolerate a 

wide range of environmental conditions; temperature, pH, salinity [60-62]. 

Biogenic sulphuric acid producing bacteria of Thiobacillus sp. have properties of 

oxidizing sulphur, sulphides and thiosulphates to sulphuric acid under aerobic 

conditions [156]. Impact of microorganism on cementitious material is discussed 

in next section. Irrespective of formulation (PFA:OPC, BFS:OPC); the rates of 

diffusivity of SO42- in DW is fairly similar in both the formulations (Figure 3.13 and 

3.14) 

 

Figure 3.13 Comparative average rate of diffusivity of sulphate from BFS:OPC 

CPSs in DW, DSPW, CSPW, JISS. 
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Figure 3.14 Comparative average rate of diffusivity of sulphate from PFA:OPC 

CPSs in in DW, CSPW, JISS 

 

3.5 Diffusion coefficient values of cement paste samples 
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paste/formulation and the relationship of cementitious material to its environment. 

Two possible conditions may occur in GDF:  
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concrete [39]. The flow of water may reduce due to autogenous healing [157]. 

However, it is not clear whether the condition in a repository will be suitable for 

crack healing; especially if the cement is extensively modified with slag or fuel 

ash [158]. As concrete is porous there is a relationship between porosity, 

thickness, pressure and transmissivity of concrete. Flow in capillary pores in 

saturated concrete follows Darcy´s law for laminar flow through a porous medium 

[159] . 

On the other hand, (b) when cement paste is completely submerged then the 

pressure will be equalised and no water will penetrate the cement paste. 

Dissolution will then be controlled by diffusion through the surface of the concrete. 

The driving force for diffusion controlled leaching will be the concentrations 

difference between the pore solution and the external water  

The calculated diffusion coefficient values from the expression mentioned in 

section 2.11 are shown in Table 3.12 (BFS:OPC) and Table 3.13 (PFA:OPC).
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Table 3.11 Diffusion coefficient values (De) from BFS:OPC CPS 

 

The values in “[ ]” are the time in days for the ion to reach its maximum concentration. 

Time period
(days) Na+ K+ Cs+ Ca2+ Sr2+ Cl- SO4

2-

BFS:OPC DW 7 10.7 – 12.1 1.22 x 10-4 4.34 x 10-5 5.37 x 10-9 2.29 x 10-5

Control 201 6.74 x 10-7 1.8 x 10-5 6.82 x 10-10 1.57 x 10-7

At max conc. 9 x 10-5 2.02 x 10-4 7.29 x 10-8 8.83 x 10-4 1.63 x 10-5

[21] [112] [126] [21] [21]

≈3% SrCl2 7 11.2 – 12.03 1.59 x 10-4 1.55 x 10-4 2.15 x 10-7 2.38 x 10-6 2.53 x 10-4 4.44 x 10-6

201 5.49 x 10-7 7.71 x 10-7 5.25 x  10-9 3.5 x 10-8 1.38 x 10-6 5.76 x 10-8

At max conc. 2.78 x 10-6 1.19 x 10-4

[21] [70]
 ≈3% CsCl 7 9.01 – 11.59 5.25 x 10-6 1.24 x 10-5 1.95 x 10-5 5.39 x 10-10 1.96 x 10-5 1.25 x 10-6

207 1.26 x 10-6 2.56 x 10-6 6.58 x 10-5 6.02 x 10-9 6.92 x 10-5 9.94 x 10-10

At max conc. 1.06 x 10-5 7.33 x 10-6

[192] [35]
combine At max conc. 10.64 – 12.59 1.49 x 10-5 9.33 x 10-7 1.17 x 10-3

[35] [35] [35]

Control JISS At max conc. 10.73 – 11.2 1.99 x 10-5 4.25 x 10-6 3.92 x 10-9 1.81 x 10-5 1.66 x 10-5

[35] [35] [35] [42] [28]

≈3% SrCl2 Tap water At max conc. 7.86 – 8.05 1.67 x 10-4 3.09 x 10-5 8.61 x  10-7 4.29 x 10-5 4.81 x 10-5 5.07 x 10-6

(closed system) [7] [14] [7] [7] [7] [14]

Control Tap water 4 7.28 6.51 x 10-3 3.44 x 10-5 3.0 x 10-6 5.08 x 10-9 3.75 x 10-1 4.28 x10-2

≈3% SrCl2 open 4 7.26 7.55 x 10-3 3.63 x  10-5 5.22 x 10-6 5.93 x 10-7 3.88 x 10-5 2.00 x 10-2

 ≈3% CsCl 4 7.1 5.48 x 10-3 1.15 x 10-4 4.52 x 10-4 3.11 x 10-6 5.83 x 10-3 2.3 x 10-2

Calculated De values (cm2/day)CPS Test solution pH value
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Table 3.12 Diffusion coefficient values (De) from PFA:OPC CPS 

 

The values in “[ ]” are the time in days for the ion to reach its maximum concentration 

Time period
days Na+ K+ Cs+ Ca2+ Sr2+ Cl- SO4

2-

PFA/OPC DW 7 11.98 – 12.13 1.35 x 10-4 1.01 x 10-4 8.01 x 10-7 4.10 x 10-9 1.5 x 10-4

Control 49 1.73 x 10-5 1.00 x 10-5 1.14 x 10-7 5.25 x 10-10 2.37 x 10-5

≈3% SrCl2 7 7.47 – 8.69 1.00 x 10-3 5.26 x 10-4 1.05 x 10-4 5.58 x 10-5 7.98 x10-4 2.4 x 10-5

49 7.04 x 10-5 3.16 x 10-5 6.45 x 10-6 3.64 x 10-6 5.64 x 10-3 2.15 x 10-6

 ≈3% CsCl 7 11.95 – 12.02 7.62 x 10-5 5.02 x 10-5 1.56 x 10-3 1.26 x 10-8 9.22 x 10-3 1.43 x 10-4

49 1.43 x 10-5 6.8 x 10-6 1.35 x 10-4 1.33 x 10-9 1.18 x 10-3 7.86 x 10-6

Control JISS At max conc. 12.11 – 12.27 5.30 x 10-5 2.65 x 10-5 3.64 x 10-9 5.35 x 10-4 6.05 x 10-5

[21] [21] [35] [35] [35]

Control Tap water (open) 4 8.08 6.70 x 10-3 1.94 x 10-4 1.8 x 10-4 9.7 x 10-7 Not quoted 1.44 x 10-2

≈3% SrCl2 4 7.87 8.09 x 10-3 7.45 x 10-4 5.32 x 10-4 2.38 x 10-5 2.85 x 10-2 2.0 x 10-2

 ≈3% CsCl 4 7.1 1.33 x 10-4 2.99 x 10-4 2.65 x 10-3 1.5 x 10-4 3.35 x 10-2 1.75 x 10-2

Calculated De values (cm2/day)
CPS pH valueTest solution
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As can be seen from the generated data (Table 3.12 and 3.13), the calculated 

diffusion coefficient values (De) changes depending on the experiment. The 

diffusion of Sr2+ in closed circuit was 2.38 x10-6 cm2/day (3% SrCl2 BFS:OPC) 

compared to open circuit (tap water) 5.93 x10-7 cm2/day. However, there was no 

significant difference observed in the diffusion   of Sr2+ from PFA:OPC. The 

diffusion   of Sr2+ from 3% SrCl2 PFA:OPC in DW experiment were measured as 

5.58 x10-5 cm2/day in comparison with open circuit tap water 2.38 x10-5 cm2/day. 

Similar comparison was observed for Cs+; 1.06 x10-5 cm2/day (3% CsCl 

BFS:OPC DW) compared to 4.52 x10-4 cm2/day in open circuit (tap water). The 

diffusion values of Cs+ were found to remain fairly constant with time period 1.95 

x10-6 cm2/day (7 days ) and 6.8 x10-5 cm2/day (207 days), contrary to 3% SrCl2 

2.38 x10-6 cm2/day (7 days ) and 3.5 x10-8 cm2/day (201 days). Similar changes 

were observed in PFA:OPC.  

This could be attributed to various factors as mentioned earlier. The dissolution 

of cement paste samples occurring in stagnant water (closed circuit) can reach 

equilibrium resulting in a saturated solution; the leaching process and the 

dissolution of these substance depend on their solubility products. Secondly, the 

concentrations of ions in the test solutions from the closed and open circuit 

experiments was significantly different. The difference in the diffusion coefficient 

value is due to some of the cations/anions reaching their solubility limits, but with 

a new equilibrium when fresh test solution was added to the closed circuit, which 

is also reflected on the diffusivities of soluble cations (Na+ and K+) and 

comparable with pH values. Solubility limits were not a factor in the open circuit 

and hence the difference in is noticed. Thus it can be deduced that the diffusion 

of the cations from encapsulated waste will depend on its properties, 
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environmental aqueous conditions (stagnant or mobile) and the type of 

formulation (BFS:OPC/PFA:OPC). The diffusion coefficients values calculated 

from the experimental data, produced from both the open and closed experiments 

are in good agreement with previously published data [160-162]. The conversion 

of cm2/day to cm2/sec corresponds to the literature diffusion coefficient value of 

respective ions. These values also support the experimental conditions used to 

measure the basic data can affect to some degree the final calculated diffusivity 

value. In our case this is not surprising as for the closed system experiments 

solubility equilibrium would be achieved relatively early in the experiment (around 

50 days) and therefore would be expected to affect the diffusion of appropriate 

cations such as Cs+ and Sr2+ from the pore water into the test solution. As with 

previously published work our diffusivity values also demonstrate that chloride 

and group I cations diffuse faster than other anions such as sulphate and cations 

e.g. calcium and strontium. 

3.6 Depth of dissolution/leaching  

There have been number of models developed to simulate the leaching and 

migration of encapsulated cations/radionuclides.  Few of such models have used 

Fick’s law of diffusion which is based on diffusion co-efficient, rate of diffusion 

and concentration of ions [139, 163, 164]. However, most models have failed to 

give a true picture of a possible depth to which diffusion of each cation occurred 

with respect to the amount present originally in the cement paste sample.  

In our studies, this was determined using shrinking core model. According to 

shrinking core model, in a leaching process, the removal/dissolution of 

cations/solid materials leads to a diameter of unleached core that shrinks with 

time as leaching/dissolution proceeds with time.  
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Adopting an integrated approach by taking into consideration CPS of dimensions 

(3.2 x 5.3 cm) and the dry weights (BFS:OPC ≈ 86 and PFA:OPC ≈ 74) following 

assumptions have been made: 

(a) all the ions (inherent and encapsulated) leached to a certain depth 

(b) uniform leaching/dissolution of CPS in layers along the radius has 

occurred (Figure 3.15) , assuming that  

(c) all the CPSs were homogeneous mixture. 

 

Table 3.13 Concentration of ions present in the CPS 

CPS 
  mmoles 

Na+ K+ Cs+ Ca2+ Sr2+ Co2+ Cl- SO42- 
BFS:OPC         

Control 11.9 10.6 0.77 565 35.4 9.6 3.8 18 
≈3% SrCl2 12.6 14.2 0.82 602 60.4 10.3 116 19 
≈3% CsCl 12.6 11.3 21.31 601 34 10.3 24.6 19 

≈1.3% CoCl2 12.6 11.3 0.77 601 34 28.5 21.2 19 
Combined metal 12.7 11.4 20.5 601 63.6 28.9 101 19.4 

≈3% SrCO3 12.1 10.6 0.7 573 47.5  3.6 17.1 
         

PFA:OPC         
Control 25.1 25.6 0.26 138 29.7  0.36 9.1 

≈3% SrCl2 26.8 27.3 0.28 147 62.5  25.8 9.7 
≈3% CsCl 26.7 27.2 20.8 147 31.6  20.5 9.7 

≈3% SrCO3 27 27.5 20.3 148 61.5  0.36 9.1 
 

Based on our calculations, knowing the concentrations of ions present in the CPS 

(Table 3.14); then, in the outer 1mm shell of the cylindrical CPS there are on 

average 10.2 g of cement paste containing the mmoles of ions reported in Table 

3.15. 
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Table 3.14 Predicted concentration of ions in the first 1mm of CPS 

CPS 
  mmoles 

Na+ K+ Cs+ Ca2+ Sr2+ Co2+ Cl- SO42- 
BFS:OPC                 

Control 1.43 1.27 0.09 67.8 4.25   0.46 2.16 
≈3% SrCl2 1.39 1.56 0.09 66.2 6.64  6.42 2.09 
 ≈3% CsCl 1.39 1.24 2.35 66.1 3.74  2.71 2.09 

 ≈1.3% 
CoCl2 

1.51 1.36 0.09 72.1 4.08 3.42 2.54 2.28 

Combined 
metal  1.28 1.15 2.09 60.5 6.42 2.95 10.3 1.99 

≈3% SrCO3 1.32 1.16 0.08 63 5.23  0.4 1.88 
         

PFA:OPC         
Control 3.02 3.08 0.03 16.6 3.55  0.05 1.09 

≈3% SrCl2 2.95 3 0.03 16.2 6.88  4.58 1.07 
 ≈3% CsCl 2.94 2.99 2.29 16.2 3.48  2.26 1.07 
≈3% SrCO3 2.7 2.75 2.03 1.48 6.15   0.05 1.09 

 

The % removal of ions from the first 1mm shell was calculated using the maximum 

concentration of ion in the 200ml test solution (DW) for the closed circuit 

experiments. These values are reported in Table 3.16. 

Table 3.15 % ions removed from first 1mm shell of CPS 

CPS % removed 
Na+ K+ Cs+ Ca2+ Sr2+ Co2+ Cl- SO42- 

BFS:OPC         
Control 59 204 - 4 - - 183 25 

≈3% SrCl2 74 100 - 4 11 - 134 21 
≈3% CsCl 24 42 66 <0.1 - - 21 4 

≈1.3% CoCl2 66 64 - 4 - <0.01 304 26 
Combined metal 54 383 36 7 9 - 373 14 

≈3% SrCO3 48 19 - 0.7 <0.01 - 130 5 
         

PFA:OPC         
Control 55 44 - 0.03 - - 480 51 

≈3% SrCl2 138 93 - 43 34 - 435 19 
≈3% CsCl 49 47 184 0.4 - - 467 48 

≈3% SrCO3         
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The values in Table 3.16 shows that some of the ions have diffused out over 2 

mm of depth for example Na+ and K+, which is most soluble ion in the pore 

solution; K+ has diffused out over 4 mm from combined metal CPS, which could 

be attributed to chloride. Calcium being the most abundant cation in the CPS has 

shown the % release comparatively lesser than the rest of the cations. The % 

release of encapsulated cations (as chloride salt), Sr2+ and Cs+ from PFA:OPC is 

significantly higher than the BFS:OPC, with Cs+ diffusing out over 2 mm from ≈3% 

CsCl PFA:OPC, which is comparable with Cl- % removal values indicating that 

BFS:OPC formulation may slow down the diffusivity of these cation in comparison 

with PFA:OPC formulation. However, the diffusivity of Sr2+ when added as 

insoluble carbonate salt, is confined to the surface of few micron thickness. Cl- is 

the most diffusible anion which has diffused out over 5 mm from control and 3% 

CsCl PFA:OPC CPS. This is attributed to the fact that Cl- complexes that may 

have formed with Ca2+, Sr2+ and Cs+, are soluble in comparison with sulphate 

complexes, hence higher percentage of removal/depth of dissolution. An 

interesting feature is, the largest difference between BFS:OPC and PFA:OPC is 

the Ca2+ content;  the fact that Sr2+ replaces Ca2+ in the cement paste mixture, 

above data shows a direct correlation between depth of Sr2+ diffusivity and total 

amount of Ca2+ present in the CPS. Depending on the type of formulation 

(BFS:OPC, PFA:OPC); the depth of Sr2+ diffusion was significantly higher in 3% 

SrCl2 PFA:OPC having 147 mmoles of Ca2+ compared to its BFS counterpart 

having 602 mmoles of Ca2+. The effect of mass action can be noticed in control 

CPS; the depth of diffusion of Ca2+ is smaller in PFA:OPC compared to BFS:OPC 

control CPS. 
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Figure 3.15  Illustration of ion disposition in CPS. 

 

3.7 Microbial impact on migration of ions from CPS 

Cementitious materials are susceptible to microbiological degradation [68, 165]. 

The interactions of microorganisms in the degradation of concrete and on the 

mobility of metals and/or radionuclides in soil and other solid matrices have 

received significant attention [70, 165-167]. The most fascinating feature of 

microorganisms is that they are composed of diverse taxa with varying nutritional 

demands within small microenvironments. The bioavailability of the 

contaminants/radionuclides depends on their chemical nature; their role in the 

biological system and also the physic-chemical parameters of the site which may 

favour their growth [168]. Studies on the impact of microbial degradation on 

cementitious material has revealed that the most frequent colonisers of concrete 

include bacteria, cyanobacteria, algae, fungi and lichens (Table 3.17). Studies by 

1mm 
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BNFL scientists demonstrated that sulphur-oxidising bacteria (SOB) could 

degrade concrete structures by up to 8mm/year. Two of the supervisors (Eccles 

and Morton) involved with this project patented this work [77]. SOB were shown 

to mobilise radionuclides from contaminated soil, the pore water eventually 

achieving a pH less than 1.0 [169]. Microorganisms have the ability to grow over 

a wide range of pH, under elevated hydrostatic pressures, in highly alkaline 

conditions, in nutrient–starved conditions and at radiation levels that would be 

lethal to humans [170] . Throughout nature various elemental cycles including 

carbon, nitrogen, sulphur and oxygen occur simultaneously. In GDF the 

availability of waste matrices, canisters, over packs, buffers and backfills, etc., 

can be potential nutrient and  energy sources for microorganism [171]. 

Microorganisms can form biofilms which induce corrosion of metal surfaces to 

which they are attached [172]. However, direct anaerobic corrosion of concrete 

is not known, although anaerobic degradation of organic acids and their impact 

on concrete could be a significant factor [173] under aerobic conditions. 

Additionally, microbial gas generation [174] may lead to further microbial 

transformation. This could lead to an increase in radionuclide mobility and may, 

in time, impact on the far-field system with a pathway into the food-chain and/or 

other receptors.  

The experiments in the present research were designed to simulate an actual 

GDF scenario where the microbial population will be influenced by environmental 

conditions such as availability of nutrients and energy for their growth and 

metabolism [70].  It is very likely that GDF will remain aerobic for few years in 

post-closure period. Our experiments were carried out using minimum growth 

media, and no additional growth media were added to the test solution. The viable 
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population of bacteria and fungi present in test solution (JISS) had only nutrients 

and carbon source present in the circulating system available to them. The 

colonisation of the cementitious material begins with those organisms that are 

able to cope with the highly alkaline conditions. This primary colonisation alter the 

micro-environment and create a new organism for colonisation [168]. Most of the 

cations present in cement paste samples will directly or indirectly support the 

growth and metabolism of the fungal species. Some of these cations are Na+, 

Mg2+, Ca2+, Mn4+, and Fe3+ [175]. Bacterial cells have high tolerance to these 

metals in biological functions compared to those without biological significance. 

These metals either serve as a functional metal ion in metabolic 

process/enzymatic reactions, or support the structural development of the cell 

envelope. Bacteria can cope with high concentrations of metal ions depending on 

the external condition [176]. 

Microorganisms treat contaminants in two ways; (i) immobilisation and (ii) 

mobilisation; the former reduces their bioavailability, whereas the latter increases 

their potential toxicity by increasing their bioavailability and transfer; which in turn 

depends on the chemical nature and biological function or biochemical 

significance of the metallic species. Several key microbial processes are involved 

in the mobilisation and immobilisation of metal compounds by one or more 

mechanisms which are presented in Table 3.18 . These processes depend on 

the environmental and physic-chemical conditions, e.g. pH, water/moisture, 

inorganic and organic molecules, compounds, colloids and particulates present. 
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Table 3.16 Microorganisms involved in the biodegradation of concrete [69]. 

Concrete degrading organisms 

Bacteria 

Thiobacillus intermedius [177, 178] 

Thiobacillus neapolitanus [178, 179] 

Thiobacillus novellus [178, 179] 

Thiobacillus thioparus [178, 179] 

Acidithiobacillus thiooxidans [178-181] 

Thiomonas perometablis[181] 

 
Fungi 

Alternaria sp [182] 

Cladosporium cladosporioides [182] 

Epicoccum nigrum [182] 
Fusarium sp [177, 182] 

Mucor sp [182] 

Penicillium oxalicum [182] 

Pestalotiopsis maculans [182] 

Trichoderma asperellum [182] 

Aspergillus niger [183] 

Alternaria alternate [184] 

Exophiala sp.[184] 

Coniosporium uncinatum [184] 

 
Algae 

Chaetomorpha antennina [185] 

Ulva fasciata [185] 

 
Lichens 

Acarospora cervina [186] 
Candelariella ssp [186] 
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Table 3.17 The major mechanisms of microbial metal interaction [175, 187] 

Mobilisation Immobilisation 

1. Enzymatic oxidation 
UO2 + 2Fe3+ → UO2

2 + Fe2+ 

Autotrophic leaching, e.g.Thiobaccillus 
ferroxidans, T. thiooxidans. 

4Fe2+ + O2 + 4H+  →  4Fe3+ + 2H2O 
 

1. Precipitation 
e.g.Sulphate-reducing bacteria  
strictly anaerobic bacteria 
 

 

2. Enzymatic reduction 
facultative and obligate anaerobic 
microorganisms 

UO2
2+ → UO2 

Fe3+  → Fe2+ 
Mn4+  →  Mn2+  

2. Biosorption 

e.g. extracellular polymeric 
substances (EPS), metal binding 
proteins. 

 

3. Complexation 
Metal + ligand  →metal complex 
Citric acid, tricarboxylic acid released 
during microbial degradation 

3. Bioaccumulation 

Transport phenomena involving 
ion pump, ion channel, 
endocytosis, complex permeation, 
and lipid permeation 

 

3.7.1 Mobilisation of metal ions 

Mobilisation of metals from a substrate is through autotrophic and heterotrophic 

leaching, chelation by microbial metabolite by the action of siderophores and by 

methylation. The majority of biologically mediated leaching of metal ions take 

place as a result of autotrophic metabolism which is carried out by 

chemolithotrophic acidophilic bacteria such as Thiobacillus ferrooxidans and T. 

Thioxidans, which obtain energy from oxidation of ferrous iron or reduced sulphur 

compounds. The end products of autotrophic leaching releases Fe (III) or H2SO4. 

The organisms involved in enzymatic reduction are heterotrophic anaerobes, few 

of them are facultative and oxygen may also be respired. The reduction of Fe (III) 

and Mn (III) to Fe (II) and Mn (II) respectively, may also release the metals 
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attached to their respective oxides [188-190]. This process may also be 

enhanced by presence of humic substances [175, 191]. Microbial degradation 

also releases various organic acids which have been found to have metal 

complexation ability. Several studies have shown that citric and oxalic acid are 

commonly released in the surrounding environment by fungal hyphae that form 

stable complexes with various metals [192]. The soil fungus Aspergillus niger has 

shown the ability to solubilise a wide range of insoluble metal compounds, 

including phosphate, sulphide and mineral ores [193]. This fungus produces 

organic acids and acidifies the surrounding medium irrespective of presence of 

metal compounds. Studies indicated that, altering the concentrations of Nitrogen, 

Phosphorous or pH can enhance the production of organic acids [193]. In 

manganese deficient growth media; 600 mM of citric acid is produced by A niger,  

another example of fungal leaching is that mediated by Penicillium 

simplicissimum [66].  This fungus, isolated from a contaminated site was shown 

to leach Zn2+ from insoluble ZnO contained in industrial filter dust, by producing 

citric acid (7100 mM) [194]. Citric acid derived from a fungal strain of P 

simplicissimum has shown a much greater ability to leach Al3+ than pure citric 

acid [61]. In an iron deficient medium; microorganisms produce specific iron 

chelators known as siderophores. These compounds possess catecholate, 

phenolate or hydroxamate as their binding groups. Most fungi possess 

intracellular siderophores as iron storage compounds [195]. Over the past few 

years many siderophore or siderophore-like compounds have been identified 

from various biological systems [196]. Although siderophores are primarily 

selective for Fe(III); studies have shown that they can also complex other metals 

and radionuclides [197].  
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3.7.2 Immobilisation of metal ions  

Immobilisation of toxic metals and radionuclides by microorganisms is achieved 

by biosorption to cell wall, exctracellular polysaccharides (EPS), and intracellular 

bioaccumulation/precipitation around cell wall [175]. Immobilisation processes 

have received considerable attention due to their potential in detoxification of 

toxic waste [198]. The accumulation of metals by bacterial cells takes place in 

two broad processes (i) passive adsorption which is independent of metabolism 

and (ii) active adsorption which is dependent on element-specific transport 

system and is metabolism dependant [168]. In the majority of cases, the passive 

adsorption plays an important role in metal accumulation due to the scarcity of 

nutrients. Active adsorption requires energy. However, passive adsorption is 

faster than active [61, 199]. Bacteria can cope with high concentration of metal 

ion depending on the external condition [175]. Biosorption by cell walls, involves 

EPS and proteins. Many such exopolymers serve as a source of polyanions 

which can interact with cationic metal/radionuclide species, under natural 

conditions [200]. In the case of fungi, chitin, phenolic polymers and melanins 

possess potential metal-binding sites for radionuclides [201]. Precipitation can 

take place as a result of release of sulfide due to sulfate reduction by sulpfate-

reducing bacteria (SRB). Most metal sulfides formed are insoluble and the 

solubility product of these metal sulfides is in the range of 4.65 X 10-14 (Mn) to 

6.44X 10-53 (Hg). Reference studies have shown that extreme reducing 

conditions created by SRB can also reduce uranium (VI) [202].  

