
 
Beneficial effects of Cinnamomum burmannii in the 

treatment of diabetes mellitus 

 
 
 
 

by 
 
 
 
 

 
Maria Leonor Tavares da Silva 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

A thesis submitted in partial fulfilment for the requirements for the degree of              
PhD at the University of Central Lancashire  

 
 
 
 
 
 

May 2015 
 

 





 III 
 

Abstract 

 

Diabetes mellitus (DM) is a major global health disorder currently affecting over 380 

million people worldwide. Its prevalence is on constant increase rising to about 592 

million by 2035. In addition, there are about 1 billion people who are pre-diabetic and they 

will eventually join the diabetic group. Moreover, it costs the Governments of the world 

around 31 trillion to diagnose, treat and care for diabetic patients.  If left untreated, DM 

will lead to end organ failures in the body. Both exercise and diet have important roles for 

glycaemia control in DM. Plant food has been employed as potential complementary 

therapeutics in the treatment of DM. Cinnamon is a spice which has beneficial properties 

on both animal and human models. These properties have been related with it bioactive 

compounds via an anti-oxidant effect. The study investigated the effects of cinnamon in 

the treatment of DM employing both animal and human studies. 

Chemical characterization of antioxidant capacity of aqueous cinnamon extract (ACE) was 

employed in this study, including the total phenols quantification, HPLC identification and 

quantification of the major phenolic compounds and the anti-oxidant capacity (Ferric 

Reducing Antioxidant Power (FRAP) method and superoxide anion radicals scavenging 

activity). In animal studies, young male Wistar rats were divided into, 6 groups namely, 3 

normal groups: normal untreated (n=6), normal treated 75 mg/Kg cinnamon (n=6) and 

normal treated 150 mg/Kg (n=5); and 3 diabetic groups: diabetic untreated (n=5), diabetic 

treated 75 mg/Kg cinnamon (n=6) and diabetic treated 150 mg/Kg (n=5). DM was induced 

with a single intraperitoneal injection of streptozotocin (STZ; 60 mg/kg in citrate buffer) to 

the animals. Normal rats received an equivalent volume (0.3 ml) of citrate buffer alone. 

Two weeks after confirming DM, two groups of normal and diabetic rats (STZ-treated) 

received either 75 mg/Kg or 150 mg/kg cinnamon daily over a period of 11 weeks. The 

untreated normal and diabetic groups only received distilled water daily. Body weights, 

food consumption, blood glucose levels (BGL), blood biochemical parameters, anti-

oxidant status were measured in vivo. In in vitro studies, cation levels in the pancreas, 

liver, kidneys, heart and serum, insulin secretion from the pancreas, distribution of 

pancreatic alpha and beta cells in the pancreas and the fibrosis in the heart were measured 

using established techniques. In human study, a total of 30 non-diabetic subjects were 

selected and allocated in 2 groups namely oral glucose tolerance test (n=15) and OGTT 

followed by cinnamon tea administration (n=15) (6 g cinnamon/100 ml). SPSS software 

was used for statistical analysis. A p-value ≤ 0.05 was considered significant. 
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Data from antioxidant characterization of ACE show a high concentration of total phenols 

and a strong antioxidant capacity of cinnamon. The major phenolic compounds identified 

were cinnamaldehyde, cinnamic acid, coumarin and cinnamyl alcohol. The results from 

animal study show that cinnamon treatment significantly (p<0,05) decreased food 

consumption in diabetic rats, but significantly increased the body weight with higher dose 

in diabetic rats. Cinnamon treatment also showed a significant (p<0.05) reduction in blood 

glucose levels at week 3 with higher dose and no effect on blood biochemical parameters. 

Furthermore, cinnamon seems to improve the anti-oxidant status in serum of normal and 

diabetic rats, especially in diabetic rats treat with 150 mg/Kg doses. The results for the 

serum cations content revealed that cinnamon treatment significantly decreased Na+, Ca2+ 

and Se2+ in normal rats and decreased Na+, Ca2+ and Mg2+ in diabetic rats (p<0.05). In the 

heart, cinnamon with both doses had significant effect (p<0.05) in normal and diabetic rats, 

namely, increases in Mg2+, K+, Ca2+ and Fe2+ levels. In the liver, kidney and pancreas, 

cinnamon treatment seemed to have no significant effect on most of cations analysed. The 

results also show that cinnamon administration can decrease insulin secretion in normal 

rats and increased the hormone in diabetic rats in a marked dose-dependent manner. The 

distribution of left ventricle heart fibrosis slightly decreased with cinnamon treatment, 

especially with high dose in diabetic rats. Concerning to the distribution of pancreatic beta 

and alpha cells, the results show that cinnamon seems to improve the number of insulin 

and glucagon positive cells in diabetic rats. The human study data in non-diabetic subjects 

revealed that postprandial BGL were lower with cinnamon tea administration. Moreover, 

cinnamon administration showed an improvement of BGL area under the curve following 

OGTT. It also leads to both a significant (p<0.05) decrease of the maximum concentration 

and a variation of maximum concentration of BGL in the blood.  

In conclusion, the data from animal studies revealed some beneficial effects of cinnamon 

treatment in diabetic rats through improvement in body weight, food consumption and 

BGL. The results also suggest a possible positive influence of cinnamon on heart fibrosis 

prevention and on insulin secretion in diabetic animal. Moreover, cinnamon tea ingestion 

seemed to exert a beneficial hypoglycaemic effect in non-diabetic subjects during 

postprandial period. The high phenolic compounds content and anti-oxidant capacity may 

contribute to these health benefits. The cellular mechanism(s) of action of cinnamon 

administration is not fully understood regarding its antioxidant effect or its ability to 

regulate blood glucose. 

 



 V 
 

Table of contents 

 

1 Introduction ................................................................................................................... 2 
1.1 Epidemiology of DM ............................................................................................... 3 
1.2 Classification and characterization of T1DM and T2DM .................................. 4 
1.3 Aetiology of T1DM ................................................................................................. 5 
1.4 Complications of DM .............................................................................................. 7 
1.5 Treatment of DM .................................................................................................... 8 
1.6 Use of plants in DM: cinnamon as a therapeutic approach .............................. 10 

1.6.1 Chemical constitutions of cinnamon ................................................................ 12 
1.6.2 Animal and human studies using cinnamon .................................................... 15 
1.6.3 Cinnamon as a potential antioxidant ................................................................ 28 
1.6.4 Anti-inflammatory properties of cinnamon ..................................................... 29 
1.6.5 Bioavailability and toxicity of cinnamon bioactive compounds ...................... 30 

1.7 Working hypothesis .............................................................................................. 33 
1.7.1 Mains aims ....................................................................................................... 33 

2 Materials and Methods ............................................................................................... 36 
2.1 Materials ................................................................................................................ 36 

2.1.1 Cinnamomum burmannii sticks ....................................................................... 36 
2.1.2 Chemical analysis ............................................................................................ 36 
2.1.3 Animal studies ................................................................................................. 37 
2.1.4 Human studies .................................................................................................. 38 

2.2 Methods ................................................................................................................. 39 
2.2.1 Preparation of aqueous cinnamon extract (ACE) ............................................ 39 
2.2.2 Quantification of total phenols content ............................................................ 40 
2.2.3 Simultaneous identification and quantification of phenolic compounds ......... 40 
2.2.4 Characterization of antioxidant capacity of ACE ............................................ 41 
2.2.5 Experimental design ......................................................................................... 43 
2.2.6 Induction of type 1 diabetes mellitus ............................................................... 44 
2.2.7 Measurement of food consumption ................................................................. 44 
2.2.8 Measurement of body weight ........................................................................... 44 
2.2.9 Measurement of blood glucose levels .............................................................. 44 
2.2.10 Oral glucose tolerance test (OGTT) ............................................................... 45 
2.2.11 Blood collection and biochemical analysis .................................................... 45 
2.2.12 Serum total antioxidant status measurement.................................................. 45 
2.2.13 Tissues collection and processing .................................................................. 46 
2.2.14 Cation measurement in tissues and serum ..................................................... 46 
2.2.15 Determination of in vitro pancreatic insulin release ...................................... 47 
2.2.16 Measurement of fibrosis in left heart ventricle .............................................. 48 
2.2.17 Distribution of pancreatic beta and alpha cell by Immunofluorescence ........ 49 
2.2.18 Ethical considerations of human study .......................................................... 50 
2.2.19 Subjects .......................................................................................................... 50 
2.2.20 Experimental design of human study ............................................................. 50 



 VI 
 

2.2.21 Preparation of Oral Glucose Tolerance Test employed in human ................. 51 
2.2.22 Data collection ............................................................................................... 52 

2.3 Statistical analysis ................................................................................................. 53 

3 Results .......................................................................................................................... 55 
3.1 Quantification of total phenols ............................................................................ 55 
3.2 Identification and quantification of phenolic compounds ................................ 57 
3.3 Characterization of antioxidant capacity ........................................................... 60 

3.3.1 FRAP (Ferric Reducing Antioxidant Power) method ...................................... 60 
3.3.2 Superoxide anion scavenging activity ............................................................. 60 

3.4 Effect of ACE on body weight of normal and diabetic rats .............................. 61 
3.5 Effect of ACE on food consumption of normal and diabetic rats .................... 63 
3.6 Effect of ACE on blood glucose level of normal and diabetic rats ................... 65 
3.7 Oral glucose tolerance test of normal and diabetic rats .................................... 67 
3.8 Effect of ACE on biochemical parameters of normal and diabetic rats .......... 69 

3.8.1 Effect of ACE on triglycerides (TG) ............................................................... 69 
3.8.2 Effect of ACE on total cholesterol (TC) .......................................................... 70 
3.8.3 Effect of ACE on high-density lipoprotein (HDL) .......................................... 71 
3.8.4 Effect of ACE on low-density lipoprotein (LDL) ............................................ 72 
3.8.5 Effect of ACE on albumin ............................................................................... 73 
3.8.6 Effect of ACE on hemoglobin A1c (HbA1c) .................................................. 74 
3.8.7 Effect of ACE on creatinine ............................................................................. 75 

3.9 Effect of ACE on organs weight of normal and diabetic rats ........................... 76 
3.9.1 Effect of ACE on pancreas weight ................................................................... 76 
3.9.2 Effect of ACE on heart weight ......................................................................... 77 
3.9.3 Effect of ACE on liver weight ......................................................................... 78 
3.9.4 Effect of ACE on kidney weight ...................................................................... 79 
3.9.5 Effect of ACE on soleus muscle weight .......................................................... 80 
3.9.6 Organs weight ratio .......................................................................................... 81 

3.10 Effect of ACE on total antioxidant status of normal and diabetic rats ......... 85 
3.11 Effect of ACE on tissue and serum cations content of normal and diabetic 

rats 86 
3.11.1 Effect of ACE on cation levels in serum of diabetic and normal rats ............ 87 
3.11.2 Effect of ACE on cation levels in heart of diabetic and normal rats ............. 94 
3.11.3 Effect of ACE on cation levels in liver of diabetic and normal rats ............ 101 
3.11.4 Effect of ACE on cation levels in kidney of diabetic and normal rats ........ 107 
3.11.5 Effect of ACE on cation levels in pancreas of diabetic and normal rats ..... 114 
3.11.6 Effect of ACE on different cation contents of normal and diabetic rats per 
tissue for comparison ................................................................................................. 121 

3.12 In vitro pancreatic insulin release in normal and diabetic rats .................... 131 
3.13 Effect of ACE on heart fibrosis of normal and diabetic rats ........................ 134 

3.13.1 Distribution of left heart ventricle fibrosis of untreated and treated normal 
rats 134 



 VII 
 

3.13.2 Distribution of left heart ventricle fibrosis in untreated and treated diabetic 
rats 138 
3.13.3 Quantification of interstitial fibrosis of left heart ventricle in untreated and 
treated normal and diabetic rats ................................................................................. 142 

3.14 Effect of ACE on distribution of insulin and glucagon containing cells in 

pancreatic islet of normal and diabetic rats .............................................................. 143 
3.14.1 Distribution of insulin in the pancreatic islet of normal and diabetic rats ... 143 
3.14.2 Distribution of glucagon in the pancreatic islet of normal and diabetic rats 147 

3.15 Sample characterization of human study ....................................................... 150 
3.16 Effect of ACE on blood glucose level after Oral Glucose Tolerance Test of 

human ........................................................................................................................... 156 

4 Discussion ................................................................................................................... 161 
4.1 Anti-oxidant capacity and major phenolic compounds of ACE .................... 162 
4.2 Effect of ACE on body weight of normal and diabetic rats............................ 163 
4.3 Effect of ACE on food consumption of normal and diabetic rats .................. 164 
4.4 Effect of ACE on blood glucose and OGTT of normal and diabetic rats ..... 165 
4.5 Effect of ACE on blood biochemical parameters of normal and diabetic rats

 167 
4.6 Effect of ACE on organs of normal and diabetic rats ..................................... 169 
4.7 Effect of ACE on antioxidant profile of normal and diabetic rats ................ 171 
4.8 Effect of ACE on cation levels of normal and diabetic rats............................ 172 
4.9 Effect of ACE on insulin secretion from pancreatic islet of normal and 

diabetic rats .................................................................................................................. 177 
4.10 Effect of ACE on heart fibrosis of normal and diabetic rats ....................... 178 
4.11 Effect of ACE on distribution of alpha and beta pancreatic cell of normal 

and diabetic rats .......................................................................................................... 180 
4.12 Effect of cinnamon tea on blood glucose level after OGTT of non-diabetic 

humans .......................................................................................................................... 181 
4.13 Proposed mechanism(s) of action of ACE ...................................................... 184 
4.14 Conclusion ......................................................................................................... 194 
4.15 Scope for future studies ................................................................................... 195 

5 References .................................................................................................................. 197 
APPENDIX ........................................................................................................... 223 
PUBLICATIONS .................................................................................................. 230 
MEETING AND COLLABORATION WORK ................................................... 233 

 

 

 

 

 

 



 VIII 
 

Acknowledgments 

 

I would like to thank to my Director of Studies, Professor Jaipaul Singh for guidance, 
supervision, leadership and support during this PhD programme. I would also to extend my 
thanks to Professor Jaipaul Singh for friendship, his great encouragement during the 
program and his unlimited help. 

I would also like to express my sincere thanks to my 1st supervisor Professor Fernanda 
Mesquita for the opportunity to make this PhD programme come true for me. It was my 
desire to do a PhD and Professor Mesquita was so kind to facilitate this. I would also like 
to thanks her for supervision, friendship, advice and excellent leadership during the course 
of PhD program. I am sincerely grateful for the financial support Professor Fernanda 
Mesquita has given me to complete my PhD and to attend national and international 
meetings.  

I would thanks to my 2nd supervisor Professor Alexandra Bernardo for supervision, 
guidance, friendship, magnificent support and the excellent unlimited help during the PhD 
programme. I am also especially grateful for her help and advice during the chemical 
analysis of some aspects of my experimental work. 

I would thanks to Professor Margarida Moncada for her indispensable and wonderful 
support in chemical analysis in the PhD thesis. I would thanks to Professor Paula Pereira 
for her help in animal experiments and excellent encouragement during the programme. I 
would thanks to Dr. Belmira Carrapiço, Professor Berta São Bráz, Dr. Adriana and the 
technician Inês for their indispensable support in animal experiments. I would thanks to 
my colleague Dr. Carolina Santos for help in animal experiments. My gratitude also 
extended to her friendship and personal support. 

I would thanks to Professor José Martins dos Santos for his kind help in microscopy study. 
My gratitude also extended to Dr. Gonçalo Borrecho for his indispensable support and help 
in microscopy of the heart study. 

I would like thanks to Cooperativa de Ensino Superior Egas Moniz for financial support 
during PhD programme. 

I would like to thank to Professor Ernest Adeghate for indispensable and excellent support 
in microscopy of the pancreas study. My gratitude also extended to Dr. Rasheed Hameed 
who helped me in this microscopy study. I would thanks to Dr. Tamar Sorribes and Dr. Jim 
Donnelly who helped me in cation analysis of this work. 

Finally, my grateful go to all my family for their constant personal support and 
encouragement. 

 

 



 IX 
 

Abbreviation 

 
7OHC 7-hydroxycoumarin 
AAgs Islet autoantigens 

ABCG Adenosine triphosphate-binding cassette subfamily G 

ACAT Acethyl-CoA acetyltransferase 
ACE Aqueous cinnamon extract 
Ach Acetylcholine 
AGEs Advanced glycation endproducts 

AMPK AMP-activated protein kinase 
APC Antigen-presenting cells 

AUC Area under the curve 
BGL Blood glucose level 
BMI Body mass index 
bw Body weight 
CAB Chromotropic aniline blue 
CD Carbohydrate 
CE Cinnamon extract 
Cmax Maximum concentration 
COX-2 Cyclooxygenase -2 
CyP2A6 Cytochrome P450 
DAG Diacylglyceride 
DC Diabetic cardiomyopathy 
DM Diabetes Mellitus 
DT150 Diabetic treated with 150 mg/kg body weight 
DT75 Diabetic treated with 75 mg/kg body weight 
EFSA European Food Safety Authority 
ER Endoplasmic reticulum 
ERK Extracellular-signal regulated kinase1/2 
FBG Fasting blood glucose level 
FC Free cholesterol 
FCR Folin Ciocalteu reagent 
FFA Free fatty acid 
FGT Fasting glucose test 
FM Fat mass 
FPG Fasting plasma glucose 
FRAP Ferric reducing antioxidant power 
GAD65 Glutamic acid decarboxylase 65 
GC-MS Gas-chromatography mass spectrometry 
GIR Glucose infusion rate 
GLP Glucagon-like peptide 
GLUT Glucose transporter protein 
GS1 Glycogen synthase 
GSK 3K Glycogen synthase 3 kinase 
H2O2 Hydrogen peroxide 
HDL High-density lipoprotein 
HG Hyperglycaemia 
HbA1c Haemoglobin A1c 
HLA Leukocyte antigen 
HPLC High-performance liquid chromatography 
HSPs Heat shock proteins 
IDDM Insulin Dependent Diabetes Mellitus 
IFN- γ Interferon-γ 
IGF Insulin-like growth factor 
IL Interleukin 



 X 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IP Intra-peritoneally 
IP Intraperitoneally injection 
IR β Insulin receptor β 
IRS Insulin receptor substrate 
JNK C-jun-N terminal kinase 
L Lipid 
LDL Low-density lipoprotein 
LG-MS Liquid-chromatography mass spectrometry 
LPO Lipid peroxidation level 
MAG Mono-acylglyceride 
MAPK Mitogen-activated protein kinase 
MM Muscular mass 
MTP Microsomal transfer protein 
MTTP Microsomal triacylglycerol transfer protein 
NADH Nicotinamide adenine dinucleotide hydride 
NF-kB Nuclear factor kB 
NIDDM Non-Insulin Dependent Diabetes Mellitus 
NO Nitric oxide 
NOS Nitric oxide synthase 
NOX NADPH oxidase 
NPC L1 Niemann-Pick C1-like 1 
Npc1l1 Niemann-Pick c1-like 1 
O2

.- Superoxide anion 
OGTT Oral glucose tolerance test 
OGTT Oral glucose tolerance test 
P Protein 
PB2 Postprandial 2h blood glucose level 
PBS Phosphate buffer solution 
PDK1 Phosphoinositide-dependent protein kinase 1 
PEPCK Phosphoenolpyruvate carboxykinase 
PI3K Phosphatidylinositol 3-kinase 
PKB Protein kinase B 
Pten Phosphatase and tensin homologue 
ROS Reactive oxygen species 
SAPK Stress-activated protein kinase 
SEM Standard errors of the mean 
SREBP Sterol regulatory element binding protein 
Srebp 1c Sterol regulatory element-binding protein 1c 
STZ Streptozotocin 
T1DM Type 1 diabetes mellitus 
T2DM Type 2 diabetes mellitus 
TAS Total antioxidant status 
TAS Total Antioxidant Status 
TBARS 2-Thiobarbituric acid reactive substrate 
TC Total cholesterol 
TDI Tolerable daily intake 
TEV Total energy value 
TG Triglycerides 
TNF-α Tumor necrosis factor-alfa 
TTP Tristetraprolin 
TTP Tristetraprolin 
UCPs Uncoupling Proteins 
ZnT8 Zinc transporter-8 
∆Cmax Variation of maximum concentration 



 1 
 

 

 

 

 

 

Chapter One 

 

 

 

INTRODUCTION 

 

 

 

 

 

 

 

  



 2 
 

1 Introduction 

Diabetes Mellitus (DM) is a major global health metabolic disorder which is characterized 

by hyperglycaemia (HG) resulting from dysregulation of insulin secretion and/or insulin 

action or both (Banting et al., 1991; Opie, 1901). DM can cause long-term complications 

in different organs in the body including the heart, kidney, liver, eye, parts of the 

gastrointestinal tract and the nerves (Fowler, 2008). The prevalence of this disease was 

estimated to increase from 360 million people in 2011 to 552 million in 2030 (Whiting et 

al., 2011) and to 592 million in 2035 (Guariguata et al., 2014). Most of these cases will be 

type 2 diabetes mellitus (T2DM), which is strongly associated with a sedentary lifestyle, 

hereditary and high calorie diet and obesity (Murea et al., 2012).  

Type 1 diabetes mellitus (T1DM), although fewer in cases, the incidence indicates that it 

has also been increasing by 2-5% (Maahs et al., 2010). On the basis of the aetiology, 

T1DM may be due to immunological destruction of pancreatic β cells resulting in insulin 

deficiency. Its pathogenesis involves environmental triggers that may activate autoimmune 

mechanisms in genetically susceptible individuals, leading to progressive loss of pancreatic 

islet β cells. Most of the acute effects of this disease can be controlled by insulin 

replacement therapy, but there are long-term adverse effects on blood vessels, nerves and 

other organ systems (Belle et al., 2011). 

The treatment of this disorder has been mainly attribute to pharmacological therapies 

(Bailey, 2013). Nevertheless, the nutritional approach can be a powerful tool in diabetes 

management. Plants, namely, cinnamon have demonstrated beneficial properties on animal 

have employing clinical studies, where the therapeutic properties have been related with its 

chemical compounds via an anti-oxidant effect (Dugoua et al., 2007; Manya et al., 2012). 

However, a systematic review revealed that high quality human trial supporting the 

efficacy of this spice are lacking. Furthermore, more investigation is needed to understand 

its cellular and molecular mechanisms of actions of cinnamon is this disease (Ulbricht et 

al., 2011). 
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1.1 Epidemiology of DM 

In 2013, over 380 million people were confirmed diabetics and this number will increase to 

552 million in 2030 and to 592 million in 2035, with significantly more cases from the 

developing countries compared to the developed countries (Guariguata et al., 2014; 

Whiting et al., 2011). A study representing 130 countries worldwide projected rapid 

increase in the number of diabetic people compared with the projected number for growth 

in the population alone, estimating it to be by 55% in 2035 (Guariguata et al., 2014). This 

represented mainly the 40-59 age-group people. Currently, China has the highest number 

of diabetic people (over 98.4 million), followed by India (70.1 million). Europe is the 

second region with higher increase of diabetic people, an increase in 22.4% from 2013 to 

2035. In Portugal, the percentage of diabetic aged between 20-79 years was estimated to be 

13% of the national population in 2013. This number is estimated to increase by 15,8% in 

2035 (Guariguata et al., 2014). Furthermore, 174.8 million people were estimated to have 

undiagnosed diabetes in 2013 (Beagley et al., 2013). Moreover, the prevalence rate of pre 

diabetic patients increased from 11.6% to 35.3% from 2003 to 2011 in England (Mainous 

et al., 2014). 

These projections of diabetes prevalence lead to estimate its effect on serious long term 

complications of this disorder and also in health care cost. Bagust and co-authors revealed 

that with this increase of T2DM, the diabetes-related complications would be also risen 

rapidly by 2045. This can also lead an increase of health care cost for patient with T2DM 

by to 25% from 2035 to 2045 in UK (Bagust et al., 2002).   

Regarding T1DM, data from epidemiologic study revealed that the incidence has been also 

increased worldwide by 2-5%. The prevalence for T1DM was estimated to 1 in 300 

patients, in US (Maahs et al., 2010). Currently, diabetes diagnosis, its treatment and health 

care for patients in the United States cost the Government $245 billion USAD in 2012, 

including direct medical costs and reduced productivity (ADA, 2013a). 
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1.2 Classification and characterization of T1DM and T2DM  

DM is classified mainly in two types, namely, type 1 Diabetes Mellitus (T1DM) and type 2 

Diabetes Mellitus (T2DM), which are associated with different aetiologies.  

T1DM represents approximately 5-10% of all cases of diabetes and results from 

progressive loss of pancreatic islet mass through a process involving autoimmunity 

mechanisms targeted of molecules that are expressed in the pancreatic beta cells (S. Han et 

al., 2013). T2DM, on the other hand, is characterized by insulin resistance and it is due to 

multifactorial aetiologies including both genetic and non-genetic factors, in which both 

physical inactivity, obesity and diet have been demonstrated to be determinants in T2DM 

(Poulsen et al., 1999; Tuomilehto et al., 2001). It is represents more than 90% of all cases 

of diabetes. 

Diabetes symptoms are similar in both types of DM, but they develop most rapidly and 

more severely in T1DM than T2DM. Some common symptoms of DM due to elevated HG 

include polyuria, polydipsia, polyphagia, weight loss and blurred vision (Shin et al., 2012; 

Weinger et al., 1995). In long-term, DM can lead to the development of complications in 

different organs of the body, such as, the eye (retinopathy) with potential vision loss (Kern 

et al., 2010), the kidney (nephropathy) that can lead to renal failure (Min et al., 2012), 

peripheral neuropathy or an inability to feel or touch (Jolivalt et al., 2013), and the heart 

(cardiomyopathy or heart failure) (Brom et al., 2010). In addition, DM can also carry a 

high risk of large vessel damage as atherosclerosis commonly associated with metabolic 

abnormalities. These are caused by diabetes, which induced vascular dysfunction, such as, 

hypertension, hyperlipidaemia and hyperglycemia. Diabetes can also increase the risk of 

stroke, myocardial infarction and death (Beckman et al., 2002). These long-term 

complications of DM will be detailed in section 1.4. 

Currently, this disorder is diagnosed by either undertaking a fasting glucose test (FGT) or 

oral glucose tolerance test (OGTT) and confirmed by haemoglobin A1c (HbA1c) 

measurement. A person is diagnosed diabetic when fasting plasma glucose (FPG) for at 

least 8 h fasting is more than or equal to 126 mg/dl (7.0 mmol/l) or 2-h plasma glucose is 

more than or equal to 200 mg/dl (11.1 mmol/l) during an OGTT (using a glucose load 

containing the equivalent of 75 g anhydrous glucose dissolved in water) or HbA1c is more 

than or equal to 6,5% or 48 mmol/l (X. Zhang et al., 2010).  
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1.3 Aetiology of T1DM  

As mentioned above, T1DM results from dysregulation of immune responses allowing 

auto-reactive T cells against pancreatic β-cell. According to Rabinovitch and co-authors 

(1998), T cells initiated a cascade of immune/inflammatory process in the islet and 

consequently to β cell destruction and death. After, certain β cell protein can act as 

autoantigens and processed by antigen-presenting cells (APC), a immunogenic signal 

which can activate T cells (CD4+), namely Th1 subset (Rabinovitch & Suarez-pinzon, 

1998). Figure 1.1 shows a schematic model of the process, which is involved in the 

development of T1DM. It is now possible to create a T1DM model of DM using a drug 

called streptozotocin (STZ). In addition, other chemicals can also be used to induce T1DM 

including alloxan. In STZ-induced diabetes mellitus model, the pancreatic β cell in islets of 

Langerhans are destroyed leading to impaired insulin production and consequently to 

hyperglycaemic state (Akbarzadeh et al., 2007). 

 

Figure 1.1: Schematic diagram showing the proposed biochemical mechanism(s) of 

immune system cells, cytokines and oxidative stress involved in destruction of pancreatic β 

cell T1DM. Taken from Rabinovitch and co-authors study (Rabinovitch & Suarez-pinzon, 

1998). 
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The subset of auto-reactive T cells, Th1 induces the production of pro-inflammatory 

cytokines IL-2 and IFN γ which inhibit the Th2 production. In later Th2 is responsible for 

the production of IL-4 and IL-10 (Serreze et al., 2001). 

Different biochemical mechanisms have been proposed for islet β cell damage during the 

genesis of T1DM. These include through pro-inflammatory cytokines activation, free 

radicals action and destruction of β cell by interaction between cytotoxic T cell and β cell 

via Fas receptor, via macrophages and CD8+ T cells activation (Jun et al., 1999; Maedler et 

al., 2001; Rabinovitch & Suarez-pinzon, 1998). 

Macrophages can produce pro inflammatory cytokines IL-1 and TNF α, which can bind to 

specific receptors on β cell and in turn individual cytokines, can inhibit insulin release in 

rat islet. In vivo and in vitro studies have demonstrated that the high glucose levels can 

increase pro inflammatory cytokines production. These include interleukin (IL)- 1β 

(Maedler et al., 2002), tumor necrosis factor-alfa (TNF-α) (L.-F. Lee et al., 2005) and 

interferon-γ (IFN- γ) (X. Huang et al., 1995).  

IL-1β is a pro-inflammatory cytokine that contributes to β cell glucotoxicity (Maedler et 

al., 2002; Moran et al., 2013). This cytokine is released in hyperglycaemic state and it 

seems to act on pancreatic β cell affecting the synthesis and secretion of insulin (Ling et 

al., 1993) and in turn it promotes β cell apoptosis (Maedler et al., 2002). This mechanism 

of action may be through nuclear factor kB (NF-kB) activation (Maedler et al., 2002). 

Persaud and co-authors, in 2004, also suggested that the increased of hyperglycaemia-

induced IL-1β could induce cyclo-oxygenase (COX)-2 expression contributing to β cell 

dysfunction (Persaud et al., 2004).  

TNF-α and IFN γ are another cytokines that play an important role in T1DM. TNF-α has 

been associated with the initiation T1DM acting by activation of islet-specific pancreatic 

lymph node cells (L.-F. Lee et al., 2005) and IFN γ has been associated with development 

of this disease (X. Huang et al., 1995). 

 

On the other hand, the macrophages can also activated the production of oxygen free 

radicals superoxide (O2
�-), hydrogen peroxide (H2O2) and nitric oxide (NO�), which may 

damage the β cell membrane (Thayer et al., 2011). In STZ-induced diabetic rats, nitric 

oxide (NO�) seems to play an important role in dysfunction of pancreatic β cells induced 

by inflammatory stimulation (Kaneto et al., 1995). 

These free radicals inactivate mitochondrial and cytosolic proteins leading to decreased 

oxidative phosphorylation, decreased glycolysis, decreased ATP levels and consequently 
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impaired insulin secretion and production of advanced glycation end-products (AGEs) and 

their receptors AGE activation (Niedowicz & Daleke, 2005; Rabinovitch & Suarez-pinzon, 

1998). Oxidative phosphorylation is believed to be the inductor of reactive oxygen species 

(ROS) in the mitochondrion, which produces superoxide radical, a highly reactive free 

radical (Kwong & Sohal, 1998). The uncoupling proteins (UCPs) appear also to contribute 

to an increase in the superoxide production in diabetic rats. These proteins facilitate 

dissipation of high membrane protonic potential and thus a limited respiration rate, which 

is responsible for ROS production in mitochondria (Korshunov et al., 1997). 

Glucose autoxidation is another possible mechanism to ROS production. High plasma 

glucose level can react with hydrogen peroxide in the presence of transition metals (iron 

and copper) forming hydroxyl radical (Robertson et al., 2003). 

Other important source of free radicals production in DM is advanced glycation end-

product (AGE). The interaction of glucose with proteins leads to the formation of these 

products that promote free radicals formation and subsequently quench and block anti 

proliferative effects of nitric oxide (NO) The AGEs activate the transcription factor NF-kB 

and thus, enhanced the production of NO, which is believed to be a mediator of islet beta 

cell damage (Cellek et al., 2004; Mariappan et al., 2010; Wautier et al., 1994). 