In the present research, genus level identification of bacteria showed the 

presence of Actinomyces spp, which readily colonises concrete structures 

leading to formation of a biofilm [68]. This biofilm can trap other particulate 
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material making the concrete surface susceptible for degradation [177]. Presence 

of Cladosporium spp.; the most frequently detected fungal species on damp or 

water-damaged building materials [203], were isolated from all the test solutions 

except the control CPS. There have been several studies on the melanin 

containing dark-pigmented Cladosporium cladosporioides, which is 

predominantly present in soil,  showed accumulation of radionuclides, especially 

137Cs [204]. Fungal species isolated from within and around the Chernobyl 

nuclear reactor detected presence of several species of Cladosporium [67, 200].  

The colonisation of cementitious materials by fungi is dependent on pH which 

normally takes place once the pH has dropped sufficiently depending on the 

availability of nutrients [189, 200]. In the present study the colonisation of fungi 

occurred in the later stages of the experiment indicating that these heterotrophs 

are late colonisers of cementitious materials which might be using the organic 

remnants of primary colonisers as a carbon source. The pH values of JISS is 

comparable with the presence of viable bacterial count in the circulating system 

(Table 3.19 and 3.20). The circulating system with viable population of bacteria 

were measured having lower pH values. Bacteria have ability to acidify or 

neutralise the cytoplasm depending on the external environmental conditions, to 

maintain the optimal function and their structural integrity [205].  

Table 3.18 Summary table showing pH values and microbial analysis of JISS 

from BFS:OPC JISS experiment 

 
*None recorded 
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Table 3.19 Summary table showing pH values and microbial analysis of JISS 

from PFA:OPC JISS experiment 

*None recorded 
 
The test solution (JISS) retard Sr2+ diffusivity but accelerated Cs+ diffusion in 

comparison with distilled water values (Figure 3.9 to 3.12). This could be 

attributed to the inherent sulphate content (≈ 8600 ppb) of the JISS test solution 

(Table 3.7) and also the presence of both motile and non-motile bacteria in JISS 

from 3% CsCl circulating system (Table 3.19).  

Another factor that might have contributed towards the mobility of encapsulated 

ions is presence of humic substance [206]. Humic substances are naturally 

occurring heterogeneous mixtures of organic molecules that play an important 

role in behaviour and fate of metal ions in the natural environment, by controlling 

their concentration in soil and natural waters [207]. The presence of humic acid 

have not been measured in the present study. There are three major fractions of 

humic substance: fulvic acid, Humic acid and Humin, which are polydiverse 

mixture of natural organic polyelectrolyte having different functional group to 

which metal ions/ radionuclide bind [191]. The ability of humic substance to 

absorb Sr2+, Cs+, Co2+ has been well documented [208, 209].  

It is thought therefore, the cumulative effect of presence of motile bacteria, fungi 

and presence of humic substances might have lowered the pH and influenced 

the diffusivity of cation from BFS:OPC CPSs. 



 

 
 

Chapter 4:  Diffusivity from BFS:OPC  CPSs with 
distilled water as a test solution 
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4.1 Aims of study 

This chapter aims to evaluate the influence of concentration and nature of cation 

on their diffusivity when encapsulated in BFS:OPC in contact with distilled water. 

4.2 Introduction 

In this chapter, a series of diffusivity experiments have been carried out on non-

aged CPSs to evaluate the diffusivity of caesium and cobalt when added to 

BFS:OPC formulation as their chlorides and for strontium when added as chloride 

and carbonate.  Strontium carbonate was selected to determine the influence of 

a water insoluble compound on diffusivity of the cation. In case of aged CPS 

diffusivity experiment, samples were allowed to cure for 240 days in the 

laboratory atmosphere.  Diffusivity studies on these 8 month old samples were 

carried out to compare the rates with that of non-aged samples’ in order to have 

a better understanding of the encapsulated waste that has been standing in an 

interim store and/or in a GDF over a long period of time prior to closure period. 

Diffusivity studies were also carried on CPSs encapsulated with ≈0.3% Cs and 

Sr chloride and Sr carbonate salts to demonstrate the influence of cation and 

anion concentration on the diffusivity of the encapsulated cation. The 

experimental conditions were kept identical in all the diffusivity circulation 

experiments. A total of six sets of diffusivity experiments (Table 4.1) were carried 

out using distilled water and two sets using tap water as a test solution for 

comparative purposes; tap water was selected for the ‘open’ diffusivity 

experiments. The logistics of accommodating nearly 50 litres/week of test 

solution for each open circuit experiment in the laboratory for about 30 to 40 days 

was a logistic significant factor. This volume of solution influenced the decision to 

use tap water. Each experiment consisted of one to five sets of closed circulating 
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diffusivity circuits with OPC: BFS cement paste and different cation 

characteristics.  

The data generated from these experiments will serve as a baseline for further 

diffusivity studies involving simulated ground water and microorganisms. 

4.3 Cement paste samples 

Diffusivity experiments were carried out on 17 different cement paste samples, 

details of which are mentioned in Table 4.1. 

Table 4.1 Cement paste samples and test solution used 

Experiment BFS:OPC Cement paste samples Test solution 

1 (a)    Control Distilled water 
 (b)    ≈3% SrCl2  
 (c)    ≈3% CsCl  
 (d)    ≈1.3% CoCl2  
 (e)     Combined metal   
  (≈3% SrCl2,  ≈3% CsCl and ≈1.3% CoCl2)  
    

2 (a)    Aged Control Distilled water 
 (b)    Aged  ≈ 3%  SrCl2  
 (c)    Aged ≈ 3%  CsCl  
    

3 (a)    ≈0.3% SrCl2 Distilled water 
 (b)    ≈0.3%  CsCl  
    

4 (a)    ≈3% SrCO3 Distilled water 
 (b)    ≈0.3% SrCO3  
    

5 (a)    Control Tap water 
 (b)    ≈3% SrCl2 (open circuit) 
 (c)    ≈3% CsCl  

 (d)    ≈3% SrCO3  
   

6 (a)     ≈3% SrCl2    Tap water 
      (closed circuit) 
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4.4 Results 

The compositions of the as received OPC and BFS from the NNL were 

comparable, possibly with the exception of moisture, with other cements and 

slags used in waste encapsulation (Table 4.2). The moisture content of the OPC 

was not taken into account when preparing CPSs. During the curing stage, the 

CPSs lost the pool of liquid that had collected on the upper surface during the 

first 7 days and on removal from the small polythene bottle gradually changed 

colour from distinct grey to light grey as shown in Figure 2.1. This change in colour 

was also accompanied a change in the cylinder surface texture from smooth to 

less smooth and was possibly due to the cement paste adsorption of carbon 

dioxide from the laboratory atmosphere. The incorporation of cation, either Cs+, 

Sr2+, Co2+ or a mixed cation regime affected both the rate of liquor loss and the 

surface finish of the cement paste sample. Addition of cobalt, for example, 

produced a more marble effect type finish whilst the others were less well 

polished. The loss of bleed water took shorter duration of time in ≈3% SrCl2 CPSs. 

The loss of bleed water from control CPS was substantially slower than all other 

CPSs, however, there was no bleeding noticed on the top surface during the 

curing stage of 3%SrCO3. The variable rate of loss of liquor from the upper 

cement paste sample surface was instrumental for sectioning three CPSs 

(control, 3% SrCl2 and 3% CsCl) (Figure 2.2). 

Table 4.2 Analysis of as received OPC and BFS (%). 

Material Na+ K+ Cs+ Ca2+ Mg2+ Sr2+ Cl- SO42- moisture 

OPC 0.6 0.63 0.06 42.64 1.36 4.61 0.11 1.37 26.2 

BFS 0.44 0.74 0.20 38.22 3.48 4.92 0.26 0.63 0.2 
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4.4.1 Chemical analysis of cement paste 

Table 4.3 shows the analysis of the dissected ≈3% SrCl2 and ≈3% CsCl CPSs 

indicating that segregation of the cation had occurred during curing, with 

segregation being more prominent in the ≈3% SrCl2 CPS, may be indicative of 

the surface area and micro-pore area being significantly larger than the ≈3% CsCl 

CPS. The average of the measured cation concentration for both Cs+ and Sr2+ is 

consistent with the amount of cation added during the cement paste preparation. 

The higher surface area and micro-pore size of the ≈3% SrCl2 CPS could also 

account for the higher moisture content.  

Table 4.3 Cation, surface and micro-pore area analysis ≈3% SrCl2 and ≈3% CsCl 

CPS  

 

4.4.2 Moisture content of CPS 

A significant difference was observed in the moisture content of top two sections 

measured of control and CPSs encapsulated with chloride salts of %3 Sr and Cs 

in comparison with CPS encapsulated with carbonate salt of 3% Sr (Table 4.4). 

This difference in moisture content can be compared with significant difference in 

bleeding observed for all other CPS except ≈3% SrCO3 CPS. 

 

 

Dissected 
BFS:OPC 

sample 
  

≈3% SrCl2 CPS   ≈3% CsCl CPS 

% Sr Micro-pore 
area 

Surface 
area  % Cs Micro-pore 

area 
Surface 

area 
  m2/g     m2/g 

Top 3.0 12.8 48.5  3.1 1.2 26.3 

Middle 3.1 8.2 38.9  2.9 3.6 26.8 

Bottom 1.8 6.3 23.0  2.2 2.2 20.0 
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Table 4.4  % moisture content of BFS:OPC CPS 

  Control  ≈3% 
SrCl2 

≈3% 
CsCl 

≈1.3% 
CoCl2 

combined 
metal  

≈3% 
SrCO3 

Top 16.6 26.6 21 20.1 27.3 5.9 

Middle  13.4 22.5 22.7 23.6 17.9 5.2 

Bottom 12.1 19 15.2 19.5 16.8 5.1 

 

4.4.3 Average micropore and surface area micropore area analysis of 

cement paste sample measured by BET method 

The average micropore and surface area results of all the CPSs are shown in 

Table 4.5. The values of micropore area of the CPSs prior to the diffusivity 

experiments were in the range of 1.0 – 9.10 m2/g. The micropore area of the 

CPSs containing strontium chloride were higher compared with the other CPSs. 

Cement paste containing cobalt chloride had the lowest micro-pore area. Surface 

area of the CPSs were in the range of 11.6 – 42.9 m2/g. The surface area of 

control and ≈3% SrCl2 CPS were higher than Cs contaminated CPSs. 
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Table 4.5 Average micropore and surface area of cement paste samples 

measured by BET method prior to diffusivity experiments 

CPS Micropore 
area 

Surface 
area 

 (m2/g) 
Control 5.2 42.9 

≈ 3% SrCl2 9.1 36.8 

≈ 3% CsCl 2.3 24.4 

≈ 1.3% CoCl2 1.0 20.0 

combined metal 7.3 36.6 

Aged control 4.4 31.8 

Aged ≈ 3% SrCl2 8.5 22.3 

Aged ≈ 3% CsCl 1.4 13.1 

≈ 0.3% CsCl 3.1 19.2 

≈ 0.3% SrCl2 4.2 19.2 

≈ 0.3% SrCO3 5.3 22.0 

≈ 3% SrCO3 4.8 23.0 

Control (open circuit) 2.7 24.2 

≈ 3% SrCl2 (open circuit) 5.42 22.8 

≈ 3% CsCl (open circuit) 1.3 11.6 

≈ 3% SrCO3 (open circuit) 2.7 21.2 

3% SrCl2 (tap water) 5.44 22.6 

 

4.4.4 Test solution analysis 

4.4.4.1 pH values 

The pH values of the test solutions after the first few days of the diffusivity 

experiments increased from about 7.0 (natural pH value of de-ionised water) to 9 

- 13, except in the case of test solutions with strontium carbonate samples; this 

increase is not unexpected as calcium salts will gradually diffuse from the cement.  

After about 70 days the pH values for the Cs chloride and Sr carbonate 
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experiments decreased, with the decrease more pronounced for cement paste 

with higher concentration of carbonate (Figure 4.12). pH values of the test 

solutions from control and ≈ 3% SrCl2 test solutions showed a similar trend in pH 

(Figure 4.1 to 4.2). However, ≈3% CsCl, ≈1.3% CoCl2 and combined metal test 

solutions, showed a somewhat similar trend until day 42 (Figure 4.3 to 4.5). There 

was no significant difference in the pH values observed for aged and non-aged 

cement paste sample test solutions (Figure 4.6 to 4.8). The pH values of the tap 

water test solutions increased from 7.1 (natural pH of tap water) to 8.05 in both 

close and open diffusivity circuits.  

4.4.4.2 Chemical analysis of test solution 

All the diffusivity data have been normalised for dilution effect and cation/anion 

composition of tap water (Table 4.6). The rates of diffusivity of all the experiments 

are shown in Figure 4.1 to Figure 4.17 and the values are shown in appendix 4.1 

to 4.17.  In the following sub sections the average diffusivity data have been used 

for comparative purposes. 

Table 4.6 Analysis of tap water 

Sample 
Concentration in ppb 

pH 
Na+ K+ Mg+ Ca2+ Cl- SO42- 

Tap water  3984 365 1716 7160 828 13520 7.17 

 

 Strontium 

The highest rate of diffusivity of Sr2+ was measured for the ≈3% SrCl2 followed 

by combined metal and aged ≈3% SrCl2 paste sample. The rate of diffusivity of 

Sr2+ in closed circuit tap water experiment was statistically significant (p> 0.05) 

with that of Sr2+diffusion from combined metal CPS. The average rate of diffusivity 
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from aged ≈3% SrCl2 (6.5 µg/cm2/day) CPS was half the average rate of diffusivity 

of Sr from non-aged ≈3% SrCl2 CPS (14 µg/cm2/day). Strontium from ≈3% SrCO3 

CPS (0.026 µg/cm2/day) diffused out at significantly slower in comparison with 

≈3% SrCl2 CPS (6.5 µg/cm2/day). However, the rates of diffusivity of Sr2+  from 

≈3% SrCO3 and ≈ 0.3% SrCO3 showed a similar trend in diffusivity and were 

similar to the rates of diffusivity of Sr2+ from control sample.  The average rates 

of diffusivity of Sr2+ from ≈0.3% SrCl2 (0.26 µg/cm2/day) was 76 times lower than 

its 3% counterpart. The results obtained from open circuit diffusivity experiment 

confirmed the trend of Sr2+ diffusivity found in the closed circuit diffusivity 

experiments. Strontium from ≈3% SrCl2 paste sample diffused out faster than the 

Sr2+ from ≈3% SrCO3 CPS.  

 Caesium 

The rate of diffusivity of Cs+ from non-aged ≈3% CsCl CPS was faster and 

significantly similar (p>0.05) to the Cs+ diffusivity from combined metal CPS. The 

average rate of diffusivity of Cs+ from aged ≈3% CsCl CPS (8.4 µg/cm2/day) was 

measured 2.6 times lower than the average rate of diffusivity of Cs+ from non-

aged ≈3% CsCl CPS (22 µg/cm2/day). Caesium from ≈0.3% CsCl CPS (1.5 

µg/cm2/day) diffused out ≈12 times slower than the rate of diffusivity of Cs+ from 

≈3% CsCl CPS (17.8 µg/cm2/day). This confirms that the rate of diffusivity 

depends on the concentration of the cation added to the cement paste sample. 

The diffusivity rate of Cs+ was found to be 2 to 6 times higher than Sr2+ from all 

the CPSs. 
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 Cobalt 

The rate of diffusivity of Co2+ from ≈1.3% CoCl2 was found lowest of all the cations 

from CPS. The sequence of diffusivities of the added cation were shown as Cs+ 

> Sr2+> Co2+ from individual CPS as well as from combined metal CPS. 

 Calcium 

The diffusivity of Ca2+ from ≈3% SrCl2 and ≈1.3% CoCl2 CPS was similar (p>0.05) 

and measured as 5 times higher than the control CPS. Calcium from combined 

metal CPS (14 µg/cm2/day) and aged ≈3% SrCl2 CPS (15 µg/cm2/day) diffused 

out at the similar rate; was measured 3 times higher than the rate of diffusivity of 

Ca2+ from non-aged control CPS (5 µg/cm2/day). The average rate of diffusivity 

of Ca2+ from ≈3% CsCl CPS (0.4 µg/cm2/day) was 12 times lower than the non-

aged control CPS (5 µg/cm2/day) and was found to be lowest of all the samples. 

However, the diffusion of Ca2+ from aged ≈3% CsCl CPS (8 µg/cm2/day) was 

found to be 20 times higher than non- aged ≈3% CsCl CPS (0.4 µg/cm2/day) and 

≈6 times higher from 0.3% CsCl (3.2 µg/cm2/day) compared to non-aged ≈3% 

CsCl (17.8 µg/cm2/day for 105 days). The average rate of diffusivity of Ca2+ from 

≈0.3% SrCl2 (6.1 µg/cm2/day) was measured 4.5 times lower than the average 

rate of diffusivity of Ca2+ from its 3% counterpart (27.5 µg/cm2/day for 105 days). 

Calcium from ≈3% SrCO3 CPS diffused out at faster rate in comparison with 

≈0.3% SrCO3 CPS. The diffusion of Ca2+ from the CPS in the open circuit 

experiment showed the similar pattern of diffusivity in comparison with close 

circuit experiment with higher rate of Ca2+ diffusivity from ≈3% SrCl2 (1.9 

µg/cm2/day) compared to ≈3% CsCl CPS (0.8 µg/cm2/day).  However, the rate of 

diffusivity of Ca2+ from ≈3% SrCO3 (0.01 µg/cm2/day) was found to be lowest in 

contrast with closed circuit experiment.  
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There was no significant difference (p>0.05) observed between the Ca2+ 

diffusivity from ≈3% SrCl2 in DW (65 µg/cm2/day) and in closed circuit tap water 

(50.8 µg/cm2/day). 

 Sodium 

The rates of diffusivity of Na+ from non-aged control, ≈1.3% CoCl2 and ≈3% SrCl2 

CPSs were fairly in similar range (3.8 – 4.8 µg/cm2/day). The lowest rate of 

diffusivity was seen in the test solution of ≈3% CsCl CPS (1.3 µg/cm2/day) and 

combined metal CPS (1.1 µg/cm2/day). Sodium diffused out at higher rate from 

≈0.3% SrCl2 and ≈0.3% CsCl CPSs. Sodium from ≈3% CsCl CPS (1.2 

µg/cm2/day) diffused out 7 times slower in comparison with ≈0.3% CsCl CPS (8.8 

µg/cm2/day). However, there was no significant difference (p>0.05) in the rate of 

diffusivity of Na+ observed between ≈3% SrCl2 and ≈0.3% SrCl2 CPS.  In the case 

of aged sample, the average rate of diffusivity of Na+ from ≈3% CsCl CPS (2.7 

µg/cm2/day) was two times higher than non-aged ≈3% CsCl CPS (1.3 

µg/cm2/day). However, sodium from aged and non-aged ≈3% SrCl2 CPS diffused 

at relatively similar rates (p>0.05). The rate of diffusivity of Na+ from ≈3% SrCO3 

and ≈0.3% SrCO3 CPS showed a similar trend of diffusivity (p>0.05). There was 

no significant difference in the diffusivity of Na+ observed in open circuit 

experiment from all the CPSs. The rate of diffusivity of Na+ from ≈3% SrCl2 CPS 

in DW and close tap water experiment was found to be similar (p>0.05). 

 Chloride 

Chloride from combined cation CPS diffused (270 µg/cm2/day) out higher than 

the rest of the CPSs. This is attributed to the concentration effect, the 

concentration of Cl- in combined metal CPS (101 mmoles) was higher than all 
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other CPS, however, significantly similar to Cl- concentration from ≈3% SrCl2 

(58.3 mmoles) (Table 4.7). The diffusivity of Cl- from strontium encapsulated 

CPSs was higher than caesium encapsulated CPSs. The average rate chloride 

diffusivity from aged ≈3% CsCl (19 µg/cm2/day) was measured ≈4 times higher 

than non-aged ≈3% CsCl CPS. The rate of diffusivity of Cl- from ≈3% CoCl2 (60 

µg/cm2/day), non- aged ≈3% SrCl2 (57 µg/cm2/day), and aged ≈3% SrCl2 (63 

µg/cm2/day), was found to be in similar range having similar trend of diffusivity. 

Chloride from ≈0.3% SrCl2 (24 µg/cm2/day) diffused out 3.5 times slower than the 

diffusivity of Cl- from their ≈3% SrCl2 (82.7µg/cm2/day). The results obtained from 

open circuit diffusivity experiment are in agreement with the closed circuit 

diffusivity. The average rate of diffusivity of Cl- from control (3 µg/cm2/day) and ≈ 

3% SrCO3 (3 µg/cm2/day) was found to be lowest and significantly similar, 

indicating that the Cl- diffusion is due to added cation chloride. The average rate 

of diffusivity of Cl- from ≈3% SrCl2 in closed circuit tap water (468 µg/cm2/day) 

was 3 times higher than average rate of diffusivity of Cl- from ≈3% SrCl2 CPS 

(153.5 µg/cm2/day) in DW. 
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Table 4.7 Concentration of Cl- calculated in BFS:OPC CPS in mmoles 

BFS:OPC CPS Cl-  concentration 
(mmoles) 

Control 3.8 

≈ 3% SrCl2 58.3 

≈ 3% CsCl 24.6 

≈ 1.3% CoCl2 21.2 

combined metal 101 

≈ 0.3% SrCl2 6.5 

≈ 0.3% CsCl 5 

≈ 0.3% SrCO3 3.6 

≈ 3% SrCO3 3.7 
 

 Sulphate 

The highest rate of diffusivity of sulphate was observed in the test solution of aged 

≈3% SrCl2 followed by aged ≈3% CsCl. The average rate of diffusivity of SO42-

was ≈8 times greater from aged ≈3% SrCl2 CPS (47 µg/cm2/day) compared to 

non-aged ≈3% SrCl2 CPS (6 µg/cm2/day). This is comparable to the Cl- diffusion, 

however, the diffusion of SO42- is from inherent anion in the OPC and/or BFS and 

was not added to the CPS (Table 4.8).  In the case of ≈3% CsCl, the diffusivity 

from aged CPS (27 µg/cm2/day) was 14 times higher than non-aged CPS (1.9 

µg/cm2/day). ≈3% SrCO3 and ≈0.3% SrCO3 test solution showed the lowest 

diffusivity. Both the ≈3% SrCO3 and ≈0.3% SrCO3 showed the similar rate of 

diffusivity after 21 days with initial higher diffusivity from ≈3% SrCO3 sample. 

Similar trend in the diffusivity from ≈1.3% CoCl2 CPS (11 µg/cm2/day) and non-

aged control CPS (11µg/cm2/day) was observed, which was found to be 5 times 

lower than the aged ≈3% SrCl2 (47 µg/cm2/day) SO42- diffusivity. The results 

obtained from open circuit diffusivity experiment did not show any similarities in 

diffusivity pattern in comparison with closed circuit diffusivity experiment. The 
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rates of diffusivity of SO42- from encapsulated cation CPSs were similar (2.49 – 

3.75 µg/cm2/day) and ≈3 times higher than the average rate of diffusivity of SO42- 

from control CPS (0.94 µg/cm2/day) in open circuit diffusivity experiment.  

Table 4.8 Concentration of SO42- calculated in BFS:OPC in mmoles 

BFS:OPC CPS SO42-  concentration 
(mmoles) 

Control 18 

≈ 3% SrCl2 19 

≈ 3% CsCl 19 

≈ 1.3% CoCl2 19 

combined metal 19.4 

≈ 0.3% SrCl2 17.5 

≈ 0.3% CsCl 17.2 

≈ 0.3% SrCO3 17.1 

≈ 3% SrCO3 17.5 
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4.5 Conclusions 

1 The make-up water composition affected the segregation of 

inherent/added cations in the cement paste samples. 

2 Initial pH values for all samples except ≈3% SrCO3 were in the range 9 to 

13; the addition of strontium carbonate could be akin to adsorption of CO2 

i.e. carbonation.  

3 The rate of decrease in the pH value could be a function of the cement 

chemistry occurring within the paste sample. 

4 The rate of carbonation was insufficient to affect pH trends, but in some 

cases was sufficient to affect rate of diffusivity. 

5 Strontium when added as a soluble salt to the make-up water influences 

the rate of diffusivity.  

6 The concentration of the added salt to the make-up water also affects 

diffusivity. 

7 The addition of cation salts to the make-up water affected the rate of 

diffusion of calcium ions from the cement paste samples and may not be 

influenced by the concentration of added salt. 

8 Diffusivity of chloride ions from the cement paste samples is dependent on 

the concentration of chloride in the make-up water. 

9 Aging of the cement paste samples influenced the diffusivity rate of 

sulphate. 

10 More dilute make-up water i.e. ≈0.3% cation concentration had a greater 

effect on diffusivity of sodium than more concentrated make-up water. 
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11 Aging of the cement paste sample had little effect on sodium diffusivity. 
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(a) 

 
 

 
(b) 

 
 

Figure 4.1 Rate of diffusivity of cations (a) and anions (b) from control BFS:OPC 

CPS in DW 
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(a) 

 
 
 

 
(b) 

 

Figure 4.2 Rate of diffusivity of cations (a) anions (b) from ≈3% SrCl2 BFS:OPC 

CPS in DW 
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(a) 

 
 

 
(b) 

 
 

Figure 4.3 Rate of diffusivity of cations (a) and anions (b) from ≈3% CsCl 

BFS:OPC CPS in DW 
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(a) 

 

 
(b) 
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(c) 

 

Figure 4.4 Rate of diffusivity of cations (a) Co2+ (b) and anions (c) from ≈1.27 % 

CoCl2 BFS:OPC CPS in DW 
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(a) 

 
 

 
(b) 

 
 

Figure 4.5 Rate of diffusivity of cations (a) and anions (b) from combined metal 

BFS:OPC CPS in DW 
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(a) 

 
 

 
(b) 

 
 

Figure 4.6 Rate of diffusivity of cations (a) and anions (b) from aged control 

BFS:OPC CPS in DW 
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(a) 

 
 
 

 
(b) 

 
 

Figure 4.7 Rate of diffusivity of cations (a) anions (b) from aged ≈3% SrCl2 

BFS:OPC CPS in DW 
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(c) 

 
 
 

Figure 4.8 Rate of diffusivity of cations (a) Cs+ (b) and anions (c) from aged ≈3% 

CsCl2 BFS:OPC CPS in DW 
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(b) 
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(c) 

 
 

Figure 4.9 Rate of diffusivity of cations (a) Sr2+ (b) and anions (c) from ≈0.3% 

SrCl2 BFS:OPC CPS in DW 
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(c) 

 
 

Figure 4.10 Rate of diffusivity of cations (a) Cs+ (b) and anions (c) from ≈0.3% 

CsCl BFS:OPC CPS in DW 
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(b) 
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(c) 

 
 

Figure 4.11 Rate of diffusivity of cations (a) Sr2+ (b) and anions (c) from ≈0.3% 

SrCO3 BFS:OPC CPS in DW 
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(a) 

 

 
(b) 
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(c) 

 
 

Figure 4.12 Rate of diffusivity of cations (a) Sr2+ (b) and anions (c) from ≈3% 

SrCO3 BFS:OPC CPS in DW 
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(a) 

 

 
(b) 

 

Figure 4.13 Rate of diffusivity of cations (a) and anions (b) from control BFS:OPC 

CPS in tap water (open circuit) 
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(a) 

 
 

 
(b) 

 

Figure 4.14 Rate of diffusivity of cations (a) and anions (b) from ≈3% SrCl2 

BFS:OPC CPS in tap water (open circuit) 
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(a) 

 
 

 
(b) 

 
 

 

Figure 4.15 Rate of diffusivity of cations (a) and anions (b) from ≈3% CsCl 

BFS:OPC CPS in tap water (open circuit) 
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(a) 

 

 
(b) 

 

Figure 4.16 Rate of diffusivity of cations (a) and anions (b) from ≈3% SrCO3 

BFS:OPC CPS in tap water (open circuit) 
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(a) 

 

 
(b) 

 

Figure 4.17 Rate of diffusivity of cations (a) and anions (b) from ≈3% SrCl2 

BFS:OPC CPS in tap water (closed circuit)

 

 



 

 
 

Chapter 5:  Diffusivity from PFA:OPC CPSs with 
distilled water as a test solution 
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5.1 Aims of study 

To evaluate the influence of concentration and nature of encapsulated cations in 

(PFA:OPC) formulations on their diffusivity when in contact with distilled water. 

5.2 Introduction 

Pulverised fuel ash (PFA) is another additive which is often used in formation of 

cement paste in nuclear waste encapsulation [210]. In this chapter, a series of 

closed and open circuit diffusivity experiments (section 2.4) have been carried 

out on PFA:OPC CPSs encapsulating caesium when added as chloride salt and 

strontium when added as chloride and carbonate salt (Table 5.1). The main 

purpose for carrying out these experiments was to confirm that the diffusivity of 

the encapsulated cations is dependent on their concentration and also to 

compare the rate of diffusivity between and BFS: OPC cement paste samples. 

The preparation of PFA: OPC CPSs and the formulation were kept identical with 

that of BFS:OPC CPS preparation (Table 2.1). Dynamic diffusivity tests were 

initiated 90 days after curing the PFA:OPC cement paste samples in the 

laboratory atmosphere.  The experimental set-up consisted of two sets of 

diffusivity experiments with distilled water (Table 5.1) and one set consisted of 

tap water as a test solution for comparative purposes.  Tap water was selected 

for the ‘open’ diffusivity experiments. Each experiment consisted of two to four 

sets of closed circulating diffusivity circuits with PFA:OPC cement paste and 

different cation characteristics.  
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5.3 Cement paste samples 

The diffusivity experiments were carried out on 10 CPSs, of which 6 samples 

were subjected to diffusivity test using distilled water and 4 were subjected to 

open circuit tap water test (Table 5.1).  

Table 5.1 Cement paste samples and test solutions used. 

Experiment PFA:OPC Cement 
paste samples 

Test solution 

1 (a) Control 

(b) ≈3%SrCl2 

(c) ≈3% CsCl 

(d) ≈3% SrCO3 
 

Distilled water 

2 (a) ≈0.3% SrCl2 

(b) ≈0.3%CsCl 
 

Distilled water 

3 (a) Control 

(b) ≈3%SrCl2 

(c) ≈3%CsCl 

(d) ≈3% SrCO3 

Tap water 

 

5.4 Results 

The elemental analysis of the as received OPC and PFA from NNL were found 

to be similar with the other cement and fly ash used in the waste encapsulation 

(Table 5.2). The cement paste mixture preparation of PFA: OPC showed high 

fluidity in comparison to the BFS: OPC mixture. During the curing stage, the PFA: 

OPC cement paste samples lost less liquid (bleed) in contrary to BFS: OPC 

cement paste samples. The addition of Sr and Cs affected the surface finish of 

the cement paste sample.  The samples containing SrCO3 produced a rough 
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finish compared to the samples containing SrCl2. Both the control and samples 

containing CsCl produced similar finish, which was less rough than the Sr 

containing cement paste samples.  

Table 5.2 Analysis of as received OPC and PFA (%). 

Material Na+ K+ Cs+ Ca2+ Mg2+ Sr2+ Cl- SO42- moisture 

OPC 0.6 0.63 0.06 42.64 1.36 4.61 0.11 1.37 26.2 

PFA 1.10 2.00 0.06 1.30 0.89 4.50 not 
quoted 

not 
quoted 

0.1 

 

5.4.1 Chemical analysis of cement paste sample 

As previously reported, the chemical analysis of the dissected BFS: OPC CPSs 

showed segregation of the cation; although the average of the measured cation 

concentrations was approximately the same as the amount of cation added 

during the cement paste preparation. It is more than likely that the segregation 

will take place even in PFA:OPC cement paste samples, this may be inferred 

from the micro-pore and surface area values reported in Table 5.4. Based on this 

assumption it was decided that chemical analysis of PFA:OPC cement paste 

samples were not warranted as diffusivity rates could be similar from the 

cylindrical sample for all three sections i.e. top, middle and bottom i.e. the 

variation in concentration was not that significant.  

5.4.2 Moisture content of CPS 

The moisture content of PFA:OPC CPSs were in the range of 3.9 -7.8%. (Table 

5.3). There was no significant difference in the moisture content of top, middle 

and bottom section, contrary to BFS:OPC CPSs.  
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Table 5.3  % moisture content of PFA:OPC  CPS 

  Control  ≈3% SrCl2 ≈3% CsCl ≈3% SrCO3 

Top 4.5 7.8 4.9 5.6 
Middle  3.9 7.0 5.2 4.6 
Bottom 4.2 7.6 4.8 5.5 

 

5.4.3 Micropore and surface area analysis of cement paste sample 

measured by BET method 

Micropore and surface area results of the dissected CPSs are shown in the Table 

5.4.  The result shows that the micropore area of the middle layer of ≈ 3% SrCl2 

CPS was lower than top and bottom layer which is comparable with surface area, 

in contrast to ≈ 3% CsCl CPS; the middle layer showed  higher micropore area 

than top and bottom layer. However, there was no significant difference observed 

in the micropore area of the top, middle and bottom layer of ≈ 3% SrCO3 CPS. 

The average micropore areas of the CPSs used in this experiment were in the 

range of 3 – 3.9 m2/g (Table 5.5). There was no significant difference observed 

in the micropore area of the PFA: OPC CPSs in contrast to BFS: OPC CPSs.  

The surface area of the middle layer of ≈ 3% SrCl2 CPS was lower than top and 

bottom layer, in contrast to ≈ 3% CsCl and ≈ 3% SrCO3 CPS ; which did not show 

any significant difference in surface area measured in all three dissected layers. 

The average surface area of all the CPSs used in this experiment, were in the 

range of 21.7 – 40.6 m2/g. However, the average surface area ≈ 3% SrCl2 was 

found to be the highest of all the samples. 
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Table 5.4 Micropore and surface area analysis of dissected PFA:OPC cement 

paste samples measured by BET method 

Dissected 
PFA:OPC 

CPS 

≈ 3% SrCl2 CPS  3% SrCO3 CPS  ≈ 3% CsCl CPS 

Micro-pore 
area 

Surface 
area  Micro-pore 

area 
Surface 

area  
Micro-
pore 
area 

Surface 
area 

m2/g  m2/g  m2/g 
Top 3.4 43.8  3.8 22.9  3.0 28.6 

Middle 2.2 33.9  3.5 24.5  4.2 27.2 

Bottom 3.5 44.1  4.0 24.1  3.5 26.4 

 

Table 5.5 Average micropore and surface area of PFA:OPC cement paste 

samples measured by BET method 

Sample Micropore area  Surface area  

  m2/g 

 Control 3.9 22.7 

≈3% SrCl2 3.0 40.6 
≈3% CsCl 3.6 27.4 

≈3%  SrCO3 3.7 23.8 

≈0.3% SrCl2 3.7 22.2 

≈0.3% CsCl2 3.2 21.7 
 

5.4.4 Test solution analysis 

5.4.4.1 pH values 

The pH values of the test solutions increased from 7.0 to 12.13 (Figure 5.1 to 

Figure 5.10) for the closed circuit distilled water experiments. Lower pH values 

were found in the test solutions with ≈3% SrCl2. This could be due to the 

dissociation of SrCl2 to Sr(OH)2 and HCl. The HCl formed could be responsible 

for the lower pH values of test solutions from ≈3% SrCl2. The pH values from all 

the test solutions of open circuit experiments were found to in similar range and 

there was no significant difference found among the test solutions.  
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5.4.4.2 Chemical analysis of test solution 

The rates of diffusivity of all the experiments are shown in Figure 5.1 to Figure 

5.10. All the diffusivity data have been normalised for comparative purposes. In 

the following sub sections the average diffusivity data have been used for 

comparative purposes. The rate of diffusivity values of each CPS are given in 

appendix 5.1 to 5.10. 

 Strontium 

A significant higher rate of diffusivity of Sr2+ was measured for the ≈3% SrCl2 (134 

µg/cm2/day) followed by ≈0.3% SrCl2 (10 µg/cm2/day) and ≈3% SrCO3 CPSs 

(0.29 µg/cm2/day) in the closed circuit experiments. Similar trend in diffusivity 

pattern was observed in open circuit diffusivity experiment; Sr2+ from ≈3% SrCl2 

diffused out at considerable faster rate than from ≈3% SrCO3 CPS. The rate of 

diffusivity of Sr2+ from ≈3% SrCl2 PFA: OPC CPS (134 µg/cm2/day) was 

measured ≈4 times faster than ≈3% SrCl2 BFS: OPC CPS (35 µg/cm2/day).  This 

demonstrates that the diffusivity of Sr2+ and other cations is dependent upon its 

concentration and cement additive used in the cement paste formulation. 

 Caesium 

The rate of diffusivity of Cs+ from ≈3% CsCl CPS was higher than the rest of the 

Cs CPS. Caesium from ≈0.3% CsCl CPS (21 µg/cm2/day) diffused out 17 times 

slower than the rate of diffusivity Cs+ from ≈3% CsCl CPS (363 µg/cm2/day). 

Approximately similar difference in the rate of diffusivity in BFS: OPC was 

measured. The rate of diffusivity of Cs+ was found to be 2-3 times higher than 

Sr2+ in both PFA: OPC and BFS: OPC CPS. 
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 Calcium 

The diffusivity of Ca2+ from ≈3% SrCl2 CPS (190 µg/cm2/day) paste sample was 

measured as 163 times higher than control CPS (1.16 µg/cm2/day), followed by 

≈0.3% SrCl2 CPS (2.89 µg/cm2/day) which was measured as 2 times higher the 

diffusivity of Ca2+ from control CPS. The diffusivity pattern of Ca+ from ≈3% CsCl 

(1.59 µg/cm2/day) and control sample showed relatively similar (p >0.05) trend in 

the diffusivity. The diffusion of Ca2+ from 3% SrCO3 (0.73 µg/cm2/day) CPS was 

2 times slower than the rate of diffusivity from control CPS. The rate of diffusivity 

of Ca2+ from ≈0.3% CsCl CPS (0.24 µg/cm2/day) was found to be lowest of all the 

samples and was measured as 7 times slower than ≈3% CsCl CPS (1.59 

µg/cm2/day). The diffusion of Ca2+ from open circuit experiment showed a similar 

pattern of diffusivity in comparison with closed circuit experiment with higher rate 

of Ca2+ diffusivity from ≈3% SrCl2 CPS compared to control sample. However, the 

rate of diffusivity of Ca2+ from control was found lowest in contrast with closed 

circuit experiment. There was no significant difference in the rate of diffusivity of 

Ca2+ from ≈3% CsCl CPS and control sample. In both PFA: OPC and BFS:OPC 

cement paste samples, the diffusivity of Ca2+ from strontium encapsulated CPS 

was higher than caesium encapsulated CPS. The enhanced diffusivity of calcium 

from CPS can be attributed to Cl- concentration in particular for ≈3% SrCl2 CPS. 

The ≈3% SrCl2 CPS had the highest Cl- concentration (≈ 26 mmoles) compared 

with the ≈3% CsCl CPS (≈ 15.4 mmoles) and control CPS (0.36 mmoles). 

 Sodium 

The rate of diffusivity of Na+ from ≈3% SrCl2 CPS (63 µg/cm2/day) was found to 

be highest of all the samples and was measured as 3 times higher than control 

CPS (24 µg/cm2/day). There was no significant difference found in the diffusivity 
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of Na+ from ≈0.3% SrCl2 (22 µg/cm2/day), ≈0.3% CsCl (21 µg/cm2/day),   ≈3% 

CsCl (21 µg/cm2/day) and   ≈3% SrCO3 CPS (20 µg/cm2/day). The data obtained 

from open circuit experiment, showed highest diffusivity of sodium from ≈3% 

SrCl2 CPS. However there was no significant difference in the diffusivity pattern 

of Na+ found in ≈3% SrCO3, ≈3% CsCl CPS, and control sample.  The diffusivity 

of Na+ in BFS: OPC showed different sequence in comparison with PFA: OPC. 

 Chloride 

The sequence of diffusivity of Cl- in our study was: ≈3% SrCl2> ≈3% CsCl > ≈0.3% 

SrCl2>≈0.3% CsCl >≈3% SrCO3 >Control. This could be due to the concentration 

effect, the concentration of Cl- in ≈3% SrCl2 (25.8 mmoles) was higher than all 

other CPS (Table 5.6). Chloride from ≈3% SrCl2 CPS (1303 µg/cm2/day) diffused 

out at higher rate than rest of the CPSs and was measured 268 times higher than 

control CPS (4.9µg/cm2/day). However, Cl- from ≈3% CsCl CPS (243 µg/cm2/day) 

was measured 50 times higher than the rate of diffusivity of Cl- from control CPS. 

The rate of diffusivity of Cl- from closed circuit experiment showed a similar 

sequence of diffusivity in comparison with open circuit experiment with higher rate 

of Cl- diffusivity from ≈3% SrCl2 compared to control sample. Chloride from 

strontium encapsulated cement paste sample was higher than caesium 

encapsulated cement paste sample in both PFA: OPC and BFS:OPC CPSs. 

These studies demonstrate that Cl- is the most mobile of all anions and confirms 

previous published data [102, 103].  
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Table 5.6 Concentration of Cl- calculated in PFA:OPC CPS in mmoles 

CPS Cl-  concentration 
(mmoles) 

Control 0.36 

≈ 3% SrCl2 25.8 

≈ 3% CsCl 15.4 

≈ 3% SrCO3 0.36 

 

 Sulphate 

The rate of diffusivity of sulphate from ≈0.3% CsCl CPS (38 µg/cm2/day) was ≈3 

times higher than ≈3% SrCl2 CPS (13 µg/cm2/day); that diffused out lowest of all 

the CPSs. There was no significant difference in the diffusivity pattern observed 

in ≈0.3% CsCl CPS, control and ≈3% CsCl CPS. Sulphate from ≈3% SrCO3 CPS 

and ≈0.3% SrCl2 CPS diffused out at similar rate. A similar grouping of diffusivity 

pattern was measured in open circuit diffusivity experiments. The diffusivity of 

SO42- in BFS: OPC showed different sequence in comparison with PFA: OPC. 

The diffusion of SO42- is from inherent anion in the OPC and/or BFS and was not 

added to the CPS (Table 5.7). 

Table 5.7 Concentration of SO42- calculated in PFA:OPC CPS in mmoles. 

PFA:OPC CPS SO42- concentration 
(mmoles) 

Control 9.1 

≈ 3% SrCl2 9.7 

≈ 3% CsCl 9.7 

≈ 3% SrCO3 9.1 

 

  



 

157 
 

5.5 Conclusions 

1 The composition of make-up water affects both the bleed water volume and 

physical characteristics of the cement paste samples. 

2 The micropore area values for all PFA:OPC CPSs were similar and not 

significantly different from BFS:OPC CPSs of the same formulation. ≈ 3% 

strontium chloride contaminated samples had greater surface area values 

but were not significantly different to other contaminated strontium cement 

pastes. 

3 The initial pH range was consistent for most samples and slightly lower than 

the BFS:OPC values. These lower pH values could be a consequence of 

the much lower calcium content of PFA:OPC CPSs.  

4 Strontium concentration of the make-up water and the nature of the added 

strontium salt influences the cation diffusivity. 

5 Similarly to conclusion 4, caesium concentration influences its diffusivity, 

but more importantly diffuses more quickly than other cations, respective of 

cement formulation. 

6 Both caesium and strontium influence calcium diffusion when compared 

with the corresponding control CPS. This is not surprising for strontium as 

it will be a good surrogate for calcium and hence take part in some of the 

hydrates produced during curing. Caesium has a lower impact on calcium 

diffusivity. 

7 Strontium appeared to have the greater influence on chloride diffusivity but 

this could be largely dependent on the mass of the anion in the PFA: OPC 

CPS compared with other CPSs. 
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8 The diffusivity of sulphate was influenced by the nature of the cation added 

to the make-up water. Strontium had the greatest effect on lowering the 

diffusion primarily due to the formation of sparingly soluble strontium 

sulphate. 

9 Strontium influenced sodium diffusivity. 

10 The diffusivity of Sr2+ and other cations is dependent upon its concentration 

and cement additive used in the cement paste formulation. 

11 Cl- is the most mobile of all anions. 
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(a) 
 
 
 

 
 

(b) 
 

Figure 5.1 Rate of diffusivity of cations (a) and anions (b) from control PFA:OPC 

CPS in DW 
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(a) 

 

 
(b) 

 

Figure 5.2 Rate of diffusivity of cations (a) and anions (b) from ≈ 3% SrCl2 

PFA:OPC CPS in DW 
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(a) 

 
 

 
(b) 

 

Figure 5.3 Rate of diffusivity of cations (a) and anions (b) from ≈ 3% CsCl 

PFA:OPC CPS in DW 
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(a) 

 
 

 
(b) 

 

Figure 5.4 Rate of diffusivity of cations (a) and anions (b) from ≈3% SrCO3  

PFA:OPC CPS in DW 
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(a) 

 
 

 
(b) 

 

Figure 5.5 Rate of diffusivity of cations (a) and anions (b) from ≈0.3% SrCl2 

PFA:OPC CPS in DW 
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(a) 

 
 

 
(b) 

 

Figure 5.6 Rate of diffusivity of cations (a) and anions (b) from ≈0.3% CsCl 
PFA:OPC CPS in DW 
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(a) 

 
 

 
(b) 

 

Figure 5.7 Rate of diffusivity of cations (a) and anions (b) from control PFA:OPC 

CPS in tap water (open circuit) 
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(a) 

 
 

 
(b) 

 
 

Figure 5.8 Rate of diffusivity of cations (a) and anions (b) from ≈3% SrCl2 

PFA:OPC CPS in tap water (open circuit) 
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(a) 

 
 

 
(b) 

 

Figure 5.9 Rate of diffusivity of cations (a) and anions (b) from ≈3% CsCl 

PFA:OPC CPS in tap water (open circuit) 
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(a) 

 
 

 
(b) 

 

Figure 5.10 Rate of diffusivity of cations (a) and anions (b) from ≈3% SrCO3 

PFA:OPC CPS in tap water (open circuit) 

 



 

 
 

Chapter 6:  Diffusivity from BFS:OPC CPSs with 
Sellafield pore water as a test solution 
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6.1 Aims of study 

The aim of this chapter is to evaluate the influence of simulated ground pore 

water, nature of cation and their concentration on the diffusivity of cations when 

encapsulated in BFS: OPC. 

6.2 Introduction 

The present study investigates the effect of simulated ground water on the 

diffusivity of encapsulated waste when under simulated Geological Disposal 

Facility (GDF) conditions. The stability of the cementitious waste was assessed 

by subjecting the encapsulated CPSs under closed circuit diffusivity experiments 

using Sellafield pore water as test solution. Two simulated groundwater solutions, 

concentrated Sellafield pore water (CSPW) and diluted Sellafield pore water 

(DSPW) (Table 6.1), were used as test solution in experiment 1 and experiment 

2 respectively (Table 6.2). The simulated pore waters were prepared in 

accordance with compositions reported by King et al. [65].  

Table 6.1 Nominal composition of the test solution used [65] 

Parameter salts used Units 

Concentrated  Diluted  
Sellafield pore 

water 
Sellafield pore 

water 
(CSPW) (DSPW) 

Sellafield  Sellafield 
BH3, DET1 BH9B, SPFT3 

pH  pH 6.8 6.8 
Na+ NaCl mg/L 71600 19.3 
K+ KCl mg/L 327 1.47 

Mg2+ MgCl2 mg/L 696 13 
Ca2+ CaCl2 mg/L 300 40.7 

SiO4
4- - mg/L 2.67 5.24 

Cl- NaCl/MgCl2 mg/L 108000 14.5 
SO4

2- Na2SO4 mg/L 4910 4.01 
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6.3 Cement paste samples 

The diffusivity experiments were carried out on 2 sets of 7 different CPSs, using 

CSPW in experiment 1 and DSPW in experiment 2. 

Table 6.2 BFS: OPC cement paste samples and test solution used 

Experiment BFS:OPC Cement paste samples Test solution 

1 (a) Control Concentrated 
 (b) ≈3% SrCl2 Sellafield pore water 
 (c) ≈3% CsCl (CSPW) 
 (d) ≈0.3% SrCl2  
 (e) ≈0.3%  CsCl  
 (f) ≈3% SrCO3  
 (g) ≈0.3% SrCO3  
    

2 (a) Control Diluted 
 (b) ≈3% SrCl2 Sellafield pore water 
 (c) ≈3% CsCl (DSPW) 
 (d) ≈0.3% SrCl2   
 (e) ≈0.3%  CsCl   
 (f) ≈3% SrCO3   
  (g) ≈0.3% SrCO3   

 

6.4  Results and discussion 

The duration of the dynamic diffusivity experiments was 105 days. The rate of 

diffusivity values of each cement paste sample are given in table appendix 6.1 to 

6.14. 

6.4.1 Micropore and surface area analysis of cement paste sample 

measured by BET method 

The average micropore and surface area of the cement paste samples are shown 

in Table 6.3. The micropore values of the cement paste samples prior to the 

diffusivity experiment were in the range of 1.4 – 8.5 m2/g. The highest values 

were measured in ≈3% SrCl2 (8.5 m2/g) and the lowest micropore area was 
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observed in ≈3% CsCl (1.4 m2/g). However, the micropore area of control, ≈3% 

SrCl2, ≈0.3% CsCl, ≈3% SrCO3, ≈0.3% SrCO3 was fairly in similar range (3.1- 4.8 

m2/g).   

The average surface areas of the cement paste sample were measured in the 

range of 13.1 – 31.8 m2/g. The highest surface area was measured in control 

CPS (31.8 m2/g), whereas the lowest values were measured in ≈3% CsCl (13.1 

m2/g). Both the micropore and surface area of ≈3% CsCl CPS were found to be 

lowest than for all other CPS.   