Some enzymes can also to be considered as potential sources of ROS. Nitric oxide 

synthase (NOS) is an enzyme that induces nitric oxide production, which has been shown 

to produce free radicals during catalytic cycle. In STZ-induced diabetic rats, NOS 

expression is increased (Koo & Vaziri, 2003). In vitro studies also suggested an integrated 

pathway in pancreatic β cell linking the pro inflammatory cytokines with lipoxygenase and 

NADPH oxidase (NOX)-1 activation (Weaver et al., 2012). 

1.4 Complications of DM 

DM has several long term complications that can take many years to develop depending on 

when the disease was diagnosed and treatment started. These complications are related to 

blood vessel diseases and are generally classified into small vessel diseases (micro-

vascular diseases), which include the eyes, kidneys and nerves and large vessel diseases 

(macro-vascular diseases) that involve the heart and blood vessels (Fowler, 2008).  

Regarding the micro-vascular disease, diabetic patients can develop retinopathy, which has 

been classified as the most common micro-vascular complication of diabetes, and this is 
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closely related to hyperglycaemic (HG) and hypertension. There is much evidence that 

patients with T1DM develop retinopathy within 20 years of diagnosis (Fowler, 2008). 

Another micro-vascular complication is nephropathy leading to renal failure in both T1DM 

and T2DM. According to UKPDS 64 Study (The United Kingdom Prospective Diabetes 

Study), approximately one quarter of patients will develop micro albuminuria or 

nephropathy within 10 years of the disease. It was also estimated in this work that the time 

spent in each stage of nephropathy was about 19 years for patients with no nephropathy at 

diagnosis of diabetes, 11 years for those with micro albuminuria, 10 years for those with 

macro albuminuria and 2.5 years for those with elevated plasma creatinine (Adler et al., 

2003). On the other hand, neuropathy appears also as a long-term complication of DM and 

the risk of development depends on the magnitude and duration of HG. This complication 

can manifest as sensory, focal/plurifocal and autonomic neuropathies, such as, sensitivity 

to touch, muscle weakness, chronic pain and numbness (Adler et al., 2003). 

Another long-term complication due to DM is related to macro-vascular disease. Diabetic 

cardiomyopathy (DC) is one of those complications that can occur leading to structural, 

functional and metabolic changes in the myocardium. Data have demonstrated that DM 

can increase the risk for cardiac dysfunction and heart failure independently of other risk 

factors including hypertension and obesity. DM can lead to the development of fibrosis in 

the heart, apoptosis and subsequently, remodelling of the myocardium. In addition, more 

than 78% of all diabetics will eventually die from heart disease (Asbun & Villarreal, 2006; 

Brom et al., 2010; Khavandi et al., 2009).  

1.5 Treatment of DM 

Many type 2 diabetic patients begin anti-hyperglycaemic therapy with lifestyle changes, 

namely with nutrition therapy and physical activity. The goals of this therapy are: 

 1) to obtain optimal metabolic outcomes, including blood glucose levels, lipid profile and 

blood pressure level,  

2) to either delay or prevent and to treat the long-term complications of DM, including 

dyslipidaemia, cardiovascular diseases, nephropathy, neuropathy, retinopathy and others 

and 
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 3) to improve their health encouraging healthy food choices and physical activity practices 

(Franz et al., 2010). All these practices will help in maintaining a better quality of life for 

diabetic patients. 

For T1DM management, daily insulin administration is the major therapy, but also 

nutrition therapy plays an important role as well, although it may be often one of the most 

difficult aspects of treatment (Wise et al., 1992). The recommendations to type 1 diabetic 

people is to focus on achieving blood glucose goals without excessive hypoglycaemia and 

moreover, to ensure an adequate energy to normal growth and development (Wise et al., 

1992). In T2DM, nutritional intervention should allow for the modification in lifestyle in 

order to reduce insulin resistance and to improve metabolic status. This can be achieved by 

reducing total and saturated fat, increase dietary fibres, including whole grains and to 

decrease sodium intake which is also strongly emphasized (Franz et al., 2010). In addition, 

for T1DM and T2DM patients should choose food sources of carbohydrates with low 

glycaemic index in order to optimize glycaemic control (Brand-Miller et al., 2006). 

Although non-pharmacologic therapy which includes diet, exercise and weight loss have 

important roles in diabetes treatment, pharmacological intervention is also required if 

glycaemic targets are not achieved within 2 to 3 months of lifestyle management. The 

pharmacological therapy can include oral drug therapy or insulin therapy. A number of 

oral anti-diabetic drugs have been used successfully in the treatment of T2DM. These 

include the five different classes namely, sulfonylurea, biguanides, alfa-glucosidase 

inhibitor, thiazolinediones and intestinal lipase inhibitor (A. Y. Y. Cheng & Fantus, 2005). 

According to the guidelines of American Dietetic Association and European Association of 

the Study of Endocrinology, metformin (a biguanide) is a first-line pharmacological 

treatment. This drug allows for high efficacy by reducing HbA1c, lowers the risk of HG, 

helps in weight loss and moreover, it is cost effective. When HbA1c target is not achieved 

in 3 months, a combination therapy is necessary to treat T2DM with other anti- diabetic 

drugs or insulin (Bailey, 2013). More recently new anti-diabetic agents such as incretins 

have been introduced in diabetic therapies, especially when metformin cannot be used for a 

subsequent pharmacological treatment (Bailey, 2013). Incretins are intestinal protein 

hormones, which help in increasing beta cell mass and also in the release of endogenous 

insulin from the pancreas (Bailey, 2013). 
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1.6 Use of plants in DM: cinnamon as a therapeutic approach 

The use of the Complementary and Alternative Medicine (CAM) has been employed as 

potential new therapeutic agents in the management of DM for hundreds of years. 

Currently, there are several plant-based medicines to treat DM (Bnouham et al., 2006). 

However, since this research project is related to cinnamon, then emphasis will be placed 

only on this particular plant. The use of the plants has revealed an important role in the 

management of DM, in which cinnamon is one of the most frequently used plants to treat 

this disorder (Dugoua et al., 2007; Manya et al., 2012). From 1990, a large number of 

medicinal plants have been demonstrated to be of importance in the treatment of this 

disorder, showing beneficial hypoglycaemic effects. A number of bioactive compounds 

have been isolated from plants displaying equal or more potent than oral hypoglycaemic 

agents currently in use in controlling blood glucose level (Bnouham et al., 2006). 

Phytotherapy is used, not only for glycaemic control, but also for the prevention and 

treatment of diabetic complications (R. Singh et al., 2013). Although many plants have 

been used in the management of different diseases including DM as complement of the 

diet, their mechanisms of actions still unclear.  

Cinnamon is a spice that was introduced to Europe from Sri Lanka in the 16th century by 

the Portuguese. This spice is used in the culinary for its aromatic properties and is used as 

flavouring and tasting of food, beverages, chewing gums, chocolates, liquors and others 

(Ravindran et al., 2004). Moreover, cinnamon has been used extensively over the years for 

its medicinal values as well. Different studies have reported that cinnamon can act 

beneficially in glycaemic (Shen et al., 2010) in lipid profile control (Ping et al., 2010), in 

anti-inflammatory activity (Koteswara et al., 2007) and with antioxidant potential (Ranjbar 

et al., 2006). The therapeutic properties of this plant have been widely related with its 

chemical compounds, which depend on different factors including the species, the parts of 

the tree and more importantly, the concentrations employed in the study.  

Cinnamon comes from the family Lauraceae and there are several species of 

Cinnamomum (Barceloux, 2009; Ravindran et al., 2004) including: 

- Cinnamomum verum (sym. C. zeylanicum), commonly called “true” cinnamon or 

Ceylon cinnamon which is a native from Sri Lanka; 

- Cinnamomun cassia, originated from different sources; 

o Chinese cinnamon (syn. C. aromaticum), native of China-Vietnam;  
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o Indonesian cassia (syn. C. burmannii), originated from Sumatera-Java region;  

o Indian cassia (syn. C. tamala), originated from North Eastern India; 

o Saigon cassia (syn. C. loureiroi). 

 

Figure 1.2 shows a typical cinnamon bark (A) and the powder (B). Generally, the bark is 

golden brown and this can be pulverised into powder. 

 

!

A 

B 

 

Figure 1.2: Images showing (A) bark and (B) powder of cinnamon. 
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1.6.1 Chemical constitutions of cinnamon 

The composition of the cinnamon depends upon the species as well as the tree section (top, 

centre and lower segments) and on the different growth stages (Geng et al., 2011). Geng et 

al. demonstrated that the top and centre segments of the cinnamon bark would be more 

efficient for oil extraction than the whole bark (Geng et al., 2011). Moreover, at 12-years-

old, the bark oil of the tree has the highest yield. One of the main compounds of oil 

cinnamon extract is trans-cinnamaldeyde (G. Singh et al., 2007). The bark products have a 

minimum of this compound in one years’ of growth (33.95%) and a maximum in six years’ 

growth (76.4%) (Geng et al., 2011). Pro-anthocyanidins are another main classes of 

compounds present in aqueous cinnamon extract and they have been demonstrated recently 

to have beneficial hypoglycaemic effect on DM (Jiao et al., 2013).  

Figure 1.3 shows the chemical structures of the main cinnamon compounds including 

procyanidin type-A polymers, cinnamic acid, cinnamaldehyde and coumarin. 

   

  

     

Figure 1.3: Diagram showing chemical structures of the main cinnamon compounds: (A) 

procyanidin type-A polymers (Jiao et al., 2013), (B) cinnamic acid*, (C) cinnamaldehyde* 

and (D) coumarin*. *Molecular structures made by Marvin –beans Sketch Software. 
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Regarding their chemical properties, these compounds vary in quantities depending on the 

different solvents used in the extraction process. Table 1.1 shows the major compounds of 

different species of cinnamon according with the different analytical chemical methods, 

namely high-performance liquid chromatography (HPLC), liquid-chromatography-mass 

spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) employed in 

each study.  

Cinnamon contains also trace elements such as potassium (134.7 mg/g), magnesium (85.5 

mg/g), calcium (83.8 mg/g), phosphorus (42.4 mg/g), manganese (20.1 mg/g), iron (7.0 

mg/g), zinc (2.6 mg/g), chromium (0.4 mg/g), sodium (0.0 mg/g) (Gul & Safdar, 2009). 
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Table 1.1: Table showing the major compounds found in different cinnamon species according to extract and analytical methods. 

References Species 
Cinnamon 

extracts 
Major compounds identified 

Analytical 

methods 

(J. Yang et 
al., 2007) 

C. cassia 

Aqueous-
methanolic 

Protocatechuic acid, (-)-epicatequin, cinamic acid, cinnamaldehyde, eugenol HPLC 

(He et al., 
2005) 

Methanolic Coumarin, Cinnamic acid, Cinnamaldehyde, Eugenol HPLC 

(Geng et al., 
2011) 

Oil 
Cis-cinnamaldehyde (1.43%), trans-cinnamaldehyde (60%), copaene (7.37%), cinnamyl alcohol acetate (1.18%), 
gamma-muurolene (1.56%), 2-methoxycinnamaldehyde (1.85%), alpha-muurolene (1.92%), beta-bisabolene 
(1.25%), (+)-delta-cadinene (2.92%), trans-alpha-bisabolene (2.54%), tetradecanal (0.83% 

GC-MS 

(Shen et al., 
2010) C. zeylanicum 

 

Aqueous Cinnamyl alcohol and cinnamaldehyde HPLC 

(G. Singh et 
al., 2007) 

Oil Cinnamaldehyde (97.7%), α-Copaene (0.8%), α-Amorphene (0.5%), Cadinene (0.9%) GC-MS 

(He et al., 
2005) 

C. wilsoni 
Methanolic 

Cinnamaldehyde and eugenol HPLC  
C. mairei Cinnamaldehyde and eugenol HPLC 
C. loureirii Coumarin, Cinnamic acid and cinnamaldehyde HPLC 

(Anderson 
et al., 2004) 

C. burmannii 

Aqueous 

Procyanidin Type-A oligomers; chlorogenic acid, ferulic acid, t-cinnamic acid, guiacol, cinnamic acid methyl 
ester, homovanillic acid, cinnamide, isovanillic acid cinnam, 2-methoxy-cinnamaldehyde, cinnamyl alcohol, 3-
methoxy-l-tyrosine, clove oil, 4-oxo-4h-1-benzopyan-carboxylic acid, p-coumaric acid, resveratrol, o-coumaric 
acid, vanillic acid, curcumin, vanillin azine, eugenol 

HPLC 

(Shan et al., 
2007) 

Methanolic 
Procyanidin B1 (0.7%), procyanidin B2 (5.12%), procyanidin trimer (13.76%), (+)-catechin (2.61%), procyanidin 
dimer (1.27%), procyanidin tetramer (2.35%), (-)-epicatechin (1.02%), (E)-cinnamic acid (2.69%), (E)-
cinnamaldehyde (62.18%) and (S)-cinnamaldehyde (1.95%) 

GC-MS 
and LC-
MS 

(Thantsin et 
al., 2008) 

Oil  

Camphor (1.79%), 4-terpineol (0.50%), cinnamaldehyde (2.70%), δ-elemene (2.32%), α-cubebene (1.56%), α-
ylangene (0.52%), caryophylene (1.23%), epi-bicyclosesquiphellandrene (0.44%), calarene (0.94%), β-guaiene 
(2.14%), aromadendrene (1.47%), α-humulene (0.43%), santalene (0.77%), α-amorphene (5.39%), valencene 
(0.60%), α-murolene (2.40%), γ-cadinene (0.50%), δ-cadinene (5.98%), patchoulene (0.25%), α-calacorene 
(1.71%), cyclopentadecane (1.29%), cariophylnenyl alcohol (0.49%), γ-eudesmol (1.28%), T-cadinol (1.15%), α-
eudesmol (1.63%), pentadecanol (0.96%), isocurcumenol (0.55%), palmitic acid (2.48%) e elaidinsaeure (7.71%). 

GC-MS 
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1.6.2 Animal and human studies using cinnamon 

This literature search identified ten animal studies and twenty-four human studies, 

which have employed cinnamon. One systematic review with meta-analysis described 

the effect of cinnamon on T2DM (Allen et al., 2013). One systematic review 

(Priyanga Ranasinghe et al., 2013) described hypoglycaemic effect and a meta-

analysis (W. Baker et al., 2008) explaining the effect of cinnamon on glucose control 

and lipid profiles. Finally, two systematic reviews described the medicinal properties 

of cinnamon especially in the treatment of DM. The available evidence suggests that 

cinnamon has hypoglycaemic, cholesterol-lowering, anti-inflammatory, antioxidant 

properties which may act beneficially in DM treatment (Gruenwald et al., 2010). 

 

 

Effects of cinnamon on glycaemic control 

 

Several studies have shown possible beneficial effects of cinnamon as hypoglycaemic 

properties. For this reason, the main research of this spice has been focused on 

prevention and treatment of DM (Mang et al. 2006; Allen et al. 2013). A systematic 

review revealed that the effect of cinnamon on glycaemia in T1DM and T2DM is yet 

unclear or these is conflicting scientific evidence (Ulbricht et al., 2011). Most of the 

in vitro and in animal models studies have reported a beneficial metabolic effect of 

cinnamon on T1DM and T2DM (see tables 1.2 and 1.3). However, numerous clinical 

trials in humans revealed some discrepancies regarding to the effect of cinnamon on 

glucose control (see tables 1.4 and 1.5). Recent literature reveals that it is still 

premature to recommend cinnamon supplementation to DM treatment based on the 

scientific evidence (Rafehi et al., 2012).  

 

In vitro and animal study 

In vitro and in vivo animals studies (see table 1.2 and table 1.3 for T2DM and T1DM, 

respectively) have reported marked beneficial effects of cinnamon and its bioactive 

compounds on glycaemic control (S. H. Kim & Choung, 2010; Priyanga Ranasinghe 

et al., 2012; Rekha et al., 2010). In vivo studies, it has been demonstrated that 

cinnamon extract (S. H. Kim et al., 2006a; Shen et al., 2010) and cinnamaldehyde 
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(Babu et al., 2007) administration improved fasting blood glucose levels (FBG) and 

improved hyper-insulinemia compared to controls. These effects were also observed 

with the administration of cinnamon polyphenolic extract in T1DM (Jia et al., 2009). 

Cinnamon oil, another administration form of this spice, also decreased FBG in 

T2DM rats (Ping et al., 2010). In STZ-induced diabetic rats treated with polyphenol-

rich de-coumarinated extract of C. cassia significantly improved blood sugar and 

serum insulin levels compared to standard aqueous cinnamon extract containing 18% 

polyphenols content and 0.8% coumarin (Kumar et al., 2014). This de-coumarinated 

extract from cinnamon could be benefit since coumarin at high doses have 

hepatotoxic and carcinogenic properties (Abraham et al., 2010). 
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 Table 1.2: A summary of studies evaluating the effects of either cinnamon or its isolated bioactive compounds on body weights, food intake and 

blood parameters in T2DM animal models with insulin resistance. 

References Population/duration Interventions Results 

(S. H. Kim et 
al., 2006a) 

n=10 rats with T2DM/ 
6 weeks  

Aqueous 

Cinnamomum cassia 
extract (50, 100, 150 
and 200 mg/kg bw) / 
Once a day 

Treated group vs control: 
↓↓↓↓FBG 511.8 to 253.4 mg/dL (50 mg/kg, p<0.01), to 243 mg/dL (100 mg/kg, p<0.01), to 208.7 mg/dL (150 mg/kg, 
p<0.01) and to 159.7 mg/dL (200 mg/kg, p<0.001) 
↓↓↓↓FB2 524.7 to 343.3 mg/dl (50 mg/kg, p<0.05), to 252.7 mg/dL (100 mg/kg, p<0.01), to 251.6 mg/dl (150 mg/kg, 
p<0.01) and to 247.3 mg/dl (200 mg/kg, p<0.01) 
↑↑↑↑Insulin (200 mg/kg p<0.05) 
No significant effect on BW and food intake. 
With 200 mg/kg dose: 
↓↓↓↓TG (221 to 121.6 mg/dl), p<0.01; ↑↑↑↑HDL (32.8 to 51 mg/dl), p<0.05; No significant effect on TC. 

(Ping et al., 
2010) 

n=10 mice with T2DM/ 
35 days  

Cinnamon oil (25, 50 
and 100 mg/kg bw) / 
On morning 

Treated group vs control:  
↓↓↓↓FBL with 50 and 100 mg/kg doses (p<0.01) 
↓↓↓↓BGL in OGTT at 30, 60 and120 min with 100 mg/kg dose (p<0.01) 
↓↓↓↓TC 4.98 to 4.28 mmol/l (50 mg/kg, p<0.05) and to 3.80 mmol/l (100 mg/kg, p<0.001) 
↓↓↓↓TG 1.03 to 0.9 mmol/L (25 mg/kg, p<0.05) to 0.87 mmol/l (50 mg/kg, p<0.01) and to 0.84 mmol/L (100 mg/kg, 
p<0.01)  

(K Couturier 
et al., 2010) 

n=8-10 rats with 
insulin resistance/ 
12 weeks 

Cinnamomum cassia 
powder (20 g/Kg of 
diet) added to food 

Treated group vs control:  
↓↓↓↓BW (401.15 to 392.68), p<0.05 
↓↓↓↓White adipose tissue, p<0.05 

(Z. Lu et al., 
2011) 

n=9 rats with insulin 
resistance/ 
14 days 

Cinnamon bark 
extract (200 and 300 
mg/kg bw) 

Treated group vs control:  
↓↓↓↓BGL 28.42 to 25.95 mmol/l with 300mg/kg doses (p<0.05) 

(B Qin, 2003) 
n=6 rats with 
Euglycemic clamp/   
3 weeks 

Aqueous cinnamon 
extract (30 and 300 
mg/kg bw) 

Treated group vs control:  
↑↑↑↑GIR to 118% (30 mg/kg, p<0.05) and to 146% (300 mg/kg, p<0.001); No significant effect on FBG, FFA, BW and 
insulin secretion after cinnamon treatment 

(Chen et al., 
2012) 

n=8 mice db-db/   
4 weeks 

Cinnamomum cassia 
extract (CC-E) and 
Cinnamomum tamala 

extract (CT-E) / 
Gavage; once daily  

Treated group vs control:  
↓↓↓↓AUCs for OGTT (p<0.05)  
↑↑↑↑Insulin level with CC-E (p<0.05) and CT-E (p<0.01) 
↓↓↓↓TG with CC-E (p<0.001); No significant differences in TC 

FBG – fasting blood glucose level; BGL – blood glucose level; PB2 – postprandial 2h blood glucose level; TG – triglycerides level; HDL – high density lipoprotein; TC – total cholesterol; HbA1c – 

glycosylated hemoglobin; OGTT – oral glucose tolerance test; bw – body weight; FFA – free fatty acids; AUC – area under the curve; GIR – glucose infusion rate; ↑ – increase; ↓ – decrease. 
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Table 1.3: A summary of studies evaluating the effects of either cinnamon or its isolated bioactive compounds on body weights, food intake and 

blood parameters in T1DM animal models.  

References Population/duration Interventions Results 

(Shen et al., 
2010) 

n=10 rats with T1DM/ 
22 days  

Aqueous 
Cinnamomum 
zeylanicum extract  
(3, 30 and 100 
mg/kg bw) / given 
by water bottles 

Treated group vs control:  
↑↑↑↑BW 134.8 to 153.4g (30 mg/kg) and 134.8 to 166.3 g  (100 mg/kg) (p<0.05) 
↓↓↓↓FBG 580.5 to 351.8 mg/dL (30 mg/kg) and 580.5 to 378 mg/dL (p<0.05) 
No effect with 3 mg/kg dose; No effect on food consumption with both doses 

(Jia et al., 
2009) 

n=10 rats with T1DM/ 
14 days  

Polyphenolic extract 
of Cinnamomum 

parthenoxylon bark 
(100, 200 and 300 
mg/kg bw)  

Treated group vs control:  
↓↓↓↓FBG by 11.1% (100 mg/kg bw), 22.5% (200 mg/kg bw) and 38.7% (300 mg/kg bw) (p<0.01) 
↓↓↓↓BGL at 90 minute on OGTT (200 mg/kg bw) 
↑↑↑↑Insulin level 4.85 to 13.7 µIU/mL (100 mg/kg bw), to 15.2 µIU/mL (200 mg/kg bw) and to 16.8 µIU/mL (300 
mg/kg bw) (p<0.01) 

(Anand et al., 
2010) 

n=6 rats with T1DM/  
2 months 

Cinnamaldehyde 
(20 mg/kg bw) 

Treated group (initial vs final value):  
↓↓↓↓FBG 289 to 152 mg/dl (p<0.001) 
Treated group vs control:  
↓↓↓↓FBG 323 to 248 mg/dl p<0.001); ↓HbA1c 12.7 to 6.6 % (p<0.001) 
↑↑↑↑BW 139 to 209g (p<0.01) 
↓↓↓↓Fluid intake 175 to 74 ml/day (p<0.001) 
↑↑↑↑Insulin level 5.5 to 12.5 µU/mL (0.001) 

(Babu et al., 
2007) 

n=6 rats with T1DM/ 45 days
Cinnamaldehyde (5, 10 and 
20 mg/kg bw) 

Treated group vs control: 
↓↓↓↓FGL 431 to 256.9 mg/dl (5 mg/kg) to 189.4 mg/dl (10 mg/kg) and to 127.4 mg/dl (20 mg/kg) (p<0.05) 
With 20 mg/kg dose:  
↑↑↑↑BW (165.7 vs 190.6 g 
↓↓↓↓HbA1c (0.97 vs 0.58 %) 
↓↓↓↓TC (246.7 vs 113.5 mg/dl) 
↓↓↓↓TG (38 vs 17.5 mg/dl) 
↑↑↑↑HDL (38.5 vs 54.3 mg/dl) 
↑↑↑↑Insulin level (8.2 vs 13.4 µU/ml) (p<0.05) 
No effect on food intake. 

FBG – fasting blood glucose level; BW – body weight; BGL – blood glucose level; PB2 – postprandial 2h blood glucose level; TG – triglycerides level; HDL – high density lipoprotein; TC – total 

cholesterol; HbA1c – Glycosylated hemoglobin; OGTT – oral glucose tolerance test; bw – body weight; FFA – free fatty acids; AUC – area under the curve; GIR – glucose infusion rate; ↑ – increase; ↓ 

– decrease. 
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Taking in account the literature search, potential cellular mechanisms of cinnamon 

action on metabolic pathways of glycaemic control is proposed and summarized in 

figure 1.4. The main mechanism of action of cinnamon emphasizes on the hypothesis 

that cinnamon can elicit an insulin-mimetic effect through the regulation of insulin 

signalling (Cao et al., 2007; Bolin Qin et al., 2012). Thus, cinnamon is believed to 

exert its benefit effect on glucose homeostasis by the following pathways i) increasing 

glucose uptake in muscle and adipose tissue by glucose transporter (GLUT) 4 

production and GLUT 4 translocation (Anand et al., 2010; Shen et al., 2010), ii) 

promoting glycogen synthesis in the liver, thereby inhibiting glycogen synthase kinase 

3β (Cao et al., 2010); and iii) decreasing gene expression of two regulators of 

gluconeogenesis in liver, the phosphoenolpyruvate carboxykinase (PEPCK) and the 

glucose-6-phosphatase (D. M. Cheng et al., 2012). 

The mechanism by which cinnamon and its bioactive components regulate insulin 

signalling includes the activation of intracellular cascade events. Thus, the extract of 

this plant and its isolated compounds (hydroxychalcone) seem to stimulate the insulin 

receptor (IR) tyrosine auto-phosphorylation (Jarvill-Taylor et al., 2001) and then the 

insulin receptor substrate molecules (IRS) (Karine Couturier et al., 2011). The IRS-2 

phosphorylation results in activation of phosphatidylinositol 3-kinase (PI3K), which is 

responsible for the activation of phosphoinositide-dependent protein kinase (PDK1). 

This kinase in turn activates different signalling molecules, such as protein kinase B 

(Akt1/PKB) that has been reported to have an important role in the regulation of 

protein translocation, enzymes activity and gene transcription of different enzymes 

(Bolin Qin et al., 2012). The Akt1/PKB can enhance protein kinase C (PKC), which in 

turn stimulates glucose uptake by the cell. Similarly, Akt1/PKB inhibits GSK-3 

leading to an activity of glycogen synthase. In addition, cinnamon also seems to 

inhibit the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) that is 

responsible to inhibit PI3K. Cinnamon extract has also demonstrated an ameliorated 

GLUT 4 translocation effect via another signalling pathways in 3T3-L1 adipocytes 

(not shown in figure) which includes enhanced phosphorylation of AMP-activated 

protein kinase (AMPK) (Shen et al., 2014). Finally, the effect of cinnamon on the IRS-

1 insulin receptor substrate molecule can stimulate the P38-MAPK, ERK and 

JNK/SAPK signalling pathways via GRB-2 leading to apoptosis and cell growth 

(Bolin Qin et al., 2012). All these multiple effects of cinnamon and its isolated 

compounds help in regulating the HG induced by DM.  
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Figure 1.4: Schematic models describing tentative mechanism(s) of action of 

cinnamon and its isolated bioactive compounds on glycaemic control in insulin-

dependent tissue. IRS, insulin receptor substrate molecule; PIP2, phosphatidylinositol 

4,5-biphosphate; PIP3, phosphatidylinositol 3,4,5-triphosphate; PI3 kinase, 

phosphatidylinositol 3-kinase, PTEN, phosphatase and tensin homolog; GRB2, growth 

factor receptor-bond protein 2; p38 MAPK, p38 mitogen-activated protein kinase; 

ERK, extracellular-signal-regulated kinases; JNK/SAPK, c-Jun N-terminal 

kinase/stress-activated protein kinase; PEPCK, phosphoenolpyruvate carboxy-kinase; 

PDK1, 3-Phosphoinositide-dependent kinase 1; PKB/AKT, protein kinase B; PKC, 

protein kinase C; GSK 3, glycogen synthase kinase 3; GLUT 4, glucose transporter 

protein. 

 

 

 

 

 



 21 
 

In addition to its insulin-mimetic effect, cinnamon and cinnamaldehyde have been 

demonstrated to exert a hypoglycaemic effect by regulating non-insulin sensitive 

glucose transporter gene expression. Cinnamon extract can increase GLUT1 gene 

expression (Cao et al., 2010), but this occurs in a dose-dependent manner. In L929 

fibroblast cells, cinnamaldehyde promotes a maximum stimulation at a concentration 

of 2.0 mM (Plaisier et al., 2011), which is markedly higher than would be expected 

during the ingestion of cinnamon. Cinnamon powder seems to act on gene expression 

of another glucose transporter, namely non-insulin dependent - GLUT2 - by increasing 

its RNA expression in liver (Karine Couturier et al., 2011). 

Another potential mechanism of action of cinnamon for glycaemic control involves its 

ability to reduce intestinal α-glycosidase and pancreatic α-amylase activity 

(Adisakwattana & Lerdsuwankij, 2011). The activity of sucrase, maltase and lactase 

enzymes were significantly decreased following cinnamon extract treatment in the 

small intestine of mice (S. H. Kim et al., 2006a). Cinnamon exerts this effect by 

decreasing the breakdown of disaccharides into glucose, allowing a slow absorption of 

glucose, and thereby, reduced postprandial blood glucose level (Hamada et al., 2013; 

S. H. Kim et al., 2006a). 

 

Clinical trials in human 

A total of 22 clinical trials were reviewed analysed in this study regarding the effect of 

cinnamon in glycaemia control on human (see tables 1.4 and 1.5). Of those trials, there 

are 13 studies that demonstrated an improved of FGB, PBG or area under the curve for 

PBG. The other 9 trials revealed that cinnamon administration had no metabolic effect 

on either FBG or PBG. It is important to note that only 5 studies employed a well-

controlled clinical trial with the control group. This literature search, included clinical 

studies of healthy, T1DM, T2DM or impaired glycaemia subjects. 

In healthy subjects, cinnamon powder (6 g) intake added to a high sugar meal (rice 

pudding) or a meal test significantly decreased PBG (Hlebowicz et al., 2007; 

Magistrelli & Chezem, 2012). However, lower doses (1 or 3 g) of cinnamon employed 

in same study did not demonstrate any significant effect in glycaemia (Hlebowicz et 

al., 2009). The administration of cinnamon by capsule form leads to an improvement 

of plasma glucose response by 13% on OGTT plus cinnamon in a dose of 5 g (T P J 

Solomon & Blannin, 2007). Although cinnamon ingestion by capsule form containing 

3 g had no significant effect after OGTT, its ingestion for 14 days decreased glucose 
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response to OGTT by 5.5% at the end of experimental protocol (Thomas P J Solomon 

& Blannin, 2009). The area under the curve for glycaemia also significantly decreased 

with 6 g of cinnamon between 0 and 60 min after OGTT in healthy subjects 

(Beejmohun et al., 2014). 

The clinical trials have shown controversial results in human model. The possible 

reason may be due to use of different doses, extracts and species of cinnamon as well 

as different forms of administration (food or capsule) or depending whether it is 

healthy, T2DM, T1DM or impaired glycaemia tolerance. 

In either T2DM or impaired fasting glycaemia subjects, the ingestion of 1, 2 or 6 g of 

C. cassia after meals for 40 days by capsule administration decreased FBG by 18-29% 

at the end of experimental protocol. However, the sulfonylurea drugs taking by the 

participants may can also help in the improvement of FBG levels observed in these 

participants (Khan et al., 2003). A similar study reported that the ingestion of 6 g 

cinnamon in capsule during 12 weeks did not significantly alter FBG compared with 

control group (Wickenberg et al., 2014).  