Table 6.3 Average micropore and surface area of cement paste samples 

measured by BET method 

CPS Average 
micropore area 

Average 
surface area 

 m2/g 
   Control 4.4 31.8 

  ≈3% SrCl2 8.5 22.3 
 ≈3% CsCl 1.4 13.1 

 ≈0.3% SrCl2 3.1 19.2 
 ≈0.3%  CsCl 4.2 19.2 
≈3% SrCO3 5.3 22 

≈0.3% SrCO3 4.8 23 
 

6.4.2 Test solution analysis 

6.4.2.1 pH values 

The pH values of the CSPW test solutions after few days of the diffusivity 

experiments increased from 6.8 (natural pH of CSPW) to 7.41-11.35. The lowest 

pH values were recorded in the test solutions of ≈3% SrCl2 and ≈ 3% CsCl CPS 

(Figure 6.1 and 6.5). Highest range in pH values with increasing trend was 

measured in the CSPW from ≈ 0.3% counterpart and CPSs with carbonate.  
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The simulated pore waters have no or little inherent buffering capacity and 

therefore will change significantly with the duration of the experiments. This was 

more evident for the DSPW. The pH values in the DSPW for all the CPS excluding 

≈3% SrCl2 and ≈ 3% CsCl showed higher pH values and were fairly close to the 

pH values measured in the DW experiment.  

6.4.2.2 Chemical analysis of test solution 

The rates of diffusivity of the cations and anions are presented in Figure 6.1 to  

Figure 6.14. All the diffusivity data have been normalised for dilution effect and 

cation/anion composition of CSPW. The average rate of diffusivity data of 105 

days from DW BFS: OPC experiment have been utilised for comparative purpose.  

  Strontium 

The diffusivity of Sr2+ from CSPW and DSPW experiments showed similar trend 

in the diffusivity i.e. ≈3% SrCl2> ≈0.3% SrCl2 > ≈3% SrCO3 > ≈0.3% SrCO3. The 

diffusivity of Sr2+ was found to be slowest of all cations within individual CPS 

except in case of CSPW for ≈ 3% SrCl2 CPS. The difference in the diffusion of 

Sr2+ between two experiments is notable. The average rate of diffusivity of Sr2+ 

in CSPW from ≈3% SrCl2 CPS (25 µg/cm2/day), ≈0.3% SrCl2 CPS (3 µg/cm2/day), 

≈3% SrCO3 CPS (1 µg/cm2/day)  and ≈0.3% SrCO3 CPS (0.3 µg/cm2/day) was 6, 

10, 71 and 16 times higher than the rate of diffusivity of Sr in DSPW from ≈3% 

SrCl2 CPS (4.3 µg/cm2/day), ≈0.3% SrCl2 CPS (0.27 µg/cm2/day), ≈3% SrCO3 

CPS (0.032 µg/cm2/day)  and ≈0.3% SrCO3 CPS (0.018 µg/cm2/day) respectively.  

The dependence of Sr2+ diffusivity on the type of aqueous solution, concentration 

and nature of Sr2+ added to cement paste mixture is explained in the previous 

chapter, section 3.3. 
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 Caesium 

Caesium diffused out at faster rate from ≈3% CsCl CPS than ≈0.3% CsCl CPS in 

both the experiments. The diffusivity of Cs+ from ≈3% CsCl CPS (840 µg/cm2/day) 

and ≈0.3% CsCl CPS (77 µg/cm2/day) in CSPW experiment was ≈ 45 times faster 

than the diffusivity of Cs+ from ≈3% CsCl CPS (19 µg/cm2/day) and ≈0.3% CsCl 

CPS (1.72 µg/cm2/day) CPSs in DSPW experiment. This could be due to the pH 

effect. The pH range of CSPW for 3% and 0.3% CsCl CPS was in the range of 

7.18 – 9.05. However, the pH range measured in DSPW for 3% and 0.3% CsCl 

CPS was in the range of 7.7 -12.01.  In comparison with DW diffusivity data; Cs+ 

in CSPW diffused out 32 and 53 times faster for ≈3% CsCl and ≈0.3% CsCl CPS 

respectively. This suggests that the encapsulated metal ion may have faster 

diffusivity rate when subjected to a leaching process with higher ionic strength 

test solution with pH values in the range of 7 - 9.   

 Calcium 

Calcium diffused out at faster rate from ≈3% SrCl2 CPS in both the DSPW and 

CSPW test solutions. In CSPW, Ca+ from ≈3% contaminated CPSs diffused out 

faster in comparison with ≈0.3% contaminated CPSs. The sequence of diffusivity 

of Ca+ observed in CSPW test solution was ≈3% SrCl2> control > ≈3% CsCl > 

≈3% SrCO3> ≈0.3% SrCl2 > ≈0.3% CsCl > ≈0.3% SrCO3.  

Contrary to CSPW, the results of DSPW showed the sequence of diffusivity as 

≈3% SrCl2> ≈0.3% SrCl2 >≈3% SrCO3> ≈3% CsCl > ≈0.3% CsCl > ≈0.3% 

SrCO3>control. The diffusivity of Ca+ from ≈0.3% CsCl was faster compared to 

all the CPS in DSPW. Calcium from control in DSPW diffused out slowest of all 

the CPS.  
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The average rate of diffusivity of Ca+ in CSPW experiment was higher than DW 

and DSPW experiment. There was no significant difference in the rate of 

diffusivity between DW and DSPW from all the 0.3% CPSs. However, the 

average rate of diffusivity of Ca+ from ≈3% CsCl CPS (4.3 µg/cm2/day) and ≈3% 

SrCO3 CPS (4.7 µg/cm2/day) was ≈7 times higher compared to DW experiment 

(≈3% CsCl CPS (0.6 µg/cm2/day); ≈3% SrCO3 CPS (0.8 µg/cm2/day). 

 Sodium 

Sodium diffused out at fairly similar and higher rate from control, ≈3% SrCl2, and 

≈3% CsCl CPS compared to ≈0.3% SrCl2, ≈0.3% CsCl, ≈0.3% SrCO3 and ≈3% 

SrCO3 in CSPW experiment. This could be due to higher concentration of Na in 

200 ml CSPW i.e. 623 mmoles compared to the maximum Na+ can diffuse at its 

highest concentration i.e. 23 mmoles from CPS. The rate of diffusivity of sodium 

from all the CPSs in DSPW was significantly similar except from ≈3% SrCO3.  

In comparison with DW experiment, the diffusivity of sodium from all the CPSs in 

CSPW was considerably higher than the DW and DSPW.  

 Chloride 

The difference in the rate of diffusivity of the anion between the two experiments 

was observed. The diffusivity of Cl- from all the CPSs in CPSW showed a 

significant similar rate of diffusivity. The CSPW test solution contains much more 

Cl- ion than the DSPW (Table 6.1). It is highly unlikely that the concentration of 

diffused Cl- can be measured. The concentration of Cl- present in 200 ml CPSW 

is 609 mmoles, which is significantly higher than the maximum concentration of 

Cl- could be leached out i.e. 60 mmoles. There could be back diffusion of Cl- due 

to reverse concentration gradient.  
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In case of DSPW, Cl- from ≈3% SrCl2 CPS (177 µg/cm2/day) diffused out at faster 

rate followed by ≈3% CsCl CPS (154 µg/cm2/day), ≈0.3% SrCl2 CPS (26 

µg/cm2/day) and ≈0.3% SrCl2 CPS (26 µg/cm2/day). There was no significant 

difference observed in the diffusivity Cl- between ≈3% CsCl CPS (13 µg/cm2/day), 

control CPS (12 µg/cm2/day) ≈3% SrCO3 CPS (9 µg/cm2/day) and ≈0.3% SrCO3 

CPS (8 µg/cm2/day).  

In comparison with DW experiment, the average rate of diffusivity of Cl- from ≈3% 

CsCl CPS (154 µg/cm2/day) in DSPW was ≈23 times higher than the average 

rate of diffusivity in DW (7 µg/cm2/day). Contrary to its 0.3% counterpart; the 

average rate of diffusivity in DSPW was 1.8 times lower in comparison with DW 

diffusivity. 

In case of ≈3% SrCl2, the average rate of diffusivity was ≈2 times higher in DSPW 

(177 µg/cm2/day) in comparison with DW diffusivity (83 µg/cm2/day). However, 

the average rate of diffusivity was measured 9 times higher from its 0.3% 

counterpart in DSPW (26 µg/cm2/day) in comparison with DW (2.9 µg/cm2/day). 

 Sulphate 

The rate of diffusivity of SO42- was faster from ≈0.3% SrCO3 CPS compared to all 

the CPSs in the CSPW. There was no significant difference in the rate of 

diffusivity of SO42- from ≈3% CsCl, ≈3% SrCl2, and ≈0.3% CsCl and control CPS. 

The concentration of SO42- in CSPW was twice as high as in the CPSs, which 

may have created inverse concentration gradient in favour of test solution. In 

DSPW experiment, the diffusivity of SO42- from ≈3% CsCl was faster compared 

to all the CPSs in the DSPW. There was no significant difference observed in the 

rate of diffusivity of SO42- from ≈3% SrCl2, ≈ 0.3% SrCO3, ≈0.3% CsCl and control 
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CPS. The average rate of diffusivity of SO42- from control in DW (16 µg/cm2/day) 

and DSPW (16 µg/cm2/day)   experiments was found to be similar.  

Comparing the results obtained from DW experiments; the average rate of 

diffusivity of SO42- from CSPW was 2-17 times higher compared to diffusivity 

measured in DW experiment from all the CPSs. In case of DSPW; there was no 

significant difference observed in the diffusivity of SO42- from control ≈3% SrCl2 

≈0.3% SrCl2, ≈0.3% CsCl. However, the average rate of diffusivity of SO42- from 

≈3% CsCl (35 µg/cm2/day), ≈ 3% SrCO3 (22 µg/cm2/day) in DSPW was ≈ 6 and 

≈4 times higher in comparison with DW experiment from ≈3% CsCl (6 

µg/cm2/day), ≈ 3% SrCO3 (6 µg/cm2/day). 
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6.5 Conclusions 

1 Although the ionic strength of the CSPW was significantly higher than other 

test solution (≈3 compared with ≈0.1), it had little or no effect on pH values; 

however for the DSPW the values decreased slightly by one unit.  

2 Strontium diffusivity depends on concentration and nature of strontium salt 

added to the make-up water. 

3 The concentration of cations and anions in the test solution influenced 

strontium diffusivity. A similar situation was observed for caesium diffusion.  

4 Calcium diffusion was affected by both nature of the cation added to make-

up water and its concentration. This effect was less marked for caesium 

contaminated CPSs. 

5 These test solutions had the least impact on chloride diffusivity, but this 

could be attributed to the high concentration of chloride in the test solution 

in particular for CSPW. 

6 The diffusivity of sulphate was hindered by the presence of strontium. 

7 The changes in the rate of sulphate diffusivity could be attributed to the 

changing chemistry of hydrates and pore water compositions with time. 

8 The impact of cement paste and test solution composition had little influence 

of sodium diffusion. 
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(a) 

 
 

 
(b) 

 
 

Figure 6.1 Rate of diffusivity of cations (a) and anions (b) from control BFS:OPC 

CPS in CSPW  
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(a) 

 

 

(b) 

 

Figure 6.2 Rate of diffusivity of cations (a) and anions (b) from control BFS:OPC 

CPS in DSPW  
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(a) 

 

 

(b) 

 

Figure 6.3 Rate of diffusivity of cations (a) anions (b) from ≈3% SrCl2 BFS:OPC 

CPS in CSPW 
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(a) 

 

 

 

(b) 

Figure 6.4 Rate of diffusivity of cations (a) anions (b) from ≈3% SrCl2 BFS:OPC 

CPS in DSPW 
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(a) 

 

 

(b) 

 

Figure 6.5 Rate of diffusivity of cations (a) anions (b) from ≈3% CsCl BFS:OPC 

CPS in CSPW 
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(a) 

 

 

(b) 

Figure 6.6 Rate of diffusivity of cations (a) anions (b) from ≈3% CsCl BFS:OPC 

CPS in DSPW 
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(a) 

 

 

(b) 

 
Figure 6.7 Rate of diffusivity of cations (a) anions (b) from ≈3% SrCO3 BFS:OPC 

CPS in CSPW 
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(a) 

 

 

 

Figure 6.8 Rate of diffusivity of cations (a) anions (b) from ≈3% SrCO3 BFS:OPC 

CPS in DSPW 
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(a) 

 

 

(b) 

 

Figure 6.9 Rate of diffusivity of cations (a) anions (b) from ≈0.3% SrCl2 BFS:OPC 

CPS in CSPW 
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(a) 

 

 

(b) 

 

Figure 6.10 Rate of diffusivity of cations (a) anions (b) from ≈0.3% SrCl2 

BFS:OPC CPS in DSPW 

 

  



 

188 
 

 
(a) 

 

 
(b) 

 
Figure 6.11 Rate of diffusivity of cations (a) anions (b) from ≈0.3% CsCl BFS:OPC 

CPS in CSPW 
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(a) 

 

 

(b) 

 

Figure 6.12 Rate of diffusivity of cations (a) anions (b) from ≈0.3% CsCl BFS:OPC 

CPS in DSPW 
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(b) 

 

Figure 6.13 Rate of diffusivity of cations (a) anions (b) from ≈0.3% SrCO3 

BFS:OPC CPS in CSPW 
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(c) 

 

 Figure 6.14 Rate of diffusivity of cations (a) anions (b) and Sr2+ (c) from ≈0.3% 

SrCO3 BFS:OPC CPS in DSPW 

 



 

 
 

Chapter 7:  Diffusivity from PFA: OPC CPSs with 
Sellafield pore water as a test solution 

 

 

 

 

 

 

 

 

 

 

  

  

 



 

193 
 

 

7.1 Aims of study 

To evaluate the influence of simulated ground water, nature of cations and their 

concentration on the diffusivity of cations when encapsulated in PFA: OPC.  

 

7.2 Introduction 

This chapter addresses diffusivity experiments involving PFA: OPC CPSs with 

simulated ground water to compare the rates of diffusivity with that of BFS: OPC 

ground water diffusivity data (chapter 6). The diffusivity studies with concentrated 

Sellafield pore water (CSPW) (composition reported in Table 6.2) were carried 

out on PFA: OPC CPSs that had been cured for 90 days. The experimental setup 

consisted of four sets of closed circuit diffusivity experiments with PFA:OPC 

CPSs with different cation characteristics (Table 7.1). Diffusivity studies on PFA 

CPS with DSPW were not carried out because of time constraints and DSPW 

diffusivity from BFS: OPC was closer to the diffusivity of DW BFS: OPC diffusivity. 

The DSPW diffusivity of BFS: OPC was measured to be in similar range of 

diffusivity rate as measured in DW BFS: OPC experiments. It is more than likely 

that the similar diffusivity pattern with DSPW and DW will take place even in PFA: 

OPC CPSs. 
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7.3 Cement paste samples 

The diffusivity experiments were carried out on 4 different CPSs using CSPW. 

Table 7.1 PFA: OPC cement paste samples and test solutions used 

Experiment PFA:OPC cement paste samples Test solution 

1 (a)    Control Concentrated 

 (b)   ≈3% SrCl2  Sellafield pore water 

 (c)  ≈3% CsCl (CSPW) 

  (f) ≈3% SrCO3   

 

7.4 Results 

The duration of the dynamic diffusivity experiments (closed system) was 35 days. 

The rates of diffusivity values of each CPS are given in Appendix 7.1 to 7.4.  

7.4.1 Micropore and surface area analysis of cement paste sample  

The average micropore areas of the PFA: OPC CPSs used in this experiment 

were in the similar range 3 – 3.9 m2/g (Table 7.2). There was no significant 

difference observed in the micropore area of the PFA: OPC CPSs. The average 

surface area of all the CPSs used in this experiment, were in the range of 21.7 – 

40.6 m2/g. However, only the average surface area ≈ 3% SrCl2 was found to be 

the highest of all the samples. 
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Table 7.2 Average micropore and surface area of PFA: OPC cement paste 

samples measured by BET method 

CPS Micropore area  Surface area  
  m2/g 

 Control 3.9 22.7 

≈3% SrCl2 3.0 40.6 
≈3% CsCl 3.6 27.4 

≈3%  SrCO3 3.7 23.8 
≈0.3% SrCl2 3.7 22.2 
≈0.3% CsCl2 3.2 21.7 

 

7.4.2 Test solution analysis 

 
7.4.2.1 pH values 

The pH values of the CSPW test solution increased from 6.8 (natural pH of 

CSPW) to 7.41 -11.35 after few days of the diffusivity experiments. The lowest 

values were recorded in the test solution of ≈3% SrCl2 (7.41-7.54) (Figure 7.2) 

which were fairly close to the pH values measured in the CSPW from control CPS 

until day 28 (7.69-7.80) (Figure 7.1) and increased thereafter to day 35 (9.10). 

Highest pH values were recorded in CSPW from ≈3% CsCl and ≈3% SrCO3 (8.14- 

11.35). In both the CSPW test solutions from ≈3% CsCl and ≈3% SrCO3; pH 

values showed a gradual increase in pH from day 14 to day 35. (Figure 7.3 to 

7.4)  

7.4.2.2 Chemical analysis of test solution 

The rates of diffusivity of the cations and anions are presented in Figure 7.2 to 

7.4. All the diffusivity data have been normalised for dilution effect and 

cation/anion composition of CSPW. The average rate of diffusivity data at 35 days 

from CSPW BFS: OPC experiment have been utilised for comparative purpose.   
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 Strontium 

The average rate of diffusivity of Sr2+ in CSPW from ≈3% SrCl2 (35 µg/cm2/day) 

was 24 times higher than ≈3% SrCO3 (1.5 µg/cm2/day). However, the average 

rate of diffusivity from Sr2+ contaminated BFS: OPC CPS (≈3% SrCl2=53, ≈3% 

SrCO3= 3 µg/cm2/day) was ≈ 2 times higher than PFA: OPC CPS at fairly similar 

pH range in case of ≈3% SrCl2. Comparing the results from DW with CSPW PFA: 

OPC diffusivity experiments; the average rate of diffusivity of Sr2+ from ≈3% SrCl2 

(171 µg/cm2/day) was measured 5 times higher than the average rate of diffusivity 

of Sr2+ from ≈3% SrCl2 (35 µg/cm2/day) respectively. However, the pH range of 

DW was higher (7.47 – 8.69) in comparison with CPSW (7.41 – 7.54). 

 

 Caesium 

Caesium diffusivity rate from PFA: OPC ≈3% CsCl CPS in CSPW was slower in 

comparison with BFS: OPC ≈3% CsCl CPS. The average rate of diffusivity of Cs+ 

from BFS: OPC ≈3% CsCl CPS (1811 µg/cm2/day) was 3.5 times higher than the 

average rate of diffusivity of Cs+ from PFA: OPC ≈3% CsCl (516 µg/cm2/day). 

However, the pH of CPSW from BFS: OPC ≈3% CsCl CPS was measured in the 

rage of 7.66 -8.59 compared to PFA: OPC CPS ≈3% CsCl which was in the range 

of 8.14 – 10.56. There was no significant difference observed in the rate of 

diffusivity between CSPW and DW diffusivity experiments (p>0.05). 

 

 Calcium 

Calcium from ≈3% SrCl2 diffused out at faster rate compared to the other CPS in 

CSPW. The sequence of diffusivity of Ca2+ observed in CSPW was ≈3% SrCl2 > 
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≈3% CsCl > ≈3% SrCO3 > control. The average rate of diffusivity of Ca2+ from 

≈3% SrCl2 (116 µg/cm2/day) at pH (7.41-7.54), was ≈8 times higher than the 

average rate of diffusivity of Ca2+ from control (14 µg/cm2/day) at pH (7.69 -9.10).   

However, there was no significant difference in the diffusivity of Ca2+ from ≈3% 

CsCl and ≈3% SrCO3 and control CPS (p>0.05). Comparing the results of BFS: 

OPC with PFA: OPC in CSPW, the rate of diffusivity of Ca2+ from PFA: OPC 

CPSs was considerably lower than the rate of diffusivity of Ca2+ from BFS: OPC 

CPSs. This is due to the difference in Ca2+ content of BFS:OPC and PFA:OPC 

CPS. However, faster diffusivity of Ca2+ was also observed from ≈3% SrCl2 in 

CSPW from BFS: OPC and in DW from PFA: OPC CPSs. 

 Sodium 

The diffusivity of Na+ in CSPW from all the PFA: OPC CPSs did not show any 

significant difference. Sodium diffused out at fairly similar rate. This is due to 

higher concentration of Na+ in CSPW test solution compared to maximum 

quantity of Na+ could diffuse out as explained in previous chapter 6. However, 

the average rate of diffusivity of Na+ from all the PFA: OPC CPSs was 

considerably lower than BFS: OPC CPSs.  

 Chloride 

The rate of diffusivity of Cl- from all PFA: OPC CPSs in CSPW were in a fairly 

similar range (8729- 12431 µg/cm2/day). Similar observations were noted in the 

case of CSPW BFS: OPC CPS experiments (4007- 6166 µg/cm2/day). This is 

due to similar reason as sodium in test solution.   
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 Sulphate 

The rate of diffusivity of SO42- from ≈3% CsCl and ≈3% SrCO3 was similar 

(p>0.05) and higher compared to the rate of diffusivity of SO42- from control and 

≈3% SrCl2. The average rate of diffusivity of ≈3% SrCl2 (21 µg/cm2/day) was 3-7 

times lower than all the CPSs (56 - 140 µg/cm2/day) in CSPW. Similar sequence 

of diffusivity was observed in DW PFA: OPC diffusivity experiment. The average 

rate of diffusivity of SO42- from ≈3% SrCl2 (17 µg/cm2/day) was 2.5 times lower 

than all the CPSs (39-45 µg/cm2/day) in DW experiment. Contrary to PFA: OPC 

CSPW diffusivity, the average rate of diffusivity of BFS: OPC ≈3% SrCO3 (16 

µg/cm2/day) was 6-8 time lower than all the CPSs (99-129 µg/cm2/day) in CSPW 

experiments. A notable lower range of pH values (7.41 – 8.69) was observed in 

the test solutions with lowest diffusivity of SO42- compared to all the test solutions 

which were measured to be on higher side.  
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7.5 Conclusions 

1 In general the pH values were lower primarily due to the ionic strength of 

the make-up water hindering diffusion of calcium ions, concentration of 

calcium of the cement paste but again with both pore water and hydrate 

composition changing with time, pH values were influenced accordingly. 

2 Strontium diffusivity was dependent on the cation concentration of the 

make-up water and the nature of the salt used. The composition of the 

cement paste had a slight impact with BFS:OPC CPS favouring a more 

rapid diffusion. Similar trends were observed for caesium paste samples. 

3 Calcium concentration and the surrogate behaviour of strontium influenced 

its leachability. 

4 Sodium diffusivity was relatively similar for most experimental conditions. 

5 Chloride concentration of the CSPW overshadowed any real effect of added 

chloride as cation salt and/or the inert chloride in the CPSs.  

6 The formation of sparing soluble sulphate salts affected sulphate diffusion. 
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(a) 

 
 

 
(b) 

 

Figure 7.1 Rate of diffusivity of cations (a) and anions (b) from control PFA: OPC 

CPS in CSPW  
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(a) 

 
 

 
(b) 

 

Figure 7.2 Rate of diffusivity of cations (a) and anions (b) from ≈3% SrCl2 PFA: 

OPC CPS in CSPW 
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(a) 

 
 

 
(b) 

 

Figure 7.3 Rate of diffusivity of cations (a) and anions (b) from ≈3% CsCl PFA: 

OPC CPS in CSPW 
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(a) 

 
 

 
 

Figure 7.4 Rate of diffusivity of cations (a) and anions (b) from ≈3% SrCO3 PFA: 

OPC CPS in CSPW 
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8.1 Aims of study 

To evaluate the influence of microorganisms present in the John Innes soil 

solution (JISS) on diffusivity of cations when encapsulated in BFS: OPC and to 

compare the data from other diffusivity experiments. 

8.2 Introduction 

The present study investigated microbial influenced diffusivity of encapsulated 

simulated waste when replicating conditions pertinent to GDF under aerobic 

condition. The stability of the cementitious waste was assessed by subjecting the 

encapsulated cement paste samples in closed circuit diffusivity experiments 

using a test solution (JISS) containing microorganisms extracted from John Innes 

No 3 soil. The JISS was prepared according to the protocol mentioned in section 

2.5. John Innes compost is a set of four formulae for growing medium, developed 

at the former John Innes Horticultural Institution (JIHI) in the 1930s. The formulae 

contain loam, peat, sand or grit, and fertiliser in varying ratios for specific 

purposes. John Innes Potting Compost No.3 is a richer mixture for final re-potting 

of gross feeding vegetable plants and for mature foliage plants and shrubs in 

interior planters or outdoor containers [124]. It was selected on the advice of Prof 

G Morton, Principal Microbiologist (UCLan) [211] as this soil formula would 

provide a typical microbial population that could reside in the vicinity of a GDF 

site in the UK. It was also sufficiently rich in nutrients to sustain growth of 

microorganisms in the JISS extract. 

8.3 Cement paste samples 

Diffusivity experiments were carried out on 4 different BFS:OPC CPSs, details of 

which are mentioned in Table 8.1 
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Table 8.1 BFS:OPC cement paste samples and test solution used 

Experiment BFS:OPC CPS Test solution 

1 
  

(a)    Control John Innes soil  
(b)   ≈3% SrCl2 solution (JISS) 
(c)  ≈3% CsCl  
(f) ≈3% SrCO3   

 

8.4 Results and discussion 

The duration of dynamic diffusivity experiments (closed system) was 49 days. 

The rate of diffusivity values of each cement paste sample are given in appendix 

8.1 to 8.4. 

8.5 Micropore and surface area analysis of CPS measured by BET method 

The average micropore and surface area results of the cement paste samples 

are shown in Table 8.2. The average values (top, middle and bottom) of 

micropore area of the CPSs prior to the JISS diffusivity experiments were in the 

range of 1.3 – 5.4 m2/g. The highest micropore area was measured with ≈3% 

SrCl2 CPS. There was no significant difference in the micropore area of control 

and ≈3% SrCO3. The cement paste sample containing ≈3% CsCl had the lowest 

micro-pore area.  

The average values (top, middle and bottom) of surface area of the CPSs were 

in the range of 11.6 – 24.2 m2/g. The surface area of ≈3% SrCl2, control and ≈3% 

SrCO3 CPS were in fairly similar range (21.2 – 24.2 m2/g). However, the average 

surface area of ≈3% CsCl (11.6 m2/g) CPS was found to be lowest of all the 

CPSs.  
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Table 8.2 Average micropore and surface area of cement paste samples 

measured by BET method 

CPS Micropore 
area 

Surface 
area 

 (m2/g) 
Control 2.7 24.2 

≈ 3% SrCl2 5.4 22.8 
≈ 3% CsCl 1.3 11.6 

≈ 3% SrCO3 2.7 21.2 
 

8.5.1 Test solution analysis 

8.5.1.1 pH values 

The pH values of JISS from control CPS after first few days of diffusivity increased 

from 7.21 (natural pH value of JISS) to 10.73 – 11.2. (Figure 8.1). However, the 

pH values of JISS from contaminated CPSs (≈ 3% SrCl2, ≈3% CsCl, and ≈ 3% 

SrCO3) were measured in the range of 6.77 – 8.09 (Figure 8.2 to 8.4). The lowest 

pH value (6.77) was measured in JISS from ≈3% CsCl on day 14. 

8.5.1.2 Chemical analysis of test solutions 

All the diffusivity data have been normalised for dilution effect and cation/anion 

composition of JISS (Table 8.3). The diffusivity data of first 49 days from 

BFS:OPC DW experiment have been utilised to validate the effect of JISS on 

rates of diffusivity. The rates of diffusivity of cations and anions are presented in 

Figure 8.1 to 8.4. 

Table 8.3 Analysis of JISS 

 

Sample Concentration in ppb pH Na+ Mg2+ K+ Ca2+ Fe3+ Cl- SO42- 

JISS 1541 1009 3576 29 442 62 8588 7.21 



 

207 
 

 Strontium 

The average rate of diffusivity of Sr2+ (19 µg/cm2/day) in JISS from ≈ 3% SrCl2 at 

pH 7.29 – 8.09 was ≈2 times lower than the average rate of diffusivity of Sr2+ (35 

µg/cm2/day) in DW from ≈ 3% SrCl2 at pH 11.19 – 12.03  However, the effect of 

JISS was more pronounced in ≈ 3% SrCO3. There was a ≈16 fold increase in the 

average rate of diffusivity of Sr2+ from ≈ 3% SrCO3 in JISS (0.82 µg/cm2/day) at 

pH 7.53 – 7.93 in comparison with DW (0.052 µg/cm2/day) ay pH 11.57 – 12.27. 

 Caesium 

The effect of JISS on the diffusivity of added cation was more prominent in case 

of ≈3% CsCl in comparison with ≈ 3% SrCl2 CPS. The average rate of diffusivity 

of Cs+ in JISS (191 µg/cm2/day) was ≈ 4.7 times higher than the average rate of 

diffusivity in DW (41 µg/cm2/day). However, the pH range of JISS from ≈3% CsCl 

was lower (6.77 – 7.8) compared to DW from ≈3% CsCl CPS (10.4 – 11.57). 

 Calcium 

Calcium from ≈ 3% SrCl2 CPS diffused out at faster rate compared to all the other 

CPSs. The average rate of diffusivity of Ca2+ from ≈ 3% SrCO3 (18 µg/cm2/day) 

was 3 times lower than the average rate of diffusivity of Ca2+ from ≈ 3% SrCl2 (60 

µg/cm2/day). The lowest diffusivity of Ca2+ was measured in control CPS. It is 

interesting to note that the pH values in JISS from control CPS were higher (10.73 

– 11.2) in comparison with JISS from contaminated CPSs (6.77 – 8.09). 

Comparing the results from DW BFS:OPC with JISS BFS:OPC diffusivity 

experiments;  the average rate of diffusivity of Ca2+ from ≈3% CsCl (0.99 

µg/cm2/day)  at pH (11.19 – 12.03) was measured 32 times lower than the 

average rate of diffusivity of Ca2+ from ≈3% CsCl  (32 µg/cm2/day) at pH (6.77 – 
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7.87) respectively. Similarly, the average rate of diffusivity of Ca2+ from ≈ 3% 

SrCO3 (1.26 µg/cm2/day) was measured 14.5 times lower than the average rate 

of diffusivity of Ca2+ from ≈3% CsCl (18.3 µg/cm2/day) respectively. However, the 

difference was less prominent in case of ≈ 3% SrCl2, and control CPS.  

 Sodium 

Sodium from ≈ 3% SrCl2 CPS diffused out at highest rate compared to all the 

other CPSs in JISS diffusivity experiment. The sequence of diffusivity shown by 

sodium was ≈ 3% SrCl2 > ≈3% CsCl > ≈ 3% SrCO3 > control. There was no 

significant difference (p>0.05) observed in the rate of diffusivity of Na+ between 

control and ≈ 3% SrCO3 CPS; however, the pH range of JISS from control was 

higher (10.73 – 11.2) compared to ≈ 3% SrCO3 (7.53 – 7.93). The average rate 

of diffusivity of Na+ from ≈3% CsCl (9.9 µg/cm2/day) in JISS was ≈4 times higher 

than the average rate of diffusivity of Na+ from ≈3% CsCl (2.8 µg/cm2/day) in DW. 

However there was no significance difference in the rate of diffusivity of Na+ 

between JISS and DW from ≈3% SrCl2 (p>0.05), ≈3% SrCO3 (p>0.05) and control 

(p>0.05). 

 Chloride 

The highest rate of diffusivity was measured from ≈3% SrCl2 CPS, followed by 

≈3% CsCl, ≈3% SrCO3 and control. The average rate of diffusivity of Cl- from 

control (4.2 µg/cm2/day) was 65 times lower than the average rate of diffusivity of 

Cl- from ≈3% SrCl2 (270 µg/cm2/day). There was no significance difference 

(p>0.05) between the rate of diffusivity of Cl- from ≈3% SrCO3 and control CPS. 

In comparison with DW diffusivity experiment, the average rate of diffusivity of Cl- 

from ≈3% SrCl2, in JISS (270 µg/cm2/day) was approximately twice as high as 

measured in DW (142 µg/cm2/day). The effect of JISS on diffusivity of Cl- was 
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more prominent in case of ≈3% CsCl in comparison with DW. The average rate 

of diffusivity of Cl- from ≈3% CsCl (206 µg/cm2/day) in JISS was ≈ 17 times higher 

than the average rate of diffusivity of Cl- from ≈3% CsCl (12.4 µg/cm2/day) in DW.   

However, Cl- from ≈3% SrCO3 (5 µg/cm2/day) and control (4.17 µg/cm2/day) 

diffused out two times lower in JISS than in DW (9.5 and 8, respectively). 

 Sulphate 

The sequence of diffusivity of SO42- shown in JISS was ≈3% SrCO3 > ≈3% CsCl 

> control > ≈3% SrCl2.   Sulphate from ≈3% SrCO3 diffused out at highest rate 

compared to all the other CPS in JISS diffusivity experiment. The average rate of 

diffusivity of SO42- from ≈3% SrCO3 (112 µg/cm2/day) was 6 times higher than the 

average rate of diffusivity of SO42- from ≈3% SrCl2 (20 µg/cm2/day). Sulphate from 

≈3% CsCl (75 µg/cm2/day) diffused out 1.5 times lower in comparison with ≈3% 

SrCO3 (112 µg/cm2/day). Comparing the results from DW BFS:OPC with JISS 

BFS:OPC diffusivity experiments; the average rate of diffusivity of SO42- from ≈3% 

SrCO3 (6 µg/cm2/day) was 20 times lower than the average rate of diffusivity of 

SO42- from ≈3% SrCO3 (112 µg/cm2/day); 13 times lower in DW (6 µg/cm2/day) 

compared to JISS (75 µg/cm2/day) from ≈3% CsCl. However, there was no 

significant difference in the rate of diffusivity observed between DW and JISS 

from ≈3% SrCl2 (p>0.05) and control CPS (p>0.05). 

 

8.5.2 Microbial community profile 

All methods employed in this section were carried out as described in section 2.6 

to 2.9 
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8.5.2.1 Total viable count of John Innes soil solution  

John Innes No: 3 soil solution of different ratios of soil to water were prepared 

and tested to achieve the best viable microbial population for the diffusivity 

experiment. The spread plate method gave a bacterial count of 5x104 cfu/g of soil 

present in JISS, which was considered adequate to carry out the microbial 

induced diffusivity experiments [212]. 

8.5.2.2 Microbial analysis of test solution 

The results of microbial analysis of the test solutions are shown in the Table 8.4. 

The total viable counts measured on final day were in the range of 3 – 4.7 x 107 

cfu. The highest viable count was measured in the JISS from ≈3% SrCl2 (4.7 x 

107 cfu), followed by ≈3% CsCl (1.9 x 107 cfu) and ≈3% SrCO3 (9.1 x 104 cfu) 

CPS. There was no significant viable population measured in the JISS from 

control CPS. The results of primary identification of the bacteria isolated from the 

test solutions of the CPS are summarised in Table 8.4. The data show that both 

motile and non-motile Gram positive (G+ve) bacilli bacteria were present in the 

JISS from ≈3% CsCl and ≈3% SrCO3. However, only non-motile G+ve bacteria 

were present in in the JISS from ≈3% SrCl2. Genus level identification of bacteria 

showed the presence of Actinomyces spp in JISS from ≈3% CsCl and 

Streptomyces spp. in JISS from ≈3% SrCO3. 

The Fungi isolated from JISS were identified using taxonomical keys [91], on the 

basis of their morphology, hyphal  nature and patterns of spore formation. The 

presence of Cladosporium macrocarpom was prominent in all the circulating 

systems, excluding the control. There was no fungal growth observed in the JISS 

circulation system control sample. 



 

211 
 

Table 8.4 Summary table showing total viable count measured in JISS. 

Experiment BFS:OPC CPS Total viable count (cfu) 
1 (a) Control 3 
 (b) ≈3% SrCl2 4.7 x 107 
 (c) ≈3% CsCl 1.9 x 107 
 (f) ≈3% SrCO3 9.1 x 104 

 

Table 8.5 Summary table showing bacteria isolated from JISS 

Experiment BFS:OPC PS Primary identification test 

     Gram stain motility  
1 (a) Control NR* NR* 
 (b) ≈3% SrCl2 G+ve - 
 (c) ≈3% CsCl G+ve + - 
  (f) ≈3% SrCO3 G+ve + - 

*none recorded 
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8.6 Conclusion 

1. Make-up water salts e.g. strontium; caesium chlorides had a significant 

impact on the JISS test solution pH in comparison with the control cement 

paste sample. 

2. Test solution composition (JISS extract) retard strontium diffusivity but 

accelerated caesium diffusion in comparison with distilled water values. 

3. Although the calcium diffusivity values were affected by the added cation to 

the make-up water the values for strontium were marginal but more 

exaggerated for caesium. 

4. Strontium had the greatest impact on the rate of sodium diffusion. 

5. At the lower pH values of JISS test solution leaching at the solid cement 

surface in addition to diffusion through pore water may be a contributory 

factor. 

6. Caesium or strontium has a similar effect on the average rate of chloride 

diffusivity.  

7. Strontium carbonate enhanced the diffusivity of sulphate ions.  

8. Growth of microorganisms in control CPS was negligible in comparison to 

contaminated CPSs. 

9. The concentrations of Sr2+ and Cs+ in the JISS influenced the growth of 

microorganisms (≈ 3 x107 cfu).  

10. There was a far greater amount of ions (Sr2+ and Cs+) in the JISS from 3% 

SrCl2 and 3% CsCl CPS, in comparison from ≈3% SrCO3 CPSs which has 

contributed to the lesser growth of microorganism (≈105 cfu).  
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(a) 

 
 

 
(b) 

 

Figure 8.1 Rate of diffusivity of cations (a) and anions (b) from control CPS in 

JISS  
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(a) 

 
 

 
(b) 

 
Figure 8.2 Rate of diffusivity of cations (a) and anions (b) from ≈3% SrCl2 CPS in 

JISS  
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(a) 

 
 

 
(b) 

 

Figure 8.3 Rate of diffusivity of cations (a) and anions (b) from ≈3% CsCl CPS in 

JISS 
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(b) 

 

Figure 8.4 Rate of diffusivity of cations (a) and anions (b) from ≈3% SrCO3 CPS 

in JISS  
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9.1 Aims of study 

To evaluate the influence of microorganism present in the John Innes soil solution 

(JISS) on diffusivity of cations when encapsulated in PFA: OPC and to compare 

the data from other diffusivity experiments. 

9.2 Introduction 

This chapter addresses diffusivity experiments involving PFA:OPC CPSs with 

John Innes soil solution (JISS). The main purpose for carrying out these 

experiments were to compare the rates of diffusivity with that of BFS:OPC JISS 

diffusivity data (chapter 8) and other data sets. Both the PFA:OPC DW and JISS 

diffusivity experiments were initiated after the samples had been cured for 90 

days. The experimental setup consisted of four sets of closed circuit diffusivity 

experiments with PFA:OPC CPSs with different cation characteristics (Table 9.1) 

9.3 Cement paste samples 

Diffusivity experiments were carried out on 4 different PFA: OPC CPSs, details 

of which are mentioned in Table 9.1. 

 

Table 9.1 BFS:OPC cement paste samples and test solution used. 

Experiment PFA:OPC CPS Test solution 

1 
  

(a) Control John Innes soil  
(b) ≈3% SrCl2 solution (JISS) 
(c) ≈3% CsCl  
(f) ≈3% SrCO3  
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9.4 Result and discussion 

The closed circuit dynamic diffusivity experiments were carried out for 49 days. 

The rate of diffusivity values of each cement paste sample are given in appendix 

9.1 to 9.4.  

9.4.1 Micropore area and surface area analysis of CPS 

The average micropore and surface area results of the dissected CPSs are 

shown in the Table 9.2. The average micropore area of the CPSs prior to the 

diffusivity experiments were in the range of 3 – 3.9 m2/g. The highest micropore 

area was measured in control CPS. There was no significant difference observed 

in the micropore area of ≈ 3% CsCl and ≈3% SrCO3 CPS. The CPS containing ≈ 

3% SrCl2 had the lowest micropore area compared to all the other CPSs in the 

present experiment.  

The average surface area of cement paste samples were in the range of 22.7 – 

40.6 m2/g. The average surface area ≈ 3% SrCl2 was found to highest of all the 

CPSs. The lowest surface area was measured in control CPS. 

Table 9.2  Average micropore and surface area of cement paste samples 

measured by BET method 

Sample Micropore area  Surface area  
  m2/g 

 Control 3.9 22.7 
≈3% SrCl2 3 40.6 
≈3% CsCl 3.6 27.4 

≈3%  SrCO3 3.7 23.8 
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9.5 Test solution analysis 

9.5.1 pH values 

The pH values of JISS after the first few days of the diffusivity experiment 

increased from 7.21 (natural pH of JISS) to 8.07 - 12.27 (Figure 9.2 to 9.5). Lower 

pH values (8.07- 8.47) were measured in the JISS from ≈3% SrCl2. The pH values 

of JISS from control and ≈ 3% SrCO3 CPSs were found to be in similar range. 

Similar trend of pH values were observed in case of PFA: OPC DW diffusivity 

experiments. There was no significant difference in the trend of pH values 

observed in PFA: OPC JISS and DW diffusivity experiments contrary to BFS: 

OPC JISS and DW diffusivity comparative studies.  

9.5.2 Chemical analysis of test solution 

All the diffusivity data have been normalised for comparative purpose. The 

diffusivity data from PFA: OPC DW experiment have been utilised to validate the 

effect of JISS on rates of diffusivity of PFA: OPC CPSs.  The rates of diffusivity 

of cations and anions are presented in Figure 9.2 to 9.5. 

 Strontium 

The average rate of diffusivity of Sr2+ in JISS from ≈ 3% SrCl2 (103 µg/cm2/day) 

was considerably higher than the average rate of diffusivity of Sr2+ from ≈ 3% 

SrCO3 (0.032 µg/cm2/day). However, there was no significant difference (p>0.05) 

measured in the rate of diffusivity between JISS and DW diffusivity experiment. 

The average rate of diffusivities of Sr2+ from ≈ 3% SrCl2 CPS (103 µg/cm2/day) 

and ≈ 3% SrCO3 (0.032 µg/cm2/day) in JISS were in fairly similar range with that 

of DW diffusivity (≈ 3% SrCl2 (134 µg/cm2/day), ≈ 3% SrCO3 (0.036 µg/cm2/day) 

in similar range of pH values. Comparing the results from JISS BFS: OPC with 
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JISS PFA: OPC diffusivity experiments; the average rate of diffusivity of Sr2+ was 

measured 5.5 times lower from ≈ 3% SrCl2 (18.6 µg/cm2/day) and 25 times higher 

from 3% SrCO3 (0.82µg/cm2/day) than the average rate of diffusivity of Sr2+ from 

≈ 3% SrCl2 (103 µg/cm2/day) and ≈ 3% SrCO3 (0.032 µg/cm2/day) respectively. 

However, the pH values of JISS from ≈ 3% SrCO3 PFA: OPC CPS were in the 

range of 11.99 – 12.19 compared to JISS from ≈ 3% SrCO3 BFS: OPC CPS, 

which were measured in the range of 7.53 – 7.93. 

 Caesium 

There was no significant difference (p>0.05) observed in the rate of diffusivity 

between JISS and DW diffusivity experiments. The average rate of diffusivity of 

Cs+ from ≈ 3% CsCl (310 µg/cm2/day) in JISS was similar with DW diffusivity of 

Cs+ from ≈ 3% CsCl (363 µg/cm2/day) at similar range of pH values. In 

comparison with JISS BFS:OPC diffusivity results; the average rate of diffusivity 

of Cs from PFA:OPC ≈ 3% CsCl (310 µg/cm2/day) in JISS was 1.6 times higher 

than the BFS:OPC diffusivity (191 µg/cm2/day). However, the pH values of JISS 

from ≈ 3% CsCl PFA: OPC CPS were in the range of 11.63 – 11.98 compared to 

JISS from ≈ 3% CsCl BFS: OPC CPS, which were in the range of 6.77 – 7.87. 

 Calcium 

Calcium from ≈ 3% SrCl2 CPS diffused out at faster rate compared to all the other 

CPSs in JISS diffusivity experiments. In comparison with control (2.1 µg/cm2/day) 

CPS; the average rate of diffusivity of Ca from ≈ 3% SrCl2 (158 µg/cm2/day) was 

76 times higher and 1.6 times higher than ≈ 3% CsCl (3.2 µg/cm2/day) CPS. 

Calcium from ≈ 3% SrCO3 diffused out at slower rate compared to all the other 

CPS. The average rate of diffusivity of Ca from ≈3% CsCl (3.2 µg/cm2/day) and 

control (2.1 µg/cm2/day) in JISS was ≈2 times higher than the average rate of 
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diffusivity of Ca2+ in DW ((≈3% CsCl (1.6 µg/cm2/day) and control (1.2 

µg/cm2/day)) respectively. However there was no significant difference in the rate 

of diffusivity of Ca2+ between JISS and DW from ≈3% SrCl2 (p>0.05) and ≈3% 

SrCO3 (p>0.05). Comparing the results of BFS: OPC with PFA: OPC in JISS, the 

rate of diffusivity of Ca2+ from PFA: OPC CPSs was considerably lower than the 

rate of diffusivity of Ca2+ from all the BFS: OPC CPSs excluding ≈3% SrCl2. The 

average rate of diffusivity of Ca from PFA: OPC ≈3% SrCl2 (158 µg/cm2/day) in 

JISS was 2.6 times higher than the BFS: OPC diffusivity (60 µg/cm2/day) at 

similar range of pH values, although the concentration of Ca2+ in BFS:OPC CPSs 

(565 -602 mmoles) is higher than PFA:OPC CPS (138 - 148 mmoles). 

 Sodium 

The average rate of diffusivity of Na+ from ≈3% SrCl2 (49 µg/cm2/day) CPS was 

found to be highest of all the samples and was measured as ≈2 times higher than 

control (22 µg/cm2/day) CPS. However, there was no significant difference found 

in the diffusivity of Na+ from control (22 µg/cm2/day), ≈3% CsCl (18 µg/cm2/day) 

and   ≈3% SrCO3 (24 µg/cm2/day) cps. The average rates of diffusivity of Na+ 

from all the CPSs in JISS was relatively similar with DW diffusivity of Na+ from all 

the CPSs. Comparing the results of BFS: OPC with PFA:OPC in JISS, the rate 

of diffusivity of Na+ from PFA:OPC CPSs was ≈3 times higher than the rate of 

diffusivity of Na+ from all the BFS:OPC CPSs. This could be due to the 

concentration of Na+ present in PFA:OPC CPSs (25.1 -27 mmoles) in comparison 

with BFS:OPC CPSs (11.9 – 12.7 mmoles) 

 Chloride 

The highest rate of diffusivity was measured from ≈3% SrCl2, followed by ≈3% 

CsCl, control and ≈3% SrCO3. The average rate of diffusivity of Cl- from ≈3% 
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SrCl2 (1405 µg/cm2/day) was 4 times higher than the average rate of diffusivity of 

Cl- from ≈3% CsCl (352 µg/cm2/day). There was no significance difference 

(p>0.05) between the rate of diffusivity of Cl- from ≈3% SrCO3 and control CPS. 

The rates of diffusivity of Cl- from all the CPSs in JISS were similar with DW 

diffusivity rates of Cl- from all the CPSs. In comparison with BFS: OPC JISS 

diffusivity experiment, the rate of diffusivity of Cl- from PFA:OPC CPSs were ≈2 

times higher the rate of diffusivity of Cl- from all the BFS:OPC CPSs excluding 

≈3% SrCl2; which was 5.2 times higher than the BFS: OPC diffusivity (270 

µg/cm2/day) at fairly similar range of pH values.  

 Sulphate 

The average rate of diffusivity of SO42- form control (46 µg/cm2/day), ≈3% CsCl 

(53 µg/cm2/day) and ≈3% SrCO3 (46 µg/cm2/day) was similar and ≈ 3.5 higher 

than the average rate of diffusivity of SO42- from ≈3% SrCl2 CPS. A similar 

grouping of diffusivity pattern was measured in PFA: OPC DW diffusivity 

experiments (Figure 9.1). Comparing the results from DW PFA: OPC with JISS 

PFA: OPC diffusivity experiments; the average rate of diffusivity of SO42- from 

≈3% CsCl (34 µg/cm2/day) and ≈3% SrCO3 (31 µg/cm2/day) was measured ≈ 1.7 

times lower than the average rate of diffusivity of SO42- from ≈3% CsCl (53 

µg/cm2/day) and ≈3% SrCO3 (54 µg/cm2/day) respectively. However, there was 

no significant difference in the rate of diffusivity of SO42- between JISS and DW 

from control (p>0.05) and ≈3% SrCl2 (p>0.05). BFS:OPC JISS SO42- diffusivity 

rates of all the CPS were relatively similar to PFA:OPC JISS diffusivity rates, 

except in case of ≈3% SrCO3; which was twice as high compared to PFA:OPC.  
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Figure 9.1 comparative plot of average rate of diffusivity of sulphate from 

PFA:OPC in JISS, PFA:OPC in DW and BFS:OPC in JISS 

 

9.6 Microbial community profile 

All methods/procedures employed in this section were carried out as described 

in Section 2.6 – 2.9.  

9.6.1.1 Microbial analysis of test solution 

The results of microbial analysis of the test solutions are shown in the Table 9.3. 

The total viable counts measured on final day were in the range of 2.3 x 103– 

0.57 x 107 cfu. The highest viable count was measured in the JISS from ≈3% 

SrCl2 (0.57 x 107 cfu) followed by ≈3% SrCO3 (< 2.3 x 103 cfu) CPS. There was 

no significant viable population measured in the JISS from control CPS and ≈3% 

CsCl. The results of primary identification of the bacteria isolated from the test 

solutions of the CPS are summarised in Table 9.4. The data show that non-motile 

Gram positive (G+ve) bacilli bacteria were present in the JISS from ≈3% SrCl2 
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and ≈3% SrCO3. There was no occurrence of fungi observed in the JISS of all 

the CPSs. 

 

Table 9.3 Summary table showing total viable count measured in JISS 

Experiment PFA:OPC CPS Total viable count 
(cfu) 

1 (a) Control NR* 
 (b) ≈3% SrCl2 0.57 x 107 
 (c) ≈3% CsCl NR* 
  (f) ≈3% SrCO3 2.3 x 103 

* None recorded 

 

 Table 9.4 Summary table showing bacteria isolated from JISS 

Experiment PFA:OPC CPS Primary identification test 
    Gram stain motility 
1 (a) Control NR* NR* 
 (b) ≈3% SrCl2 G+ve - 
 (c) ≈3% CsCl NR NR* 
 (f) ≈3% SrCO3 G+ve - 

* None recorded 
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9.7 Conclusions 

1 Strontium chloride ‘buffered’ the pH value of the initial test solution to around 

8.5 compared with the control, caesium chloride and strontium carbonate 

cement paste samples pH values were nearer to 12. 

2 Comparative trends for strontium chloride and strontium carbonate cement 

paste samples with JISS and DW were similar. 