The administration of 2 g of C. cassia for 40 days also decreased PBG (Soni & 

Bhatnagar, 2009). Furthermore, C. zeylanicum (3 g/day) and C. cassia (1 or 2 g/day) 

administration significantly decreased HbA1c (Akilen et al., 2010; Crawford, 2009; 

Vafa et al., 2012). Aqueous cinnamon extract intake in different doses (250 mg, 336 

mg, 360 mg and 500 mg) by capsule form for 3 or 4 months also resulted in a 

significant decrease in FBG (T. Lu et al., 2012; Mang et al., 2006; A.-M. Roussel et 

al., 2009). These results provide evidence for the possible beneficial effects on the 

treatment of DM. However, in studies by Vanshoonbee et al. and Blavins et al., they 

showed that cinnamon administration (1.5 g and 1 g, respectively) have no beneficial 

hypoglycaemic effect (Blevins et al., 2007; Vanschoonbeek et al., 2006). The possible 

explanation may be due to the short intervention time (6 weeks) or due to oral anti-

diabetic drugs that subjects already took. In the study with impaired glucose tolerance 

subjects, the administration of 6 g cinnamon had also demonstrated no significant 

effect on insulin response (Wickenberg et al., 2012). 

A study employing T1DM subjects was found, and the results show that cinnamon 

capsule administration has no benefit effect during a period of 3 months (Altschuler et 

al., 2007).  
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Table 1.4: A summary of studies evaluating the effects of either cinnamon or its isolated bioactive compounds on blood parameters of healthy 

human subjects. 

References Population/duration Interventions Results 

(Markey et 
al., 2011) 

n=9 healthy subjects /1 
time 

Cinnamomum zeylanicum 

powder (3 g) capsule /with a test 
meal 

No significant effect on gastric empting, postprandial blood glucose levels, TC, LDL,  
HDL and appetite (p>0.05) 

(Ranjbar et 
al., 2006) 

n=54 healthy subjects 
/2 weeks 

Cinnamomum zeylanicum tea 
(100 mg/30 mL per day) 

Treated group vs control:  
↓↓↓↓Plasma TBARS (38%, p<0.05); ↑↑↑↑Total antioxidant power (21%, p=0.01); ↑↑↑↑Plasma thiols (22%, 
p=0.03) 

(Cao et al., 
2008b) 

n=18 healthy subjects 
/10 days 

Cinnamomum zeylanicum  

powder tea (100 mg/300 
mL/day)/ once daily 

Before vs final treatment:  
↓↓↓↓LPO (5.03 vs 1.28 nmol/mL, p=0.016) 

(Hlebowicz et 
al., 2009) 

n=15 healthy subjects 
/1 time 

Cinnamomum cassia (1 or 3 g)/ 
with 300 g of rice pudding 

Treated group vs control:  
↓↓↓↓AUC for Postprandial insulin at minute 120 (2888.7 mU min/L vs 2381.6 mU min/L) (3g of cinnamon) 
↓↓↓↓Fasting insulin response at 60 min (p<0.05);  
No effect on FGL, GER, satiety and GLP-1 

(T P J 
Solomon & 
Blannin, 
2007) 

n=7 healthy subjects /1 
time 

Cinnamomum cassia (5 g) 
capsule/ after evening meal 
(OGTT/12h prior to OGTT) 

Treated group vs control:  
↓↓↓↓Plasma glucose response by 13% on OGTT+cinnamon (p<0.05)  
↓↓↓↓Plasma glucose response by 10% when cinnamon supplementation 12h before (p<0.05) 
No significant difference on serum insulin concentration 

(Tang et al., 
2008) 

n=11 healthy subjects 
/4 weeks 

Cinnamon capsule (3 g per day) 
/3 time with meals 

No effect on FGL, TC and TG 

(Magistrelli & 
Chezem, 
2012) 

n=30 healthy and obese 
subjects /1 time 

Cinnamomum cassia (6 g per 
day)/ with meal test 

Treated group vs control:  
↓↓↓↓Pos-prandial BGL at 15 (109 to 99 mg/dL, p=0.001), 30 (141 to 122 mg/dL, p<0.001), 45 (148 to 122 
mg/dL, p<0.001) and 60 min (139 to 120 mg/dL, p=0.001) 

(Thomas P J 
Solomon & 
Blannin, 
2009) 

n=8 healthy subjects 
/14 days 

Cinnamomum cassia powder (3 g 
per day) /capsule after evening 
meal 

Before vs final treatment:  
↓↓↓↓Glucose response to OGTT by 13.1% (p<0.05) on day 1 and by 5.5% (p=0.05) on day 14;  
Improve insulin sensitivity (p<0.05) on day 14 

(Hlebowicz et 
al., 2007) 

n=14 healthy subjects 
/1 time 

Cinnamon (6 g)/ with 300 g of 
rice pudding 

Treated group vs control:  
↓↓↓↓AUC for Postprandial BGL at minute 30 (13.7 vs 30.7 mmol/l), 45 (32.4 vs 68.1 mmol/l), 60 (47.3 vs 97.2 
mmol/l), 90 (63.3 vs 125 mmol/l) and 120 (75 vs 139.1 mmol/l) 
Delayed gastric emptying (p<0.05) 
↑↑↑↑Insulin sensitivity during OGTT (p<0.05) 
No significant effect on satiety 

GER – gastric empting rate; GLP-1 – glucagon-like peptide-1; LPO – lipid peroxidation level; TBARS – 2-thiobarbituric acid reactive substance; FRAP –ferric reducing antioxidant power; AUC – are under the curve; FBG – 

fasting blood glucose; HbA1c – haemoglobin A1C; TC – total cholesterol; LDL – low density lipoprotein, HDL – high density lipoprotein; TG – triglycerides; ↑ – increase; ↓ – decrease.  
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Table 1.5: A summary of studies evaluating the effects of either cinnamon or its isolated bioactive compounds on blood parameters of healthy 

and diabetic subjects. 

References Population/Duration Interventions Results 

(Beejmohun et 
al., 2014) 

n= healthy subjects/12 
weeks 

Ceylon cinnamon (1 g per day) 
capsule /after meal 

Treat group vs control: 
↓↓↓↓AUC for glycaemia, between 0 and 60 min by 21.2% (p<0.05)  

(Altschuler et 
al., 2007) 

n=72 T1DM subjects 
/90 days 

Cinnamon (1 g per day) capsule/ 
Insulin therapy 

No significant effect in number of hypoglycaemic episodes, HbA1c, insulin total daily doses and weight changes 

(Vanschoonbee
k et al., 2006) 

n=25 T2DM subjects /6 
weeks 

Cinnamomum cassia (1,5 g per 
day) capsule/antidiabetic oral / 3 
times with meal 

No significant effect in FBG, insulin levels, glucose level on OGTT, HbA1c and lipid profile  
(TC, HDL, LDL, TG) 

(Mang et al., 
2006) 

n=55 T2DM subjects /4 
months  

Aqueous cinnamon extract (3 
g/day) capsule / Oral anti-
diabetics/3 times with meal 

Before vs final treatment:  
↓↓↓↓FBG: 9.26 vs 8.15 mmol/l 
No effect in TC, LDL, HDL, TG and HbA1c levels 

(Blevins et al., 
2007) 

n=43 T2DM subjects /3 
months 

Cinnamomum cassia (1 g per day) 
capsule/ Oral anti - diabetic/2 
times with meal 

No significant effect on FBG, lipid profile and HbA1c and insulin levels 

(Akilen et al., 
2010) 

n=58 T2DM subjects 
/12 weeks 

Cinnamomum cassia powder 
capsules (2 g per day)/oral 
hypoglycaemic agents/ 4 times 
with meals 

Treated group vs control:  
↓↓↓↓HbA1c (8.22% to 7.86%) compared with control (8.55% to 8.68%), p<0.005 
No effect on lipid profile (Total cholesterol, LDL, HDL and triglycerides) and FGL compared control with 
treated groups 

(T. Lu et al., 
2012) 

n=66 T2DM subjects /3 
months 

Cinnamomum aromaticum extract 
(120mg and 360mg per day) 
capsule/ oral hypoglycaemic 
agents 

Before vs final treatment:  
↓↓↓↓HbA1c with low (0.67%) and high (0.93%) doses (p<0.01) 
↓↓↓↓FBG with low (11.61 to 0.42 mmol/l) and high (2.32 to 0.93 mmol/l) doses (p<0.01) 
↓↓↓↓TG with low (1.32 to 0.23 mmol/l) dose (p<0.01) 
No effect on TC, HDL and LDL 

(Vafa, et al. 
2012) 

n=44 T2DM subjects /8 
weeks 

Cinnamomum zeylanicum (3 g per 
day) capsules/oral hypoglycaemic 
agents/ 3 time with meal 

Before vs final treatment:  
↓↓↓↓HbA1c (7.4 vs 6.9%) 
↓↓↓↓FBG (139.3 vs 126.5 mg/dL) and TG (163.3 vs 138.2 mg/dL) 
Treated group vs control:  
No significant effect in TC, HDL and LDL and anthropometric 

GER – gastric empting rate; GLP-1 – glucagon-like peptide-1; LPO – lipid peroxidation level; TBARS – 2-thiobarbituric acid reactive substance; FRAP –ferric reducing antioxidant power; 

AUC – are under the curve; FBG – fasting blood glucose; HbA1c – haemoglobin A1C; TC – total cholesterol; LDL – low density lipoprotein, HDL – high density lipoprotein; TG – 

triglycerides. ↑ – increase; ↓ – decrease. 
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Table 1.5 (cont.): Summary of studies evaluating the effects of either cinnamon or its bioactive compounds on blood parameters of diabetic and 

impaired glycaemia subjects.  

References Population/Duration Interventions Results 

(Khan et al., 
2003) 

n=57 T2DM subjects /40 
days 

Cinnamomum cassia (1, 3 or 6 g 
per day) capsule; Sulfonylurea / 
After meals 

Before vs final treatment:  
↓↓↓↓FBL (18-29%, p<0.05) 
↓↓↓↓TG (23-30%, <0.05), LDL (7-27%, <0.05) 
↓↓↓↓TC (12-26%, <0.05) 
No effect on HDL cholesterol 

(Soni & 
Bhatnagar, 
2009) 

n=30 T2DM subjects /40 
days 

Cinnamomum cassia powder 
capsule (2 g per day) /4 times 
after meal 

Before vs final treatment:  
↓↓↓↓FBG (148.7 to 120 mg/dL), p<0.01 
↓↓↓↓Postprandial BGL by 12.79% (p<0.01) 

(Crawford, 
2009) 

n=89 T2DM subjects /90 
days 

Cinnamomum cassia capsule (1 
g)/diabetic medication/ 2 times 
with meal 

Before vs final treatment:  
↓↓↓↓HbA1C (8.47 to 7.64), p<0.001 

(Ziegenfuss et 
al., 2006) 

n=22 Pre-diabetes and 
metabolic syndrome 
subjects /12 weeks 

Aqueous cinnamon extract (500 
mg per day) capsule/ 2 times 
with meal 

Before vs final treatment:  
↓↓↓↓FBG in cinnamon-treat group by 8.4% (p<0.01) 
↑↑↑↑Lean mass by 1.1% (p<0.002) 

(Wickenberg 
et al., 2014) 

n=17 Imparied glucose 
tolerance subjects /12 
weeks 

Cinnamomum cassia (6 g per 
day) 2 times with meal 

Treat group vs control: 
No significant effect on insulin sensitivity, HbA1c, FBG 

(Wickenberg 
et al., 2012) 

n=10 Impaired 
glycaemia tolerance 
subjects / 1 time 

C. zeylanicum (400 mg per day) 
capsule / 1 time (OGTT) 

Treat group vs control: 
No significant effect in glucose level and insulin response 

(A. Roussel et 
al., 2009) 

n=22 Obesity with 
impaired fasting 
glycemia subjects /12 
weeks 

Aqueous Cinnamomum cassia 
extract (250 mg per day) 
capsule/2 times 

Before vs final treatment:  
↓↓↓↓FBG (114 to 102 mg/dL, p<0.05) 
↑↑↑↑Plasma thiol groups (4.89 to 5.56 µMol/g prot, p<0.05) 
↑↑↑↑FRAP (812 to 918 µMol/L, p<0.05) 
o significant effect in fasting insulin level 

GER – gastric empting rate; GLP-1 – glucagon-like peptide-1; LPO – lipid peroxidation level; TBARS – 2-thiobarbituric acid reactive substance; FRAP –ferric reducing antioxidant power; 

AUC – are under the curve; FBG – fasting blood glucose; HbA1c – Haemoglobin A1C; TC – total cholesterol; LDL – low density lipoprotein, HDL – high density lipoprotein; TG – 

triglycerides. ↑ – increase ; ↓ – decrease. 
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Effects of cinnamon on lipid profile  

 

From the available in vitro and in vivo animal models, evidence has shown that cinnamon 

and its bioactive compounds have cholesterol-lowering properties. However, the evidence 

on clinical trials is controversial regarding the effect of cinnamon on lipid profile. A 

systematic-review with meta-analysis revealed that cinnamon can improve lipid profile in 

T2DM (Allen et al., 2013), while another meta-analysis shows that cinnamon does not 

appear to improve lipid parameters in T1DM and T2DM (W. Baker et al., 2008). 

 

In vitro and in animal study 

Data from in vitro and in vivo animal studies demonstrated that cinnamon has possible 

benefit properties in lipid profile (see tables 1.2 and 1.3 for T2DM and T1DM, 

respectively). In T2DM rats, aqueous cinnamon extract (200 mg/Kg) administration for 6 

weeks significantly decreased triglycerides (TG) and increased high-density lipoprotein 

(HDL) (Chen et al., 2012; S. H. Kim et al., 2006a).  In addition, Ping et al. showed that 

cinnamon oil decreased total cholesterol (TC) after 35 days of a experimental protocol, 

compared to control group (Ping et al. 2010).  One on the bioactive compounds of 

cinnamon, namely cinnamaldehyde, seems also to exert a beneficial effect in T2DM. In a 

dose of 20 mg/Kg this compound decreased TC level, TG level, and increased HDL level 

(Babu et al., 2007).  

 

The mechanism(s) of action by which cinnamon and its compounds can regulate lipid 

profile metabolism is not clearly understood in the literature (P Ranasinghe et al., 2012). 

Figure 1.5 proposes and summarizes the possible mechanism(s) of action of cinnamon and 

its isolated compounds on lipid metabolism in the body. However, Qin and co-workers 

have identified some pathways involved in lipid metabolism employing small intestine 

enterocytes to study the effect of cinnamon and its isolated compounds (Bolin Qin et al., 

2012). They showed that cinnamon can inactivate the Niemann-Pick c1-like 1 and Cd36 

mRNA receptors on the enterocytes leading to a decrease in the absorption of free 

cholesterol (FC) and free fatty acid (FA), respectively from the gut to the cell. 

Furthermore, cinnamon leads to a down-regulation of chylomicron synthesis by decreasing 

MTTP levels and Apo B48 secretion from the enterocytes, which are responsibly for 

intestinal lipoprotein assembly. Cinnamon and its isolated compounds can also regulate 

cholesterol homeostasis by inducing ABCA1 expression, which in turn is responsible for 
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promoting cholesterol efflux from enterocytes. Cinnamon and its compounds can also 

decrease ABCG5 expression, which promotes cholesterol efflux from enterocytes into the 

gut lumen. Finally, cinnamon can down-regulate lipogenesis by decreasing Srebp 1c 

expression (Bolin Qin et al., 2012). Together, all these multiple effects of cinnamon and its 

isolated compounds help in reducing the free fatty acids and cholesterol (lipid profile) 

induced by DM (see figure 1.5). 

 

 

 

Figure 1.5:  Schematic model describing tentative mechanism(s) of action of cinnamon and 

its isolated bioactive compounds on lipid metabolism in enterocyte cell. MAG– 

monoacylglyceride; DAG, diacylglyceride; FA, fatty acid; FC, free cholesterol; NPC1 L1, 

Niemann-Pick C1-Like 1; ABCG, ATP-binding cassette sub-family G; ACAT, acetyl-CoA 

acetyltransferase; TG – triglycerides; CE, cholesterol ester; MTP, microsomal transfer 

protein; SREBP, sterol regulatory element binding protein; ER – endoplasmatic reticulum.  
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Clinical trials in human 

Regarding to the effect of cinnamon on lipid profile in human model, a total of 9 clinical 

trials were analysed (see tables 1.4 and 1.5). Most of these studies (6 in all) revealed that 

cinnamon had no beneficial effect on healthy and T2DM subjects. 

In studies employing particularly T2DM subjects, it was demonstrated that the 

administration of either 1, 3 or 6 g of C. cassia for 40 days can lower TG, and TC levels 

(Khan et al., 2003). Another study also suggests that the extract of C. aromaticum (120 

mg) by capsule can significantly decrease TG levels at the end of 3 months compared to 

the beginning of the experimental protocol. Thus, published data on human studies have 

shown some discrepancies, since the data from animal studies demonstrated marked 

beneficial effects on lipid profile. More studies should be performed, especially, using a 

well-controlled clinical trial with a control group for comparison. 

1.6.3 Cinnamon as a potential antioxidant  

As described in section 1.3 above, glucose in excess can cause toxic effects on pancreatic 

islet. Different biochemical pathways and molecular mechanisms of action for gluco-

toxicity have been proposed (Niedowicz & Daleke, 2005). However, all different pathways 

share the formation of the reactive oxygen species (ROS), which in high levels can induce 

defects on insulin production and/or insulin secretion leading to the apoptosis of pancreatic 

cells (Robertson, 2004). The oxidative stress resulted from generation of ROS has a major 

role in the development of DM complications. On the other hand, endogenous antioxidant 

mechanisms can help to defence our body, such as enzymatic system (superoxide 

dismutase, catalase, glutathione peroxidase and glutathione redutase) and antioxidant 

compounds (Niedowicz & Daleke, 2005). Cinnamon extract and its different isolated 

bioactive compounds have been demonstrated to possess a potential source of natural 

antioxidants (Dragland et al., 2003) exhibiting strong free radicals scavenger activity in in 

vitro models (Mathew & Abraham, 2006; Su et al., 2007). The high phenolic content of 

ACE has been associated to its antioxidant properties (Dudonné et al., 2009). According to 

Peng, the major anti-diabetic compounds of ACE are proanthocyanidins which 

demonstrate to be effective in the prevention of advanced glycation-end products 

formation (AGEs) (Peng et al., 2008). Furthermore, cinnamon extract has been shown to 

have an important role on haepatic lipid peroxidation prevention by increasing the 

antioxidant enzyme levels of superoxide dismutase and catalase (Moselhy & Ali, 2009).  
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In hyper-cholesterolemic rats, cinnamon can decrease homocysteine and can also increase 

antioxidant enzyme levels, including, catalase, peroxidase and superoxide dismutase 

(Amin & El-twab, 2009). Similarly, cinnamon has been shown to possess potential 

antioxidants proprieties, not only in in vitro and in vivo animal studies, but also in human 

models (see tables 1.4 and 1.5). In healthy subjects, the consumption of 100 mg of 

cinnamon (in 300 ml tea) for 10 days seems to decrease oxidative stress by inhibiting lipid 

peroxidation level (Ranjbar et al., 2006). The cinnamon powder also seems to improve 

total antioxidant power (Ranjbar et al., 2007). ACE administration (500 mg) by capsule 

form for 12 weeks decreases oxidative stress in obese human with impaired fasting 

glycaemia (A.-M. Roussel et al., 2009). 

1.6.4 Anti-inflammatory properties of cinnamon 

As mentioned earlier (see section 1.3), inflammatory cytokines seem to have a role in the 

autoimmune pathogenesis of pancreatic beta cells dysfunction. The T1DM occurs from an 

immune-regulatory alteration where Th1 cells and its cytokines IFNγ, IL-2 and TNFβ 

dominate over immune-regulatory process for Th2 and its cytokine products IL-4 and IL-

10 (Rabinovitch & Suarez-pinzon, 1998). The inflammatory process is also implicated at 

the beginning of diabetic long term complications (King, 2008).  

Apart from beneficial effect of cinnamon described previously, this spice and its isolated 

bioactive compounds seem also to exert a potent anti-inflammatory properties (Koteswara 

et al., 2007). In vitro studies showed that polyphenol of aqueous cinnamon extract (ACE) 

from C. burmannii can increase the anti-inflammatory marker Tristetraprolin (TTP) 

mRNA and protein levels (Cao et al., 2008a; Bolin Qin et al., 2012), which can interfere 

with TNF-α production by destabilizing its mRNA (Cao et al., 2006; Ray et al., 2013). 

Cinnamaldehyde, another bioactive component of cinnamon, has been demonstrated to 

induce a potential anti-inflammatory activity by suppressing transcription factor, NF-kB 

activation via three signal transduction pathways, p38 MAPK, JNK and ERK (Hong et al., 

2012; D. H. Kim et al., 2007). This has a key role in the expression of pro-inflammatory 

cell adhesion molecules (Liao et al., 2008). Moreover, cinnamaldehyde seems to inhibit 

toll-like receptors 4 activation, which plays an important role in the induction of 

inflammatory responses by NF-kB activation (Youn et al., 2008).  

The aqueous cinnamon extract administration to mice demonstrated a significant and 

positive effect in reducing of TNF-α and IL-6 serum levels. However, this occurs in a 
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dose-dependent manner especially in the lower dosage (20 and 100 mg/kg bw) (Hong et 

al., 2012). The higher concentrations showed IL-6 levels more elevated than control group, 

which suggested that the unidentified compounds of ACE might be interfere with anti-

inflammatory process (Hong et al., 2012). A previous in vitro study has demonstrated that 

ACE can also decrease IL-1 mRNA levels (Bolin Qin et al., 2012). In humans trials, the 

addition of 3 g of cinnamon powder in the diet did not change interleukin-6 serum level 

(Mashhadi et al., 2013). Together, these initial studies have clearly linked a beneficial 

effect to both cinnamon extract and its isolated compounds in supressing inflammation in 

the body. 

1.6.5 Bioavailability and toxicity of cinnamon bioactive compounds  

The culinary spices, especially cinnamon, and its bioactive agents have been the focus of 

interest due to their antioxidant and anti-inflammatory properties, which are attributed to 

high polyphenol contents in the cinnamon (I. Baker et al., 2013). In diabetes mellitus, this 

plant has been of particular interest demonstrating a potential effect on the prevention of 

the development of this disorder exhibiting hypoglycaemic capacity (Bahadoran et al., 

2013).  

However, the bioavailability of cinnamon compounds could depend on many factors, 

namely, the food preparations process, metabolism and administration forms (C. Han & 

Cui, 2012; Scalbert & Williamson, 2000).  

Regarding food preparation processes, recent investigations showed that cinnamon cooked 

(simmer for 1 hour) contained more total phenolic contents compared to cinnamon 

uncooked. However, although there was a slightly increase in phenolic compounds, the 

thermal process did not seem to affect its antioxidant and anti-inflammatory capacity based 

on percentage of COX-2 inhibition (I. Baker et al., 2013).  

Furthermore, these authors revealed that the digested process can also influence cinnamon 

properties. In in vitro model, the cooking following digestion decreased significantly its 

antioxidant capacity, but increased significantly its anti-inflammatory capacity. Despite 

these effects, the total phenolic content was not significantly altered by digestion process 

(I. Baker et al., 2013).  

It is interesting to note that a significantly strong positive correlation between the total 

phenolic content and the antioxidant capacity for uncooked, cooked and digested cinnamon 
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has been reported. The authors also suggested that the antioxidant capacity of cinnamon 

may contribute to its anti-inflammatory properties (I. Baker et al., 2013). 

 

Cinnamon can be administrated through different forms and routes, which can also 

influence its bioavailability. According to Han and co-authors, the oral bioavailability of 

cinnamon oil can be improved by liquid loadable table administration due its poor water 

soluble, making more efficiency on DM treatment. The results from animal studies 

revealed that blood glucose level and HbA1c are significantly decreased with cinnamon oil 

by liquid tablets, which do not verify with only cinnamon oil alone (C. Han & Cui, 2012). 

However, the forms of administration not only affect the cinnamon extract bioavailability, 

but also the bioavailability of its bioactive isolated compounds. Coumarin is a bioactive 

compound of cinnamon that has been reported to possess pharmacological activity, such as 

anti-inflammatory, antioxidant, anti-hyperglycaemic, anti-adipogenic, anti-bacterial and 

anti-cancer properties (Venugopala et al., 2013).  This compound belongs to a class of 

phenolic compounds and it is naturally presented in many plants of a variety of families, 

including Lauraceae i.e., cinnamon. In addition, coumarin is used from many years, as 

sweetener, as flavouring, food additive in combination with vanillin and stabilizer 

substances (Egan et al., 1990). However, human data have indicated that when exposed to 

high doses of coumarin, this can result in a considerable hepatotoxicity (Abraham et al., 

2010). In this context, the European Food Safety Authority (EFSA) established a tolerable 

daily intake (TDI) value of 0.1 mg/Kg body weigh per day to health assessment of 

coumarin (EFSA, 2004). 

After oral intake, coumarin is rapidly metabolized in human liver and it has been a very 

low percentage in systemic circulation (Pelkonen et al., 2000). This compound of 

cinnamon is catalysed by cytochrome P450 2A6 (CYP2A6) to 7-hydroxycoumarin 

(7OHC), which is also rapidly excreted by urine (Khayyat et al., 2013).  

Coumarin is utilized as medicinal products and can be administrated by different forms. In 

turn, this can affect its bioavailability. The bioavailability of coumarin depends on 

different factors, such as forms of administration (capsule or contained in cinnamon), 

dietary applications and different kinetics (Abraham et al., 2011).  

Human data reported that oral intake of coumarin from cinnamon tea produced the fastest 

uptake of 7-hydroxycoumarin (7OHC) into the plasma, approximately 30 min after 

administration. This is followed by oral intake of coumarin from cinnamon powder 

containing foods (rice pudding) and coumarin intake from capsule (coumarin-isolated or 
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cinnamon powder) (Abraham et al., 2011). According to these authors, this result suggests 

that coumarin dissolved in water is rapidly transported to the small intestine for absorption 

following oral ingestion. 

The relative extent of coumarin absorption (measured as 7OHC excretion within 8h) also 

demonstrated to have the highest values (66.1%) by cinnamon tea administration. The 

coumarin showed lower absorption when administrated in capsule as coumarin-isolated 

(62.8%) or cinnamon (56%) and when administrated cinnamon in rice pudding (54.7%). 

The coumarin administration with capsule or foods may need more time for the capsule to 

break down to form molecules, which can be absorbed by the gut. Furthermore, the 

cinnamon powder might have a component which interferes with coumarin absorption 

since they do not transfer to aqueous solution (tea) (Abraham et al., 2011).   

In addition, 105 min after administration, 7OHC plasma levels demonstrated the lowest 

plasma values for cinnamon tea and cinnamon powder in rice pudding, which showed that 

the 7OHC plasma levels from non-capsule administration is more rapidly metabolized, 

compared to capsule administration. The urinary excretion within the observation period of 

8 h of 7OHC metabolite demonstrated to be 80.3% on cinnamon tea, 73.4% on cinnamon 

in rice pudding, 70.5% on cinnamon capsules and 58.8% on coumarin capsules, showing to 

have a more excretion of coumarin when administrated by non-capsule administration 

(Abraham et al., 2011).  

 

It is also important to note that coumarin content also depends on the species of cinnamon. 

Cinnamomum cassia demonstrated a high content of coumarin (2650 to 7017 mg/Kg) in 

contrast with Cinnamomum verum (cinnamon true) samples, which showed very low 

(trace) coumarin content. However, in the last five years C. cassia has replaced cinnamon 

true (Blahová & Svobodová, 2012). This may be due to the fact that C. cassia is less 

expensive compared to C. verum. An analysis of cinnamon containing bakery food 

products on the European market demonstrated that several cases of coumarin content 

seemed to exceed the European Union limits (Ballin & Sørensen, 2014). 

 

In Europe, United States and Canada Cinnamomum cassia has been used more widely than 

Cinnamomum verum (cinnamon true or Ceylon cinnamon). In United States, cinnamon 

from C. burmannii corresponded at 90% of imported cinnamon (Y.-H. Wang et al., 2013). 

Because this species has reported to be the mostly used cinnamon by the population, C. 

burmmanni was the species employed in this study. 
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1.7 Working hypothesis 

Aqueous cinnamon extract from the species Cinnamomum burmannii can exert beneficial 

and protective effects in animals with type 1 diabetes mellitus and in healthy subjects. 

1.7.1 Mains aims 

The mains aims of this study are:  

1. To identify the major compounds from the aqueous cinnamon extract employing 

Cinnamomum burmannii; 

2. To investigate the effects of aqueous cinnamon extract from Cinnamomum burmannii 

administration in streptozotocin (STZ)-induced type 1 diabetic rats compared to 

normal age matched controls measuring a number of parameters including its 

hypoglycaemic effects and its effect on the general characteristics of the animals; 

3. To investigate the effects of aqueous cinnamon extract from Cinnamomum burmannii 

in post-prandial glycaemia of healthy human. 

 

The specific aims of this study are: 

1. To undertake a literature search in the subject area; 

2. To determine the major phenolic compounds and antioxidant capacity of aqueous 

cinnamon extract from Cinnamomum burmannii; 

3. To render the rats diabetic using streptozotocin (STZ) and to feed age-matched control 

and diabetic rats with different oral doses of cinnamon daily for 11-12 weeks; 

4. To weight the STZ-induced T1DM and healthy rats, test the blood glucose and food 

consumption in a weekly basis; 

5. To analysis the blood for different biochemical parameters including cations content in 

STZ-induced in T1DM and healthy rats; 

6. To measure fibrosis of left heart ventricle STZ-induced T1DM and healthy rats; 

7. To determine insulin distribution and insulin secretion in the pancreas in STZ-induced 

T1DM and normal rats; 

8. To measure mean glycaemia values on fasting and after oral glucose tolerance test 

(OGTT) at 30, 60, 90 and 120 minutes (OGTT) in healthy subjects and compare with 

the measured glycaemia values after OGTT with aqueous cinnamon extract (OGTT 

cinnamon); 
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9. To calculate and compare the area under the curve (AUC), the maximum 

concentration (Cmax) and the variation of maximum concentration (∆Cmax) after oral 

glucose tolerance test at 30, 60, 90 and 120 minutes in the 2 groups studied; 

10. To analyse the data and write up the PhD thesis. 

 

Novelty of this study: 

This is the first study of its kind to use C. burmannii in animal and human studies. 

Moreover, this study employed the different groups of animals to compare different doses 

of cinnamon and moreover, the same tissues from the same animals were isolated and 

analysed for parameters of fibrosis in the heart, glucose in the blood, cations in the 

different tissues, distribution of insulin and glucagon in the pancreas and release of these 

hormones from pancreatic segments following stimulation. 
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2 Materials and Methods 

2.1 Materials  

2.1.1 Cinnamomum burmannii sticks 

The Cinnamomum burmannii bark was purchased from Sucrame Company (Portugal) with 

Indonesia origin. It was provided in stick forms in individual packing and stored in a dried 

environmental locally until needed. The product has a batch number of L113003 

(expiration date 10/2013) and provided an analysis certificated (number 003/11). 

2.1.2 Chemical analysis 

Reagents and solutions:  

Ferric Chloride (III) hexahydrate (FeCl3.6H2O; ≥99%), folin-ciocalteu (2,2-Azinobis (3-

ethylbenzothiazoline-6-sulfonic acid); PA), Trolox (6-hydroxy-2,5,7,8-

tetramethylchromane-2-carboxylic acid; 97%), TPTZ 2,4,6-tri(2-piridil)-s-triazine, 

methanol (CH3OH; 98.9%) and nicotinamide adenine dinucleotide (NADH; ≥97%), 

nitroblue tetrazolium (NBT) 2-Amino-2-hydroxymethyl-propane-1,3-diol (tris) and 

Phenazine methosulfate (PMS; ≥90%) were the reagents used in the chemical analysis. All 

the reagents were P.A. grade and purchased in Sigma-Aldrich (Portugal), gallic acid-1-

hydrate (C6H2(OH)3COOH.H2O; 99.5%) was purchased in Acros Organics (Portugal) and 

sodium carbonate  (Na2CO3; 99.9%) was purchased in ICS Science group (France). 

The following solutions were prepared: chloridric acid 40 mM (HCl 37%), phosphate 

buffer pH=7 (NaH2PO4, 99%; Na2HPO4) purchased to Scharlau (Spain) acetate buffer 300 

mM pH=3,6 (NaCH3COO.3H2O and CH3COOH; 100%) purchased to AnalaR Normapur 

(Portugal). 

For identification and quantification of each phenolic compound (HPLC method), the 

following reagents and materials were used: acetonitrile acid (HCOOH; 99.9%) 

(Acetonitrile: For HPLC-Gradient, Carlo Erba Reagents Group, Portugal; HCOOH: 

Ameisensaure 98-100% zur Analyse, Merck, Portugal); acid water (HCOOH) (H2O For 

HPLC, CARLO ERBA REAGENTS, Portugal); Cinnamaldehyde natural (≥ 93%, Kosher 
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Sigma-Aldrich, Portugal); Trans-cinnamic acid (≥ 99%, Aldrich, Portugal); Cinnamyl 

alcohol (≥ 98%, Aldrich, Portugal); Coumarin (≥ 99%, HPLC, Sigma, Portugal). 

Equipment: High-performance liquid chromatography (HPLC) (Finnigan Survey with 

DAD), reverse phase C18 column (250/4.6 Nucleosil 300-5 C18 of Macherey-Nagel), 

spectrophotometer (Perkin Elmer, Lambda 25) and analytical balance (Sartorius, 

±0,0001g). 

Animals: Healthy Wistar Rats 

2.1.3 Animal studies 

Reagents and solutions: 

The following solution was prepared for diabetes induction: Concentrations of 0.1 M 

sodium citrate (220 ml) (≥ 99%, Merck, Portugal) and 0.1 M citric acid (280 ml) (99.5%, 

Merck, Portugal) were prepared in distilled water (500 ml). The pH was adjusted to 4.5. 

Phosphate buffer saline solution (pH 7.4) was prepared with 800 ml of distilled water, 8 g 

of sodium chloride (99.5%, José Manuel Gomes Santos, Portugal), 0.2 g of potassium 

chloride (99.6%, Merck, Portugal), 1.44 g of sodium dihydrogen phosphate (99%, 

Scharlau, Spain) and 0.24 g of potassium dihydrogen phosphate (99.9%, Merck, Portugal).  

A solution was also prepared for oral glucose tolerance test (OGTT). An amount of 75 g of 

glucose (Dextrose) monohydrated (Cmd Chemicals, Portugal) was dissolved in 200 ml of 

distilled water.  

Nitric acid and deionised water were utilized to dissolved different tissues in order to 

determine the measurements of cations.  

The following reagents namely: 10% buffered paraformaldehyde (VWR Prolabo 

Chemicals, Portugal), chromotrope aniline blue (CAB), ethanol (70º, 96º and 100º) (AGA, 

Portugal), xylene (98.5%), (Carlo Erba Reagents Group, Portugal), paraffin 

(ThermoScientific, UK), Weigert’s hematoxylin (Leica, UK), phosphomolybdic acid (2%) 

(Merck, Germany) and Entellan (Klinipath, Belgium) were used for morphological study. 

Drugs: Streptozotocin (STZ) (reference S0130, Sigma-Aldrich, Spain) was utilized for 

diabetes induction. Similarly, Domitor injected solution and Imalgène 1000 injected 

solution were utilized for analgesia and anaesthesia, respectively. 

Animals: Male Wistar rats (Harlan Laboratories, Nederland) were purchased for this study. 

A certificate of animal health was providing from Laboratory in accordance with EEC 
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Council Directive 92/65 (94/AM.1). Microbiological analyses certificated were provided 

by Harlan Laboratories (Nº de Albarán 1041190 SO).  

Equipment: Glucometer (Precision Xceed, Abbott Diabetes Care, UK) and lancet 

(FreeStyle Precision Xceed, Abbott Diabetes Care, UK) were used to measure blood 

glucose levels and a technical balance was utilized to measure food intake and body 

weight. A nasogastric probe was used to administrate aqueous cinnamon extract to the 

animals.  

For biochemical analysis, the study used RANDOX RX Daytona analyser and different 

commercial assay kit appropriated to each parameter measured. These included 

triglycerides (No. TR 3823), total cholesterol (No. CH 3810), high-density lipoprotein (No. 

CH 3811), low-density lipoprotein (No. CH 3841), albumin (No. AB 3800), hemoglobin 

A1c (No. HA 3830), creatinine (No. CH 3814) and total antioxidant status (No. NX 2332). 

Cation levels in serum and in organs tissue were measured by inductively coupled mass 

spectrometry (ICP-MS) (Thermo Electronic) equipment. Other equipment used for 

morphological study included microtome, optical Leica microscopy, electronic microscopy 

and incubator. 

2.1.4 Human studies 

Reagents and solutions:  

A solution was prepared for OGTT and it included 75 g of glucose (Dextrose) 

monohydrated (Cmd Chemicals, Portugal) dissolved in 200 ml of water.  

Equipments: Glucometer and lancet (FreeStyle Precision Xceed, Abbott Diabetes Care, 

UK) were used for the measurement of blood glucose levels. A bioimpedance balance 

(Tanita, BC-601) was utilized to measure body composition and stadiometer (Jofre®) was 

employed to measure the height of each subject. 
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2.2 Methods 

2.2.1 Preparation of aqueous cinnamon extract (ACE) 

Three different aqueous cinnamon extracts were prepared for use in this study. Two were 

used for (i) the quantification of phenol content and antioxidant capacity and (ii) 

identification of phenolic compounds. The third was used in animal studies. 

   

a) Chemical analysis: 

 

Quantification of total phenols content and for antioxidant capacity characterization: 

Aqueous cinnamon extract (ACE) was obtained from 60 g of sticks cinnamon dissolved in 

1000 ml of Millipore (18,5Ω) distilled water. Briefly, cinnamon sticks were weighted 

using an analytical balance and soaked in distilled water. After 24h in room temperature, 

the content (ACE) was boiled for 30 minutes at 100ºC and allowed to cool to room 

temperature. Thereafter, the aqueous cinnamon extract was filtered using Whatman filter 

paper. This method was adapted by Shen and co-authors (Shen et al., 2010). A hydro-

methanolic extract (50:50) was performed with ACE obtained previously. 

 

Identification of each phenolic compound using HPLC method: 

 ACE was obtained by adapting the method from Shen et al. (Shen et al., 2010). Briefly, 

100 g of cinnamon sticks was soaked in 1000 ml of distilled water Millipore (18,5Ω) for 

24 hours. The solution was stirred using a magnetic stirrer at room temperature. The 

aqueous cinnamon extract obtained was then heated for 30 minutes at 100ºC. The sample 

was cooled, filtered using Whatman filter paper and stored at -80ºC for 150 minutes. After 

2.5 hours, the samples were lyophilized and placed again in the freezer at -80ºC until it was 

ready to analyse for phenolic compounds.  

 

b) Animal studies: 

For animal studies, an amount of 875 g of the sticks cinnamon was soaked into 2,500 ml of 

Millipore (18,5Ω) distilled water at room temperature. After 24 h the solution was heated 

for 30 min at 100ºC. The aqueous cinnamon extract was filtrated using Whatman filter 

paper and then stored into separated vials at -20ºC until needed. This method was adapted 
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from Shen and co-authors (Shen et al., 2010). The aqueous cinnamon extract (ACE) was 

daily removed from freezer and defrosted at room temperature before administration to 

normal and diabetic rats. 

 

c) Human studies: 

Regarding human studies, aqueous cinnamon extract (tea) was obtained by the same 

process of chemical characterization. An amount 60 g of sticks cinnamon was dissolved in 

1000 ml of water. Briefly, cinnamon sticks were weighted using an analytical balance 

(Sartorius, ±0,0001g) and soaked into Millipore (18,5Ω) distilled water. After 24 h in 

room temperature, the cinnamon tea was boiled at 100ºC and rest until achieve the room 

temperature. The cinnamon tea was filtered and distributed as individual doses (100 ml) to 

each participant. 

A. ANTIOXIDANT CAPACITY OF AQUEOUS C. 

BURMANNII EXTRACT 

The characterization of antioxidant capacity, including quantification of total phenols and 

antioxidant assays (FRAP - Ferric Reducing/Antioxidant Power and superoxide anion 

inhibition test), was done in this study in Biochemistry Laboratory at Egas Moniz 

University (Portugal). 

2.2.2 Quantification of total phenols content  

The total phenolic concentration of aqueous cinnamon extract was determined using the 

Folin Ciocalteu method (Prabha & Vasantha, 2011) employing gallic acid as standard. The 

results were expressed as mg for gallic acid equivalent (GAE)/g of extract. For this test, a 

volume of 375 µl of aqueous sample solution and 4 ml of sodium carbonate were added to 

5 ml of Folin Ciocalteu reagent. After 15 min, the absorbance was measured at 765 nm. 

2.2.3  Simultaneous identification and quantification of phenolic compounds  

Sample preparation: The ACE previously obtained (section 2.2.1) was lyophilized for 

high-performance liquid chromatography (HPLC) method. An amount of 0.34 g of 
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lyophilized aqueous cinnamon extract was dissolved in 25 ml of methanol. A volume of 25 

µL of the sample was injected to the HPLC (1:50) in methanol. 

 

For the simultaneous identification and quantification of each major phenolic compound of 

aqueous cinnamon extract, a HPLC technique was employed using an established method 

described previously by He et al (He et al., 2005). The sample was separated using a 

reverse phase C18 column. The elution order obtained for standard compounds was 

obtained carrying out an isocratic method at a flow rate of 1.7 ml/min, using as eluent a 

solution of 25% of acetonitrile with 1% of formic acid and 75% of water with 1% of 

formic acid. The temperature employed for column corresponded to room temperature. 

The identification of cinnamaldehyde, cinnamic acid and coumarin was done using 280 nm 

wavelengths and for cinnamyl alcohol a wavelengths of 252 nm was employed. 

 

Calibration curve preparation: An amount of either cinnamaldehyde, coumarin, trans-

cinnamic acid or cinnamyl alcohol was weighted and dissolved in methanol. Thereafter, 

appropriate dilutions were made up in methanol to obtain standards for the calibration 

curve for each compound (see below). The number of moles of standard solutions for 

calibration curve was the following: 

Trans-cinnamic acid (3.47 × 10-9 mol; 2.31 × 10-9 mol; 1.16 × 10-9 mol) 

Cinnamyl alcohol (1.54 × 10-9 mol; 1.02 × 10-9 mol; 5.12 × 10-10 mol) 

Coumarin (1.67 × 10-9 mol; 1.25 × 10-9 mol; 4.17 × 10-10 mol) 

Cinnamaldehyde (1.99 × 10-9 mol; 9.93 × 10-10 mol; 4.97 × 10-10 mol; 2.48 × 10-10 mol) 

 

The identification of each compound was obtained by comparison of retention time and 

absorption spectra of standard compounds with sample. The quantification of the 

compounds was determined by calibration curve and by peak area values of each 

compounds identified. 

2.2.4  Characterization of antioxidant capacity of ACE 

Characterization of the antioxidant capacity was done using FRAP (Ferric 

Reducing/Antioxidant Power) and superoxide anion (O2
�-) assays.  
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FRAP assay: 

The method for determination of ferric reducing effect was based on the reduction, at low 

pH, employing a colourless ferric complex (Fe3+) to a blue-coloured ferrous complex 

(Fe2+) by electron-donating antioxidants action in 2,4,6-tri (2-piridil)-s-triazina (TPTZ) 

presence (Thaipong et al., 2006). The fresh working solution was prepared by mixing 25 

ml of acetate buffer (300 mM, pH=3.6), into 2.5 ml of TPTZ solution (10 mM) to HCl (40 

mM) and into 2.5 ml of FeCl3.6H2O solution (20 mM). The solution was heated at 37ºC. 

Samples (150 ml) were introduced in tubes with 2850 µl of the FRAP solution. This 

solution was maintained in the dark condition for 30 min. The absorbance was measured at 

593 nm. Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) was used as 

standard and the results expressed in µmol Trolox/L.  

 

O2
����- inhibition test: 

The O2
�- anion was generated by reacting metassulfato phenazine (PMS) and nicotinamide 

adenine dinucleotide hydride (NADH) and oxygen causing reduced of NBT in Formazan. 

The test applied was based on previously method describes (Alam et al., 2013; Morais et 

al., 2009). Into a glass tube with cap, a volume of 0.5 ml of sample was added to 2 ml of a 

solution containing NADH (189 µM) and NBT (120 µM) with Tris-HCl (40 mM, pH = 8). 

The reaction started after the addition of 0.5 ml of PMS (60 mM). Initially, a control 

sample was measured using only distilled water. After 5 min of incubation the absorbance 

of the control was measured at 560 nm at room temperature. Thereafter, the ACE sample 

absorbance was measured.  

 

The percentage inhibition of anion O2
�- was calculated using the following equation: 

 

 

B. ANIMAL STUDIES 

Forty young male Wistar rats, 8-weeks old and weighing between 125-149 g were 

purchased from Harlan. The rats were kept for 2 weeks and maintained with 12 h:12 h 
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light/dark cycle at temperature (22-24ºC) in humidity controlled rooms (50%). Rats were 

housed 3 per cage and given ad libitum access to food (Mucedole, 4RF21) and water.  

This work had the relevant Ethical Clearance for all the procedures employed in 

accordance with European legislation on the use and care of laboratory animals. It was also 

carried out according to guidelines for Animal Experiments of Veterinary Medicine 

Faculty, Directorate-General of Veterinary of Portugal and the University of Central 

Lancashire in United Kingdom. 

2.2.5 Experimental design 

Forty male Wistar rats were purchased, however only 33 rats were used in this 

experimental protocol. One rat was dead during the protocol (unknown cause) and 6 rats 

were not diabetic, following injection of streptozotocin. For this reason, the results of these 

rats rendered were excluded for the study. Thus, animals were divided into 6 different 

groups, according with the following diagram as shown in figure 2.1. 

 

 

Figure  2.1: Diagram showing the experimental design for animal study. 

 

The rats were administrated with ACE by oral gavage at 4.00 pm daily (1-1.8 ml) for 11 

weeks. The rats received 75 mg/kg of ACE (DT75 and NT75 groups), 150 mg/kg of ACE 

(DT150 and NT150 groups) or vehicle (distilled water) (D0 and N0 groups). Either ACE 

or distilled water was orally administrated after 7 hours fasted, immediately before food 

intake, for all the animals. These animal experiments were employed in animal house of 

Faculty of Veterinary Medicine (Portugal). 
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2.2.6  Induction of type 1 diabetes mellitus 

Following 2 weeks of adaptation in the animal house, diabetes was induced following 

overnight fasting of the rats (n=22) using streptozotocin (STZ). This process was done by a 

single intra-peritoneally (IP) injection (0.3 ml) containing 60 mg/Kg of body weight (E 

Adeghate, 1999). The STZ was weighted and freshly dissolved in 0.1 M citrate buffer 

solution (pH 4.5) (Bolkent et al., 2000). The normal control rats (n=18) were injected with 

same volume (0.3 ml) of citrate buffer solution.  After 4, 7 and 14 days following STZ 

injection, a drop of blood from the tail end of each rat was taken to determine fasting blood 

glucose level using a glucometer. Diagnosis of diabetes was confirmed either 3, 7 or after 

14 days of STZ injection. Rats with blood glucose level with more or equal to 220 mg/dl 

were diagnosed as diabetic (Shen et al., 2010). Blood glucose level was measured weekly 

for the remaining 11 weeks. 

2.2.7  Measurement of food consumption 

The food consumption was determined for all normal and diabetic animals weighting of 

the food weight at the beginning and the end of day. Then, the food consumption (g) was 

estimated for each rat according to number of animal per cage. For each experimental 

group, food consumption was calculated as mean ± standard error of the mean (SEM) 

every week. 

2.2.8  Measurement of body weight 

The weights (g) of all normal and diabetic (treated and untreated) animals were measured 

weekly using a technical balance. For each experimental group, the mean of body weight ± 

SEM was calculated every week. 

2.2.9 Measurement of blood glucose levels 

After fasting for 7 hours, blood glucose was weekly monitored using tail vein blood with a 

Glucometer, for each rat. For each experimental group blood glucose level (mg/dl) was 

calculated as mean ± SEM. This was done every Wednesday.  Fasting started at around 

9.00 am and blood samples were taken at around 4.00 pm. Thereafter, the animals were 

given the cinnamon extract or vehicle followed. 
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2.2.10  Oral glucose tolerance test (OGTT) 

Ten weeks (STZ-injection) after the experimental procedures, all untreated normal (n=6) 

and normal treated with either 75 mg/Kg (n=6) or 150 mg/Kg (n=5) animals and also 

untreated diabetic (n=5) and diabetic treated either with 75 mg/Kg (n=6) or 150 mg/Kg 

(n=5) animals were subjected to an oral glucose tolerance test. Each rat was given 2 g/Kg 

of body weight of oral glucose solution (Jia et al., 2009) by gavage method. Blood was 

collected from the tail vein after overnight fasting for 12 h. The blood glucose was 

measurement at 0 (before glucose solution administration), 30, 60, 120 and 180 min after 

administration of the oral glucose solution (Jia et al., 2009) and data expressed as mean 

(mg/dl) ± SEM. 

2.2.11 Blood collection and biochemical analysis  

After 11 weeks following STZ-injection, untreated normal (n=6) and normal treated with 

either 75 mg/Kg (n=6) or 150 mg/Kg (n=5) animals and also untreated diabetic (n=5) and 

diabetic treated either with 75 mg/Kg (n=6) or 150 mg/Kg (n=5) animals were killed 

humanely under anaesthesia (Imalgène 1000) and analgesia (Dormitor) using 0.75 ml/Kg 

and 0.5 ml/Kg doses, respectively. Immediately, during anaesthesia blood samples were 

taken from the heart with a syringe. Blood was centrifuged at 5000 RPM for 5 min and 

serum was collected for biochemical analysis. Four days after collection, the whole blood 

was haemolysed for haemoglobin A1c measurement. All blood samples were stored at -

80ºC until analysed. Serum total cholesterol, serum high-density lipoprotein (HDL), serum 

low-density lipoprotein (LDL), serum triglycerides (TG), serum creatinine, serum albumin 

and haemoglobin A1c values were obtained using RANDOX RX Daytona analyser. All 

biochemical analysis of rats serum were performed in Biochemical Laboratory at Egas 

Moniz University (Portugal).  

2.2.12 Serum total antioxidant status measurement  

Serum total antioxidant status (TAS) of untreated normal (n=6) and normal treated with 

either 75 mg/Kg (n=6) or 150 mg/Kg (n=5) animals and also untreated diabetic (n=5) and 

diabetic treated either with 75 mg/Kg (n=6) or 150 mg/Kg (n=5) animals was measured by 

RANDOX RX Daytona analyser with the commercially available Randox Total 

Antioxidant Status test kit (RANDOX-NX 2332). This method measured ABTS+ (2,2'-
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Azino-di-[3-ethylbenzthiazoline sulphonate]) radical formation by spectrophotometry 

method (600 nm). All values were expressed as mM of Trolox/L. This analysis was 

performed in Biochemical Laboratory at Egas Moniz University (Portugal). 

2.2.13 Tissues collection and processing 

After killing the rats humanly, a mid-line abdominal incision was made to all the rats in 

each group and heart, pancreas, liver, kidney and soleus muscle were rapidly removed 

from each animal. Each organ or tissue of untreated normal (n=6) and normal treated with 

either 75 mg/Kg (n=6) or 150 mg/Kg (n=5) animals and also untreated diabetic (n=5) and 

diabetic treated either with 75 mg/Kg (n=6) or 150 mg/Kg (n=5) animals was either used 

immediately, stored at -80ºC or stored in appropriate solution for further use. 

Fragments/sections of different parts of pancreas were collected for the measurement of 

tissue cation levels, microscopic study and estimation of in vitro pancreatic insulin release. 

Three transversal fragments were taken from heart. These included an apex fragment of the 

ventricle, a fragment in the middle of the ventricle heart and the auricles fragments, for 

histochemical study and cation measurements. A coronal fragment of kidney and a 

transversal fragment of liver were obtained to measure the cations. The tissue samples 

were stored at -80ºC for cation analysis and in paraformaldehyde for optical microscope 

study of the heart.  

2.2.14  Cation measurement in tissues and serum  

Different cations were measured in this study of each organ tissue and in serum of 

untreated normal (n=6) and normal treated with either 75 mg/Kg (n=6) or 150 mg/Kg 

(n=5) animals and also untreated diabetic (n=5) and diabetic treated either with 75 mg/Kg 

(n=6) or 150 mg/Kg (n=5) animals: 

 

Tissues: The stored tissue samples at -80ºC were thawed out at room temperature and a 

piece (100-200 mg) of each organ tissue (pancreas, heart, liver and kidney) was weight. 

Each tissue was placed in a glass vial and 1 ml of concentrated nitric acid was added. The 

samples were left overnight to dissolve and thereafter the tissue and sample were 

subsequently vortex mixed. A volume of 0.2 ml of the dissolved tissue acidic solution was 

placed in tubes containing 9.8 ml of deionised water and vortex mixed (Changrani et al., 
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2006). This solution was used to measure the levels of different cations, including sodium 

(Na+), magnesium (Mg2+), potassium (k+), calcium (Ca2+), copper (Cu2+), iron (Fe2+) and 

zinc (Zn2+), using Inductively Coupled Mass Spectrometry (ICP-MS) (Thermo Electronic 

Corporation). The results were expressed as µM/100 mg tissues. 

Serum: As mentioned earlier, the serum stored at -80ºC was thawed out at room 

temperature and centrifuge at 5000 RPM for 5 minutes. A volume of 0.2 ml of serum was 

taken of each sample and placed in tubes containing 9.8 ml of deionised water. The 

solutions obtained were vortex mixed and used to measure the levels of different cations 

namely, Na+, Mg2+, k+, Ca2+, Cu2+, Fe2+, Zn2+, Se2+ and Mn2+, using Inductively Coupled 

Plasma Mass Spectrometry (ICP-MS) (Thermo Electronic Corporation). Results were 

calculated to express as mg/ml (100g tissue) value.  

The cation measurements in tissues and serum was analysed in Chemistry Laboratory at 

University of Central Lancashire (Preston, UK). 

2.2.15  Determination of in vitro pancreatic insulin release  

For each rat of untreated normal (n=6) and normal treated with either 75 mg/Kg (n=6) or 

150 mg/Kg (n=5) animals and also untreated diabetic (n=5) and diabetic treated either with 

75 mg/Kg (n=6) or 150 mg/Kg (n=5) different sections of pancreas was removed and 

placed in phosphate buffer solution (PBS). The connective tissues and adherent fat were 

removed from the pancreas and the pancreatic segments cut into small fragments (1-2 

mm2). The pancreas fragments of each rat were placed into tubes containing 1 ml of 

oxygenated at 37ºC PBS. All tubes were incubated uncap in a shaking water bath at 37º for 

30 min in order to wash away any enzymes and hormones due to cutting of the tissues. 

Thereafter, the fragments from each rat pancreas (treated with either 75 mg/Kg or 150 

mg/Kg bw cinnamon or untreated) were placed in oxygenated PBS solution containing the 

PBS solution alone (control) or PBS solution containing either glucose (16 mM) or 

different concentrations (10-5 or 10-6 M) of acetylcholine. The tissue was incubated in the 

oxygenated PBS solution in a shaking water bath at 37ºC for 1 h. After incubation, the 

tissue was removed from the solution and was blotted dry with filter paper and weight. The 

tubes with PBS solution were stored for further analysis of insulin release (E. Adeghate & 

Ponery, 2002). 

At the end of the experiment protocol, insulin secretion was estimated for each tissue by 

ELISA assay (Mercodia AB, Sylveniusgatan 8A, Sweden). All values for insulin secretion 
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were expressed as µg/L/100 mg tissue. These experiments were performed in Joaquim 

Chaves Laboratory (Portugal). 

2.2.16 Measurement of fibrosis in left heart ventricle 

The left ventricle of the heart was transversely sectioned and fixed in 10% buffered 

paraformaldehyde for histological observation. The fibrosis analysed in left ventricle heart 

was made by chromotrope aniline blue (CAB) staining for collagen (Gürtl et al., 2009). 

The tissue was dehydrated in a progressive graded ethanol series (96°, 70° and 100°) with 

1 hour in each one. The sections of the heart were cleared with xylene for 1 hour, 2 times 

and after embedded in paraffin. In the next day, the embedded fragments in paraffin blocks 

were cut on a microtome into sections with 3.5 µm. These sections were put in glass slides 

in incubator at 66.4°C for 3 hours to remove the paraffin excess. This method was adapted 

from Antunes et al. (Antunes, Oliveira, et al., 2013). After 1 week at room temperature, 

tissues were stained for collagen with chromotrope aniline blue (CAB) technic according 

to standard methods (Zollinger, 1983). The slides were deparaffinized with xylene and 

rehydrated in a progressive decreasing graded ethanol series (100°, 95° and 70°) and in 

distilled water. Then, slides were stained with Weigert’s Hematoxylin for 5 minutes and 

1% phosphomolybdic acid. After washed with water, chromotrop-aniline blue (CAB) was 

applied for 6 minutes. Sections were dehydrated in ascending concentrations of ethanol 

(95° and 100°) and cleared with xylene. Sections were covered with Entellan, according 

with Hadi et al. (Hadi et al., 2011). 

The histological images were obtained with an optical Leica microscope using 10x 

magnification for untreated normal (n=6) and normal treated with either 75 mg/Kg (n=6) 

or 150 mg/Kg (n=5) animals and also untreated diabetic (n=5) and diabetic treated either 

with 75 mg/Kg (n=6) or 150 mg/Kg (n=5) animals. A total of 90 optical fields were selects 

from all anatomical components. A total of three observations were made under blinded 

assessment and a semi-quantitative analysis by Image J Software programme.  

The fibrosis measurement in heart left ventricle was performed in Morphology Laboratory 

at Egas Moniz University (Portugal).  
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2.2.17 Distribution of pancreatic beta and alpha cell by Immunofluorescence 

Pancreas tissues from the 33 rats (treated and untreated) were dehydrated in a progressive 

graded ethanol series (96°, 70° and 100°) with 1 hour in each one. Sections from each 

pancreas were cleared with xylene for 1 hour, 2 times and after embedded in paraffin. On 

the next day, the embedded fragments in paraffin blocks were cut on a microtome into 

sections with 3,5 µm. These sections were placed in electrostatic slides in incubator at 

66,4°C for 3 hours to remove the paraffin excess. This method was adapted from Antunes 

et al. (Antunes, Borrecho, et al., 2013). Isolated pancreatic tissues were retrieved, fixed and 

embedded in paraffin. Sections of about 3.5 µm thickness were deparaffinised in xylene, 

hydrated in descending concentration of ethanol for 3 min each and washed 3 times in PBS 

solutions for 5 minutes each. The tissue was marked with a Dako pen to prevent solutions 

draining away from the tissue section. Tissues were staining, incubating the sections with 

blocking reagent for 30 min. The blocking reagent was then drained off and appropriate 

dilution of primary antibodies were applied and incubated at 4°C for 24 h. Specific 

antibodies for insulin (Guinea pig, 1:1000 dilution, from DakoCytomation, CA) and 

glucagon (Rabbit, 1:1000 dilution, from DakoCytomation, CA) were used. The slides were 

then washed 3 times in PBS for 5 min each and incubated with secondary antibodies 

conjugated with FITC or TRITC (Jackson Laboratory, USA) for 1 h and washed in PBS 3 

times for 5 min each. Sections were then mounted in CITI-Floure mounting media and 

viewed and photographed under Ziess Axiophot Fluorescence Microscope, Germany. The 

insulin (n=33) and glucagon (n=33) positive cells were estimated semi-quantitatively in 

pancreas tissues of untreated normal (n=6) and normal treated with either 75 mg/Kg (n=6) 

or 150 mg/Kg (n=5) animals and also untreated diabetic (n=5) and diabetic treated either 

with 75 mg/Kg (n=6) or 150 mg/Kg (n=5) animals using Image J Software programme. 

The method for this experimental protocol was adapted from the procedure described 

earlier by Adeghate et al. and Lotfy et al. (Ernest Adeghate et al., 2010; Lotfy et al., 2014). 

All the slides with tissues were posted to the Department of Human Anatomy the College 

of Medicine and Health Sciences, United Arabs Emirates. University in Al-Ain, United 

Arabs Emirates where each slide was analysed by electron microscopy and photographic 

images taken by Professor Ernest Adeghate and Professor Jaipaul Singh, my Director of 

Studies (note that I was unable to go to the UAE because of funding constraint).   
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C. HUMAN STUDIES 

2.2.18  Ethical considerations of human study 

The clinical trial was approved by Instituto Superior de Ciências da Saúde Egas Moniz 

Ethical Clearance and University of Central Lancashire (UCLan). All the data were 

collected after informed consent and protected confidentiality was guaranteed on the data 

processing. 

2.2.19  Subjects 

The human subjects for the present study were recruited from a Solidary Association in 

Guarda, Portugal. Recruited subjects were non-diabetic adults (fasting blood glucose level 

< 100 mg/dL), more than 18 years old and both genders (8 males, 22 females). Subjects on 

medication for glycaemia control or for any other gastrointestinal symptoms or diseases 

were excluded from the study. It was also necessary to exclude all participants who were 

prescribed with medication during the course of the study or altered medications during the 

interventions or pregnant mothers and those who breast-fed their child. Furthermore, it was 

relevant to ask the participants not ingested any cinnamon at the day before the 

intervention. 

2.2.20  Experimental design of human study 

After the subjects recruited for this study (n=30), informed consent was applied and the 

history taking of each subject was made by the investigator. The data collection starting 

with anthropometric data collection, namely, weight, high, body mass index (BMI), fat 

mass percentage and muscular mass percentage. Two groups were randomly constituted 

and they included control group (both males and females) and experimental group (both 

males and females) (see also figure 2.2 for experimental design). 

A control group: After 12 h fasting, the experimental protocol consisted of the ingestion 

of the OGTT solution and measured of capillary blood glucose level after 30 (t30), 60 (t60), 

90 (t90) and 120 (t120) min. The experimental group: ingested OGTT solution following 

the 100 ml of cinnamon tea solution.  
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All the subjects answered to the 24-hour dietary recall. Figure 2.2 showed a study flow 

chart of the experimental design protocol. 

 

Figure 2.2: A study flow chart showing the experimental design protocol for human studies 

during oral administration of C. burmannii. 

2.2.21  Preparation of Oral Glucose Tolerance Test employed in human 

The glucose (dextrose) was weighted (75 g) using an analytical balance and dissolved in 

200 ml of water. This solution was prepared according with American Dietetic Association 

(ADA, 2010a). Before the experimental protocol, the procedure was tested and 

standardized in order to realize identical protocol to each participant. 
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2.2.22  Data collection 

History-taking:  

The history taking was made for each participant for sample characterization. Thus, 

personal codification (age, gender, code), anthropometric parameters (weight, height, body 

mass index, fat mass, muscular mass) and clinical data regarding pathologies and 

medications were registered.  

 

Assessment of dietary intake: 

The daily intake was usually based on recording the dietary intake in a day by recalling the 

food intake in the previous 24 hours (Y. Yu & Song, 2015). These data provided a register 

of all foods ingested during 24 hours before the day of the intervention. The quantification 

of each food was determined by home measures using a spoon. The Food Processor SQL 

(version 10.5.0) programme was used to analyse the nutritional composition of the meal 

ingested during the day, namely total caloric value (TCV), carbohydrates (g), protein (g) 

and lipid (g).  

 

Anthropometric data: 

Regarding the anthropometrics data, all participants were weighted and height, body mass 

index (BMI), fat mass percentage and muscular mass percentage calculated. The weight 

was measured in fasting condition, without shoes, socks and coat using a bioimpedance 

balance Tanita (BC-601). The height was measured using a stadiometer Jofre, in 

anthopometric position – together feet, arms pending near the body, knees straight, palm of 

the hand against the body and head respecting the Frankfurt plane. 

For fat mass (%) and muscular mass (%) a bioimpedance balance Tanita (BC-601) was 

also utilized. Body mass index (Kg/m2) was measured by the following equation: 

Weight (Kg) / Height
2
 (m

2
)  

The BMI classification was obtained according with World Health Organization (WHO): 

Regular weight: 18.5 Kg/m2 ≤ BMI ≥ 24.9 Kg/m2; Overweight: 25 Kg/m2 ≤ BMI ≥ 24.9 

Kg/m2; Obesity: 30 ≥ Kg/m2 (WHO, 1997). 