3 The cement paste formulation influenced the strontium diffusion rate. 

4 Caesium diffused quicker from PFA:OPC CPS than the BFS:OPC counter-

part, but pH values differed significantly. 

5 Strontium added as chloride enhances calcium diffusion unlike caesium that 

had a marginal effect on calcium diffusion. 

6 Calcium diffusion is greater from BFS:OPC than PFA:OPC CPS which could 

be attributed to the higher concentration of calcium in the cement paste 

sample. 

7 Although strontium chloride influenced sodium diffusion, the impact on the 

rates was comparatively small.  

8 Diffusivity from strontium chloride cement pastes were the highest, which 

could be attributed to the higher chloride of the cement paste. 

9 Diffusion rates of sulphate from all PFA cement paste samples were small 

in comparison with diffusion rates for BFS:OPC CPSs. 

10 The encapsulated 3% CsCl caused Na+ and K+ to leach out at very early 

stage in the experiment resulting in the lack of or poor growth of 

microorganisms in PFA:OPC CPSs.  
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(a) 

 
 

 
(b) 

 
Figure 9.2 Rate of diffusivity of cations (a) and anions (b) from control CPS in 

JISS  
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(a) 

 
 

 
(b) 

 

Figure 9.3 Rate of diffusivity of cations (a) and anions (b) from ≈3% SrCl2 CPS in 

JISS  
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(a) 

 
 

 
(b) 

 

Figure 9.4 Rate of diffusivity of cations (a) and anions (b) from ≈3% CsCl CPS in 

JISS  



 

229 
 

 
(a) 

 
 

 
(b) 

 

Figure 9.5 Rate of diffusivity of cations (a) and anions (b) from ≈3% SrCO3 CPS 

in JISS  

 



 

 
 

Chapter 10:  Conclusions  
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10.1 Generic conclusion 

The main aim of this project was to evaluate the diffusivity of strontium, caesium 

and cobalt when added as inactive forms to OPC:BFS and PFA:OPC cement 

composition. Additional aims were to investigate the effects physic-chemical 

parameters on the diffusivity of cement paste samples. This work significantly 

contributes to the knowledge of factors influencing the diffusivity of encapsulated 

cations i.e. composition of cement paste (BFS:OPC and PFA:OPC), hydration of 

cement, added salt to the makeup water, pore water chemistry and, nature of 

leachant/aqueous solution and its condition (stagnant or mobile). The aims of 

these studies have therefore been achieved and the following conclusions have 

been drawn on at least one occasion in chapters 4 to 9 and can therefore be 

regarded as generic. 

1. The make-up water composition affected the segregation of inherent/added 

cations in the cement paste samples and also both the bleed water volume 

and physical characteristics of the cement paste samples. 

2. Strontium when added as a soluble salt to the make-up water influences the 

rate of diffusivity. The composition of the cement paste had a slight impact 

with PFA:OPC favouring a more rapid diffusion. Similar trends were 

observed for caesium paste samples. 

3. The diffusivity of Sr2+ and other cations is dependent upon its concentration 

and cement additive used in the cement paste formulation. 

4. The concentration of the added salt to the make-up water also affects 

diffusivity. 

5. Diffusivity of chloride ions from the cement paste sample is dependent on 

the concentration of chloride in the make-up water. 
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6. Both caesium and strontium influence calcium diffusion when compared 

with the corresponding control CPS. This is not surprising for strontium as 

it will be a good surrogate for calcium and hence take part in some of the 

hydrates produced during curing. Caesium has a lower impact on calcium 

diffusivity. 

7. The diffusivity of sulphate was influenced by the nature of the cation added 

to the make-up water. Strontium had the greatest effect on lowering the 

diffusion primarily due to the formation of sparingly soluble strontium 

sulphate. 

8. Calcium diffusion was affected by both nature of the cation added to make-

up water and its concentration. This effect was less marked for caesium 

contaminated CPSs. Calcium diffusion is greater from BFS:OPC CPS than 

PFA:OPC which could be attributed to the higher concentration of calcium 

in the cement paste sample. 

9. In general, the pH values were lowered primarily due to the ionic strength 

of the make-up water hindering diffusion of calcium ions, concentration of 

calcium of the cement paste but again with both pore water and hydrate 

composition changing with time pH values were influenced accordingly. 

10. The JISS test solution composition retard strontium diffusivity but 

accelerated caesium diffusion in comparison with distilled water values, this 

retardation could be due to the inherent sulphate content (≈8600 ppb) of the 

JISS test solution. 

11. Growth of microorganisms in control CPS was negligible in comparison to 

contaminated CPSs. 

12. The concentrations of Sr2+ and Cs+ in the JISS influenced the growth of 

microorganisms (≈ 3 x107 cfu).  
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13. There was a far greater amount of ions (Sr2+ and Cs+) in the JISS from ≈3% 

SrCl2 and ≈3% CsCl BFS:OPC CPSs, in comparison from ≈3% SrCO3 CPSs 

which has contributed to the lesser growth of microorganism (≈105 cfu).  

14. The encapsulated 3% CsCl causes Na+ and K+ to leach out at very early 

stage in the experiment resulting in the lack of or poor growth of 

microorganisms in PFA:OPC CPSs. 

15. The cumulative effect of presence of motile bacteria, fungi and presence of 

humic substances might have lowered the pH and influenced the diffusivity 

of cation from BFS:OPC CPSs. 

16. Diffusion rates of sulphate from all PFA cement paste samples were small 

in comparison with diffusion rates for BFS:OPC CPSs. 

Controlling the compositions of the make-up water and cement paste can be 

made to influence the diffusivity of strontium ions. Cement pastes with a high 

sulphate content will also retard the diffusivity. No conditions/additives studied in 

these experiments were able to control caesium diffusion. 

10.2 Implication of findings to nuclear industry 

In most leach experiments cement paste samples are contacted with a solution 

(normally distilled water) for a period of time, usually 20 days; the samples are 

removed and contacted with fresh distilled water for a further period. All 

subsequent solutions (DW) are analysed for the appropriate target. This 

approach unlike ours ensures that:  

(a) the sample approximates a semi-infinite medium, which in practise means 

that no material is leached out of locations farthest away from the exposed 

surfaces  
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(b) the concentration gradients at the surface of the cement sample and leach 

solution are virtually zero i.e. zero boundary concentration 

(c) the solubilities of leached ions control diffusivity and leaching 

(d) re-adsorption of ions is low.  

It is unlikely however that this scenario will replicate ground water seepage into 

an underground nuclear repository and subsequently come in to contact with 

encapsulated wastes. The scheme i.e. closed circuit recirculation adopted in this 

research would be more fitting of the real situation i.e. stagnation followed by 

percolation and therefore diffusivity of ions will be greatly influenced by the test 

solution chemistry and composition. In all other aspects our experimental 

arrangement confers with ANSI/ANS 16.1 standard [213], namely: 

(a) the cations were well mixed in the cement formulation prior to leaching  

(b) the cement surface is continuously exposed to the test solution 

(c) temperature is kept relatively constant  

(d) the cement formulation is homogeneous (this may not be the case for 

SrCO3 contaminated cement formulations)  

10.2.1 Diffusion of ions from encapsulated waste 

In cement paste, the diffusive transport of ions takes place in the micropores as 

long as they maintain a continuous pathway. The rather large ratio of micropore 

diameter to the diameter of the hydrated ions such as cations, chloride etc. 

encountered in cement paste allows for a continuum description of diffusive 

transport of ions through the saturated pores. The leaching process consists of 

physic-chemical phenomena in which diffusion plays a crucial role. Fick’s law 

alone is not always sufficient for a reasonable full description of the fundamental 
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processes involved in the kinetics of leaching. Factors that have an important 

effect on the elution process are: 

a. the heterogeneity of the cement paste sample including the pore structure 

and the changes that take place when calcium hydroxide is lost to the test 

solution 

b. physic-chemical mechanisms through which the retention properties of the 

cement sample might be impaired under the prolonged contact with test 

solution. 

It is known that for sparingly soluble salts, strontium carbonate is a good example 

in our case, a low rate of salt dissolution in the embedding hydrophobic matrix 

leads to completely different release kinetics. 

The depth of dissolution studies in this research indicated that the diffusivity of 

Sr2+ when added as carbonate salt revealed diffusion of few micron from the 

surface of the CPS. Reference studies have shown that addition of calcium 

carbonate serves two functions; one as an active participant in the hydration 

process of cement paste, affecting the amount of free calcium hydroxide, and 

AFm and AFt phases [44]. The sulphate ions that are released from AFm in the 

course of carbonation reacts with water and Ca(OH)2 leading to formation of 

ettringite. This ettrigite formation increases the molar volume of the solids present 

in paste enhancing the space-filling of paste, resulting in reduction of porosity and 

permeability of hardened cement pastes [44]. Encapsulation of cations as 

carbonate salt may lower the diffusivity of some cations; however, may not be the 

case for caesium. Caesium carbonate is very soluble in comparison with 

sparingly soluble strontium carbonate. Therefore, lowered diffusivity of caesium 

when added as carbonate salt will have to be due to reduced porosity of hardened 
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cement paste and not due to any changes in the binding mechanism of Cs+ when 

added as carbonate salt. Caesium is highly soluble in alkaline pore water of 

cement paste sample along with the other inherent soluble cations Na+, K+. Based 

on the solubility, cations/radionuclides encapsulated in cement paste fall under 

two categories; the ones which are soluble in alkaline pore water of hardened 

cement paste such as caesium and Iodine, whereas insoluble cations include 

nickel and cobalt which remain immobilised as long as the pH of the pore water 

remains alkaline. Data generated from ≈1.3% CoCl2 BFS:OPC CPS showed 

correlation of test solution pH values and cumulative concentration of Co2+ 

leached in the test solution. However, the fact that Sr2+ replaces Ca2+ in the 

cement paste mixture, our studies have shown direct correlation between 

diffusivity of Sr2+ and total amount of Ca2+ present in the CPS; depending on the 

type of formulation (BFS:OPC, PFA:OPC). The rate of diffusivity and the depth of 

cation diffusion was significantly higher in ≈3% SrCl2 PFA:OPC having 147 

mmoles of Ca2+ compared to its BFS counterpart having 602 mmoles of Ca2+. 

Thus it can be deduced that maintaining Ca:Sr cations ratio play an important 

role for encapsulation of Sr2+. This also indicates that the PFA:OPC formulation 

may not be suitable for Sr2+ encapsulation due to lower wt% of calcium present 

in PFA (1.30) in comparison with BFS (38.22). The percentage of Ca2+ in PFA 

can be increased by incorporation of calcium chloride in PFA:OPC mixture to 

improve the binding capacity of Sr2+ in PFA:OPC hardened cement paste.  

Calcium chloride has been used as an accelerator for hydration of calcium 

silicates (C3S) for many decades in cement industry [214]. Calcium chloride has 

been shown to increase the resistance to the weathering of the cementitious 

material and faster cure rate than plain concrete [16]. Studies have shown that 

the final concrete set time is reduced by two-thirds upon addition of two per cent 
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calcium chloride to cement paste mix [52]. A wealth of information is available on 

the usage of CaCl2 in cement paste mixtures [52, 214, 215]. 

10.2.2 Diffusion of caesium ions from cement matrix 

The faster diffusivity of Cs+ in our studies (calculated De = 1.06 x 10-5 cm2/day), 

which increases with increase in ionic concentration of leach/test solution 

(DSPW, CSPW) may have potential impact on environment taking into 

consideration its transport from near to far-field and subsequent accumulation in 

food web originating from microorganisms. Attention towards the fate and 

accumulation of radiocaesium deepened since the Chernobyl nuclear accident, 

1986; which indicated a high potential of bioavailability and mobility of 137Cs and 

134Cs [67, 216, 217]. The accumulation and the levels of radiocaesium in the soils, 

waters and living species in the UK since May 1986, after the Chernobyl accident 

have been well documented [217].  A number of studies have been performed to 

measure its concentration in abiotic (soil, sediment, water) and biotic systems of 

terrestrial and aquatic ecosystem. These studies revealed that the accumulation 

of radioacaesium in biosphere depends on number of factors, few of which 

reported, include its mineral content of the solid substrate and the abundance of 

monovalent cations [217]. The partitioning of Cs+ between abiotic (i.e. soils, 

sediments, water) and biotic components of terrestrial and aquatic ecosystems is 

complex and dependent on a number of factors, e.g. inorganic mineral content of 

the solid substrates and the abundance of monovalent cations.  Reference 

studies have shown that Cs+ has equal or greater affinity for transport in 

comparison with K+ in some organisms which is greatly influenced by the 

presence of external K+, NH4+, and Na+[216]. Cs+ is monovalent and most 

electropositive metal having high water solubility than other radioisotopes. It is 
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also a weak Lewis acid having lower tendency to form complex with ligands, 

however, this facilitates bioaccumulation of Cs+ via intracellular monovalent 

transport system located in the plasma membrane of an organism. This transport 

is accompanied by stoichiometric exchange for intracellular K+ [216]. 

Radiocaesium remains active in the biosphere for many years owing to the 

relative longer half-life of 137Cs (≈30years). The challenges of Caesium radio-

isotopes is now a major concern for the clean-up the FUKUSHIMA Daiichi nuclear 

plant site. Although more locally distributed in comparison to Chernobyl it is never 

the less a major nuclear waste commitment requiring a final waste disposal 

outcome. 

There have been several attempts to improve the immobilisation of highly soluble 

Cs+ in cement paste. One of such attempt showed that incorporation of 20% by 

weight densified silica fumes (DSF) in cement paste mixture (w/c= 0.45) greatly 

improved the immobilisation of Cs+. The incorporation of DSF to cement paste 

mixture forms a DSF agglomerates which absorbs Cs+, thus reducing its 

leachability. Furthermore, this work also indicated that during the pozzolanic 

reaction, a hydrated rim develops around the agglomerate that acts as an 

additional diffusion barrier for the Cs+, resulting in an increased efficiency of Cs+ 

immobilization [31]. DSF is an agglomerated raw silica fume, which has larger 

particle diameter than raw silica fume (0.1 µm). Silica fume is considered as very 

effective pozzolanic material due to its extreme fineness and high silica content.  

Silica fumes are used in cement mixture according to the ASTM standard ASTM 

C1240 [218]. During hydration process, amorphous silica reacts with Ca(OH)2 to 

form additional CSH gel which has lower Ca:Si ratio compared to CSH originating 
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from the hydration of cement [219]. Research evidence indicate that the Cs+ 

retention increases with decrease in Ca:Si ratio [31, 220, 221] 

10.2.3 Impact of microorganisms 

The depth of dissolution studies and rates of diffusivity have shown that highest 

diffusivity of Na+ and K+ from the test solutions of contaminated CPS (3% SrCl2, 

3% CsCl and 3% SrCO3 ), in the presence of viable communities in the circulating 

system, in comparison  with control CPS where no viable communities were 

reported; such correlation have not been reported previously. Most studies have 

been carried out on cement pastes either encapsulated with cation/radionuclides 

or added to microbial media to investigate the viable communities. Although such 

studies have isolated the group of concrete colonising microorganism, however 

failed to represent the actual GDF scenario. In our studies, the colonisation and 

subsequent influence on the diffusivity of cations from CPS was carried out using 

filtered soil compost (John Innes No.3) solution, no additional growth media was 

added to the JISS solution. This may represents the actual GDF scenario in a 

condition where seepage of water will take place. As indicated by Humphreys 

[70], the GDF will  have indigenous population of microorganism which may be in 

active or dormant form raises a concern about the durability of immobilised waste. 

Although the maximum care will be taken to prevent the mobilisation of 

cations/radionuclides from the cement paste, the interaction of encapsulated 

cations/radionuclides and microorganism either in mobile or stationary aqueous 

media will certainly affect the encapsulated wasteform primarily by lowering the 

pH as indicated from our studies, ultimately affecting the integrity of CSH leading 

to the dissolution of solidified waste.  
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The work reported in this thesis has made a significant contribution to the 

understanding of the challenges of encapsulating nuclear wastes with OPC 

formulations. The work as demonstrated, in particular, that few if any conditions 

influence (retard) the diffusivity of the Cs cation. Consequently further work is 

required to address this major challenge, the areas worthy of further investigation 

are: 

1 Pore water; this plays a crucial role in the migration of ions from cement 

paste into surrounding environments. Expression of this liquor from 

cement paste samples during the various stages of experiments to 

demonstrate the time dependence of ion migration would be extremely 

valuable. It would also confirm the success or otherwise of the 

effectiveness of additives to OPC (replacing BFS or PFA for example) in 

reducing the diffusivity of caesium cation.  Monitoring the composition of 

this water would also identify if for example chloride ion plays a key role in 

conveying caesium into this environment. 

2 Waste form; caesium wastes will largely be in the form of sludges, solids 

or loaded ion exchange resins/absorbers. Understanding how caesium 

could be released from these wastes will be important to the success of 

achieving the objective of reduced diffusivity. With loaded ion exchange 

resins then diffusion from these will be largely dependent on the pore water 

chemistry, i.e. capable of initially leaching the cation from the functional 

site. This could well be a slow process influenced by external 

considerations such as the flow of ground water over/around the 

encapsulated waste. 
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3 Other additives to OPC;  BFS and PFA are the most common additive to 

OPC mixture for encapsulation purposes, however although they may 

achieve many of the properties required of encapsulation such as low cost, 

contribute to cement’s physical attributes e.g. strength, durability, heat 

resistant etc. they enhance OPC’s caesium retention properties very little. 

Silica fume and other materials are being considered largely from the 

physical property aspects but this interest needs to be extended to the 

chemical behaviour of radionuclide retention. 

4 Make-up water; both its composition and volume to cement affects 

diffusivity. Generally restricted w/c (≈0.3 to ≈0.7) is used.  As this make-up 

water influences pore water evaluating lower water make-up ratios may be 

of value. Addition of low cost chemicals may be worthy of consideration 

such as sodium hydroxide that would disturbed the pH changes that occur 

with curing, would this be advantageous? Equally to complement 3 above 

incorporating pore blockers into the cement paste recipe should have 

some impact on diffusional processes. 

5 Radio-tracers;  We chose not to use radio-tracers for a variety of reasons 

not least the number of experiments underway at any one time would have 

imposed a major challenge for the small radio-lab at UCLan. Incorporating 

radio-tracers could have provided a wealthy of addition information such 

as the progression of ions from cement paste into pore water, the potential 

for back diffusion from the test solution into the cement paste sample and 

influence inherent cations on added cations; caesium is a good example 

as OPC and some additives have low caesium content. 

6 Experimental arrangement;  The closed circuit experiments provided 

some interesting challenges, not least accounting for dilution effects on 
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adding fresh test solution after samples (20ml) had been withdrawn. 

Without this protocol then studying the influence of microorganisms on the 

diffusivity of ions would have been compromised.  For non-microbial work 

smaller samples could have been removed but then a direct comparison 

may have been difficult. The open circuit experiments overcame many of 

these difficulties but the logistics of accommodated more than a few 

experiments in a laboratory would have been a challenge. The closed 

circuit arrangement we believe is likely to replicate what happens in and 

around a GDF with ground water flow. The diffusivity values calculated 

from our experimental data may be more difficult to replicate and other 

arrangements, dual cell type may provide this consistency. The major 

drawback with our experimental arrangement was not being able to study 

the influence of temperature on the diffusional processes. 

7 Other analysis; due to time and work load constraints analytical 

techniques such as TGA, NMR, FT-IR etc. were not employed. It is 

appreciated that these techniques would have provide other additional 

information that would have shed light on how pore water interacts with 

cement paste, formation of cement paste hydrates and their changing 

phase etc.   

8 Modelling; although our diffusion coefficients are similar to previously 

published values, the experimental arrangements that were used to collect 

this data were different. Modelling diffusivity that incorporates make-up 

water, various and different additives including pore deformers, coupled 

with external near field conditions that replicate both flowing and stagnant 

ground water could provide some added value to radioactive waste 

cement encapsulation.  
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Many if not all of the above suggestions are likely to be considered when the final 

disposal form of Cs+ loaded ION-SIV being used in the clean-up of the 

FUKUSHIMA Daiichi nuclear plant site. This material is being used to remove 

caesium from ground water that has entered the damaged reactor building. 

Currently the loaded ION-SIV is being stored on site awaiting a decision on how 

best to reach the final waste management end point. OPC type encapsulation is 

likely to be one consideration. 

  



 

243 
 

 

References 
 

1. Krauskopf, K., Radioactive waste disposal and geology. Vol. 1. 2013, New 
York Springer Science & Business Media. 

2. World Nuclear Association. The Nuclear Fuel Cycle. 2015  [cited 2015 
May]; Available from: http://www.world-nuclear.org/info/Nuclear-Fuel-
Cycle/Introduction/Nuclear-Fuel-Cycle-Overview/. 

3. World Nuclear Association. Nuclear Power in the United Kingdom. 2015  
[cited 2015 May]; Available from: http://www.world-
nuclear.org/info/Country-Profiles/Countries-T-Z/United-Kingdom/. 

4. Ojovan, M.I. and W.E. Lee, An introduction to nuclear waste 
immobilisation. Second ed. 2014: Elsevier, UK. 

5. Abu-Khader, M.M., Recent advances in nuclear power: A review. Progress 
in Nuclear Energy, 2009. 51(2): p. 225-235. 

6. MacKenzie, A.B., Environmental radioactivity: experience from the 20th 
century — trends and issues for the 21st century. Science of The Total 
Environment, 2000. 249(1–3): p. 313-329. 

7. Atomic Energy Regulatory Board, Classification of radioactive waste. 
2011, Atomic Energy Regulatory Board, Mumbai (India). 

8. World Nuclear Association. Waste Management: Overview. 2012; 
Available from: http://www.world-nuclear.org/info/Nuclear-Fuel-
Cycle/Nuclear-Wastes/Waste-Management-Overview/. 

9. NDA. The 2013 Inventory: Nuclear Decommisioning Authority. 2013  [cited 
2015 January]; Available from: https://www.nda.gov.uk/ukinventory/the-
2013-inventory/2013-uk-data/. 

10. Alexander, W.R. and L. McKinley, Deep geological disposal of radioactive 
waste. Vol. 9. 2011: Elsevier. 

http://www.world-nuclear.org/info/Nuclear-Fuel-Cycle/Introduction/Nuclear-Fuel-Cycle-Overview/
http://www.world-nuclear.org/info/Nuclear-Fuel-Cycle/Introduction/Nuclear-Fuel-Cycle-Overview/
http://www.world-nuclear.org/info/Country-Profiles/Countries-T-Z/United-Kingdom/
http://www.world-nuclear.org/info/Country-Profiles/Countries-T-Z/United-Kingdom/
http://www.world-nuclear.org/info/Nuclear-Fuel-Cycle/Nuclear-Wastes/Waste-Management-Overview/
http://www.world-nuclear.org/info/Nuclear-Fuel-Cycle/Nuclear-Wastes/Waste-Management-Overview/
https://www.nda.gov.uk/ukinventory/the-2013-inventory/2013-uk-data/
https://www.nda.gov.uk/ukinventory/the-2013-inventory/2013-uk-data/


 

244 
 

11. Miller B, Tooley J, and G. Thomson. Storage and Disposal of ILW and 
HLW in the UK: Implications for Copeland. A REPORT FOR COPELAND 
BOROUGH COUNCIL 2006; Available from: 
http://www.copelandbc.gov.uk/sites/default/files/attachments/CIS/pdf/180
107_nwg8a.pdf. 

12. McKinney, J. and S. Barlow, Graphite waste treatment and disposal—A 
UK perspective on the current opportunities and issues. 2010, IAEA-
TECDOC-1647, International Atomic Energy Agency, Vienna, Austria. 

13. Nirex, viability of a phased geological repository concept for the long-term 
management of the UK’s radioactive waste. Nirex report N/122, 2005. 

14. Glasser, F.P., Application of inorganic cements to the conditioning and 
immobilisation of radioactive wastes. Handbook of Advanced Radioactive 
Waste Conditioning Technologies, Woodhead, Oxford, 2011: p. 67-135. 

15. Duxson, P., et al., The role of inorganic polymer technology in the 
development of ‘green concrete’. Cement and Concrete Research, 2007. 
37(12): p. 1590-1597. 

16. Neville, A.M., Properties of concrete. Vol. Fourth edition. 2003: Harlow : 
Longman Group  

17. British Geological Survey. Cement: Mineral Planning Factsheet. 2005  
[cited 2013 November]; Available from: 
https://www.bgs.ac.uk/downloads/start.cfm?id=1353. 

18. Borges., P.H.R., et al., Carbonation of CH and C–S–H in composite 
cement pastes containing high amounts of BFS. Cement and Concrete 
Research, 2010. 40(2): p. 284-292. 

19. Harris, A.W., An assessment of the pH buffering provided by the Nirex 
reference vault backfill within a radioactive waste repository. Nirex Report 
NSS, 1998. 323: p. 1998. 

20. Malhotra, V.M., Durability of concrete incorporating high-volume of low-
calcium (ASTM Class F) fly ash. Cement and Concrete Composites, 1990. 
12(4): p. 271-277. 

21. Wang, X.-Y. and H.-S. Lee, A model for predicting the carbonation depth 
of concrete containing low-calcium fly ash. Construction and Building 
Materials, 2009. 23(2): p. 725-733. 

http://www.copelandbc.gov.uk/sites/default/files/attachments/CIS/pdf/180107_nwg8a.pdf
http://www.copelandbc.gov.uk/sites/default/files/attachments/CIS/pdf/180107_nwg8a.pdf
https://www.bgs.ac.uk/downloads/start.cfm?id=1353


 

245 
 

22. Papadakis, V.G., Effect of fly ash on Portland cement systems: Part I. Low-
calcium fly ash. Cement and Concrete Research, 1999. 29(11): p. 1727-
1736. 