 

Glycaemia was measured by fasting and post-prandial period. For this, a capillary drop of 

blood was collected from the finger of each participant. Sterilized lancet, glucometer 

equipment and strips for glucometer were used for blood glucose level measurement.  
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The area under the curve (AUC) for blood glucose of each subject was determined as 

incremental area under the curve of blood glucose level during the time. AUC calculation 

was determinate using Graph Pad Prim Software (version 5.01) and this was represented 

as a mean ± SEM. Maximum concentration (Cmax) of post-prandial blood glucose level was 

also calculated for each participant and the variation of the maximum concentration 

(∆Cmax) as well. 

2.3 Statistical analysis 

The statistical analysis of the results was obtained using Statistical Package for Social 

Sciences (SPSS) programme, version 20.0. The significance established in this work was 

for all results 5% (p ≤ 0.05). For animal studies, all data were analysed and presented as 

mean ± standard error of the mean (SEM) for untreated and treated groups of both normal 

and diabetic rat. The Shapiro-Wilk (n < 200) was used to verify the normality of the sample 

distribution. Moreover, the data from the different groups (treated and untreated) as well as 

normal and diabetic rats were compared using Student’s t-test and ANOVA test.  

Regarding to human study, independent sample t-test was utilized for comparing total 

caloric value, carbohydrates, protein and lipid at day before of intervention with OGTT 

and OGTT + cinnamon tea administration. The mean of blood glucose levels at t0, t30, t60, 

t90 and t120 time between OGTT and OGTT + cinnamon tea administration were statistically 

analysed with repeated measures ANOVA of mixed type. A value of p ≤ 0.05 was taken as 

significant. The independent samples t-test was used to assess the difference between the 2 

groups for total caloric value, carbohydrates, protein and lipid, Cmax, ∆Cmax and 

AUCIncremental values. 
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3 Results 

A. ANTIOXIDANT CAPACITY OF AQUEOUS C. 

BURMANNII EXTRACT 

3.1 Quantification of total phenols  

The follow results presented the total phenols quantification that constituted aqueous 

cinnamon extract of C. burmannii specie. The study took into consideration that different 

concentrations were employed in this study (0.06 g/ml and 0.35 g/ml). Moreover, the 

chemical characterization regarding to total phenols content was also analysed in different 

concentrations of aqueous extract. The results are shown in table 3.1. The data clearly 

show that each concentration of cinnamon has different amounts of total phenolic 

compounds demonstrating to be dose-dependent, but not proportionally. It is apparent that 

the high dose (0.35 g/ml) contained less phenolic agent. Proportionally, 0.35 g/ml should 

have produced a phenolic content of around 13,335 ml/l gallic acid and not 9,247.25 ml/l 

gallic acid. 

 

Table  3.1: Total phenolic content (mg/L) of aqueous extract from C. burmannii used in 

animal studies (0.35 g/ml) and human study (0.06 g/ml). Data are mean (±SEM), n=8. 

 
(1) Regression equation:  y = 5.73143E-3x + 1.65000E-2 (r

2
=0.9989)

  

(2) Regression equation:  y = 1.8558E-3x + 1.6500E-3 (r
2
=0.9982) 

 

In order to verify the stability of total phenolic content in ACE, it was necessary to 

investigate the effect of temperature on the phenolic content of ACE using storage 

temperature of -20°C and refrigeration temperature of 4°C for 24 hours. The effect of 

temperature on phenolic content of ACE is shown in table 3.2. The results show that 

temperature had only a slight effect on the phenolic content after 24 hours storage. There 
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was a small decrease in the content, typically from 2.96% at -20°C to 5.15% for 

refrigeration at 4°C. For this reason, it was decided that during the experimental protocol 

on animal study, the samples of ACE should be stored at -20°C prior to use during oral 

administration.  

 

Table 3.2: Table showing total phenolic content (mg/L) of aqueous C. burmannii 

according with different temperature storage methods at 0.1 g/ml concentration. Data are 

mean ± SEM, n=3.  

 
(*)

Regression equation:  y = 0.0052x-0.0149 (r
2
=0.9995) 

 

In another series of experiments the phenolic content of ACE employed in the animal 

studies was measured before and after 5 weeks of storage at -20°C. The data are shown in 

table 3.3. The results clearly revealed that storage at -20°C can decrease the phenolic 

content of cinnamon (19.48%) during 5 weeks. 

 

Table 3.3: Table showing total phenolic content (mg/L) of aqueous C. burmannii utilized 

in animal study (0.35 g/ml), before and after 5 weeks of storage at -20°C. Data are mean 

(±SEM), n=2. 

 
(1) Regression equation:  y = 5.73143E-3x + 1.65000E-2 (r

2
=0.9989) 

(2) Regression equation:  y = 5.50300E-3x + 8.27500E-3 (r2=0.999) 
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Together, the results have demonstrated that the method of storage of the ACE might exert 

a declining effect on phenolic content of the solution. The solution was freshly made and 

then divided up, placed in vials and stored at -20°C. Daily, each vial was thawed out and 

thereafter the cinnamon solution was administrated to the animals. During the time course 

of this study, fresh solutions were made up at week 0 and on week 6. 

3.2 Identification and quantification of phenolic compounds  

Cinnamon is a spice that is composed of several bioactive compounds (Ding et al., 2011).  

In this study, it was decided to identify and quantify the major active compounds of 

cinnamon found in the prepared aqueous solution administrated to the animals and humans 

using the method of HPLC. This method has the ability to both identify and quantify the 

bioactive compound in cinnamon. Figure 3.1 shows a typical chromatogram profile of the 

4 major phenolic compounds found in ACE of C. burmannii, identifying 4 peaks at 5.2, 

5.8, 6.6 and 8.2 min as coumarin, cinnamyl alcohol, cinnamic acid and cinnamaldehyde, 

respectively.  
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Figure 3.1: Original chromatogram showing HPLC identification of major phenolic 

compounds of aqueous cinnamon extract from C. burmannii (252 nm), at 0.1 g/ml 

concentration. This chromatogram is typical of 3 such different experiments. 

 



58 
 

The results also demonstrate that the major phenolic compound in this plant extract from 

C. burmannii is cinnamaldehyde (23.99%). Cinnamyl alcohol, coumarin and cinnamic acid 

revealed to exist in low percentage in this sample (0.21%, 1.56%, and 3.73%, respectively) 

(see table 3.4). 

 

Table 3.4: Table showing percentage of major phenolic compounds of aqueous cinnamon 

extract (ACE) from C. burmannii. Data are mean, n=3. ACE – aqueous cinnamon extract. 

 

 

Figure 3.2 shows chromatograms in (1) standard and in (2) the equivalent compound found 

in cinnamon, namely (A) coumarin, (B) cinnamic acid, (C) cinnamic aldehyde and (D) 

cinnamyl alcohol.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



59 
 

Standard    Sample 

 

 

 

 

Figure 3.2: Absorption spectra of (A) coumarin, (B) cinnamic acid, (C) cinnamic aldehyde 

and (D) cinnamyl alcohol identified in (1) standard compound and in (2) ACE, using 

HPLC method. 
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3.3 Characterization of antioxidant capacity 

3.3.1 FRAP (Ferric Reducing Antioxidant Power) method 

Table 3.5 shows the antioxidant capacity using FRAP method in cinnamon tea (0.06 g/ml). 

The data revealed a strong anti-oxidant capacity as determined by FRAP test (11,779.0 

±294.7 µmol Trolox/l).  

 

Table 3.5: Anti-oxidant capacity of aqueous cinnamon extract (ACE) from C. burmannii. 

The results are expressed as mean (±SEM), n=6. 

 
 (*) 

Regression equation: y = 1.8558E-3x + 1.6500E-3 (r
2
=0.9982) 

3.3.2 Superoxide anion scavenging activity 

In another series of experiments, the superoxide anion scavenging activity of aqueous 

cinnamon extract was determined and the data presented in the figure 3.3. The results show 

that the aqueous cinnamon extract can induce an inhibitory capacity of superoxide 

scavenging activity in a dose-dependent manner reaching 96% at 1143 mg/l gallic acid 

(half of the total phenols concentrations). 

 

Figure 3.3: Dose-dependent curve showing the percentage inhibition of superoxide anion 

by aqueous cinnamon extract from C. burmannii.  
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B. ANIMAL STUDIES 

3.4 Effect of ACE on body weight of normal and diabetic rats  

The mean weight (± SEM) of all the rats when they arrived in the animal house was 228.9 

± 8.46 g (n=40). Following 2 weeks of adaption in the laboratory, the mean (± SEM) 

weight of all the rats increased to 287 ± 11.2 g.  

The rats were divided into 2 groups. One group was rendered diabetic with STZ and the 

other group only received citrate buffer and they acted as control. Both control and diabetic 

animals were divided up into three further sub-groups (3 diabetic and 3 controls). Two 

diabetic groups received either 75 mg/Kg bw ACE or 150 mg/Kg bw ACE. The other 

diabetic group only obtained distilled water daily. Similarly, two control groups received 

either either 75 mg/Kg bw ACE or 150 mg/Kg bw ACE. The third control group only 

received distilled water daily. All the animals were treated over a period of 11 weeks. 

The mean (± SEM) time course weights of normal and diabetic treated and untreated rats 

are shown in Figure 3.4 (A and B, respectively). The results show that the weight of the 

normal (both treated and untreated) rats (Figure 3.4A) increased gradually over the 

experimental period, from the start of the experimental protocol at week zero to week 11. 

The data also show that the normal rats (untreated and treated) weight between 271.5 and 

311.1 g at week 0 and then the weights increased to around 358 and 424 g after 11 weeks 

of the experiments. However, these results shown no significant (p>0.05) differences in the 

weights in the three groups of normal rats over the experimental period (compared weeks 0 

to week 11). It is notewerthly that the rats fed with 75 mg/kg of cinnamon daily gained 

slightly more weight than the other 2 groups, but these values were not significant.  

For diabetic rats, the results in Figure 3.4B also show the weights of all these groups of 

diabetic rats. The weights increased gradually over the experimental period but the weights 

of the rats treated with 150 mg/kg of cinnamon extract were significantly (p<0.05) higher 

compared to the untreated diabetic animals at weeks 1, 3, 4, 5 and 11. Treatment with 150 

mg/Kg bw of cinnamon was more effective than treatment with 75 mg/Kg bw in weight 

gain over the experimental period. These results clearly show that a high dose of cinnamon 

had a beneficial effect on the body weight gain of diabetic rats. For the sake of clarity the 

weights of normal and diabetic treated and untreated rats using 150 mg/Kg of cinnamon 

were compared and the data presented in Figure 3.4C. The data clearly show that the 
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normal rats whether treated or untreated gained significantly (p<0.05) more weight than 

diabetic animals (compared the groups in Figure 3.4C). Cinnamon treatment at 150 mg/kg 

bw improved weight gain for diabetic rats. These results clearly show that cinnamon 

treatment at 150 mg/kg bw had a significant beneficial effect on the diabetic rats.  

 

 

 

Figure 3.4: Time course changes in body weights (g) of normal (A), diabetic (B) and both 

normal and diabetic rats treated with 150 mg/Kg (C) over the experimental period of 11 
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weeks. Data are mean (± SEM); n=5-6 rats. ANOVA test was used to compare untreated 

with treated rats (*p<0.05) in both normal and diabetic rats (A, and B). Figure C shows the 

data for normal and diabetic treated and untreated rats with 150 mg/Kg of cinnamon for 

comparison, **p<0.05 for normal rats compared to diabetic *p<0.05 (C). 

3.5 Effect of ACE on food consumption of normal and diabetic 

rats  

The effect of ACE on food consumption was also investigated in this study (see Figure 

3.5). 

The results show no significant differences in the data comparing untreated normal rats 

with treated animals using the hight dose of cinnamon (150 mg/Kg) over the whole 

experimental period of 11 weeks (Figure 3.5, A). The results also show that food 

consumption in all three groups (treated and untreated) decreased over the experimental 

period compared to week 0 (before treatment) and week 11 (end of treatment). These are 

unexpected results since these rats seem to gain weight constantly over the experimental 

period of 11 weeks (see Figure 3.5).  

In diabetic rats (Figure 3.5, B) there is a slightly decrease in food consumption almost 

constantly over the experimental several of 11 weeks. The results revealed that all three 

groups of diabetic rats (either treated and untreated) consumed significantly (p<0.05) more 

food than age-matched normal animals. Regarding the diabetic rats (either treated and 

untreated), the data show similar pattern of food consumption over the time course of the 

experiments. During weeks 5, 6, and 11, the animals treated with 75 mg/Kg cinnamon ate 

significantly less (p<0.05) food than diabetic untreated rats. The treatment with 150 mg/kg 

bw in diabetic rats seems to decrease food consumption compared with untreated diabetic 

rats, during the experimental protocol. However, for higher dose of cinnamon extract the 

results were not significant (p>0.05). 

From the experiments, it is noteworthy that diabetic untreated and treated rats consumed 

more food than control untreated and treated rats. The untreated diabetic rats consumed 

more or less the same amount of food over the 11 weeks. In contrast, the untreated control 

rats ate more food at week 1, but the consumption declined gradually over the 

experimental period. The same observation is noticed for treated control and diabetic rats. 
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Figure 3.5: Time course changes in food consumption (g) over the experimental period in 

age-matched normal (A) and diabetic (B) untreated and cinnamon treated (75 mg/Kg or 

150 mg/Kg body weight daily) rats. Data are mean ± SEM; n=6 rats in normal and normal-

treated 75mg/Kg; n=5 in normal-treated 150 mg/Kg. ANOVA test was used to compared 

diabetic untreated with diabetic treated with cinnamon rats (*p<0.05). 
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3.6 Effect of ACE on blood glucose level of normal and diabetic 

rats  

Figure 3.6 shows the blood serum glucose levels in normal and diabetic treated and 

untreated rats. The results show that cinnamon treatment had very little or no effect on 

fasting blood glucose in normal rats (Figure 3.6A). At only week 6 there was a small, but 

no significant, reduction (p>0.05) in blood glucose following treatment with 150 mg/Kg of 

cinnamon compared to untreated normal. At weeks 7 and 8 fasting blood glucose seemed 

to increase slightly in normal rats treated with 75 mg/kg compared untreated-normal and 

treated-normal with 150 mg/kg body weight of cinnamon. 

The results show that all 3 groups of diabetic rats had elevated fasting blood glucose at the 

start of the experimental period confirming diabetes (compared Figure 3.6A and Figure 

3.6B). The data also show that the diabetic untreated group had more, but not significantly 

(p>0.05) increase in blood glucose level compared to treated groups at week 0 at the start 

of the experiments. However, daily administration of cinnamon with either 75 mg/Kg or 

150 mg/Kg only reduced fasting blood glucose slightly compared to the untreated diabetic 

group. A concentration of 150 mg/Kg of cinnamon extract was somewhat more effective in 

reducing blood glucose compared with 75 mg/Kg. A significant difference (p<0.05) 

occurred only at weeks 3 compared treated 150 mg/kg with untreated group.  
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Figure  3.6: Time course changes in fasting blood glucose level in age-matched normal A) 

and diabetic (B) both untreated and treated rats. Animals were given either 75 mg/Kg or 

150 mg/Kg of cinnamon on a daily basis. Data are mean ± SEM; n=6 rats in normal and 

normal-treated 75 mg/Kg; n=5 in normal-treated 150 mg/Kg. ANOVA test was used to 

compared diabetic untreated with diabetic treated with cinnamon rats (*p<0.05). 
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3.7 Oral glucose tolerance test of normal and diabetic rats 

Figure 3.7 shows the time course of the oral glucose tolerance test for all 6 sub-groups of 

rats. The data show that the rats treated with 150 mg/Kg of cinnamon had slightly elevated 

blood glucose either before the administration or 30 minutes after the OGTT compared to 

normal untreated or normal-treated with 75 mg/Kg of cinnamon but these values were not 

significant (p>0.05). Furthermore, the results show that the untreated normal rats seem to 

metabolize glucose better than the normal-treated rats with either 75 mg/Kg or 150 mg/Kg 

of cinnamon. However, these differences were not significant (p>0.05) in the overall data 

(Figure 3.7). 

The results confirm hyperglycaemia in diabetic rats compared to normal. The results also 

show that both treated and untreated diabetic rats had elevated blood glucose compared to 

normal. Furthermore, the results revealed that there was no significant differences between 

treated and untreated rats diabetic (p>0.05).  
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Figure 3.7: Time course changes on fasting blood glucose level on week 10 of the 

experimental period following on oral glucose tolerance test (OGTT) in age-matched 

normal (A) and diabetic (B) both untreated and treated (75 mg/Kg or 150 mg/Kg of 

cinnamon) rats either before (0 min) and after (30-180 min) glucose administration. Data 

are mean ± SEM; n=5-6 rats. ANOVA test was used to compared untreated with treated 

with cinnamon rats (p>0.05). 
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3.8 Effect of ACE on biochemical parameters of normal and 

diabetic rats  

3.8.1 Effect of ACE on triglycerides (TG) 

Figure 3.8 shows the data for blood triglycerides in all 6 sub-groups. The results revealed 

that serum TG increased in diabetic rats compared to normal rats in both treated and 

untreated animals. However, these increases on TG in diabetic rats was close to significant 

level (p=0.08) compared to normal. The levels of TG was slighty higher in treated normal 

rats compared with untreated normal rats. In diabetic rats, the levels of TG in treated 

diabetic rats was slighly lower than untreated diabetic rats. However, these results had no 

significant differences (p>0.05), showing that cinnamon treatement had no effect on serum 

TG levels. 

 

 

Figure 3.8: Bar charts showing the serum levels of tryglicerides (TG) in age-matched 

normal and STZ-induced diabetic untreated and cinnamon (75 mg/Kg or 150 mg/Kg) 

treated rats 11 weeks after the start of the treatment. Data are mean ± SEM; n=6 rats in 

normal, normal-treated 75 and diabetic-treated 75 groups; n=5 rats in normal-treated 150 

mg/Kg, diabetic and diabetic-treated 150 mg/Kg. ANOVA test was used mean values 

(p>0.05) for diabetic compared to normal.  
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3.8.2 Effect of ACE on total cholesterol (TC) 

Figure 3.9 shows the data for total cholesterol in serum of the 6 sub-groups of rats. The 

results also show that there are no significant changes in TC levels in either normal or 

diabetic rats. Moreover, the data also reveal that cinnamon (75 mg/Kg or 150 mg/Kg) 

treatment over 11 weeks had no significant effect of TC in both normal and diabetic rats. 

However, TC levels in the diabetic animals were slighthy elevated compared to normal. 
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Figure 3.9: Bar charts showing the serum levels of total cholesterol (TC) in age-matched 

normal and STZ-induced diabetic untreated and cinnamon (75 mg/Kg or 150 mg/Kg) 

treated rats 11 weeks after the start of the treatment. Data are mean ± SEM; n=6 rats in 

normal, normal-treated 75 and diabetic-treated 75 groups; n=5 rats in normal-treated 150, 

diabetic and diabetic-treated 150. ANOVA test was used mean values (p>0.05).  
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3.8.3 Effect of ACE on high-density lipoprotein (HDL) 

Figure 3.10 shows the data for levels of HDL in the serum of all 6 sub-groups of rats. The 

results show that cinnamon treatment had no significant (p>0.05) effect on HDL level in 

either normal and diabetic rats, comparing untreated with treated animals. In additon, the 

results demonstrated that untreated and treated (150 mg/kg) diabetic rats had significantly 

higher (p<0.05) levels of serum HDL compared to treated (75 mg/kg and 150 mg/kg) 

normal rats. 

The results also show that diabetic treated rats (150 mg/Kg) revealed significantly high 

HDL levels than normal treated rats (75 or 150 mg/Kg) (p<0.05). Normal treated rats (75 

mg/Kg) revealed significantly (p<0.05) low HDL levels compared with untreated diabetic 

rats. 
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Figure 3.10: Bar charts showing serum levels of high density lipoprotein (HDL) in age-

matched normal and STZ-induced diabetic untreated and cinnamon (75 mg/Kg or 150 

mg/Kg) treated rats 11 weeks after the start of the treatment. Data are mean ± SEM; n=6 

rats in normal, normal-treated 75 and diabetic-treated 75 groups; n=5 rats in normal-treated 

150, diabetic and diabetic-treated 150; Values sharing common superscript letters are 

significantly different (p<0.05). ANOVA test was used to compared normal and diabetic 

rats (*p<0.05). 
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3.8.4 Effect of ACE on low-density lipoprotein (LDL) 

Figure 3.11 shows the data for levels of LDL in the serum of all 6 sub-groups of rats. The 

data show no significant changes (p>0.05) comparing normal with STZ-induced diabetic 

rats, either treated and untreated animals. In addition, the data show that LDL levels 

increase slighly in the untreated diabetic rats compared to normal. Cinamon treatement 

seem to reduce the LDL levels in the diabetic treated rats, but the values were not 

significant diferents (p>0.05). 
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Figure 3.11: Bar charts showing the serum level of low density lipoprotein (LDL) from 

age-matched normal and STZ-induced diabetic untreated and cinnamon (75 mg/Kg or 150 

mg/Kg) treated rats 11 weeks after the start of the treatment. Data are mean ± SEM; n=6 

rats in normal, normal-treated 75 and diabetic-treated 75 groups; n=5 rats in normal-treated 

150, diabetic and diabetic-treated 150. ANOVA test was used to compared normal and 

diabetic rats (p>0.05). 
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3.8.5 Effect of ACE on albumin 

Figure 3.12 shows the data for levels of albumin in the serum of all 6 sub-groups of rats. 

The results show that serum albumin levels remained approximatly the same in normal 

treated and untreated rats. The same is also true for untreated and treated diabetic rats. 

However, the levels of albumin in the diabetic rats decreased significantly (p<0.05) 

compared to normal. Moreover, treated (150 mg/kg) diabetic rats had a significantly 

decreased of albumin levels compared to normal and treated (75 mg/kg) normal rats 

(p<0.05). 
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Figure 3.12: Bar charts showing the serum levels of serum albumin in age-matched normal 

and STZ-induced diabetic untreated and cinnamon (75 mg/Kg or 150 mg/Kg) treated rats, 

11 weeks after the start of the treatment. Data are mean ± SEM; n=6 rats in normal, 

normal-treated 75 and diabetic-treated 75 groups; n=5 rats in normal-treated 150, diabetic 

and diabetic-treated 150; Values sharing common superscript letters are significantly 

different (p<0.05). ANOVA test was used to compared untreated and treated diabetic and 

normal rats (*p<0.05). 
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3.8.6 Effect of ACE on hemoglobin A1c (HbA1c) 

Figure 3.13 shows the data for levels of HbA1c in the serum of all 6 sub-groups of rats. 

The results show that diabetic rats (untreated and treated) had significantly (p<0.05) 

elevated levels of HbA1c compared with age-matched normal treated and untreated rats. 

The results also show that cinnamon (75 mg/Kg or 150 mg/Kg) treatment had no 

significant effect on HbA1c in either normal or diabetic rats (p>0.05). Together, the data 

clearly demonstrated that the diabetic rats were confirmed in having diabetes.  
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Figure 3.13: Bar charts showing hemoglobin A1c (%) in serum of age-matched normal and 

STZ-induced diabetic untreated and cinnamon (75 mg/Kg or 150 mg/Kg) treated rats at 11 

week of the experimental period. Data are mean ± SEM; n=6 rats in normal, normal-

treated 75 and diabetic-treated 75 groups; n=5 rats in normal-treated 150, diabetic and 

diabetic-treated 150; Values sharing common superscript letters are significantly different 

(p<0.05). ANOVA test was used to compared normal and diabetic rats (*p<0.05). 
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3.8.7 Effect of ACE on creatinine 

Figure 3.14 shows the data for levels of creatinine in the serum of all 6 sub-groups of rats. 

The results show that there are no significant (p>0.05) changes in the levels of creatinine in 

the serum of either normal or diabetic rats. Moreover, cinnamon (75 mg/Kg or 150 mg/Kg) 

had no significantly effect on blood serum creatinine levels in either diabetic or age-

matched normal rats (p>0.05). 
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Figure 3.14: Bar charts showing serum levels of creatinine of age-matched normal and 

STZ-induced diabetic untreated and cinnamon (75 mg/Kg or 150 mg/Kg) treated rats at 11 

week of the experimaental period. Data are mean ± SEM; n=6 rats in normal, normal-

treated 75 and diabetic-treated 75 groups; n=5 rats in normal-treated 150, diabetic and 

diabetic-treated 150. ANOVA test was used to compared normal and diabetic rats 

(p>0.05). 
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3.9 Effect of ACE on organs weight of normal and diabetic rats 

3.9.1 Effect of ACE on pancreas weight 

Figure 3.15 shows the data for pancreas weight of all 6 sub-groups of rats. The data show 

no significant differences in the weights of the pancreas in either normal or STZ-induced 

diabetic rats. Moreover, cinnamon had no detectable effect in the weights of the pancreas 

comparing treated (75 mg/Kg or 150 mg/Kg) with untreated animals (Figure 3.15). 

  

 

 

Figure 3.15: Bar charts showing the mean (± SEM) weights (g) of the pancreas in age-

matched normal and STZ-induced diabetic untreated and treated with cinnamon (75 mg/Kg 

or 150 mg/Kg) rats after 11 weeks following cinnamon treatment. Data are mean ± SEM, 

n=6 rats in normal, normal-treated 75 and diabetic-treated 75 groups; n=5 rats in normal-

treated 150, diabetic and diabetic-treated 150. ANOVA test was used to compared normal 

and diabetic rats (p>0.05). 
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3.9.2 Effect of ACE on heart weight 

Figure 3.16 shows the data for heart weight of all 6 sub-groups of rats. The results show no 

significant differences in the weights of normal and diabetic treated and untreated rats. 

Moreover, cinnamon treatment (75 mg/Kg or 150 mg/Kg) rats had no effect on the weights 

of the hearts for each group comparing cinnamon treated with untreated rats. It is noted 

that the untreated diabetic heart weight was less compared to normal untreated hearts. 

Cinnamon treatement on diabetic hearts seemed to improve the weight, but not 

significantly (p>0.05) (Figure 3.16). 
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Figure 3.16: Bar charts showing the mean (± SEM) weights (g) of the hearts taken in age-

matched normal and STZ-induced untreated and treated with cinnamon (75 mg/Kg or 150 

mg/Kg) rats after 11 weeks following cinnamon treatment. Data are mean ± SEM, n=6 rats 

in normal, normal-treated 75 and diabetic-treated 75 groups; n=5 rats in normal-treated 

150, diabetic and diabetic-treated 150. ANOVA test was used to compared normal and 

diabetic rats (p>0.05). 
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3.9.3 Effect of ACE on liver weight 

Figure 3.17 shows the data for liver weight of all 6 sub-groups of rats. The results show 

that the weights of the liver (mean ± SEM) of treated (75 mg/kg or 150 mg/Kg) normal and 

diabetic treated rats were not significantly (p>0.05) diferent from the liver weight of 

untreated normal and diabetic rats. However, cinnamon treatment with higher doses (150 

mg/Kg) in diabetic rats had significantly high liver weights compared to untreated and 

treated (150 mg/kg) normal rats (p<0.05). Cinnamon treatment with low doses (75 mg/Kg) 

diabetic rats also revealed a significantly higher liver weight compared with treated (150 

mg/kg) normal rats (p<0.05) (Figure 3.17). 
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Figure 3.17: Bar charts showing the mean (± SEM) weights (g) of the liver taken from age-

matched normal and STZ-induced diabetic untreated and treated rats with cinnamon (75 

mg/Kg or 150 mg/Kg) after 11 weeks following cinnamon treatement. Data are mean ± 

SEM; n=6 rats in normal, normal-treated 75 and diabetic-treated 75 groups; n=5 rats in 

normal-treated 150, diabetic and diabetic-treated 150; Values sharing common superscript 

letters are significantly different (p<0.05). ANOVA test was used to compared untreated 

and treated diabetic and normal rats (*p<0.05).  
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3.9.4 Effect of ACE on kidney weight 

Figure 3.18 shows the data for the weights of the kidney for all 6 sub-groups of rats. The 

data show that mean (± SEM) weights of the kidney of treated (75 mg/kg and 150 mg/kg) 

diabetic rats were significant (p<0.05) higher compared to untreated and treated age-

matched normal rats. The results also revealed that treated (75 mg/kg and 150 mg/kg) 

diabetic rats had more kidney weights compared to untreated diabetic rats. However, there 

was no diferences in this data (p>0.05) (Figure 3.18). 
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Figure 3.18: Bar charts showing the mean (± SEM) weights (g) of the kidney taken from 

age-matched normal and STZ-induced diabetic untreated and treated with cinnamon (75 

mg/Kg or 150 mg/Kg) rats after 11 weeks following cinnamon treatement. Data are mean 

± SEM; n=6 rats in normal, normal-treated 75 and diabetic-treated 75 groups; n=5 rats in 

normal-treated 150, diabetic and diabetic-treated 150; Values sharing common superscript 

letters are significantly different (p<0.05). ANOVA test was used to compared untreated 

and treated diabetic and normal rats (*p<0.05). 

 

 

 

 

 



80 
 

3.9.5 Effect of ACE on soleus muscle weight 

Figure 3.19 shows the data for soleus muscle weight of all 6 sub-groups of rats. The data 

show that the skeletal soleus muscle isolated from treated (75 mg/Kg or 150 mg/Kg 

cinnamon) diabetic and normal rats weighted more than untreated diabetic and normal rats, 

respectively, but the values were not significant (p>0.05). However, the results for the 

untreated diabetic rats show a significant (p<0.05) decrease in the soleus muscle compared 

to treated normal rats (Figure 3.19).  
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Figure 3.19: Bar charts showing the mean (± SEM) weights (g) of the skeletal soleus 

muscle taken from age-matched normal and STZ-induced diabetic untreated and treated 

rats with cinnamon (75 mg/Kg or 150 mg/Kg) after 11 weeks following cinnamon 

treatement. Data are mean ± SEM; n=6 rats in normal, normal-treated 75 and diabetic-

treated 75 groups; n=5 rats in normal-treated 150, diabetic and diabetic-treated 150; Values 

sharing common superscript letters are significantly different (p<0.05). ANOVA test was 

used to compared untreated and treated diabetic and normal rats (*p<0.05). 
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3.9.6 Organs weight ratio 

Table 3.6 and Table 3.7 show the tissue or organ weight to body weight ratios for 

heart, pancreas (table 3.6) and for liver, kidney and soleus muscle (table 3.7). The 

results revealed a slightly decrease in heart weight to body weight ratio in treated 

normal (either 75 mg/kg and 150 mg/kg) and diabetic rats (150 mg/kg) compared to 

untreated normal and diabetic rats. The pancreas weight to body weight ratio was 

lower in treated normal (150 mg/kg) and diabetic (either 75 mg/kg and 150 mg/kg) 

rats compared to untreated normal rats. On other hand, liver weight to body weight 

ratio in treated normal (either 75 mg/kg and 150 mg/kg) and diabetic rats (75 mg/kg) 

slightly increased compared to untreated normal and diabetic animals. The kidney 

weight to body weight ratio, similarly to liver weight ratio, increased in treated (75 

mg/kg) normal and diabetic (either 75 mg/kg and 150 mg/kg) compared to untreated 

normal and diabetic animals. Finally, the soleus muscle weight to body weight ratio 

had the same or a slight increase in treated normal and diabetic compared to untreated 

animals. Finally, it is noteworthy that all of untreated diabetic organs of body weight 

ratio was higher than untreated normal organs to body weight ratio (table 3.6 and 

table 3.7). 

 

After statistical analysis, the results revealed that heart weight to body weight ratio in 

untreated and treated (both doses) diabetic animals were significant (p < 0.05) higher 

than normal treated with 75 mg/Kg of cinnamon. In pancreas, no significant effect 

was found between different groups from normal and diabetic animals (table 3.6). 

Regarding the liver, the results from table 3.7 showed that in normal rats, both 

untreated and treated had significant lower (p < 0.05) liver weight to body weight 

ratio compared with diabetic untreated and treated animals. However, cinnamon 

treatment demonstrated no significant effect on normal and diabetic animals 

compared untreated and treated rats.  

In the kidney, normal untreated and treated rats also differ significantly (p < 0.05) 

from diabetic treated rats with both doses of cinnamon. Diabetic treated rats had 

significantly (p < 0.05) more kidney weight to body weight ratio with cinnamon 

administration (both doses), compared with normal rats. Furthermore, no significant 

effect was found between untreated and treated diabetic rats (table 3.7). 
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Finally, in soleus muscle weight to body weight ratio in diabetic animals treated with 

75 mg/Kg of ACE demonstrated a significant (p < 0.05) increase compared with 

untreated normal rats (Table 3.7). 
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Table 3.6: Data showing mean (±SEM) the weights of the heart and pancreas and the mean (±SEM) heart to body weight ratio and pancreas to 

body weight ratio, at week 11 following experimental protocol. Data are mean ± SEM; n= 5 to 6 per group. Values sharing common superscript 

letters in the same column are significantly different (p<0.05). ANOVA test was used to compared untreated and treated diabetic and normal rats 

(*p<0.05). 

Groups Body weight (g) Heart weight (g) 
Heart to body  

ratio 
Pancreas weight (g) 

Pancreas to body 

ratio 

Normal untreated 378.8±7.21 1.11±0,13 0.0029±0.00029 1.48±0.32 0.0039± 0.00088 

Normal treated 75 mg/kg 395.8±9.89 1.05±0.03 0.0026±0.00004 a,b,c 1.53±0.16 0.0038±0.00035 

Normal treated 150 mg/kg 387.5±6.38 1.07±0.02 0.0028±0.00009 1.35±0.1 0.0035±0.00024 

Diabetic untreated 269.1±6.22 0.87±0.04 0.0032±0.00007 a 1.45±0.17 0.0053±0.00068 

Diabetic treated 75 mg/kg 293.3±8.49 0.96±0.03 0.0033±0.00008 b 1.46±0.08 0.0050±0.00037 

Diabetic treated 150 mg/kg 316.5±9.57 0.99±0.04 0.0031±0.00008 c 1.44±0.15 0.0046±0.00046 
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Table 3.7: Data showing the liver to body weight ratio, kidney to body weight ratio and soleus to body weight ratio at week 11 following 

experimental protocol. Data are mean ± SEM; n= 5 to 6 per group. Values sharing common superscript letters in the same column are 

significantly different (p<0.05). ANOVA test was used to compared untreated and treated diabetic and normal rats (*p<0.05). 

Groups 
Body 

weight (g) 

Liver 

weight (g) 

Liver to body 

 ratio 

Kidney 

weight (g) 

Kidney to body 

ratio 

Soleus 

weight (g) 

Soleus to body 

ratio 

Normal 

untreated 
378.8±7.21 10.50±0.32 0.0278±0.00092 a,b,c 2.27±0.1 0.0060±0.00030 a,b 0.26±0.02 0.0007± 0.00004 a 

Normal treated 

75 mg/kg 
395.8±9.89 11.48±0.52 0.0290±0.00087 d,e,f 2.47±0.06 0.0062±0.00017 c,d 0.30±0.01 0.0008±0.00001 

Normal treated 

150 mg/kg 
387.5±6.38 11.13±0.35 0.0288±0.00097 g,h,i 2.06±0.13 0.0053±0.00037 e,f 0.28±0.01 0.0007± 0.00002 

Diabetic 

untreated 
269.1±6.22 11.54±0.54 0.0430±0.00204 a,d,g 2.60±0.52 0.0097±0.00198 0.21±0.01 0.0008± 0.00005 

Diabetic treated 

75 mg/kg 
293.3±8.49 12.66±0.35 0.0432±0.00058 b,e,h 3.34±0.13 0.0114±0.00043 a,c,e 0.26±0.02 0.0009± 0.00035 a 

Diabetic treated 

150 mg/kg 
316.5±9.57 13.40±0.32 0.0424±0.00043 c,f,i 3.49±0.08 0.0110±0.00043 b,d,f 0.25±0.01 0.0008± 0.00002 
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3.10  Effect of ACE on total antioxidant status of normal and 

diabetic rats 

Figure 3.20 shows the effect of ACE on antioxidant status of in normal and diabetic 

rats. Oral administration of aqueous C. burmannii extract shows that cinnamon can 

improve the antioxidant status in both normal and diabetic rats. However, these 

results are not statistically significant (p>0.05). In diabetic animals, a dose of 150 

mg/Kg seems to be more effective in both normal and diabetic animals compared to 

untreated normal and diabetic rats rats (figure 3.20).  

The results also show that 150 mg/kg bw of cinnamon was more effective in both 

normal and diabetic rats as an antioxidant compared to 75 mg /kg bw and untreated 

normal and diabetic animals. These results suggest that cinnamon increased the 

antioxidant level of treated diabetic rats compared to untreated diabetic rats. In 

addition, the results also show that antioxidant level decreased in diabetic untreated 

rats compared to normal untreated animals, suggesting that diabetes is responsible for 

oxidation.  
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Figure 3.20: Bar charts showing the antioxidant effect of cinnamon (either 75 mg/Kg 

or 150 mg/Kg) in normal and dabetic rats compared to untreated and treated animals 

at 11 week of the experimental period. Data are mean ± SEM; n= 4 rats in normal, 

normal-treated 150, diabetic-treated 75 and diabetic-treated 150 groups; n= 3 in 

normal-treated 75 and diabetic groups. ANOVA test was used to compared untreated 

and treated diabetic and normal rats (p>0.05). 

3.11  Effect of ACE on tissue and serum cations content of 

normal and diabetic rats 

Cations play major physiological and pathophysiological roles in the body depending 

on their concentrations in both serum and other organs and tissues of the body. In this 

series of experiments, levels of sodium (Na+), magnesium (Mg2+), potassium (k+), 

calcium (Ca2+), copper (Cu2+), iron (Fe) and zinc (Zn2+) were measured in blood 

serum and in heart, pancreas, liver and kidney using ICP-MS method. The results are 

presented from figure 3.21 to figure 3.59 and are all expressed as mg/ml for serum 

and mg/mL/100g for organs tissues.  The mean value (± SEM) of cations levels for 

each group is represented.  
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3.11.1 Effect of ACE on cation levels in serum of diabetic and normal rats 

Serum sodium level 

 

Figure 3.21 shows the effect of ACE on sodium levels in serum of normal and 

diabetic rats. The results show a significant decrease (p<0.05) in serum sodium in 

normal treated rats (both doses) compared to normal untreated rats. There was also a 

significant decrease (p<0.05) of serum sodium in diabetic treated with 75 mg/kg of 

aqueous cinnamon extract compared to diabetic untreated (Figure 3.21). 
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Figure 3.21: Bar charts showing the levels of sodium (mg/ml) in serum of normal and 

diabetic untreated rats compared to normal and diabetic treated rats with either 75 

mg/kg or 150 mg/kg of aqueous cinnamon extract orally over a period of 11 weeks. 

Data are mean ± SEM, n=5-6; * p<0.05 for a compared to b, c and e; p<0.05 for b 

compared to d. 
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Serum magnesium level 

 

Figure 3.22 shows the effect of ACE on magnesium levels in serum of normal and 

diabetic rats. The results show a significant decrease in magnesium levels in diabetic 

rats treated with 75 mg/kg of aqueous cinnamon extract compared with untreated 

diabetic rats. However, no significant effect was observed with a high dose of 

cinnamon in diabetic rats or in normal untreated and treated rats (Figure 3.22). 
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Figure 3.22: Bar charts showing the levels of magesium (mg/ml) in serum of normal 

and diabetic untreated rats compared to normal and diabetic treated rats with either 75 

mg/kg or 150 mg/kg of aqueous cinnamon extract orally over a period of 11 weeks. 

Data are mean ± SEM, n=5-6; * p<0.05 for b compared to d. 
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Serum potassium level 

 

Figure 3.23 shows the effect of ACE on potassium levels in serum of normal and 

diabetic rats. The results show that there was no significant effect in untreated and 

treated diabetic rats and untreated and treated normal rats (Figure 3.23). 
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Figure 3.23: Bar charts showing the levels of potassium (mg/ml) in serum of normal 

and diabetic untreated rats compared to normal and diabetic treated rats with either 75 

mg/kg or 150 mg/kg of aqueous cinnamon extract orally over a period of 11 weeks. 

Data are mean ± SEM, n=5-6. No significant differences was observed between 

different groups (a, b, c, d, e and f) (p>0.05). 
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Serum calcium level 

 

Figure 3.24 shows the effect of ACE on calcium levels in serum of normal and 

diabetic rats. The results show a significant decrease (p<0.05) in serum calcium in 

normal and diabetic treated rats with 75 mg/kg aqueous cinnamon extract compared 

to normal and diabetic untreated rats, respectively. The results clearly demonstrate 

that cinnamon treatment seems to reduce the levels of Ca2+ in the serum (Figure 3.24). 
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Figure 3.24: Bar charts showing the levels of calcium (mg/ml) in serum of normal and 

diabetic untreated rats compared to normal and diabetic treated rats with either 75 

mg/kg or 150 mg/kg of aqueous cinnamon extract orally over a period of 11 weeks. 

Data are mean ± SEM, n=5-6; * p<0.05 for a compared c; p<0.05 for b compared to 

d. 
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Serum copper level 

 

Figure 3.25 shows the effect of ACE on copper levels in serum of normal and diabetic 

rats. The results show that there was no significant effect on serum copper in 

untreated and treated diabetic rats and untreated and treated normal rats (Figure 3.25). 
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Figure 3.25: Bar charts showing the levels of copper (mg/ml) in serum of normal and 

diabetic untreated rats compared to normal and diabetic treated rats with either 75 

mg/kg or 150 mg/kg of aqueous cinnamon extract orally over a period of 11 weeks. 

Data are mean ± SEM, n=5-6. No significant differences was observed between 

different groups (a, b, c, d, e and f) (p>0.05). 
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Serum iron level 

 

Figure 3.26 shows the effect of ACE on iron levels in serum of normal and diabetic 

rats. The results show that there was no significant effect on serum iron level in 

untreated and treated diabetic rats compared with untreated and treated normal rats. 

However, the serum levels of iron seems to reduce slightly in all the treated group, 

except for control treated with 75 mg/Kg cinnamon extract (Figure 3.26). 
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Figure 3.26: Bar charts showing the levels of iron (mg/ml) in serum of normal and 

diabetic untreated rats compared to normal and diabetic treated rats with either 75 

mg/kg or 150 mg/kg of aqueous cinnamon extract orally over a period of 11 weeks. 

Data are mean ± SEM, n=5-6. No significant differences was observed between 

different groups (a, b, c, d, e and f) (p>0.05). 
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Serum zinc level 

 

Figure 3.27 shows the effect of ACE on zinc levels in serum of normal and diabetic 

rats. The results show that there was no significant effect on serum zinc in untreated 

and treated diabetic rats and untreated compared to treated normal rats (Figure 3.27). 
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Figure 3.27: Bar charts showing the levels of zinc (mg/ml) in serum of normal and 

diabetic untreated rats compared to normal and diabetic treated rats with either 75 

mg/kg or 150 mg/kg of aqueous cinnamon extract orally over a period of 11 weeks. 

Data are mean ± SEM, n=5-6. No significant differences was observed between 

different groups (a, b, c, d, e and f) (p>0.05). 

 

 

 

 

 

 

 

 

 



94 
 

3.11.2 Effect of ACE on cation levels in heart of diabetic and normal rats 

Heart sodium level 

 

Figure 3.28 shows the effect of ACE on sodium levels in hearts of normal and 

diabetic rats. The heart sodium results show a significant decrease (p<0.05) in 

diabetic treated rats with 75 mg/kg and 150 mg/kg of aqueous cinnamon extract 

compared to untreated normal rats (Figure 3.28). 
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Figure 3.28: Bar charts showing the levels of sodium (mg/ml/100g tissue) in hearts of 

normal and diabetic untreated rats compared to normal and diabetic treated rats with 

either 75 mg/kg or 150 mg/kg of aqueous cinnamon extract orally over a period of 11 

weeks. Data are mean ± SEM, n=5-6; * p<0.05 for a compared to d and f. 

 

 

 

 

 

 

 

 



95 
 

 

Heart magnesium level 

 

Figure 3.29 shows the effect of ACE on magnesium levels in hearts of normal and 

diabetic rats. The results show that untreated diabetic rats had significant (p<0.05) 

less magnesium in the heart than untreated normal rats. However, the treatment with 

both doses (75 and 150 mg/kg) of cinnamon increase significantly (p<0.05) the 

magnesium levels in heart. The treated diabetic rats with high dose (150 mg/kg) had 

significantly (p<0.05) more magnesium than treated 75 mg/kg and 150 mg/kg normal 

rats (Figure 3.29). 
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Figure 3.29: Bar charts showing the levels of magnesium (mg/ml/100g tissue) in 

hearts of normal and diabetic untreated rats compared to normal and diabetic treated 

rats with either 75 mg/kg or 150 mg/kg of aqueous cinnamon extract orally over a 

period of 11 weeks. Data are mean ± SEM, n=5-6; * p<0.05 for a compared b; p<0.05 

for a compared c; p<0.05 for b compared to d and f; p<0.05 for f compared to c and e. 
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Heart potassium level 

 

Figure 3.30 shows the effect of ACE on potassium levels in hearts of normal and 

diabetic rats. The results show that treatment with 75 and 150 mg/kg of cinnamon in 

diabetic rats (d and f) increased significantly (p<0.05) potassium levels in heart 

compared to untreated diabetic rats (b). Furthermore, the heart of treated (150 mg/kg) 

diabetic rats (f) contains significantly (p<0.05) more potassium levels compared to 

treated (150 mg/kg) normal rats (e) (Figure 3.30). 
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Figure 3.30: Bar charts showing the levels of potassium (mg/ml/100g tissue) in hearts 

of normal and diabetic untreated rats compared to normal and diabetic treated rats 

with either 75 mg/kg or 150 mg/kg of aqueous cinnamon extract orally over a period 

of 11 weeks. Data are mean ± SEM, n=5-6; * p<0.05 for b compared to d and f; 

p<0.05 for e compared to p. 
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Heart calcium level 

 

Figure 3.31 shows the effect of ACE on calcium levels in hearts of normal and 

diabetic rats. The data show that untreated diabetic rat hearts contain more Ca2+ 

compared to untreated rats. Furthermore, the results also show that treatment with 150 

mg/kg of cinnamon in diabetic rats increased significantly (p<0.05) calcium levels in 

heart compared to untreated diabetic rats. No significant difference was found in 

treated normal rats compared to untreated normal rats (Figure 3.31). 

 

0,0000 

0,0005 

0,0010 

0,0015 

0,0020 

0,0025 

0,0030 

0,0035 

0,0040 

Untreated 

Normal 

Untreated 

Diabe c 

Normal 

Treated 

75mg/kg 

Diabe c 

Treated 

75mg/kg 

Normal 

Treated 

150mg/kg 

Diabe c 

Treated 

150mg/kg 

C
a
lc
iu
m

    (
m
g
/m

L/
1
0
0
g
    
ss
u
e
)     

Groups    

a 

b 

* 

c 

d 

f 

* 

 

Figure 3.31: Bar charts showing the levels of calcium (mg/ml/100g tissue) in hearts of 

normal and diabetic untreated rats compared to normal and diabetic treated rats with 

either 75 mg/kg or 150 mg/kg of aqueous cinnamon extract orally over a period of 11 

weeks. Data are mean ± SEM, n=5-6; * p<0.05 for b compared to f. 
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Heart copper level 

 

Figure 3.32 shows the effect of ACE on copper levels in hearts of normal and diabetic 

rats. The results show that the heart of untreated diabetic rats contained significantly 

less cooper (p < 0.05) than untreated normal rats. Furthermore, treatment with 

cinnamon (75 mg/Kg) demonstrated the opposite effect, with a significantly decrease 

in copper level in normal rats compared with untreated normal rats. The copper level 

also increased significantly in diabetic rats compared to untreated diabetic rats (Figure 

3.32). 
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Figure 3.32: Bar charts showing the levels of copper (mg/ml/100g tissue) in hearts of 

normal and diabetic untreated rats compared to normal and diabetic treated rats with 

either 75 mg/kg or 150 mg/kg of aqueous cinnamon extract orally over a period of 11 

weeks. Data are mean ± SEM, n=5-6. * p<0.05 for f compared with a, b, c, and e.  
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Heart iron level 

 

Figure 3.33 shows the effect of ACE on iron levels in hearts of normal and diabetic 

rats. The results show that hearts from diabetic untreated rats contain less iron 

compared to untreated normal. The results also show that treatment with high dose 

(150 mg/kg) of cinnamon increased significantly (p<0.05) iron levels in normal and 

diabetic rats compared to untreated normal and diabetic rats, respectively. No 

significant difference was found between treatment with 75 mg/Kg of cinnamon 

comparing normal with diabetic animals (Figure 3.33). 
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Figure 3.33: Bar charts showing the levels of iron (mg/ml/100g tissue) in hearts of 

normal and diabetic untreated rats compared to normal and diabetic treated rats with 

either 75 mg/kg or 150 mg/kg of aqueous cinnamon extract orally over a period of 11 

weeks. Data are mean ± SEM, n=5-6; * p<0.05 for a compared to e; p<0.05 for b 

compared to f. 
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Heart zinc level 

 

Figure 3.34 shows the effect of ACE on zinc levels in hearts of normal and diabetic 

rats. The results show that 75 mg/kg of cinnamon treatment decreased significantly 

(p<0.05) zinc levels in the hearts of normal rats (c) compared to untreated normal rats 

(a). However, no significant difference was found in hearts of treated diabetic rats 

compared to untreated diabetic rats. The data further show that hearts from diabetic 

rats (f) treated with 150 mg/kg cinnamon contain more zinc compared to control 

treated rats (e) with same dose of cinnamon. However, this results was not 

significantly (p>0.05) (Figure 3.34). 
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Figure 3.34: Bar charts showing the levels of zinc (mg/ml/100g tissue) in hearts of 

normal and diabetic untreated rats compared to normal and diabetic treated rats with 

either 75 mg/kg or 150 mg/kg of aqueous cinnamon extract orally over a period of 11 

weeks. Data are mean ± SEM, n=5-6; * p<0.05 for a compared c. 
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3.11.3 Effect of ACE on cation levels in liver of diabetic and normal rats 

Liver sodium level 

 

Figure 3.35 shows the effect of ACE on sodium levels in livers of normal and diabetic 

rats. The results show that no significant difference was found in treated diabetic and 

treated normal rats compared to untreated diabetic and untreated normal rats (Figure 

3.35). 
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Figure 3.35: Bar charts showing the levels of sodium (mg/ml/100g tissue) in the livers 

of normal and diabetic untreated rats compared to normal and diabetic treated rats 

with either 75 mg/kg or 150 mg/kg of aqueous cinnamon extract orally over a period 

of 11 weeks. Data are mean ± SEM, n=5-6. No significant differences was observed 

between different groups (a, b, c, d, e and f) (p>0.05). 
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Liver magnesium level 

 

Figure 3.36 shows the effect of ACE on magnesium levels in livers of normal and 

diabetic rats. The results show that both doses of cinnamon can reduce liver 

magnesium level in the diabetic rats compared to untreated diabetic animals with both 

75mg/Kg and 150 mg/Kg cinnamon, however these was no significant decrease in 

liver magnesium levels. In addition, the liver of diabetic rats (treated and untreated) 

contains less magnesium level compared to the respective controls (treated and 

untreated) (Figure 3.36). 
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Figure 3.36: Bar charts showing the levels of magnesium (mg/ml/100g tissue) in the 

livers of normal and diabetic untreated rats compared to normal and diabetic treated 

rats with either 75 mg/kg or 150 mg/kg of aqueous cinnamon extract orally over a 

period of 11 weeks. Data are mean ± SEM, n=5-6. No significant differences was 

observed between different groups (a, b, c, d, e and f) (p>0.05). 
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Liver potassium level 

 

Figure 3.37 shows the effect of ACE on potassium levels in livers of normal and 

diabetic rats. The data show that a high dose (150 mg/Kg) of cinnamon can reduce 

liver potassium level in the both normal (e) and diabetic (f) rats compared to normal 

and diabetic untreated rats, however these results were not significantly different. The 

results also show that cinnamon extract had no effect on liver potassium level in 

normal and diabetic untreated and treated with 75 mg/Kg cinnamon (Figure 3.37). 
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Figure 3.37: Bar charts showing the levels of potassium (mg/ml/100g tissue) in the 

livers of normal and diabetic untreated rats compared to normal and diabetic treated 

rats with either 75 mg/kg or 150 mg/kg of aqueous cinnamon extract orally over a 

period of 11 weeks. Data are mean ± SEM, n=5-6. No significant differences was 

observed between different groups (a, b, c, d, e and f) (p>0.05). 
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Liver iron level 

 

Figure 3.38 shows the effect of ACE on iron levels in livers of normal and diabetic 

rats. The results show that the liver of untreated diabetic rats (b) had significant 

(p<0.05) less iron than untreated normal rats (a). Treated (75 mg/kg) diabetic rats (d) 

also had significantly (p<0.05) less iron than treated (75 mg/kg) normal rats (c). The 

results show that cinnamon seems to decrease liver iron levels in treated normal rats 

compared to untreated normal rats but only with 75 mg/Kg dose. Furthermore, 

cinnamon administration seems had no effect in liver iron level in diabetic rats 

compared to untreated diabetic rats (Figure 3.38). 
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Figure 3.38: Bar charts showing the concentration of iron (mg/ml/100g tissue) 

untreated rats in the livers in normal and diabetic and treated normal and diabetic 

treated following daily administration of with 75 mg/kg or 150 mg/kg cinnamon of 

the rats. Data are mean ± SEM, n=5-6; * p<0.05 for a compared to b; p<0.05 for c 

compared to b and to d. 
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Liver copper level 

 

Figure 3.39 shows the effect of ACE on copper levels in liver of normal and diabetic 

rats. The results show no significant differences in liver copper levels in treated 

diabetic and treated normal rats compared to untreated diabetic and untreated normal 

rats in copper levels (Figure 3.39). 
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Figure 3.39: Bar charts showing the levels of copper (mg/ml/100g tissue) in the livers 

of normal and diabetic untreated rats compared to normal and diabetic treated rats 

with either 75 mg/kg or 150 mg/kg of aqueous cinnamon extract orally over a period 

of 11 weeks. Data are mean ± SEM, n=5-6. No significant differences was observed 

between different groups (a, b, c, d, e and f) (p>0.05). 
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Liver zinc level 

 

Figure 3.40 shows the effect of ACE on zinc levels in liver of normal and diabetic 

rats. The results show that no significant differences (p>0.05) in liver zinc level in 

treated diabetic and treated normal rats compared to untreated diabetic and untreated 

normal rats in zinc levels (Figure 3.40). 
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Figure 3.40: Bar charts showing the levels of zinc (mg/ml/100g tissue) in the livers of 

normal and diabetic untreated rats compared to normal and diabetic treated rats with 

either 75 mg/kg or 150 mg/kg of aqueous cinnamon extract orally over a period of 11 

weeks. Data are mean ± SEM, n=5-6. No significant differences was observed 

between different groups (a, b, c, d, e and f) (p>0.05). 
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3.11.4 Effect of ACE on cation levels in kidney of diabetic and normal rats 

Kidney sodium level 

 

Figure 3.41 shows the effect of ACE on sodium levels in kidney of normal and 

diabetic rats. The results show that there were no significant changes in kidney 

sodium levels in treated diabetic and treated normal rats compared to untreated 

diabetic and treated normal rats in zinc levels (Figure 3.41). 
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Figure 3.41: Bar charts showing the levels of sodium (mg/ml/100g tissue) in the 

kidneys of normal and diabetic untreated rats compared to normal and diabetic treated 

rats with either 75 mg/kg or 150 mg/kg of aqueous cinnamon extract orally over a 

period of 11 weeks. Data are mean ± SEM, n=5-6. No significant differences was 

observed between different groups (a, b, c, d, e and f) (p>0.05). 
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Kidney magnesium level 

 

Figure 3.42 shows the effect of ACE on magnesium levels in kidney of normal and 

diabetic rats. The results show that treated (150 mg/kg) diabetic rats (f) had 

significantly (p<0.05) less magnesium than treated (150 mg/kg) normal rats (e). 

However, there were no significant changes in kidney sodium levels in treated (75 

mg/Kg) diabetic and normal rats compared to untreated diabetic and normal rats 

(Figure 3.42). 
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Figure 3.42: Bar charts showing the levels of magnesium (mg/ml/100g tissue) in the 

kidneys of normal and diabetic untreated rats compared to normal and diabetic treated 

rats with either 75 mg/kg or 150 mg/kg of aqueous cinnamon extract orally over a 

period of 11 weeks. Data are mean ± SEM, n=5-6. * p<0.05 for e compared to f. 
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Kidney potassium level 

 

Figure 3.43 shows the effect of ACE on potassium levels in kidney of normal and 

diabetic rats. The results show that there were no significant changes in kidney 

potassium levels in treated diabetic and treated normal rats compared to untreated 

diabetic and untreated normal rats. However, cinnamon seems to slightly decrease 

kidney potassium level in treated 150 mg/Kg diabetic rats compared to untreated 

diabetic rats (Figure 3.43). 
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Figure 3.43: Bar charts showing the levels of potassium (mg/ml/100g tissue) in the 

kidneys of normal and diabetic untreated rats compared to normal and diabetic treated 

rats with either 75 mg/kg or 150 mg/kg of aqueous cinnamon extract orally over a 

period of 11 weeks. Data are mean ± SEM, n=5-6. No significant differences was 

observed between different groups (a, b, c, d, e and f) (p>0.05). 
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Kidney calcium level 

 

Figure 3.44 shows the effect of ACE on calcium levels in kidney of normal and 

diabetic rats. The results show that the diabetic untreated kidneys contain more or less 

less the calcium compared to untreated normal kidneys. However, cinnamon 

treatment seem to cause  large and significant (p<0.05) decreases kidney calcium level 

in both normal and diabetic treated rats employing 150 mg/kg cinnamon compated to 

untreated normal and diabetic rats  (Figure 3.44, compare a and b with e and f). 
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Figure 3.44: Bar charts showing the levels of calcium (mg/ml/100g tissue) in the 

kidneys of normal and diabetic untreated rats compared to normal and diabetic treated 

rats with either 75 mg/kg or 150 mg/kg of aqueous cinnamon extract orally over a 

period of 11 weeks. Data are mean ± SEM, n=5-6. Note that p<0.05 for e and f 

compared to a and b, respectively. No significant differences was observed between 

different groups (a, b, c, d, e and f) (p>0.05). 
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Kidney iron level 

 

Figure 3.45 shows the effect of ACE on iron levels in kidney of normal and diabetic 

rats. The results show that untreated diabetic rats (b) had a slightly decrease iron level 

compared to untreated normal rats (a). Cinnamon treatement (either 75 and 150 

mg/kg, c and e) significantly decrease (p<0.05) the iron levels in normal rats (c and e) 

compared to untreated normal rats (a). Treated diabetic rats (d) with 75 mg/Kg 

cinnamon seem to decrease kidney iron levels compared to untreated diabetic animals 

(b). In contrast, kidney iron levels seem to increase in diabetic rats (f) treated with 150 

mg/Kg cinnamon compared to treated contros rats (e). However, there were no 

significant changes in kidney iron levels in treated diabetic rats (c and e) compared to 

untreated diabetic rats (b) (Figure 3.45). 
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Figure 3.45: Bar charts showing the levels of iron (mg/ml/100g tissue) in the kidneys 

of normal and diabetic untreated rats compared to normal and diabetic treated rats 

with either 75 mg/kg or 150 mg/kg of aqueous cinnamon extract orally over a period 

of 11 weeks. Data are mean ± SEM, n=5-6. * p<0.05 for a compared to c and to e. 
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Kidney copper level 

 

Figure 3.46 shows the effect of ACE on copper levels in kidney of normal and 

diabetic rats. The results show that kidneys of untreated diabetic rats (b) had 

significant (p<0.05) more copper levels than kidneys from untreated normal rats (a). 

The same occurs in treatment group, with either 75 or 150 mg/kg cinnamon in which 

diabetic rats (d and f) had significant (p<0.05) more kidney copper levels than treated 

(75 and 150 mg/kg) normal rats (c and e), respectively. In general, the data clearly 

demonstrated that diabetes seem to cause an accumulation in cooper in the kidneys of 

the animals compared to normal rats. However, cinnamon treatmente did not alter the 

kidney copper level in diabetic rats compared to untreate diabetic rats (Figure 3.46). 
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Figure 3.46: Bar charts showing the levels of copper (mg/ml/100g tissue) in the 

kidneys of normal and diabetic untreated rats compared to normal and diabetic treated 

rats with either 75 mg/kg or 150 mg/kg of aqueous cinnamon extract orally over a 

period of 11 weeks. Data are mean ± SEM, n=5-6. * p<0.05 for a compared to b; 

p<0.05 for c compared to d; p<0.05 for e compared to f. 
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Kidney zinc level 

 

Figure 3.47 shows the effect of ACE on zinc levels in kidney of normal and diabetic 

rats. The results show that untreated diabetic rats (b) had a slight increase in kidney 

zinc level compared to untreated normal rats (a). Cinnamon treatment seemed did not 

to alter kidney zinc levels in normal rats (c and e) compared to untreated normal rats 

(a).  The results also show that there were no significant changes in kidney zinc levels 

in treated diabetic and treated normal rats (d and f) compared to untreated diabetic (b) 

(Figure 3.47). 

 

0 

0,0005 

0,001 

0,0015 

0,002 

0,0025 

0,003 

0,0035 

Untreated 

Normal 

Untreated 

Diabe c 

Normal 

Treated 

75mg/kg 

Diabe c 

Treated 

75mg/kg 

Normal 

Treated 

150mg/kg 

Diabe c 

Treated 

150mg/kg 

Z
in
c     
(m

g
/m

L/
1
0
0
g
    
ss
u
e
)     

Groups    

a 

b c 
d 

e f 

 

Figure 3.47: Bar charts showing the levels of zinc (mg/ml/100g tissue) in kidneys of 

normal and diabetic untreated rats compared to normal and diabetic treated rats with 

either 75 mg/kg or 150 mg/kg of aqueous cinnamon extract orally over a period of 11 

weeks. Data are mean ± SEM, n=5-6. No significant differences was observed 

between different groups (a, b, c, d, e and f) (p>0.05). 

 

 

 

 

 



114 
 

3.11.5 Effect of ACE on cation levels in pancreas of diabetic and normal 

rats 

Pancreas sodium level 

 

Figure 3.48 shows the effect of ACE on sodium levels in pancreas of normal and 

diabetic rats. The data show that pancreatic sodium level was not different in 

untreated diabetic rats (b) compared to untreated normal rats (a). Cinnamon 

treatement seemed to decrease pancreas sodium level in treated (75 mg/Kg) normal 

rats (c) compared to untreated normal rats (a), but the data were not significant. The 

results also show that there were no significant changes in pancreas sodium levels in 

treated diabetic rats (d and f) compared to untreated diabetic (b) (Figure 3.48). 
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Figure 3.48: Bar charts showing the levels of sodium (mg/ml/100g tissue) in the 

pancreas of normal and diabetic untreated rats compared to normal and diabetic 

treated rats with either 75 mg/kg or 150 mg/kg of aqueous cinnamon extract orally 

over a period of 11 weeks. Data are mean ± SEM, n=5-6. No significant differences 

was observed between different groups (a, b, c, d, e and f) (p>0.05). 
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Pancreas magnesium level 

 

Figure 3.49 shows the effect of ACE on magnesium levels in pancreas of normal and 

diabetic rats. The results show that there were no significant changes in pancreas 

magnesium levels in treated diabetic and treated normal rats compared to untreated 

diabetic and untreated normal rats (Figure 3.49). 
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Figure 3.49: Bar charts showing the levels of magnesium (mg/ml/100g tissue) in the 

pancreas of normal and diabetic untreated rats compared to normal and diabetic 

treated rats with either 75 mg/kg or 150 mg/kg of aqueous cinnamon extract orally 

over a period of 11 weeks. Data are mean ± SEM, n=5-6. No significant differences 

was observed between different groups (a, b, c, d, e and f) (p>0.05). 
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Pancreas potassium level 

 

Figure 3.50 shows the effect of ACE on potassium levels in pancreas of normal and 

diabetic rats. The results show that there were no significant changes in pancreas 

potassium levels in treated diabetic and normal rats compared to untreated diabetic 

and normal rats (Figure 3.50). 
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Figure 3.50: Bar charts showing the levels of potassium (mg/ml/100g tissue) in the 

pancreas of normal and diabetic untreated rats compared to normal and diabetic 

treated rats with either 75 mg/kg or 150 mg/kg of aqueous cinnamon extract orally 

over a period of 11 weeks. Data are mean ± SEM, n=5-6. No significant differences 

was observed between different groups (a, b, c, d, e and f) (p>0.05). 
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Pancreas calcium level 

 

Figure 3.51 shows the effect of ACE on calcium levels in pancreas of normal and 

diabetic rats. The results show that pancreas calcium levels were not different 

compared untreated diabetic rats (b) compared to untreated normal rats (a). The data 

also show that cinnamon treatement (75 mg/Kg) increase significantly the pancreas 

calcium levels in normal rats (c) compared to untreated normal rats (b) (p<0.05). 