23. Pavía, S. and E. Condren, Study of the durability of OPC versus GGBS 
concrete on exposure to silage effluent. Journal of Materials in Civil 
Engineering, 2008. 20(4): p. 313-320. 

24. Bogue, R.H., The chemistry of Portland cement. Soil Science, 1955. 79(4): 
p. 322. 

25. Joshi, R.C. and R.P. Lohita, Fly ash in concrete: production, properties 
and uses. 1997: CRC Press. 

26. Faucon, P., et al., Long-term behaviour of cement pastes used for nuclear 
waste disposal: review of physico-chemical mechanisms of water 
degradation. Cement and Concrete Research, 1998. 28(6): p. 847-857. 

27. Glasser, F.P., J. Marchand, and E. Samson, Durability of concrete—
degradation phenomena involving detrimental chemical reactions. 
Cement and Concrete Research, 2008. 38(2): p. 226-246. 

28. Abou-Mesalam, M.M., Leaching behavior of some radionuclides from 
cement matrix incorporating exhausted polymeric resins. Journal of 
Radioanalytical and Nuclear Chemistry, 2002. 251(1): p. 123-128. 

29. Akers, D.W., N.C. Kraft, and J.W. Mandler, Release of radionuclides and 
chelating agents from cement-solidified decontamination low-level 
radioactive waste collected from the Peach Bottom Atomic Power Station 
Unit 3, in Other Information: PBD: Mar 1994. 1994. p. Medium: ED; Size: 
129 p. 

30. Alexander, M., A. Bertron, and N. De Belie, Performance of Cement-based 
Materials in Aggressive Aqueous Environments. 2013: Springer. 

31. Bar-Nes, G., et al., The mechanism of cesium immobilization in densified 
silica-fume blended cement pastes. Cement and Concrete Research, 
2008. 38(5): p. 667-674. 

32. Carde, C., R. François, and J.-M. Torrenti, Leaching of both calcium 
hydroxide and CSH from cement paste: Modeling the mechanical 
behavior. Cement and concrete research, 1996. 26(8): p. 1257-1268. 



 

246 
 

33. Fuhrmann, M., et al. The effects of temperature on the leaching behavior 
of cement waste forms: The cement/sodium sulfate system. in MRS 
Proceedings. 1989. 

34. Aviam, O., et al., Accelerated biodegradation of cement by sulfur-oxidizing 
bacteria as a bioassay for evaluating immobilization of low-level 
radioactive waste. Applied and environmental microbiology, 2004. 70(10): 
p. 6031-6036. 

35. Bertos, M.F., et al., Investigation of accelerated carbonation for the 
stabilisation of MSW incinerator ashes and the sequestration of CO2. 
Green Chemistry, 2004. 6(8): p. 428-436. 

36. Saito, H. and A. Deguchi, Leaching tests on different mortars using 
accelerated electrochemical method. Cement and Concrete Research, 
2000. 30(11): p. 1815-1825. 

37. Hidalgo, A., C. Andrade, and C. Alonso, An accelerated leaching test to 
evaluate the long term behaviour of concrete in waste disposal. L’Industria 
Italiana del Cemento, 2001. 766: p. 498-507. 

38. Hermansson, H.-P. and S. Eriksson, Corrosion of the copper canister in 
the repository environment. SKI Report, 1999. 99: p. 52. 

39. Ekström, T., Leaching of concrete: experiments and modelling, in Report 
TVBM 3090. 2001. 

40. Heikola, T., Dynamic leach testing of low-and medium-pH injection grouts 
to be used in deep repositories: cementitious materials in deep geological 
repositories. Working Reports - Posiva, 2008. 

41. Fick, A., V. On liquid diffusion. The London, Edinburgh, and Dublin 
Philosophical Magazine and Journal of Science, 1855. 10(63): p. 30-39. 

42. Cau Dit Coumes, C., et al., Formulating a low-alkalinity, high-resistance 
and low-heat concrete for radioactive waste repositories. Cement and 
Concrete Research, 2006. 36(12): p. 2152-2163. 

43. Miller, W., et al., Geological disposal of radioactive wastes and natural 
analogues. Vol. 2. 2000: Elsevier. 



 

247 
 

44. Matschei, T., B. Lothenbach, and F.P. Glasser, The role of calcium 
carbonate in cement hydration. Cement and Concrete Research, 2007. 
37(4): p. 551-558. 

45. Richardson, M.G., Carbonation of reinforced concrete: Its causes and 
management. 1988, Dublin, London and New York: CITIS LTD. 

46. Silva, C.A., et al., Carbonation-Related Microstructural Changesin Long-
Term Durability Concrete. Materials Research, 2002. 5(3): p. 287-293. 

47. Hills, C.D., R.E.H. Sweeney, and N.R. Buenfeld, Microstructural study of 
carbonated cement-solidified synthetic heavy metal waste. Waste 
Management, 1999. 19(5): p. 325-331. 

48. Lange, L.C., C.D. Hills, and A.B. Poole, Preliminary investigation into the 
effects of carbonation on cement-solidified hazardous wastes. 
Environmental science & technology, 1995. 30(1): p. 25-30. 

49. Walton, J.C., et al., Role of Carbonation in Transient Leaching of 
Cementitious Wasteforms. Environmental Science & Technology, 1997. 
31(8): p. 2345-2349. 

50. Sanchez, F., et al., Leaching of inorganic contaminants from cement-
based waste materials as a result of carbonation during intermittent 
wetting. Waste Management, 2002. 22(2): p. 249-260. 

51. Hill, J., et al., The effect of sodium chloride on the dissolution of calcium 
silicate hydrate gels. Waste Management, 2006. 26(7): p. 758-768. 

52. Kishar, E.A., et al., Effect of calcium chloride on the hydration 
characteristics of ground clay bricks cement pastes. Beni-Suef University 
Journal of Basic and Applied Sciences, 2013. 2(1): p. 20-30. 

53. Lagerblad, B. and J. Trägårdh, Conceptual model for concrete long time 
degradation in a deep nuclear waste repository. 1994, Svensk 
Kärnbränslehantering AB: Swedish Cement and Concrete Research 
Institute. 

54. Gascoyne, M., Influence of grout and cement on groundwater 
composition. 2002, POSIVA Working Report: Helsinki  



 

248 
 

55. Holgersson, S., et al., Effects of gluco-isosaccharinate on Cs, Ni, Pm and 
Th sorption onto, and diffusion into cement. Radiochimca Acta, 1998. 
82(Supplement): p. 393-398. 

56. Wolfaardt, G.M. and D.R. Korber, Near-field Microbiological 
Considerations Relevant to a Deep Geological Repository for used 
Nuclear Fuel–State of Science Review. Report NWMO TR-2012-02. 
Nuclear Waste Management Organization, Toronto, 2012. 

57. Pedersen, K., Microbial processes in radioactive waste disposal. 2000, 
Svensk Kärnbränslehantering AB/Swedish Nuclear Fuel and Waste 
Management Company. 

58. Grant W G, et al., The survival of micro-organisms in a deep cementitious 
repository under alkaline, high temperature conditions. AEA Technology 
Report, 2001. AEAT/R/ENV/0227. 

59. Sand, W. and E. Bock, Biodeterioration of mineral materials by 
microorganisms—biogenic sulfuric and nitric acid corrosion of concrete 
and natural stone. Geomicrobiology Journal, 1991. 9(2-3): p. 129-138. 

60. Sand, W., Microbial mechanisms of deterioration of inorganic substrates—
A general mechanistic overview. International Biodeterioration & 
Biodegradation, 1997. 40(2–4): p. 183-190. 

61. Gadd, G.M., Microbial influence on metal mobility and application for 
bioremediation. Geoderma, 2004. 122(2–4): p. 109-119. 

62. Kieft, T.L. and T.J. Phelps, Life in the slow lane: activities of 
microorganisms in the subsurface. The microbiology of the terrestrial deep 
subsurface, 1997: p. 137-163. 

63. Olmstead, W. and H. Hamlin, Converting portions of the Los Angeles 
outfall sewer into a septic tank. Eng News, 1900. 44(19): p. 317-318. 

64. Kappler, U., et al., Sulfite: Cytochrome c Oxidoreductase fromThiobacillus 
novellus purification, characterization, and molecular biology of a 
heterodimeric member of the sulfite oxidase family. Journal of Biological 
Chemistry, 2000. 275(18): p. 13202-13212. 

65. King, F., P. Humphreys, and R. Metcalfe, A Review of the Information 
Available to Assess the Risk of Microbiologically Influenced Corrosion in 
Waste Packages. 2011, Quintessa Ltd, Henley-on-Thames, UK. 



 

249 
 

66. Gadd, G.M., Fungal Production of Citric and Oxalic Acid: Importance in 
Metal Speciation, Physiology and Biogeochemical Processes, in 
Advances in Microbial Physiology, R.K. Poole, Editor. 1999, Academic 
Press. p. 47-92. 

67. Zhdanova, N.N., et al., Fungi from Chernobyl: mycobiota of the inner 
regions of the containment structures of the damaged nuclear reactor. 
Mycological Research, 2000. 104(12): p. 1421-1426. 

68. Gaylarde, C.C. and L.G. Morton, Deteriogenic biofilms on buildings and 
their control: a review. Biofouling, 1999. 14(1): p. 59-74. 

69. Wei, S., et al., Microbiologically induced deterioration of concrete: a 
review. Brazilian Journal of Microbiology, 2014(AHEAD): p. 0-0. 

70. Humphreys, P., J. West, and R. Metcalfe, Microbial effects on repository 
performance. Quintessa contractors report prepared for the Nuclear 
Decommissioning Authority (Radioactive Waste Management 
Directorate), Harwell, Didcot, Oxfordshire, UK, 2010. 

71. Santo Domingo, J.W., et al., Microbiology of spent nuclear fuel storage 
basins. Current microbiology, 1998. 37(6): p. 387-394. 

72. Diosi, G., et al., Corrosion influenced by biofilms during wet nuclear waste 
storage. International biodeterioration & biodegradation, 2003. 51(2): p. 
151-156. 

73. Chicote, E., et al., Biofouling on the walls of a spent nuclear fuel pool with 
radioactive ultrapure water. Biofouling, 2004. 20(1): p. 35-42. 

74. Tanji, Y., et al., Structural analysis of a biofilm which enhances carbon 
steel corrosion in nutritionally poor aquatic environments. Journal of 
bioscience and bioengineering, 1999. 88(5): p. 551-556. 

75. Sarró, M.I., et al., Biofouling on austenitic stainless steels in spent nuclear 
fuel pools. Materials and Corrosion, 2003. 54(7): p. 535-540. 

76. Busscher, H.J. and H.C. van der Mei, Microbial adhesion in flow 
displacement systems. Clinical microbiology reviews, 2006. 19(1): p. 127-
141. 

77. Eccles, H., Process for the treatment of contaminated material. U.S. 
Patent No. 5,840,191, 1999. 



 

250 
 

78. OlSiwbiillOn, O.F., An assessment of the important radionuclides in 
nuclear waste. 1985. 

79. Evans, N.D.M., Binding mechanisms of radionuclides to cement. Cement 
and Concrete Research, 2008. 38(4): p. 543-553. 

80. Atkins, M. and F.P. Glasser, Application of Portland cement-based 
materials to radioactive waste immobilization. Waste Management, 1992. 
12(2): p. 105-131. 

81. Bonen, D. and S.L. Sarkar. Environmental attack on concrete. in Proc 16th 
Eng Found Conf, Am Soc Civil Eng 1994. New York. 

82. Noshita, K., T. Nishi, and M. Matsuda, Improved Sorption Ability for 
Radionuclides by Cementitious Materials. WM, 1998. 98: p. 1880-1886. 

83. El-Kamash, A., A. El-Dakroury, and H. Aly, Leaching kinetics of 137 Cs 
and 60 Co radionuclides fixed in cement and cement-based materials. 
Cement and concrete research, 2002. 32(11): p. 1797-1803. 

84. Colombo, P. and D. Dougherty, Leaching Mechanisms of Solidified Low-
level Waste: The Literature Survey. 1985: Nuclear Waste Research 
Group, Department of Nuclear Energy, Brookhaven National Laboratory, 
Associated Universities. 

85. Aggarwal, S., et al., Radionuclide concentration in cementitious pore-fluids 
extracted under high pressure. 2001, AEAT/R/ENV/0231. 

86. Brunauer S, E.P.H.T.E., Adsorption of gases in multimolecular layers. 
Journal of the American Chemical Society, 1938. 60: p. 309-19. 

87. Thomas, J.J., Jennings,  H. M. and A. J.Allen The surface area of 
hardened cement paste as measured by various techniques. Concrete 
Science and Engineering, 1999. 1(1): p. 45 - 64. 

88. Odler, I., The BET-specific surface area of hydrated Portland cement and 
related materials. Cement and Concrete Research, 2003. 33(12): p. 2049-
2056. 

89. Madigan, M.T., et al., Brock Biology of microorganisms,  12th edn. 2008: 
Pearson Benjamin Cummings, San Francisco, CA, USA. 



 

251 
 

90. Barrow, G. and R.K.A. Feltham, Cowan and Steel's manual for the 
identification of medical bacteria. 2004: Cambridge university press. 

91. Bessey, E.A., Morphology and Taxonomy of Fungi. Soil Science. Vol. 71. 
1951: London, Constable & Company Limited; Philadelphia,. 79. 

92. Zar, J.H., Biostatistical analysis. 2nd. Prentice Hall USA, 1984. 

93. Gutierrez, N., et al. Effects of carbonation on the long-term leaching 
performance of cementitious wasteforms. in Proc. 1996 HSRC/WERC 
Joint Conf. on the Environ. 1996. Albuquerque, New Mexico: Kansas State 
Univ., Manhattan, KS (United States). 

94. Kinoshita, H., et al., Carbonation of composite cements with high mineral 
admixture content used for radioactive waste encapsulation. Minerals 
Engineering, 2014. 59: p. 107-114. 

95. Chen, W., Hydration of slag cement: theory, modeling and application. 
Ph.D. Thesis,. 2006, University of Twente, The Netherlands. 

96. Song, S., et al., Hydration of alkali-activated ground granulated blast 
furnace slag. Journal of Materials Science, 2000. 35(1): p. 249-257. 

97. Provis, J.L., et al., X-ray microtomography shows pore structure and 
tortuosity in alkali-activated binders. Cement and Concrete Research, 
2012. 42(6): p. 855-864. 

98. Khokhar, I.A. Hydration of Cement. 2013  [cited 2015 January ]; Available 
from: http://www.slideshare.net/rizwansamor/hydration-of-cement. 

99. Radwan, M. and H.S. El, Hydration characteristics of tetracalcium 
alumino-ferrite phase in the presence calcium carbonate. Ceramics-
Silikaty, 2011. 55(4): p. 337-342. 

100. Mohran, M.A.A.H. Cement Hydration. (n.d)  [cited 2015 January]; 
Available from: http://www.mohran.com/wp-
content/uploads/2014/10/Hydration-of-Portland-Cement.pdf. 

101. Matschei, T., B. Lothenbach, and F.P. Glasser, The AFm phase in 
Portland cement. Cement and Concrete Research, 2007. 37(2): p. 118-
130. 

http://www.slideshare.net/rizwansamor/hydration-of-cement
http://www.mohran.com/wp-content/uploads/2014/10/Hydration-of-Portland-Cement.pdf
http://www.mohran.com/wp-content/uploads/2014/10/Hydration-of-Portland-Cement.pdf


 

252 
 

102. Theissing, E.M., P.V. Hest-Wardenier, and G. De Wind, The combining of 
sodium chloride and calcium chloride by a number of different hardened 
cement pastes. Cement and Concrete Research, 1978. 8(6): p. 683-691. 

103. Arya, C., N.R. Buenfeld, and J.B. Newman, Factors influencing chloride-
binding in concrete. Cement and Concrete Research, 1990. 20(2): p. 291-
300. 

104. Wan, X.-m., et al., Chloride content and pH value in the pore solution of 
concrete under carbonation. Journal of Zhejiang University SCIENCE A, 
2013. 14(1): p. 71-78. 

105. Lafhaj, Z., et al., Correlation between porosity, permeability and ultrasonic 
parameters of mortar with variable water/cement ratio and water content. 
Cement and Concrete Research, 2006. 36(4): p. 625-633. 

106. Živica, V., Effects of the very low water/cement ratio. Construction and 
Building Materials, 2009. 23(12): p. 3579-3582. 

107. Felekoğlu, B., S. Türkel, and B. Baradan, Effect of water/cement ratio on 
the fresh and hardened properties of self-compacting concrete. Building 
and Environment, 2007. 42(4): p. 1795-1802. 

108. Prokopski, G. and B. Langier, Effect of water/cement ratio and silica fume 
addition on the fracture toughness and morphology of fractured surfaces 
of gravel concretes. Cement and concrete research, 2000. 30(9): p. 1427-
1433. 

109. Fujita, H., et al., Concentration and Molecular Weight of Superplasticizer 
Contained in Pore Solution Extracted from Hardened Cement Pastes. 
Journal of Advanced Concrete Technology, 2008. 6(3): p. 389-395. 

110. Adjoudj, M.h., et al., Evaluation of rheological parameters of mortar 
containing various amounts of mineral addition with polycarboxylate 
superplasticizer. Construction and Building Materials, 2014. 70(0): p. 549-
559. 

111. Tasdemir, C., Combined effects of mineral admixtures and curing 
conditions on the sorptivity coefficient of concrete. Cement and Concrete 
Research, 2003. 33(10): p. 1637-1642. 

112. Young, A.J., et al., Behaviour of radionuclides in the presence of 
superplasticiser. Advances in Cement Research, 2013. 25(1): p. 32-43. 



 

253 
 

113. McCulloch, C.E., et al., Cements in radioactive waste disposal: some 
mineralogical considerations. Mineralogical Magazine, 1985. 49(351): p. 
211-221. 

114. Gruyaert, E., et al., Investigation of the influence of blast-furnace slag on 
the resistance of concrete against organic acid or sulphate attack by 
means of accelerated degradation tests. Cement and Concrete Research, 
2012. 42(1): p. 173-185. 

115. Bordallo, H.N., L.P. Aldridge, and A. Desmedt, Water dynamics in 
hardened ordinary portland cement paste or concrete: From quasielastic 
neutron scattering. The Journal of Physical Chemistry B, 2006. 110(36): 
p. 17966-17976. 

116. Jensen, O.M. and P.F. Hansen, Water-entrained cement-based materials: 
I. Principles and theoretical background. Cement and Concrete Research, 
2001. 31(4): p. 647-654. 

117. Milestone, N.B. and J.P. Gorce, Determining how water is held in 
composite cement binders. Journal of the Australian Ceramic Society, 
2012. 48(2): p. 244-248. 

118. Lothenbach, B. and F. Winnefeld, Thermodynamic modelling of the 
hydration of Portland cement. Cement and Concrete Research, 2006. 
36(2): p. 209-226. 

119. Bentz, D., et al., Drying/hydration in cement pastes during curing. 
Materials and Structures, 2001. 34(9): p. 557-565. 

120. Ravindrarajah, R.S. Bleeding of fresh concrete containing cement 
supplementary materials. in 9th East Asia-Pacific Conference on 
Structural Engineering and Construction. 16-18 December, 2003. Bali, 
Indonesia, . 

121. Persson, B., D.P. Bentz, and G. Fagerlund. Self-desiccation and its 
importance in concrete technology. in Proceedings of the fourth 
international research seminar, Gaithersburg, . 2005. Maryland, USA: Div 
Building Materials, LTH, Lund university. 

122. Maltais, Y., E. Samson, and J. Marchand, Predicting the durability of 
Portland cement systems in aggressive environments—laboratory 
validation. Cement and Concrete Research, 2004. 34(9): p. 1579-1589. 



 

254 
 

123. Samson, E. and J. Marchand, Modeling the effect of temperature on ionic 
transport in cementitious materials. Cement and Concrete Research, 
2007. 37(3): p. 455-468. 

124. John Innes Manufacturers Association. About John Innes. (n.d)  [cited 
2014 June]; Available from: http://www.johninnes.info/about.htm. 

125. Wolf-Gladrow, D.A., et al., Total alkalinity: The explicit conservative 
expression and its application to biogeochemical processes. Marine 
Chemistry, 2007. 106(1–2): p. 287-300. 

126. Berner, U., Concentration limits in the cement based Swiss repository for 
long-lived, intermediate-level radioactive wastes (LMA). 1999, Paul 
Scherrer Inst., CH-5232 Villigen PSI (Switzerland). 

127. Tits, J., et al., Strontium binding by calcium silicate hydrates. Journal of 
colloid and interface science, 2006. 300(1): p. 78-87. 

128. Evans, N., Binding mechanisms of radionuclides to cement. Cement and 
concrete research, 2008. 38(4): p. 543-553. 

129. Abotsi, G., D. Bostick, and D. Beck, Evaluation of interim and final waste 
forms for the newly generated liquid low-level waste flowsheet. 1996, Oak 
Ridge National Lab., TN (United States). Funding organisation: USDOE, 
Washington, DC (United States). 

130. Zha, X., et al., Numerical modeling of supercritical carbonation process in 
cement-based materials. Cement and Concrete Research, 2015. 72(0): p. 
10-20. 

131. Johannesson, B. and P. Utgenannt, Microstructural changes caused by 
carbonation of cement mortar. Cement and concrete Research, 2001. 
31(6): p. 925-931. 

132. Song, H.-W. and S.-J. Kwon, Permeability characteristics of carbonated 
concrete considering capillary pore structure. Cement and Concrete 
Research, 2007. 37(6): p. 909-915. 

133. Collins, F. and J. Sanjayan, Microcracking and strength development of 
alkali activated slag concrete. Cement and Concrete Composites, 2001. 
23(4): p. 345-352. 

http://www.johninnes.info/about.htm


 

255 
 

134. Silva, A., R. Neves, and J. de Brito, Statistical modelling of carbonation in 
reinforced concrete. Cement and Concrete Composites, 2014. 50: p. 73-
81. 

135. Castellote, M., et al., Accelerated carbonation of cement pastes in situ 
monitored by neutron diffraction. Cement and concrete research, 2008. 
38(12): p. 1365-1373. 

136. Bertos, M.F., et al., A review of accelerated carbonation technology in the 
treatment of cement-based materials and sequestration of CO 2. Journal 
of Hazardous Materials, 2004. 112(3): p. 193-205. 

137. Sanchez, F., et al., Leaching of inorganic contaminants from cement-
based waste materials as a result of carbonation during intermittent 
wetting. Waste Management, 2002. 22(2): p. 249-260. 

138. Bertos, M.F., et al., Investigation of accelerated carbonation for the 
stabilisation of MSW incinerator ashes and the sequestration of CO 2. 
Green Chemistry, 2004. 6(8): p. 428-436. 

139. Shafique, M.S.B., et al., Influence of carbonation on leaching of 
cementitious wasteforms. Journal of Environmental Engineering, 1998. 
124(5): p. 463-467. 

140. Atkinson, A., K. Nelson, and T.M. Valentine, Leach test characterisation of 
cement-based nuclear waste forms. Nuclear and Chemical Waste 
Management, 1986. 6(3-4): p. 241-253. 

141. Voglis, N., et al., Portland-limestone cements. Their properties and 
hydration compared to those of other composite cements. Cement and 
Concrete Composites, 2005. 27(2): p. 191-196. 

142. Lothenbach, B., et al., Influence of limestone on the hydration of Portland 
cements. Cement and Concrete Research, 2008. 38(6): p. 848-860. 

143. Rahman, R.A., D.Z. El Abidin, and H. Abou-Shady, Cesium binding and 
leaching from single and binary contaminant cement–bentonite matrices. 
Chemical Engineering Journal, 2014. 245: p. 276-287. 

144. Mahoney, J.D. and A.D. Elaine. Radiochemical studies of the leaching of 
metal ions from sludge bearing concrete. in Third Conference On 
Advanced Pollution Control For The Metal Finishing Industry 1981. 
Orlando Hyatt House, Kissimmee, FL. 



 

256 
 

145. Faucon, P., et al., Behaviour of crystallised phases of Portland cement 
upon water attack. Materials and Structures, 1997. 30(8): p. 480-485. 

146. Haga, K., et al., Effects of porosity on leaching of Ca from hardened 
ordinary Portland cement paste. Cement and Concrete Research, 2005. 
35(9): p. 1764-1775. 

147. Mainguy, M., et al., Modelling of leaching in pure cement paste and mortar. 
Cement and Concrete Research, 2000. 30(1): p. 83-90. 

148. Kuhl, D., F. Bangert, and G. Meschke, Coupled chemo-mechanical 
deterioration of cementitious materials. Part I: Modeling. International 
Journal of Solids and Structures, 2004. 41(1): p. 15-40. 

149. Holt, E., Durability of low-pH injection grout. A literature survey. 2008, 
Posiva Oy, Helsinki (Finland). 

150. Goñi, S. and A. Guerrero, Accelerated carbonation of Friedel's salt in 
calcium aluminate cement paste. Cement and Concrete Research, 2003. 
33(1): p. 21-26. 