Cinnamon treatement (150 mg/Kg) was also more in diabetic rats (d) compared to 

untreated rats (b), but was not significant. The results also show that there were no 

significant changes in pancreas calcium levels in treated 150 mg/Kg normal and 

diabetic rats (e and f) compared to untreated normal (a) and untreatment diabetic rats 

(b) (Figure 3.51). 
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Figure 3.51: Bar charts showing the levels of calcium (mg/ml/100g tissue) in the 

pancreas of normal and diabetic untreated rats compared to normal and diabetic 

treated rats with either 75 mg/kg or 150 mg/kg of aqueous cinnamon extract orally 

over a period of 11 weeks. Data are mean ± SEM, n=5-6. * p<0.05 for a compared to 

c. 
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Pancreas iron level 

 

Figure 3.52 shows the effect of ACE on iron levels in pancreas of normal and diabetic 

rats. The results show that untreated diabetic rats (b) slightly decrease pancreas iron 

levels compared to untreated normal rats (a). However, cinnamon treatment (75 

mg/Kg) seem to increase pancreas iron levels in normal and diabetic rats (c and d) 

compared to untreated normal and diabetic rats (a and b). However, this result was not 

significant. In contrast, cinnamon treatment with 150 mg/Kg demonstrate a slightly 

less pancreas iron level in normal and diabetic rats (e and f) compared to untreated 

normal and diabetic rats (a and b).  However, these results show that there were no 

significant changes in pancreas iron levels in treated diabetic and normal rats 

compared to untreated diabetic and normal rats (Figure 3.52). 
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Figure 3.52: Bar charts showing the levels of iron (mg/ml/100g tissue) in the pancreas 

of normal and diabetic untreated rats compared to normal and diabetic treated rats 

with either 75 mg/kg or 150 mg/kg of aqueous cinnamon extract orally over a period 

of 11 weeks. Data are mean ± SEM, n=5-6. No significant differences was observed 

between different groups (a, b, c, d, e and f) (p>0.05). 
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Pancreas copper level 

 

Figure 3.53 shows the effect of ACE on copper levels in pancreas of normal and 

diabetic rats. The results show that there were no significant changes in pancreas 

copper levels in treated diabetic and normal rats compared to untreated diabetic and 

normal rats (Figure 3.53). 
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Figure 3.53: Bar charts showing the levels of copper (mg/ml/100g tissue) in the 

pancreas of normal and diabetic untreated rats compared to normal and diabetic 

treated rats with either 75 mg/kg or 150 mg/kg of aqueous cinnamon extract orally 

over a period of 11 weeks. Data are mean ± SEM, n=5-6. No significant differences 

was observed between different groups (a, b, c, d, e and f) (p>0.05). 
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Pancreas zinc level 

 

Figure 3.54 shows the effect of ACE on zinc levels in pancreas of normal and diabetic 

rats. The results revealed a slightly but not significantly decrease of pancreas zinc 

levels in untreated diabetic rats (b) compared to untreated normal rats (a). The data 

also show that there were no significant changes in pancreas zinc levels in treated 

diabetic and normal rats compared to untreated diabetic and normal rats, respectively. 

However, the data further show that a low dose of cinnamon seems to increase 

pancreatic zinc levels (c and d) where as high dose of cinnamon lead the opposite 

effect (e and f) (Figure 3.54). 
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Figure 3.54: Bar charts showing the levels of zinc (mg/ml/100g tissue) in the pancreas 

of normal and diabetic untreated rats compared to normal and diabetic treated rats 

with either 75 mg/kg or 150 mg/kg of aqueous cinnamon extract orally over a period 

of 11 weeks. Data are mean ± SEM, n=5-6. No significant differences was observed 

between different groups (a, b, c, d, e and f) (p>0.05). 
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3.11.6 Effect of ACE on different cation contents of normal and diabetic 

rats per tissue for comparison 

Figure 3.55 shows the levels of sodium, magnesium, potassium, calcium, copper, iron 

and zinc (mg/ml) in serum of normal and diabetic untreated rats compared to normal 

and diabetic treated rats with either 75 mg/kg or 150 mg/kg for comparison. The 

results show that ACE administration had no significant effect on potassium, copper, 

iron and zinc serum levels in treated with either 75 or 150 mg/Kg doses normal and 

diabetic rats compared to untreated normal and diabetic rats, respectively. However, 

data suggest that cinnamon administration with 75 mg/Kg in normal rats decrease 

significantly sodium and calcium levels (p<0.05) compared to untreated normal rats.  

In addition, data also show that in diabetic rats, this dose of cinnamon decrease 

significantly (p<0.05) sodium, magnesium and calcium levels compared to untreated 

diabetic rats.  

Cinnamon at 150 mg/Kg administration revealed a significant decrease of sodium 

levels in normal rats (p<0.05) compared to untreated normal rats. However, no 

significantly effect was observed in diabetic animals serum after cinnamon treatment 

with 150 mg/Kg. 
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Figure 3.55: Bar charts showing the levels of sodium, magnesium, potassium, 

calcium, copper, iron and zinc (mg/ml) in serum of normal and diabetic untreated rats 

compared to normal and diabetic treated rats with either 75 mg/kg or 150 mg/kg of 

aqueous cinnamon extract orally over a period of 11 weeks for comparison. Data are 

mean ± SEM, n=5-6; * p<0.05. 
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Figure 3.56 shows the levels of sodium, magnesium, potassium, calcium, copper, iron 

and zinc (mg/ml/100g tissue) in heart of normal and diabetic untreated rats compared 

to normal and diabetic treated rats with either 75 mg/kg or 150 mg/kg for comparison. 

The results show that ACE administration had no significant effect only on copper 

heart levels in treated with either 75 or 150 mg/Kg doses normal and diabetic rats 

compared to untreated normal and diabetic rats, respectively.  

The data show that cinnamon administration with 75 mg/Kg in normal rats decreases 

significantly magnesium and zinc levels (p<0.05) and increases iron levels, compared 

to untreated normal rats.  However, in diabetic rats, cinnamon administration with 75 

mg/Kg increases significantly (p<0.05) magnesium and potassium levels compared 

with untreated diabetic rats. Regarding the administration of cinnamon at 150 mg/Kg, 

in normal-treated rats, there was no significant effect compared to untreated normal 

rats. In addition, in diabetic rats, high dose of cinnamon seem to have a significant 

effect, namely increased magnesium, potassium, calcium and iron levels (p<0.05) 

compared to untreated diabetic rats. 
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Figure 3.56: Bar charts showing the levels of sodium, magnesium, potassium, 

calcium, copper, iron and zinc (mg/ml/100g tissue) in heart of normal and diabetic 

untreated rats compared to normal and diabetic treated rats with either 75 mg/kg or 

150 mg/kg of aqueous cinnamon extract orally over a period of 11 weeks for 

comparison. Data are mean ± SEM, n=5-6; * p<0.05. 
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Figure 3.57 shows the levels of sodium, magnesium, potassium, copper, iron and zinc 

(mg/ml/100g tissue) in liver of normal and diabetic untreated rats compared to normal 

and diabetic treated rats with either 75 mg/kg or 150 mg/kg. The results show that 

ACE administration had no significant effect on sodium, magnesium, potassium, 

copper and zinc liver levels in treated with either 75 or 150 mg/Kg normal and 

diabetic rats compared to untreated normal and diabetic rats, respectively.  

The data show that cinnamon administration with 75 mg/Kg had no significant effect 

in normal and diabetic rats compared to untreated normal and diabetic rats, 

respectively. In addition, cinnamon 150 mg/Kg dose demonstrated had no 

significantly effect on normal rats compared to untreated normal rats.  
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Figure 3.57: Bar charts showing the levels of sodium, magnesium, potassium, copper, 

iron and zinc (mg/ml/100g tissue) in liver of normal and diabetic untreated rats 

compared to normal and diabetic treated rats with either 75 mg/kg or 150 mg/kg of 

aqueous cinnamon extract orally over a period of 11 weeks for comparison. Data are 

mean ± SEM, n=5-6; * p<0.05. 
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Figure 3.58 shows the levels of sodium, magnesium, potassium, copper, iron, copper 

and zinc (mg/ml/100g tissue) in kidney of normal and diabetic untreated rats 

compared to normal and diabetic treated rats with either 75 mg/kg or 150 mg/kg. The 

results show that ACE administration had no significant effect on sodium, 

magnesium, potassium, calcium, copper and zinc kidney levels in treated with either 

75 or 150 mg/Kg normal and diabetic rats compared to untreated normal and diabetic 

rats, respectively. However, the data show that cinnamon administration with 75 

mg/Kg and 150 mg/Kg significantly decrease iron levels in normal treated rats 

compared to untreated normal rats (p<0.05). 
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Figure 3.58: Bar charts showing the levels of sodium, magnesium, potassium, 

calcium,  iron, zinc and copper (mg/ml/100g tissue) in kidney of normal and diabetic 

untreated rats compared to normal and diabetic treated rats with either 75 mg/kg or 

150 mg/kg of aqueous cinnamon extract orally over a period of 11 weeks for 

comparison. Data are mean ± SEM, n=5-6; * p<0.05. 
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Figure 3.59 shows the levels of sodium, magnesium, potassium, calcium, copper, 

iron, copper and zinc (mg/ml/100g tissue) in pancreas of normal and diabetic 

untreated rats compared to normal and diabetic treated rats with either 75 mg/kg or 

150 mg/kg. The results show that ACE administration had no significant effect on 

sodium, magnesium, potassium, iron, copper and zinc pancreas levels in treated with 

either 75 or 150 mg/Kg normal and diabetic rats compared to untreated normal and 

diabetic rats, respectively. The data show that cinnamon administration with 75 

mg/Kg significantly can increase calcium levels (p<0.05) in normal treated rats 

compared to untreated normal rats. 
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Figure 3.59: Bar charts showing the levels of sodium, magnesium, potassium, 

calcium, copper, iron, zinc and copper (mg/ml/100g tissue) in pancreas of normal and 

diabetic untreated rats compared to normal and diabetic treated rats with either 75 

mg/kg or 150 mg/kg of aqueous cinnamon extract orally over a period of 11 weeks for 

comparison. Data are mean ± SEM, n=5-6; * p<0.05. 
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3.12  In vitro pancreatic insulin release in normal and 

diabetic rats 

In normal rats, the pancreatic fragments stimulated with agonists of insulin secretion 

(glucose or acetylcholine) without cinnamon treatment demonstrated increase insulin 

secretion with glucose and 10-6 M acetylcholine. However, cinnamon treatement with 

either 75 or 150 mg/Kg seem to decrease insulin secretion after glucose or 

acetylcholine stimulaton. Note that cinnamon treament with higher doses seemed to 

inhibit the insulin secretion in normal rats either with basal conditions or stimulated 

with agonist. 

Figure 3.60 shows the effect of either glucose (16 mM) or Ach (10-5 and 10-6 M) on 

insulin secretion in control untreated and treated rats with 75 mg/kg and 150 mg/kg 

cinnamon. The results show that  basal insulin secretion was significantly higher in 

untreated rat pancreatic segments compared to treated pancratic segments (p<0.05). 

The pancreatic fragments stimulated with agonists of insulin secretion (either glucose 

or acetylcholine) without cinnamon treatment demonstrated increase insulin secretion 

with glucose and 10-6 M acetylcholine. However, cinnamon treatement with either 75 

or 150 mg/Kg seem to decrease insulin secretion after glucose or acetylcholine 

stimulaton. Note that cinnamon treament with higher doses seemed to inhibit the 

insulin secretion in normal rats either with basal conditions or stimulated with agonist. 

A significant result (p < 0.05) was observed in normal treated (150 mg/Kg) rat 

compared with untreated normal rats after acetylcholine stimulations. 

 

 

 

 

 

 

 

 

 

 

 



132 
 

 

0 

5 

10 

15 

20 

25 

Normal untreated Normal treated 75 Normal treated 150 

In
su

lin
 s

ec
re

ti
on

 (
µg

/L
/1

00
 m

g 
ti

ss
ue

) 

Groups 

Basal 

Glc 16mM 
Ach 10-5M 

Ach 10-6M * 

* 

 

Figure 3.60: Bar charts showing in vitro pancreatic insulin secretion from untreated 

and treated (75 and 150 mg/Kg of cinnamon) normal rat under basal condition and 

incubeted with either glucose (16 mM) or acetylcholyne (10-5 M or 10-6 M). ANOVA 

test was used for compared normal untreated rats with treated with of cinnamon both 

incubated with acetylcholyne (10-6 M) (*p < 0.05). Data are mean ± SEM, n = 4-6 

rats. 
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Figure 3.61 shows the effect of either glucose or ACh on insulin secretion in diabetic 

untreated and treated rats with 75 mg/kg and 150 mg/kg cinnamon. The results in 

figure 3.61 showed that in basal conditions the untreated diabetic pancreatic segments 

produced low mean levels of insulin output. However, cinnamon treatment with 150 

mg/Kg of cinnamon seemed to increase insulin secretion from pamcreatic segments of  

diabetic rats under both under basal conditions and during stimulation with either 

glucose or 10-5 M acetylcholine. 
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Figure 3.61: Bar charts showing in vitro pancreatic insulin secretion from untreated 

and treated (75 and 150 mg/Kg of cinnamon) diabetic rat under basal condition and 

incubeted with either glucose (Glc) (16 mM) or acetylcholyne (Ach) (10-5 M or 10-6 

M). Note that no significant (p > 0.05) effect was observed between untreated rats 

compared with treated both 75 or 150 mg/Kg of cinnamon, in basal or incubated with 

glucose (16 mM) or acetylcholyne (10-5 or 10-6 M). Data are mean ± SEM, n = 4-6 

rats.  
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3.13  Effect of ACE on heart fibrosis of normal and diabetic 

rats 

3.13.1 Distribution of left heart ventricle fibrosis of untreated and treated 

normal rats 

This study examined any beneficial effect of cinnamon treatment on the morphology 

and fibrosis development in the left ventricle of the diabetic and normal hearts 

compared to untreated cardiac tissues. 

Figures 3.62 - 3.64 show the optical microscopy of normal ventricle of the heart of 

untreated (A) and tissue treated with either 75 mg/kg (B) and 150 mg/kg (C) normal 

rats, respectively. The data presented in each figure represents 2 different hearts for 

each group (either untreated or treated) of rats. The microscopy pictures show the 

large light blue zone that represents the vessels of the heart and the red zone, 

representing muscle of heart. Additionally, the pictures revealed that there was 

fibrotic tissue, represented by dark blue zone in normal rats either with or without 

cinnamon treatment. The results also revealed that the hearts of normal rats treated 

with aqueous cinnamon extract (with both doses) seem to have lower fibrotic tissue 

(represented by dark blue zone) when compared untreated normal rats. 
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Untreated normal (A) 

Figure 3.62: Original micrographs (A) showing interstitial fibrosis observed in the left 

ventricle of the heart of normal untreated rats. Histological observations represented 

in this figure were taken from the hearts of 2 different rats of each normal group, for 

comparison. (CAB staining, magnification 10X) 
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Normal treated with 75 mg/Kg bw of cinnamon (B) 

Figure 3.63: Original micrographs (B) showing interstitial fibrosis observed in left 

ventricle of the heart of normal rats treated with 75 mg/kg of cinnamon extract over a 

period of 11 weeks. Histological observations represented in this figure were taken 

from the hearts of 2 different rats of each normal group, for comparison. (CAB 

staining, magnification 10X). 
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Normal treated with 150 mg/Kg bw of cinnamon (C) 

Figure 3.64: Original micrographs showing (C) interstitial fibrosis observed in left 

ventricle of the heart of normal rats treated with 150 mg/kg of cinnamon extract over 

a period of 11 weeks. Histological observations represented in this figure were taken 

from the hearts of 2 different rats of each normal group, for comparison. (CAB 

staining, magnification 10X) 
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3.13.2 Distribution of left heart ventricle fibrosis in untreated and treated 

diabetic rats 

Figures 3.65 - 3.67 show the optical microscopy of the left ventricle of hearts taken 

from diabetic rats during untreated (A) and treated with either 75 mg/kg (B) or 150 

mg/kg (C) aqueous cinnamon extract over a period of 11 weeks. The data presented in 

each figure represents 2 different hearts for each group (either untreated or treated) of 

rats. 

The micrographs show the large light blue zone that represents the vessels of the heart 

and the red zone, representing muscle of heart. Additionally, the micrographs further 

reveal that there is fibrotic tissue, represented by dark blue zone in diabetic rats with 

or without cinnamon treatment. However, the fibrosis was much more prominent in 

the untreated diabetic hearts. 

The results revealed that STZ-induced diabetic rats treated with aqueous cinnamon 

extract seems to have lower fibrotic tissue (represented by dark blue zone) when 

compared untreated diabetic rats. However, this result was much more prominent with 

the hight dose (150 mg/Kg) of cinnamon. The fibrosis seems to be slightly higher in 

hearts obtained from animals treated with 75 mg/Kg cinnamon compared with 

untreated diabetic rats. In this case, cinnamon treatement seems to have more 

benefitial effect when a higher dose was administrated to the diabetic animals. 
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Untreated diabetic (A) 

Figure 3.65: Original micrographs (A) showing interstitial fibrosis observed in the left 

ventricle of hearts of diabetic untreated rats. Histological observations represented in 

this figure were taken from left ventricles of 2 different diabetic hearts from the 

untreated group, for comparison. (CAB staining, magnification 10X) 



140 
 

  

 
Diabetic treated with 75 mg/Kg bw of cinnamon (B) 

Figure 3.66: Original micrographs (B) showing interstitial fibrosis observed in the left 

ventricle of the heart of diabetic rats treated with 75 mg/kg of cinnamon extract over a 

period of 11 weeks. Histological observations represented in this figure were taken 

from the left ventricle of 2 different hearts from diabetic treated group, for 

comparison. (CAB staining, magnification 10X) 



141 
 

   

 
Diabetic treated with 150 mg/Kg bw of cinnamon (C) 

Figure 3.67: Original micrographs (C) interstitial fibrosis observed in the left ventricle 

of the heart of diabetic rats treated with 150 mg/kg of cinnamon extract over a period 

of 11 weeks. Histological observations represented in this figure were taken from left 

ventricles of 2 different hearts in the treated group, for comparison. (CAB staining, 

magnification 10X) 
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3.13.3 Quantification of interstitial fibrosis of left heart ventricle in 

untreated and treated normal and diabetic rats 

The following results are represented as the mean (± SEM) values of left ventricle 

fibrosis of hearts in normal and diabetic both untreated and treated rats with 75 

mg/Kg and 150 mg/kg body weight of aqueous cinnamon extract daily over a period 

of 11 weeks (Figure 3.68). 

The results have shown that the hearts of diabetic untreated rats developed 

significantly (p<0.05) more intersticial fibrosis than untreated normal rats during the 

experimental protocol. In addition, cinnamon treatment seems to decrease the mean 

fibrosis in hearts of diabetic rats compared to untreated diabetic rats. This effect was 

more marked and significant (p<0.05) with the high dose (150 mg/Kg bw) of 

cinnamon compared to untreated diabetic hearts. In normal rats, the results show that 

cinnamon treatment had no effect (p>0.05) in interstitial fibrosis values of treated (75 

mg/kg) rats compared with untreated normal rats.  
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Figure 3.68: Bar charts showing the interstitial fibrosis (number of pixels) in heart of 

normal and diabetic untreated rats compared to normal and diabetic treated rats with 

either 75 mg/kg or 150 mg/kg of aqueous cinnamon extract orally over a period of 11 

weeks. Data are mean ± SEM, n=5-6. Note that 150 mg/kg cinnamon seems to 

decrease significantly (p<0.05) fibrosis in the diabetic and control hearts compared to 

untreated diabetic and normal hearts. ANOVA was used to compare normal and 

diabetic rats (p>0.05). 
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3.14   Effect of ACE on distribution of insulin and glucagon 

containing cells in pancreatic islet of normal and 

diabetic rats 

In another series of experiments it was investigate how cinnamon may exert its 

hypoglycaemic effect in the endocrine pancreas of diabetic rats. Cinnamon could 

either act like insulin or as a growth factor repairing damaged Islet of Langerhans 

destroyed by STZ treatment. Alternatively, it could act as an antioxidant. As such, it 

was relevant to find out how cinnamon treatment over a period of 11 weeks could 

improve pancreatic islet status and morphology following STZ-treatment. In this 

study, STZ was employed to destroy the Islets of Langerhans in rats. Thereafter, the 

animals were treated with cinnamon for 11 weeks to find out if the plant extract can 

exert a beneficial effect on the animals by repairing the partially damage islets due of 

the STZ treatment. Both morphological and immune-histochemical studies were 

performed by measuring the distribution of insulin and glucagon containing cells in 

the pancreas of untreated normal (n=6) and normal treated with either 75 mg/Kg 

(n=6) or 150 mg/Kg (n=5) animals and also untreated diabetic (n=5) and diabetic 

treated either with 75 mg/Kg (n=6) or 150 mg/Kg (n=5) animals. Figures 3.69 and 

3.71 show the results of immunofluorescence original micrographs highlighting the 

distribution of insulin and glucagon positive islets in the pancreatic segments of 

normal and diabetic untreated and treated (75 mg/Kg or 150 mg/Kg) rats. 

3.14.1 Distribution of insulin in the pancreatic islet of normal and diabetic 

rats 

The results presented in figure 3.69 show that the pancreas of normal untreated (1A) 

rats contains more insulin positive cells per islets compared to pancreas of diabetic 

untreated rats (2A). In addition, the results revealed that treatment with cinnamon 

seemed to increase the number of insulin positive cells per islet in diabetic rats (2B 

and 2C) and seemed to decrease the number of insulin positive cells per islet in 

normal rats (1B and 1C). A dose of 150 mg/Kg of cinnamon in diabetic treated rats 

was slightly more effective in improving the number of insulin islet positive cells. On 

the other hand, cinnamon, when administrated at 75 mg/Kg seemed to exert only a 
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small beneficial effect in persevering the integrity of the beta cells in the islets 

comparing to 150 mg/Kg aqueous cinnamon extract. These results demonstrated that 

cinnamon treatment did not significantly change the number of insulin positive cells 

per islet in normal rats, but it was more pronounced in the diabetic pancreas (compare 

2A with 2B and 2 C). 
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Figure 3.69: Original micrographs of immunofluorescence showing the distribution of 

insulin positive cells in normal (N) untreated (1A) and diabetic (D) (2A) untreated rat 

pancreas and in normal and diabetic rats treated with both 75 mg/Kg (1B normal 

treated, 2B diabetic treated) and 150 mg/Kg (1C normal treated, 2C diabetic treated) 

aqueous cinnamon extract for 11 weeks. Magnification: X 400. These micrographs 

are typical of 5 different animals for each.  
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In another series of experiments the number of insulin positive cells per islet was 

semi-quantitatively counted from the micrographs obtained from untreated and treated 

(75 mg/Kg and 150 mg/Kg) normal and diabetic rats. 

Figure 3.70 shows the percentage of islet positive cells in the pancreas of normal and 

diabetic untreated and treated rats with either 75 mg/Kg or 150 mg/Kg of aqueous 

cinnamon extract. The data show that STZ-induced diabetic rat pancreas contains less 

insulin positive cells compared to untreated normal rat pancreas. Treatment with 

aqueous cinnamon extract for 11 weeks seemed to improve the number of insulin 

positive cells in diabetic rats, but not in normal rats. A dose of 150 mg/Kg of 

cinnamon was more effective in preventing the islets compared to 75 mg/Kg 

treatment over 11 weeks. However, this result was not significant (p>0.05). 
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Figure 3.70: Bar chart showing the percentage (%) of islet positive insulin cells in 

untreated normal and diabetic rats and treated with either 75 mg/Kg or 150 mg/Kg of 

aqueous cinnamon extract for 11 weeks. Data are mean ± SEM, n=5-6 per group. No 

significant effect was found between treated and untreated diabetic rats (p>0.05), 

ANOVA Test. Data obtained from original micrographs as shown if figure 3.69. Note 

that the diabetic untreated and treated pancreas contained significantly (p<0.05) less 

insulin positive cells compared to normal untreated and treated pancreas. Cinnamon 

seems to have a small beneficial effect on the diabetic pancreas by improving insulin 

positive cells. 
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3.14.2 Distribution of glucagon in the pancreatic islet of normal and 

diabetic rats 

The results presented in Figure 3.71 show that the pancreas of untreated normal rats 

contains less glucagon positive cells per islets compared to pancreas of diabetic 

untreated rats. In addition, the results revealed that treatment of both normal and STZ-

induced diabetic rats with either 75 mg/Kg or 150 mg/Kg aqueous cinnamon extract 

for 11 weeks seems to increase the number of glucagon positive cells per islet in both 

normal and diabetic treated rats compared to untreated, respectively. Cinnamon, when 

administrated at 75 mg/Kg seems to have a more pronounced beneficial effect in 

persevering the integrity of the alpha cells in the islets in normal rats. However, in 

diabetic rats cinnamon 150 mg/Kg had more beneficial effect in presenting the islets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



148 
 

 

Figure 3.71: Original micrographs of immunofluorescence showing the distribution of 

glucagon positive cells in normal (N) untreated (1A) and diabetic (D) untreated (2A) 

rats pancreas and in normal and diabetic rats treated with both 75 mg/Kg (1B normal 

treated, 2B diabetic treated) and 150 mg/Kg (1C normal treated, 2C diabetic treated) 

aqueous cinnamon extract for 11 weeks. Magnification: X 400.Micrographs are 

typical of different pancreas taken for 5-6 different rats. 
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In another series of experiments the number of glucagon positive cells per islet were 

semi-quantitatively counted from the micrographs obtained from untreated and treated 

(75 mg/Kg and 150 mg/Kg) normal and diabetic rats. The mean (± SEM) values are 

presented in figure 3.72. 

The results in figure 3.72 shows the percentage of glucagon positive cells in the 

pancreas of untreated normal and diabetic and in pancreas of normal and diabetic 

treated with either 75 mg/Kg or 150 mg/Kg of aqueous cinnamon extract. The results 

further show that pancreas of untreated diabetic rats contain significantly (p<0.05) 

more glucagon positive cells compared to untreated normal rats. Treatment of 

cinnamon seemed to improve significantly (p<0.05) the number of glucagon positive 

cells in both normal and diabetic rats pancreas. A dose of 150 mg/Kg of cinnamon 

was more effective in improving islet number in the diabetic rats. 
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Figure 3.72: Bar chart showing the percentage (%) of islet positive glucagon cells in 

untreated normal and diabetic rats and treated with either 75 mg/Kg or 150 mg/Kg of 

aqueous cinnamon extract for 11 weeks. Data are mean ± SEM, n=5-6 per group. Note 

that significant effect was found between treated and untreated diabetic rats (*p<0.05, 

for diabetic compared to control) compared to untreated and treated normal rats. 

ANOVA Test. Data obtained from original micrographs as shown if figure 3.71. 
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C. HUMAN STUDIES 

Cinnamon has been ingested by human for thousands of years as food, flavouring, 

beverages and as plant-based medicinal drug (Jakhetia et al., 2010). Cinnamon is 

ingested as a tea, powder and tablets in the different doses. This part of the study 

investigated the effect of cinnamon on healthy human subjects measuring its effect on 

postprandial glycaemia. All subjects were asked to drink 100 ml of cinnamon tea 

(0.06 g/mL) in the morning on fasting followed by OGTT (oral glucose tolerance 

test). 

3.15  Sample characterization of human study 

The characterizations of the subjects of this study are represented in the following 

figures and tables regarding the distribution by gender, age, clinical record and 

anthropometric parameters. 

 

Thirty non-diabetic subjects constitute the sample of this work. They included 22 

(73.3%) females and 8 (26.7%) males.  

Figure 3.73 represents the age distribution of all 30 healthy subjects employed in this 

study. The results show that most of the subjects were between 20-30 (n=12; 40%) 

and 41-50 (n=11; 36.7%) years old. The mean of age sample was 35.3 (±1.9) years 

old. The minimum age was 20 years old and maximum age was 53 years old. 
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Figure 3.73: Bar chart showing the age distribution of the subjects. Values are 

expressed as number. Note that most of them fall in the age groups 20-30 and 41-50 

years.  

 

Table 3.8 shows the clinical records of the subjects regarding any pathologies and 

pharmacological therapies. The results of the table 3.8 show the clinical records of the 

subjects employed in this study, demonstrating that the participants had no diabetes 

mellitus, gastrointestinal or other diseases. Three participants had allergy and 2 

participants took anti-inflammatory drug.  

 

Table 3.8: Characterization of clinical record of participants employed in this study. 
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Table 3.9 shows the anthropometric parameters, namely weight and height of the 

subjects. The data show that the weight mean of the participants of this study was 

66.7 (±1.8) Kg (n=30) and the mean height was 164.9 (±1.7) cm (n=30). The weights 

of the subject varied for 52.3 Kg to 90 Kg and the heights varied for 153 cm to 184 

cm. 

     Table 3.9: Weight and height mean (±SEM) values of subjects. 

 

 

Table 3.10 shows the mean, minimum and maximum values regarding to 

anthropometric parameters, namely, body mass index (BMI), fat mass and muscular 

mass among the 30 subjects employed in this study. The results show that regarding 

to anthropometric parameters, the mean body mass index (BMI) in both gender 

corresponded to a regular weight of 24.4 (±0,6) and 24.5 (±0.7) Kg/m2 for men and 

women, respectively. The fat mass mean (±SEM) percentage of the participants were 

16.4 (±0.9) and 27.8 (±1.2), for man and women, respectively. The muscular mass 

mean (±SEM) of the participants were 61.7 (±2.9) Kg and 42.0 (±1.1) Kg for man and 

women, respectively. 

 

Table 3.10: Body mass index (BMI), fat mass and muscular mass mean (±SEM) 

values of subjects.  BMI – Body mass index; M – Men; W – women. 

 

 

The data for the BMI classes are presented as bar charts in figure 3.74. The results 

show that most of the participants from both genders have regular weight (73.3%, 
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n=22). Only one subject was obese (3.3%) and 7 subjects had borderline overweight 

(23.3%). 
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Figure 3.74: Distribution of gender by BMI classes. (BMI – body mass index. Regular 

weight: 18.5 Kg/m2 ≤ BMI ≥ 24.9 Kg/m2; Overweight: 25 Kg/m2 ≤ BMI ≥ 24.9 

Kg/m2; Obesity: 30 ≥ Kg/m2) (WHO, 1997). 