151. Ouyang, C., A. Nanni, and W.F. Chang, Internal and external sources of 
sulfate ions in Portland cement mortar: two types of chemical attack. 
Cement and Concrete Research, 1988. 18(5): p. 699-709. 

152. Al-Amoudi, O.S.B., Attack on plain and blended cements exposed to 
aggressive sulfate environments. Cement and Concrete Composites, 
2002. 24(3): p. 305-316. 

153. Fu, Y., J. Ding, and J. Beaudoin, Expansion of portland cement mortar due 
to internal sulfate attack. Cement and Concrete Research, 1997. 27(9): p. 
1299-1306. 

154. Rozière, E., et al., Durability of concrete exposed to leaching and external 
sulphate attacks. Cement and Concrete Research, 2009. 39(12): p. 1188-
1198. 

155. Neville, A., The confused world of sulfate attack on concrete. Cement and 
Concrete Research, 2004. 34(8): p. 1275-1296. 

156. Estokova, A., et al., Sulphur oxidizing bacteria as the causative factor of 
biocorrosion of concrete. Chem. Eng. Trans, 2011. 24: p. 1-6. 



 

257 
 

157. Li, V.C. and E.-H. Yang, Self healing in concrete materials, in Self Healing 
Materials. 2007, Springer. p. 161-193. 

158. Guppy, R., Autogenous healing of cracks in concrete and its relevance to 
radwaste repositories. 1988, United Kingdom Nirex, Ltd. 

159. Harr, M.E., Ground water and seepage, in The Civil Engineering 
Handbook, Second Edition, W.F. Chen and J.Y.R. Liew, Editors. 2002, 
CRC Press. p. 18.3 -18.26. 

160. Samson, E., J. Marchand, and K. Snyder, Calculation of ionic diffusion 
coefficients on the basis of migration test results. Materials and Structures, 
2003. 36(3): p. 156-165. 

161. Ahmad, A. and A. Kumar, Chloride ion migration/diffusion through 
concrete and test methods. International Journal of Advanced Scientific 
and Technical Research, 2013. 6(3). 

162. Johannesson, B., et al., Multi-species ionic diffusion in concrete with 
account to interaction between ions in the pore solution and the cement 
hydrates. Materials and structures, 2007. 40(7): p. 651-665. 

163. Batchelor, B., Leach models: Theory and application. Journal of 
Hazardous Materials, 1990. 24(2–3): p. 255-266. 

164. Park, J.-Y. and B. Batchelor, General chemical equilibrium model for 
stabilized/solidified wastes. Journal of environmental engineering, 2002. 
128(7): p. 653-661. 

165. Rogers, R., et al., Development of test methods for assessing microbial 
influenced degradation of cement-solidified radioactive and industrial 
waste. Cement and concrete research, 2003. 33(12): p. 2069-2076. 

166. West, J.M. and I.G. Mckinley, Radioactive Waste Disposal, 
Geomicrobiology of. 2002: Wiley Online Library. 

167. House, M. and W. Weiss, Review of Microbially Induced Corrosion and 
Comments on Needs Related to Testing Procedures. 2014. 

168. Haferburg, G. and E. Kothe, Microbes and metals: interactions in the 
environment. Journal of basic microbiology, 2007. 47(6): p. 453-467. 



 

258 
 

169. Eccles, H., Personal communication with Prof Eccles. 2011. 

170. Pedersen, K. and F. Karlsson, Investigations of subterranean 
microorganisms: their importance for performance assessment of 
radioactive waste disposal. 1995: SKB. 

171. DEFRA, BERR, and D. ADMINISTRATIONS, Managing Radioactive 
Waste Safely: A Framework for Implementing Geological Disposal. Vol. 
cm 7386. 2008, The Stationery Office, London. 

172. Horn, J.M., et al., Bacterial growth dynamics, limiting factors, and 
community diversity in a proposed geological nuclear waste repository 
environment. Geomicrobiology Journal, 2004. 21(4): p. 273-286. 

173. Perfettini, J.V., E. Revertegat, and N. Langomazino, Evaluation of cement 
degradation induced by the metabolic products of two fungal strains. 
Experientia, 1991. 47(6): p. 527-533. 

174. Molnár, M., et al., Study of gas generation in real L/ILW containers. Journal 
of radioanalytical and nuclear chemistry, 2010. 286(3): p. 745-750. 

175. Gadd, G.M., Metals, minerals and microbes: geomicrobiology and 
bioremediation. Microbiology, 2010. 156(3): p. 609-643. 

176. Silver, S. and T.K. Misra, Plasmid-mediated heavy metal resistances. 
Annual Reviews in Microbiology, 1988. 42(1): p. 717-743. 

177. Giannantonio, D.J., et al., Effects of concrete properties and nutrients on 
fungal colonization and fouling. International Biodeterioration & 
Biodegradation, 2009. 63(3): p. 252-259. 

178. Magniont, C., et al., A new test method to assess the bacterial 
deterioration of cementitious materials. Cement and Concrete Research, 
2011. 41(4): p. 429-438. 

179. Önal, M.M., Reinforcement of Beam by Using Carbon Fiber Reinforced 
Polymer in Concrete Buildings. Sci. Res. Essay, 2009. 4(10): p. 1136-
1145. 

180. Lahav, O., et al., Modeling hydrogen sulfide emission rates in gravity 
sewage collection systems. Journal of environmental engineering, 2004. 
130(11): p. 1382-1389. 



 

259 
 

181. Vollertsen, J., et al., Corrosion of concrete sewers—The kinetics of 
hydrogen sulfide oxidation. Science of the total environment, 2008. 394(1): 
p. 162-170. 

182. Ghafoori, N. and R. Mathis, Sulfate resistance of concrete pavers. Journal 
of materials in civil engineering, 1997. 9(1): p. 35-40. 

183. Lajili, H., et al., Alteration of a cement matrix subjected to biolixiviation test. 
Materials and structures, 2008. 41(10): p. 1633-1645. 

184. Warscheid, T. and J. Braams, Biodeterioration of stone: a review. 
International Biodeterioration & Biodegradation, 2000. 46(4): p. 343-368. 

185. Setareh, M. and R. Javaherdashti, Evaluation of sessile microorganisms 
in pipelines and cooling towers of some Iranian industries. Journal of 
materials engineering and performance, 2006. 15(1): p. 5-8. 

186. Edwards, K.J., et al., Geomicrobiology of pyrite (FeS2) dissolution: case 
study at Iron Mountain, California. Geomicrobiology Journal, 1999. 16(2): 
p. 155-179. 

187. Gazsó, L.G., The key microbial processes in the removal of toxic metals 
and radionuclides from the environment. Central European Journal of 
Occupational and Environmental Medicine, 2001. 7(3/4): p. 178-185. 

188. Bousserrhine, N., et al., Bacterial and chemical reductive dissolution of 
Mn-, Co-, Cr-, and Al-substituted goethites. Geomicrobiology journal, 
1999. 16(3): p. 245-258. 

189. Lloyd, J.R., Microbial reduction of metals and radionuclides. FEMS 
microbiology reviews, 2003. 27(2-3): p. 411-425. 

190. Barkay, T. and J. Schaefer, Metal and radionuclide bioremediation: issues, 
considerations and potentials. Current opinion in microbiology, 2001. 4(3): 
p. 318-323. 

191. Bryan, N.D., et al., The effects of humic substances on the transport of 
radionuclides: recent improvements in the prediction of behaviour and the 
understanding of mechanisms. Applied Geochemistry, 2012. 27(2): p. 
378-389. 



 

260 
 

192. Gadd, G.M., Fungal production of citric and oxalic acid: importance in 
metal speciation, physiology and biogeochemical processes. Advances in 
microbial physiology, 1999. 41: p. 47-92. 

193. Ramsay, L., J. Sayer, and G. Gadd, Stress responses of fungal colonies 
towards toxic metals. The Fungal Colony, 1999: p. 178-200. 

194. Burgstaller, W., et al., Solubilization of zinc oxide from filter dust with 
Penicillium simplicissimum: bioreactor leaching and stoichiometry. 
Environmental science & technology, 1992. 26(2): p. 340-346. 

195. Haas, H., Molecular genetics of fungal siderophore biosynthesis and 
uptake: the role of siderophores in iron uptake and storage. Applied 
Microbiology and Biotechnology, 2003. 62(4): p. 316-330. 

196. Saha, R., et al., Microbial siderophores: a mini review. Journal of basic 
microbiology, 2013. 53(4): p. 303-317. 

197. Birch, L. and R. Bachofen, Complexing agents from microorganisms. 
Experientia, 1990. 46(8): p. 827-834. 

198. Lloyd, J.R. and D.R. Lovley, Microbial detoxification of metals and 
radionuclides. Current Opinion in Biotechnology, 2001. 12(3): p. 248-253. 

199. Gadd, G.M., Heavy metal accumulation by bacteria and other 
microorganisms. Experientia, 1990. 46(8): p. 834-840. 

200. Dighton, J., T. Tugay, and N. Zhdanova, Fungi and ionizing radiation from 
radionuclides. FEMS microbiology letters, 2008. 281(2): p. 109-120. 

201. Gadd, G.M., Microbial Bioremediation of Metals and Radionuclides. 
Encyclopedia of Environmetrics, 2013. 

202. Keith-Roach, M.J. and F.R. Livens, Microbial interactions with 
metals/radionuclides: the basis of bioremediation. Interactions of 
microorganisms with radionuclides, 2002: p. 179. 

203. Pinheiro, S., M. Silva, and F. dos Santos Souza, The Influence of 
Biodeterioration on Concrete Durability. ACI Special Publication, 2005. 
229. 



 

261 
 

204. Dighton, J., T. Tugay, and N. Zhdanova, Interactions of fungi and 
radionuclides in soil, in Microbiology of Extreme Soils. 2008, Springer. p. 
333-355. 

205. Padan, E., et al., Alkaline pH homeostasis in bacteria: new insights. 
Biochimica et biophysica acta (BBA)-biomembranes, 2005. 1717(2): p. 67-
88. 

206. Roger, G.M., et al., Effect of ionic condensation and interactions between 
humic substances on their mobility: An experimental and simulation study. 
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 
2013. 436: p. 408-416. 

207. Ephraim, J.H. and B. Allard, Metal ion binding by humic substances. 
Modelling in Aquatic Chemistry, 1997: p. 207-244. 

208. Shaban, I.S. and F. Macášek, Influence of humic substances on sorption 
of cesium and strontium on montmorillonite. Journal of radioanalytical and 
nuclear chemistry, 1998. 229(1): p. 73-78. 

209. Dumat, C. and S. Staunton, Reduced adsorption of caesium on clay 
minerals caused by various humic substances. Journal of Environmental 
Radioactivity, 1999. 46(2): p. 187-200. 

210. Rice, G., N. Miles, and S. Farris, Approaches to control the quality of 
cementitious PFA grouts for nuclear waste encapsulation. Powder 
Technology, 2007. 174(1–2): p. 56-59. 

211. Morton, L.H.G., Personal communication with Prof Morton. 2012. 

212. Somdee, T., et al., Degradation of [Dha(7)]MC-LR by a Microcystin 
Degrading Bacterium Isolated from Lake Rotoiti, New Zealand. ISRN 
Microbiology, 2013. 2013: p. 596429. 

213. ANSI/ANS-16.1-2003, Measurement of the Leachability of Solidified Low-
Level Radioactive Wastes by a Short-Term Test Procedure. American 
Nuclear Society, ANS, 2003. http://www.ans.org/. 

214. Ramachandran, V.S., Calcium chloride in concrete. Mag Concr Res, 1977. 
29: p. 1-216. 

215. Bortoluzzi, E.A., et al., The Influence of Calcium Chloride on the Setting 
Time, Solubility, Disintegration, and pH of Mineral Trioxide Aggregate and 

http://www.ans.org/


 

262 
 

White Portland Cement with a Radiopacifier. Journal of Endodontics, 
2009. 35(4): p. 550-554. 

216. Avery, S.V., Caesium accumulation by microorganisms: uptake 
mechanisms, cation competition, compartmentalization and toxicity. 
Journal of industrial microbiology, 1995. 14(2): p. 76-84. 

217. Chaplow, J.S., N.A. Beresford, and C.L. Barnett, Post Chernobyl surveys 
of radiocaesium in soil, vegetation, wildlife and fungi in Great Britain. Earth 
System Science Data Discussions, 2014. 7(2): p. 693-711. 

218. ASTM C1240-14, Standard Specification for Silica Fume Used in 
Cementitious Mixtures. ASTM International, West Conshohocken, PA, 
2014. www.astm.org. 

219. V.S. Ramachandran, et al., Supplementary Cementing Materials and other 
additions. Handbook of Thermal Analysis of Construction Materials. 1987, 
USA: Noyes Publications. 300 - 302. 

220. Bagosi, S. and L.J. Csetenyi, Caesium immobilisation in hydrated calcium-
silicate-aluminate systems. Cement and concrete research, 1998. 28(12): 
p. 1753-1759. 

221. Hong, S.-Y. and F.P. Glasser, Alkali binding in cement pastes: Part I. The 
C-S-H phase. Cement and Concrete Research, 1999. 29(12): p. 1893-
1903. 

 

http://www.astm.org/


 

263 
 

Appendices 
 



 

 
 

264 

Appendix 2.1: summary of cement paste mixture  proportions, CPS dimentions, cations concentration of BFS:OPC CPSs 

 

OPC BFS Volume of cation soln added SG of 
cation soln 

Cation soln 
composition 

(g)  (g) (mL) (g/cm3) (g/L) (g)  (dia x h cm) (g/g)

control 300 900 440 (DI water) 1 - 83.7088 3.2 X 5 -
≈3% SrCl2 400 1200 674.37 (590) 1.143 304.2 84.3944 3.2 X 5 0.094 [2.91%]
≈3% CsCl 400 1200 639.56 (590) 1.084 126.27 87.2456 3.2 X 5.2 0.04 [3.01%]

≈1.27% CoCl2 400 1200 640 (600) 1..067 216.83 91.8604 3.2 X 5.6 [1.27%]
***

mixed 400 1200 767 (590) 1.3 97.8814 3.2 X 5.7 0.11Sr Sr[2.66%]
0.04 (Cs)
[2.67%]

Co [1.12%]
200 600 300 (DI water) **  (9.126 g)** 82.0506 3.2 X 5 0.01 [0.27%]

3.01gSr
≈0.3% CsCl 200 600 300 (DI water) **  (3.788 g) ** 81.468 3.2 X 5.2 0.003 [0.27%]

2.98gCs
200 600 300 (DI water) **  (50.486 g) ** 82.5966 3.2 X 5 0.046 [2.7%]

31.00g Sr
≈0.3% SrCO3 200 600 300 (DI water) **  (5.0486 g)** 84.9904 3.2 X 5.3 0.005 [0.27%]

3.10g Sr
**   Required amount of salts (Sr2+ and Cs+) was added directly to DI water prior to the addition of OPC and BFS

***   The appropriate percentage of CoCl2 solution i.e 3% could not be achieved because of the solubility of cobalt chloride in the water

Cation concentration 
of CPSCPS weight CPS 

dimensions

≈3% Sr CO3

≈0.3% SrCl2

  304.2 (Sr) 
126.27 (Cs) 
prepared in 
5% CoCl2

cement paste mixture proportions 

CPS 
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Appendix 2.2  summary of cement paste mixture  proportions, CPS dimentions, cations concentration of PFA:OPC CPSs 
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Appendix 4.1 Rate of diffusivity from control BFS:OPC CPS in DW 
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Appendix 4.2 Rate of diffusivity from ≈3% SrCl2 BFS:OPC CPS in DW 

 

 

 

 

  



 
 

268 
 
 

Appendix 4.3 Rate of diffusivity from ≈3% CsCl BFS:OPC CPS in DW 
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Appendix 4.4  Rate of diffusivity from ≈1.27% CoCl2 BFS:OPC CPS in DW 
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Appendix 4.5 Rate of diffusivity from combined metal BFS:OPC CPS in DW 
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Appendix 4.6 Rate of diffusivity from aged control BFS:OPC CPS in DW 
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Appendix 4.7 Rate of diffusivity from aged ≈3% SrCl2 BFS:OPC CPS in DW 
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Appendix 4.8 Rate of diffusivity from aged ≈3% CsCl BFS:OPC CPS in DW 
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Appendix 4.9 Rate of diffusivity from aged ≈0.3% SrCl2 BFS:OPC CPS in DW 

 
 
 
 
 

Appendix 4.10 Rate of diffusivity from aged ≈0.3% CsCl BFS:OPC CPS in DW 
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Appendix 4.11 Rate of diffusivity from ≈0.3% SrCO3 BFS:OPC CPS in DW 
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Appendix 4.12 Rate of diffusivity from  ≈3% SrCO3 BFS:OPC CPS in DW 
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Appendix 4.13 Rate of diffusivity from control BFS:OPC CPS in tap water 
(open circuit) 

 
 

Appendix 4.14 Rate of diffusivity from ≈3% SrCl2 BFS:OPC CPS in tap water 
(open circuit) 

 
 

Appendix 4.15 Rate of diffusivity from ≈3% CsCl BFS:OPC CPS in tap water 
(open circuit) 
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Appendix 4.16 Rate of diffusivity from ≈3% SrCO3 BFS:OPC CPS in tap 
water (open circuit) 

 
 
 
 
 
 

Appendix 4.17 Rate of diffusivity from ≈3% SrCl2 BFS:OPC CPS in tap 
water (closed circuit) 
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Appendix 5.1 Rate of diffusivity from control PFA:OPC CPS in DW 

 
 
 
 
 
Appendix 5.2 Rate of diffusivity from ≈3% SrCl2 PFA:OPC CPS in DW 

 
 
 
 
 
Appendix 5.3 Rate of diffusivity from ≈3% CsCl PFA:OPC CPS in DW 
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Appendix 5.4 Rate of diffusivity from ≈3% SrCO3 PFA:OPC CPS in DW 

 
 

 

 

Appendix 5.5 Rate of diffusivity from ≈0.3% SrCl2 PFA:OPC CPS in DW 

 
 

 

 

Appendix 5.6 Rate of diffusivity from ≈0.3% CsCl PFA:OPC CPS in DW 
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Appendix 5.7 Rate of diffusivity from control PFA:OPC CPS in tap water 
(open circuit) 

 
 
 
 
 
 
 

Appendix 5.8 Rate of diffusivity from ≈3% SrCl2 PFA:OPC CPS in tap water 
(open circuit) 
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Appendix 5.9 Rate of diffusivity from ≈3% CsCl PFA:OPC CPS in tap water 
(open circuit) 

 
 
 
 
 
 
 
Appendix 5.10 Rate of diffusivity from ≈3% SrCO3 PFA:OPC CPS in tap water 
(open circuit) 
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Appendix 6.1 Rate of diffusivity from control BFS:OPC CPS in CSPW 

 

 
 
 
 
Appendix 6.2 Rate of diffusivity from control BFS:OPC CPS in DSPW 
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Appendix 6.3 Rate of diffusivity from ≈3% SrCl2 BFS:OPC CPS in CSPW 

 
 
 

Appendix 6.4 Rate of diffusivity from ≈3% SrCl2 BFS:OPC CPS in DSPW 
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Appendix 6.5 Rate of diffusivity from ≈3% CsCl BFS:OPC CPS in CSPW 

 
 
 
 
 
Appendix 6.6 Rate of diffusivity from ≈3% CsCl BFS:OPC CPS in DSPW 
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Appendix 6.7 Rate of diffusivity from ≈3% SrCO3 BFS:OPC CPS in CSPW 

 
 
 
 
 

 
Appendix 6.8 Rate of diffusivity from ≈3% SrCO3 BFS:OPC CPS in DSPW 
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Appendix 6.9 Rate of diffusivity from ≈0.3% SrCl2 BFS:OPC CPS in CSPW 

 

 
 
 

Appendix 6.10 Rate of diffusivity from ≈0.3% SrCl2 BFS:OPC CPS in DSPW 
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Appendix 6.11 Rate of diffusivity from ≈0.3% CsCl BFS:OPC CPS in CSPW 

 
 

 

Appendix 6.12 Rate of diffusivity from ≈0.3% CsCl BFS:OPC CPS in DSPW 
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Appendix 6.13 Rate of diffusivity from ≈0.3%SrCO3 BFS:OPC CPS in CSPW 

 

 

 

Appendix 6.14  Rate of diffusivity from ≈0.3%SrCO3 BFS:OPC CPS in DSPW 
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Appendix 7.1 Rate of diffusivity from control PFA:OPC CPS in CSPW 

Days  Na+ Ca2+ Sr2+ Cs+ Cl- SO4
2- pH 

Rate of diffusivity ( µg/cm2/day) 
7 26 31.73 0.69 0.52 18001 124 7.81 

14 11 15.50 0.28 0.35 11448 59 7.69 
21 7 9.16 0.17 0.19 7690 44 8.18 
28 5 6.79 0.12 0.18 3996 30 7.80 
35 5 5.26 0.09 0.14 2508 25 9.10 

 

 
Appendix 7.2 Rate of diffusivity from ≈3%SrCl2 PFA:OPC CPS in CSPW 

Days Na+ Ca2+ Sr2+ Cl- SO4
2- pH 

Rate of diffusivity ( µg/cm2/day) 
7 16 216 69 16536 45 7.41 
14 9 161 46 16508 23 7.43 
21 7 114 31 12422 14 7.52 
28 5 57 17 9351 11 7.54 
35 5 29 11 7336 9 7.51 

 
 
Appendix 7.3  Rate of diffusivity from ≈3%CsCl PFA:OPC CPS in CSPW 

Days Na+ Ca2+ Cs+ Cl- SO4
2- pH 

Rate of diffusivity ( µg/cm2/day) 
7 24 52 1138 18386 308 8.44 
14 11 38 674 14100 158 8.14 
21 7 14 345 11832 105 10.30 
28 5 12 236 7017 77 10.27 
35 4 14 186 4073 50 10.56 

 
 

Appendix 7.4  Rate of diffusivity from ≈3%SrCO3 PFA:OPC CPS in CSPW 

Days Na+ Ca2+ Sr2+ Cl- SO4
2- pH 

Rate of diffusivity ( µg/cm2/day) 
7 28 23 3 15194 243 8.31 
14 15 23 2 13656 135 9.71 
21 9 15 1 11069 87 9.53 
28 7 11 1 4219 77 10.00 
35 5 8 1 4739 64 11.35 
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Appendix 8.1 Rate of diffusivity from control BFS:OPC CPS in JISS 

 
 

Appendix 8.2 Rate of diffusivity from ≈3%SrCl2 BFS:OPC CPS in JISS 

 
 

Appendix 8.3 Rate of diffusivity from ≈3%CsCl BFS:OPC CPS in JISS 

 
 

Appendix 8.4 Rate of diffusivity from ≈3%SrCO3 BFS:OPC CPS in JISS 

 

Na+ Ca2+ Sr2+ Cl- SO4
2-

7 16.8 49.0 1.43 9.8 317.7 7.53
14 10.2 31.3 1.34 5.2 181.6 7.66
21 7.8 17.9 0.90 3.2 109.6 7.70
28 5.3 11.2 0.65 2.3 69.6 7.78
35 5.3 8.6 0.60 7.5 45.3 7.83
42 3.5 5.9 0.45 3.1 36.2 7.93
49 2.8 4.4 0.36 2.3 26.3 7.67

Days pH
Rate of diffusivity ( µg/cm2/day)
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Appendix 9.1 Rate of diffusivity from control PFA:OPC CPS in JISS 

 
 

Appendix 9.2 Rate of diffusivity from ≈3%SrCl2 PFA:OPC CPS in JISS 

 
 

Appendix 9.3 Rate of diffusivity from ≈3%CsCl PFA:OPC CPS in JISS 

 
 

Appendix 9.4 Rate of diffusivity from ≈3%SrCO3 PFA:OPC CPS in JISS 

 
 

Na+ Ca2+ Sr2+ Cs+ Cl- SO4
2-

7 52.47 5.61 0.033 0.050 18.66 118.21 12.15
14 32.24 2.53 0.022 0.018 10.04 64.32 12.24
21 23.11 2.12 0.017 0.013 6.10 44.90 12.23
28 16.58 1.52 0.012 0.020 5.56 35.00 12.27
35 13.63 1.44 0.013 0.018 3.67 29.02 12.25
42 11.27 1.17 0.015 0.017 3.10 23.83 12.16
49 9.07 0.97 0.009 0.012 2.43 18.13 12.11

Days pH
Rate of diffusivity ( µg/cm2/day)

Na+ Ca2+ Cs+ Cl- SO4
2-

7 45.7 12.0 861 1064 153.3 11.63
14 30.5 5.1 528 597 90.5 11.85
21 21.2 2.9 346 388 58.7 11.99
28 16.7 2.1 259 273 41.7 11.98
35 10.8 1.2 163 163 22.3 11.92
42 6.4 0.4 94 83 11.4 11.84
49 4.3 0.2 58 49 7.1 11.74

Days pH
Rate of diffusivity ( µg/cm2/day)

Na+ Ca2+ Sr2+ Cl- SO4
2-

7 61.4 4.1 0.09 15.6 149.2 12.16
14 40.0 0.9 0.05 8.5 88.5 12.12
21 25.3 0.5 0.03 5.9 54.5 12.19
28 20.8 0.2 0.02 4.4 37.5 12.14
35 14.1 0.3 0.02 3.6 27.0 12.11
42 6.8 0.3 0.01 2.7 20.5 12.05
49 7.6 0.3 0.01 2.1 16.4 11.99

Days pH
Rate of diffusivity ( µg/cm2/day)
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