 

 

Table 3.11 and figures 3.77 to 3.80 represent the results obtained regarding to 

nutritional parameters of the subjects on the day before either OGTT(control) and 

OGTT(cinnamon). These including, total energy value (TEV), carbohydrates (CD), 

protein (P) and lipid (L) ingested by participants. The results in table 3.15 revealed 

that there was no significant difference between dietetic ingestion on the day before of 

the intervention either with or without cinnamon tea (p > 0.05) in relation to total 

energy value, carbohydrates, protein and lipid. These results allowed to confirm the 

homogeneity between groups.  
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Table 3.11: Data showing total energy value (TEV), carbohydrates (CD), protein (P) 

and lipid (L) ingested at the day before of intervention by participants. Data are mean 

± SEM, n=30; Independent sample Student’s t-test was used to statistical analysis. 

 
 TEV: total energy value; CD: carbohydrates; P: protein; L: lipid 

 

Figures 3.75 to 3.78 show bar chart with the protein (g), lipid (g), carbohydrate (g) 

and total energy value (Kcal) mean (±SEM) ingested by the participants on the day 

before of OGTT(control) or before OGTT(cinnamon). 

The results show that mean dietary intake of protein (figure 3.75), lipid (figure 3.76), 

carbohydrate (figure 3.77) and total energy (figure 3.78) before OGTT and before 

OGTT with cinnamon ingestion were lower in women that in men. 
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Figure 3.75: Bar charts showing protein (g) ingested by both women and man on the 

day before the OGTT(control) and OGTT(cinnamon). Data are mean ± SEM (n=30). 
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Figure 3.76: Bar charts showing lipid (g) ingested by both women and man on the day 

before the OGTT(control) and OGTT(cinnamon). Data are mean ± SEM (n=30). 
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Figure 3.77: Bar charts showing carbohydrate (g) ingested by both women and man 

on the day before the OGTT(control) and OGTT(cinnamon). Data are mean ± SEM (n=30). 
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Figure 3.78: Bar charts showing total energy values (g) ingested by both women and 

man on the day before the OGTT(control) and OGTT(cinnamon). Data are mean ± SEM 

(n=30). 

3.16  Effect of ACE on blood glucose level after Oral Glucose 

Tolerance Test of human 

In order to analysed the effect of aqueous cinnamon extract from C. burmannii on 

blood glucose levels of normal subjects, a glucose tolerance test (OGTT) either with 

or without cinnamon tea administration was undertaken. 

Table 3.12 shows capillary glycaemia values obtained after OGTT with and without 

cinnamon tea administration. Values were expressed on fasting (t0), and 30 (t30), 60 

(t60), 90 (t90) and 120 (t120) minutes after OGTT administration. The individual results 

from the OGTT are represented in of 30 different tests. 

The results from the Table 3.12 show that blood glucose levels obtained after OGTT 

+ cinnamon tea administration were lower compared with blood glucose levels 

obtained after OGTT alone at 30, 60, 90 and 120 min. Statistical analysis revealed 

that there was no interaction between the independent and repeated measures factors 

(p=0.209), which means that it is not possible to infer about differences in BGL in 

different moments. However, the data shown that the administration of cinnamon tea 
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after OGTT slightly decreased BGL mean values compared to OGTT in the absence 

of cinnamon ingestion (figure 3.79). 

 

Table 3.12: Data showing capillary glycaemia obtained by oral glucose tolerance test 

(OGTT) Data are mean ± SEM, n=30. 

 
     *p < 0.05, compared glycaemia mean values between OGTT and OGTT + cinnamon tea. 

 

Figure 3.79 represents the time course blood mean glucose level for the participants 

(n=30) during OGTT and OGTT + cinnamon tea.  
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Figure 3.79: Mean (±SEM) time course of blood glucose concentration in 30 normal 

subjects after OGTT (○) and OGTT + cinnamon tea (□). 

 

The same was observed regarding the maximum and minimum blood glucose levels 

values in which, blood glucose levels after OGTT + cinnamon tea administration were 
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lower than OGTT alone. Minimum values of blood glucose levels at t60 were the only 

results that demonstrated to be lower in OGTT compared to OGTT + cinnamon tea 

administration. Furthermore, the results obtained at t30 time representing the 

maximum values confirmed that glycaemic values to be normal when compared with 

references values (ADA, 2013b). 

Figure 3.80 shows the (A) maximum concentration (Cmax), (B) variation of maximum 

concentration (∆Cmax) and (C) area under the curve (AUC) with regarding blood 

glucose level after OGTT and OGTT + cinnamon tea, for comparison. The results 

reveal that the ingestion of cinnamon tea to OGTT result improve the area under the 

curve for OGTT with cinnamon compared with OGTT without cinnamon ingestion 

(p>0.05). The blood glucose level at maximum concentration and the variation of 

maximum concentration show a significant decrease in OGTT + cinnamon tea 

ingestion (p<0.05). These results suggest a beneficial effect of cinnamon in glucose 

homeostasis after high sugar ingestion, regulating the maximum glucose 

concentration in blood during a period of 120 minutes. 
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Figure 3.80: Data showing the (A) blood glucose maximum concentration (Cmax), (B) 

blood glucose of maximum concentration variation (∆Cmax) and (C) blood glucose 

area under the curve (AUC) with in healthy subjects after OGTT and OGTT + 

cinnamon tea administration. Data are mean ± SEM, n=30; p<0.05; T-student test was 

used to statistical analysis between OGTT and OGTT + cinnamon tea administration.  
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4 Discussion 

This study investigated the beneficial effect of aqueous cinnamon extract in in vivo 

healthy rat and human models employing streptozotocin (STZ)-induced type 1 

diabetic rats and compared with age-matched healthy control animals and healthy 

human subjects.  

 

Diabetes mellitus (DM) is a major global health metabolic disorder estimated to 

increase markedly worldwide. It is also an economic burden to the Governments of 

the world estimated to cost in excess of £1 trillion annually to diagnose, treat and care 

for diabetic patients so that they can have a better quality of life. In Portugal, in 

particular, DM is highly prevalent (Guariguata et al., 2014). This disease can lead to 

numerous long-term complications including retinopathy, cardiomyopathy, 

neuropathy, nephropathy, foot ulcers and many others, all resulting in end-organ 

failure over time if left untreated (Fowler, 2008). As such it is very important to 

diagnose the diabetes earlier and either to prevent or to treat the disorder at a very 

early stage. In developing countries DM is a very prevalent disorder and it is too 

costly for the people to get medical help (ADA, 2010b; Whiting et al., 2011). As such 

plant-based medicine has been used to treat many disorders including cancers, mental 

disorders, DM and several others. One such plant is cinnamon. This plant has many 

species and a particular one is Cinnamomum burmannii. Previous studies employing 

different species of cinnamon have shown that this plant contains numerous 

compounds, which can exert different effects including anti-hyperglycaemic, anti-

inflammatory, anti-oxidant and anti hyperlipidaemic benefits (Ulbricht et al., 2011).   

 

This discussion will be focused on the following: 

1) The chemical characterization of anti-oxidant capacity of aqueous cinnamon 

extract employed in animal and human studies; 

2) Cinnamon spices from C. burmannii species to treat DM both normal and 

diabetic animal model assessing its effect on biochemical parameters, structure 

and function of the pancreas, the heart and cation levels in different organs;  

3) Cinnamon tea to improve postprandial blood glucose level on healthy subjects 

and; 
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4) Possible mechanism(s) of action of the active anti-diabetic compounds of 

cinnamon. 

4.1 Anti-oxidant capacity and major phenolic compounds 

of ACE 

The results from the present study demonstrated that total phenolic contents of 

aqueous cinnamon extract from C. burmannii specie increased, but not proportionally 

with increased concentrations of the cinnamon extract. The total phenolic content 

analysed in aqueous cinnamon extract employed in the present study revealed a 

higher mean values (2286.3 mg/l gallic acid), compared with a previous study (Prasad 

et al., 2009). This difference could be due to different part of the tree used for 

analyses since that in Prasad and co-authors work it was analysed the extract of 

cinnamon leaf (943.7 µg/g gallic acid) (Prasad et al., 2009). The storage method (-

20ºC) used for aqueous cinnamon extract employed in the present study demonstrated 

a loss of total phenolic contents by 20% after 5 weeks of storage at -20ºC. This result 

obtained in the present study is not in full agreement with a previous study, which 

reported that total phenolic contents of the cinnamon fruit juice decreased by 29% 

after 15 days of storage at -25ºC. Such different results may be attributed to a lower 

temperature used in juice fruit, -25ºC instead of -20ºC or the way the fruit juice or 

extracted is prepared for the study (Mirsaeedghazi et al., 2014). Nevertheless, the 

results clearly showed that storage at very low temperature over time might reduce the 

phenolic contents of cinnamon and it would be advisable to use the freshly prepared 

extract for experimentation. The major phenolic compounds identified in cinnamon 

extract form C. burmannii were cinnamaldehyde > cinnamic acid > coumarin > 

cinnamyl alcohol with 23.99%, 3.73%, 1.56% and 0.21%, respectively, which are 

consistent with another published data (Y.-H. Wang et al., 2013). 

The anti-oxidant potential of aqueous cinnamon extract employed in this study was 

analysed in vitro using the reducing power FRAP assay and the superoxide anion 

scavenging activity. The results have shown that cinnamon can exert a strong anti-

oxidant capacity determined though FRAP assay (11779.0 ±294.7 µmol Trolox/l). 

According to the previous studies the cinnamon extract from the bark revealed less 

reducing power than cinnamon extract from the powder (Hossain et al., 2008; M. Lu 
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et al., 2011). However, the uniformity absence of the extraction methods could 

contribute to the difference observed in different previous studies (Hossain et al., 

2008; Khristi et al., 2014; M. Lu et al., 2011). Moreover, the total phenolic content 

could also depend of intrinsic characteristics of cinnamon, which depend from 

species, growth stages, parts of plant or plant origin (Geng et al., 2011; He et al., 

2005). Cinnamon extract also revealed a high capacity to inhibit superoxide 

scavenging in a dose-dependent manner (96%). These result is in agreement with 

previous studies, which demonstrated a high anti-oxidant capacity and an excellent 

superoxide anion scavenging activity in a dose-dependent manner by 74.5% (Prasad 

et al., 2009).  

The phenol compounds identified in the sample employed in the present work could 

be responsible for its anti-oxidant properties observed in this study both in in vitro 

and in vivo animal model. Data from in vitro study demonstrated a significant 

relationship between anti-oxidant properties and total phenolic content in plants, 

suggesting that phenols are the bioactive compounds which contributed to their 

antioxidants capacity (Dudonné et al., 2009). In addition, the high total phenolic 

contents in C. zeylanicum were also suggested to be associated with the high reducing 

power of this spice (Prasad et al., 2009). 

4.2 Effect of ACE on body weight of normal and diabetic 

rats  

The present study was also designed to investigate the beneficial hypoglycaemic 

effects of aqueous C. burmannii extract on the STZ-induced diabetic rat compared to 

age-matched normal rats. Thus, the rats were separated into different sub-groups 

including diabetic and healthy age-match groups, both untreated and treated with two 

different doses of aqueous cinnamon extract (75 mg/Kg and 150 mg/Kg). In this 

study, the rats were treated for 11 weeks.  

 

The results of this study show that all the rats gained weight for the first two weeks 

following adaptation in the laboratory. Following two weeks of diabetes induction by 

STZ, diabetic rats gained less weight compared to normal animals which is in 

agreement with other study (Jia et al., 2009). Over the experimental aqueous 
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cinnamon extract treated period of the 11 weeks, all normal rats gained weight 

compared to weight week zero, at just before injection of STZ. However, cinnamon 

treatment showed no effect on weight gain in normal rats, compared with untreated 

normal rats.  

The diabetic rats treated with aqueous cinnamon extract showed more gained weight 

compared to diabetic untreated rats, but values were not significant when they were 

compared statistically. This result is in agreement with a previous study in which 

aqueous C. zeylanicum extract treatment improved body weight in T1DM compared 

to diabetic untreated rats (Shen et al., 2010). Furthermore, the bioactive compounds 

isolated from ACE seems also to exert an improvement of body weigh, namely 

polyphenolic extract (Jia et al., 2009) and cinnamaldehyde (Babu et al., 2007). Other 

studies demonstrated no significant effect of ACE on body weight, but this occurred 

in T2DM animal model (S. H. Kim et al., 2006a; B Qin, 2003). The current study also 

suggests that the effect with high dose (150 mg/kg) of C. burmannii extract was more 

pronounced compared to low dose (75 mg/kg) in diabetic-treated rats. These results 

clearly show that C. burmannii treatment has some beneficial effects in STZ-induced 

diabetic rats relating to weight gain. The mechanism by which cinnamon extract 

seemed to improve body weights is unclear. However, considering that insulin has an 

anabolic effect (Murray et al., 2009), it is tempting to infer from the data of the 

present study that the bioactive component(s) of aqueous cinnamon extract may exert 

an insulinomimetic effect, namely, improving insulin receptor signalling (Qin et al., 

2012) or repairing the pancreatic beta cell and its mass in diabetic rats (Ping et al., 

2010). By repairing the beta cells and their mass, they in turn can produce newly 

synthesising insulin in the body of the rats (Lotfy et al., 2014). 

4.3 Effect of ACE on food consumption of normal and 

diabetic rats 

The present results have also shown that the normal-treated and untreated rats ate 

more chow (food) at the inception (0-3 weeks) than at the end of the experimental 

protocol, 11 weeks later. Over the experimental protocol, cinnamon treatment 

demonstrated no significant effect on food consumption in normal age-matched rats 

especially at a dose of 75 mg/Kg. However, normal rats treated with high dose of 
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cinnamon (150 mg/kg) seemed to consume more or less similar amount of food 

compared to untreated normal rats. These results are in agreement with a previous 

study, which showed no significant changes in food intake in healthy normal rats 

(Priyanga Ranasinghe et al., 2012). These are surprising results since the data for 

weight gain show a gradual increase in body weight with maximal weight gain at 

week 11. This result may not be due to cinnamon treatment since the untreated normal 

rats ate more or less the same amount of food in a weekly basis over the 11 weeks of 

treatment.  

Regarding, diabetic treated rats (75 and 150 mg/Kg doses), they seemed to eat 

significantly (p<0,05) less chow over the 11 weeks of experimental period compared 

to untreated diabetic rats which gained significantly (p<0,05) more weight. This result 

is also in agreement with other studies which demonstrated that aqueous cinnamon 

extract (600 mg/Kg bw) decreased food intake in T1DM rats (Priyanga Ranasinghe et 

al., 2012). It is interested to note that although the mean of body weight increased, the 

mean of food intake decreased in diabetic rats with cinnamon treatment. This 

probably occurred as a result of the cinnamon enhancing insulin-regulated glucose 

utilization, resulting in cellular glucose uptake by GLUT 4 translocation (Shen et al., 

2010). The mechanism(s) involved in food intake and body weight- gained processes 

may be due to the stimulation of insulin receptor activity to increase tyrosine 

phosphorylation of IRS-1 and increase of IRS-1 mRNA expression (B Qin, 2003; 

Bolin Qin et al., 2012).  

However, one interesting finding in this study is that diabetic treated and untreated 

rats ate more food than control treated and untreated rats, but the diabetic rats gained 

significantly less body weight compared to normal animals. 

4.4 Effect of ACE on blood glucose and OGTT of normal 

and diabetic rats 

The results of this study have also demonstrated that untreated and treated diabetic 

rats had significantly (p<0.05) elevated blood glucose compared to normal rats over 

the experimental period. This was confirmed by measuring fasting blood glucose, 

OGTT and HbA1c in diabetic and normal rats. In normal rats no pronounced 

difference in blood glucose levels between treated and untreated normal rats were 
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observed. On the other hand, both 75 mg/Kg and 150 mg/Kg of cinnamon treatment 

showed a reduction in blood glucose levels over the experimental period of 11 weeks 

compared to untreated control rats. Only at week 3, the blood glucose level of rats 

treated with high dose of cinnamon extract was significantly (p<0.05) lower 

compared to untreated diabetic rats. This result is in agreement with other study 

which verified that aqueous cinnamon extract of other species of cinnamon decreased 

blood glucose level at week 3 compared to untreated diabetic rats (Shen et al., 2010). 

Similarly with other works, after 6 weeks of aqueous cinnamon extract treatment no 

significantly effect in blood glucose levels was observed in treated-diabetic rats 

compared with untreated rats (B Qin, 2003). This result suggests that aqueous C. 

burmannii extract may exert some insulinotropic effect in STZ-induced diabetic rats, 

but this depends on the time after administration. It was more pronounced at an earlier 

stage compared to a later time.  According to previous findings, this plant can 

stimulate an increase in blood insulin levels (Anand et al., 2010) and insulin activity 

(Anderson et al., 2004). This effect can be due to polyphenol compounds presented in 

cinnamon extract (Jia et al., 2009). Once elevated in the body, these polyphenols can 

act like insulin secretagogue or they can increase the beta cell mass in the pancreas. 

Concerning the oral glucose tolerance test (OGTT), the results show that the normal 

untreated rats were able to metabolize glucose in the body. Following an oral glucose 

administration, blood glucose rises within 30 min followed by a reduction after 120 

min. This was more noticeable in normal untreated and treated rats with 150 mg/Kg 

of cinnamon animals. However, in normal treated animals with 75 mg/Kg, blood 

glucose levels increased slightly over the experimental protocol.  

In diabetic rats, the administration of oral glucose solution resulted in blood glucose 

elevation after 30 min. This level remained more or less the same in all 3 sub-groups 

(untreated and treated both 75 mg/Kg and 150 mg/Kg) of diabetic rats over the 

experimental period indicating that the diabetic rats were unable to regulate blood 

glucose metabolism and as such confirmed diabetes in the animals. Moreover, the 

treated diabetic rats show more or less the same trend suggesting that cinnamon was 

unable to regulate blood glucose in the diabetic rats. The results further suggest that 

cinnamon may exert no anti-glycaemic effect in the rats. A study analysing the effect 

of cinnamon bark on oral glucose tolerance test revealed that the mean percentage 

reduction in blood glucose from 30 to 60 min was significantly higher in cinnamon 

administrated group comparing to untreated diabetic group (Priyanga Ranasinghe et 
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al., 2012). The administration of 5 g of C. cassia by capsule form also significantly 

decreased postprandial blood glucose at 30 min after glucose solution administration 

(T P J Solomon & Blannin, 2007). The data from the present study and others have 

clearly demonstrated that cinnamon extract may not directly regulate blood glucose 

level upon administration in rats, but its capsule form or even its phenolic compounds 

administered individually may possess hypoglycaemic properties. Further 

experiments are required to compare the effects of aqueous cinnamon extract and its 

different phenolic compounds, as well as capsule forms of all the compounds and 

cinnamon on hyperglycaemia.  

4.5 Effect of ACE on blood biochemical parameters of 

normal and diabetic rats 

In addition to all the previous parameters, the study also measured blood biochemical 

parameters, such as, levels of blood triglycerides, total cholesterol, LDL, HDL, total 

albumin, creatinine and haemoglobin A1c (HbA1c). The results show that STZ-

induced diabetes was associated with elevated levels of blood triglycerides and there 

enhanced values remained high following treatment with cinnamon compared to 

untreated diabetic rats. These data are in agreement with other studies where aqueous 

cinnamon extract had not significant effect on triglycerides in T1DM (Shen et al., 

2010). However, the main bioactive compounds of cinnamon extract such as 

cinnamaldehyde revealed significantly reduction in triglycerides levels (Babu et al., 

2007). 

The results also show that the levels of LDL increased slightly in diabetic untreated 

and treated rats compared to normal rats. However, these values were not significant 

comparing normal with diabetic rats. Moreover, cinnamon treatment seems to 

improve LDL level in diabetic rats.   

Regarding HDL, cholesterol increased significantly in untreated and treated (150 

mg/kg) diabetic rats compared to untreated and treated normal rats. HDL is a 

protective cholesterol, which is beneficial to the animals. Elevated levels of HDL may 

be a protective mechanism to compensate for the small rise in LDL observed in this 

study (Dullaart et al., 2012). These elevations in LDL and HDL are reflected in the 
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small rise in total cholesterol in diabetic-treated and untreated rats compared to the 

respective normal rats.  

The results of this study revealed that the effect of aqueous cinnamon extract on total 

cholesterol levels is in agreement with others studies. Administration of aqueous C. 

zeylanicum extract in STZ-induced type 1 diabetic rats showed no significant 

alteration in the total cholesterol compared to untreated group (Shen et al., 2010). In 

another study, the administration of cinnamon extract for 30 days reduced 

significantly LDL cholesterol in normal and diabetic rats at the end of experimental 

protocol compared to the beginning of the experimental protocol. This difference was 

not observed in normal and diabetic untreated rats. The HDL cholesterol and TG did 

not change significantly in untreated and treated normal and diabetic rats (Priyanga 

Ranasinghe et al., 2012). Moreover, the administration of cinnamaldehyde to T1DM 

for 45 days significantly improved lipid profile, suggesting that it is the isolated 

bioactive compounds in a higher dose which can exert beneficial effect in T1DM rats 

(Babu et al., 2007). In T2DM rats, aqueous cinnamon extract (S. H. Kim et al., 2006b) 

and cinnamon oil (Ping et al., 2010) can also exert a beneficial action on lipid 

parameters.   

The results of this study have also shown that serum creatinine levels remain more or 

less the same in normal and diabetic untreated and treated rats. Aqueous cinnamon 

extract seems to decrease slightly creatinine levels in diabetic rats compared to 

untreated, which is according to others workers (Shen et al., 2010). This result 

suggests a positive effect of this plant extract on diabetes since serum creatinine level 

is an important kidney function marker that increases with development of diabetic 

nephropathy (Grover et al., 2012). 

The serum albumin levels were significantly (p<0.05) lower in untreated diabetic rats 

compared to normal rats. This is in agreement with a study which verified an 

association between low serum albumin level and diabetes mellitus (Folsom et al., 

1995). However, this work suggests that aqueous cinnamon extract has no effect on 

serum albumin levels on STZ-induced diabetic rats. 

Finally, the results have clearly demonstrated significant increases in blood levels of 

haemoglobin A1c (HbA1c) in both untreated and treated diabetic rats compared to 

respective normal rats. Medical Diabetes Expert Committees (MDEC) reported that 

this is an important parameter to diagnose diabetes. An animal or a person is 

confirmed diabetic when HbA1c is equal to or more than 6.5% (Herman et al., 2010). 
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This study suggests that aqueous cinnamon extract treatment did not change the levels 

of haemoglobin A1c in either normal or diabetic rats. This result is in agreement with 

previous studies which reported that cinnamon treatment had no effect in normal and 

diabetic rats (Priyanga Ranasinghe et al., 2012). However, cinnamaldehyde (20 

mg/kg), a major component of cinnamon significantly decreased HbA1c after 45 days 

of the treatment in T1DM (Babu et al., 2007). The present data from the HbA1c test 

have further corroborated that aqueous cinnamon extract may not possess 

hypoglycaemic properties. Similar data were obtained with fasting glucose test 

presented earlier in this discussion.  

Therefore, its beneficial hypoglycaemic effect is seen only in capsule form or via its 

individual phenolic compound. It is also possible that the body of the animals are 

unable to release the active hypoglycaemic content of aqueous cinnamon extract when 

administered orally. Together, data from HbA1c blood levels have clearly 

demonstrated that the rats were indeed diabetic. Moreover, cinnamon treatment seems 

to improve slightly fasting blood glucose levels but failed to reduce postprandial 

blood glucose level indicating that it is not exerting its protective and beneficial effect 

by regulation blood glucose in the T1DM. 

4.6 Effect of ACE on organs of normal and diabetic rats 

The present study has also attempted to determine if diabetes can result in either 

reduced or elevated organs weights compared to normal and moreover to find out if 

cinnamon treatment can reverse any adverse effects. Five organs and tissues were 

employed including the heart, the pancreas, the liver, the kidney and the soleus 

muscle. 

The results of this study revealed that the weight of the heart of untreated diabetic rats 

decreased compared to age-matched normal rats, but their heart weight to body 

weight ratio was increased in diabetic rats indicating a sign of hypertrophy or 

cardiomyopathy. These results was consistent with previous study (L. Zhang et al., 

2008). According to published data, in pre-diabetic mice the left ventricle remodelling 

presented marked hypertrophy of cardiomyocytes and increased extracellular matrix 

deposition, which together lead to increased heart size. The results of that study 

suggest that the decompensating of ventricle in advanced cardiomyopathy may have 
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origin in fibrotic mechanism (D’Souza et al., 2011). In the present study, treatment 

with cinnamon (150 mg/Kg) demonstrated a slightly decreased of heart weight to 

body weight ratio, suggesting that cinnamon can exert a possible beneficial effect in 

the diabetic rats. The same effect was observed in normal rats, but in this case with 

the 75 mg/Kg dose of cinnamon. 

Regarding pancreas weight, untreated diabetic rats showed a slightly, but not 

significant decrease in pancreas weight compared to age-matched normal rats. These 

results are in agreement with previous studies (Shen et al., 2010). However, an 

unexpected result was obtained since that the pancreas weight to body weight ratio 

showed an increased in diabetic untreated rats compared to untreated normal rats. 

Another study demonstrated that untreated diabetic rats had less pancreatic weight to 

body weight ratio than untreated normal rats (K Couturier et al., 2010). Furthermore, 

cinnamon treatment did not seem to exert any beneficial effect on these parameters, 

which are in agreement with another study (Shen et al., 2010). In a previous study, 

cinnamon was shown to improve pancreatic weight to body weight ratio which may 

be related to the improvement of insulin sensitivity in animals (K Couturier et al., 

2010). However, cinnamon may exert different actions depending on the animal 

condition. In a study by Couturier et al. (2010), they demonstrated a positive effect of 

cinnamon on the weight of the pancreas, but only in animal model of the metabolic 

syndrome.  

The results of this study regarding the weight of the liver show an unexpected finding, 

in which untreated diabetic rats demonstrated a slightly increased weight compared to 

untreated normal rats (Anand et al., 2010; Shen et al., 2010). The same unexpected 

results were observed concerning liver weight to body weight ratio (Anand et al., 

2010). Moreover, data from the present study revealed that cinnamon treatment did 

not increase significantly the weight of this organ in diabetic rats compared with 

untreated diabetic rats. These data are in contrast to those obtained by Shen et al. who 

reported a significant increase liver weight to body weight ratio (Shen et al., 2010).  

The present study has shown an increase in kidney weight of untreated diabetic rats 

compared to untreated normal rats, but this was not significant. This finding is 

consistent with previous studies (Anand et al., 2010; Shen et al., 2010). A similar 

consistent result was observed for kidney weight to body weight ratio, showing an 

increase in untreated diabetic rats compared with untreated normal rats (Anand et al., 

2010). Cinnamon treatment with both doses (75 and 150 mg/Kg) increased kidney 
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weight and kidney weight to body weight ratio in diabetic rats compared to untreated 

diabetic rats. This result is in agreement with another work which verified that 

aqueous cinnamon extract did not increase significantly kidney weight in treated 

animals compared with untreated T1DM rats (Shen et al., 2010). The authors from 

that study suggest that aqueous cinnamon extract may exert a protective effect 

attenuating the organ weight loss in STZ-induced diabetic rats (Shen et al., 2010), as 

already was observed in kidney weight from treated diabetic rats in the current study. 

A decreased of skeletal soleus muscle in untreated diabetic rats was observed 

compared to untreated normal rats (p>0.05). In addition, a significantly decreased was 

observed in untreated diabetic rats compared to treated normal rats (p<0.05), which 

are in agreement with a previous study (Shen et al. 2010). Moreover, cinnamon 

treatment, especially with 75 mg/Kg dose increased the skeletal soleus muscle weight 

to body weight ratio compared with untreated diabetic rats. This result is also in 

agreement with a previous finding (Shen et al., 2010). The possible mechanism can be 

explained through the effect of aqueous cinnamon extract in up-regulated GLUT 4 

translocation, stimulating glucose uptake in muscle in diabetic rats (Shen et al., 2010). 

4.7 Effect of ACE on antioxidant profile of normal and 

diabetic rats 

The results of the present study have shown that untreated diabetic rats contained 

lower anti-oxidant status compared to untreated normal. This physiological 

mechanism can be explained since hyperglycaemia status can lead to free radical 

production thereby inducing an oxidative stress (Ceriello, 2000; Lipinski, 2001).  

There is much evidence in the literature that cinnamon exerts its protective and 

beneficial effects via its anti-oxidant properties by strong scavenging activity of free 

radicals (Su et al., 2007). The present study measured anti-oxidant status in the blood 

of treated rats with both 75 and 150 mg/Kg doses of aqueous cinnamon extract 

following eleven weeks of cinnamon extract treatment. Treatment of both normal and 

diabetic rats over eleven weeks resulted in an elevation of blood antioxidant profile in 

both normal and diabetic rats compared to these respective untreated groups, despite 

not to a significant level. 
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 Cinnamon extract has been demonstrated to have an anti-antioxidant effect in vitro 

showing an important capacity to oxidant protection (Mathew et al., 2006). However, 

no study has been done in in vivo animal model evaluating the total anti-oxidant status 

in serum of diabetic rats. The results of this study showed that cinnamon seems to 

exert a beneficial and protective effect on oxidative status. The possible bioactive 

compound responsible for its antioxidant properties could be the proanthocyanidins, a 

polyphenol compound, which was not quantified in the sample of this study. This 

compound is presented in aqueous cinnamon extract and can exert a beneficial effect 

in the prevention of advanced glycation-end product (AGE) formation (Peng et al., 

2008), which is originated by reactive oxygen species during the hyperglycaemic 

status (Inoguchi et al., 2000; King & Loeken, 2004).  

4.8 Effect of ACE on cation levels of normal and diabetic 

rats  

Diabetes mellitus is a metabolic disorder characterized by dysregulation of 

carbohydrate metabolism. However, occurrence of both T1DM and T2DM can lead to 

a modification in intra and extracellular ionic concentration, which has been involved 

in pathogenesis of diabetes complication (Changrani et al., 2006; Siddiqui et al., 

2014). Micronutrients and trace elements play important roles in the body 

participating in tissue and cellular functions including regulations of cellular 

mechanism and membrane potential, muscular contractions, secretions, mitochondrial 

activity and enzymatic reaction (Changrani et al., 2006). This study investigated the 

macro and trace elements status in serum and different organs and tissues such as 

heart, pancreas, liver, kidney and skeletal soleus muscle of normal and STZ-induced 

T1DM rats. The cations contents analyzed in this study were sodium (Na+), 

magnesium (Mg2+), potassium (K+), calcium (Ca2+), copper (Cu2+), iron (Fe2+) and 

zinc (Zn2+). 

 

The results from the present study demonstrated that no significant changes were 

found in sodium levels in untreated diabetic rats compared to normal rats in different 

organs tissues, such as pancreas, heart, liver and kidney. This result is not consistent 

with previous study especially in pancreas, in which STZ-induced T1DM rats 
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demonstrated a significant reduction of Na+ content compared to untreated normal rats 

(Changrani et al., 2006). However, in this study the results showed a significant 

decrease in Na+ levels in serum from untreated diabetic rats compared to untreated 

normal rats. Moreover, cinnamon does not seem to exert an effect on this cation in the 

different organs and tissues of diabetic and normal rats except in serum in which there 

was a significant decrease in the Na+ levels. 

 

In the present study, the results revealed that untreated STZ-induced T1DM rats had 

significantly less magnesium
 level in left ventricle of the heart compared with 

untreated normal rats. This results is in agreement with a previous study, which 

showed that total Mg2+ content decreased in cardiac tissue and in isolated cardiac 

ventricular myocytes from STZ-injected diabetic rats (Reed et al., 2008). The authors 

demonstrated that insulin treatment for 2 weeks improved Mg2+ homeostasis and its 

transport in cardiac cells, suggesting that the lack of insulin is an important factor to 

impair Mg2+ homeostasis. Accordingly, with a meta-analysis, the intake of Mg2+ is 

inversely associated with risk of type diabetes in a dose-response manner (Dong et al., 

2011).  

This work also revealed that the treatment with both 75 mg/Kg and 150 mg/Kg of 

cinnamon significantly increased the Mg2+ content in left ventricle of the heart of 

diabetic animals compared with untreated diabetic animals. Thus, these results of 

Mg2+ levels in heart suggest that aqueous cinnamon extract, especially with high a 

dose (150 mg/Kg), could contribute to an improvement of Mg2+ homeostasis in 

T1DM rat. Previous findings from animal studies revealed that the lower Mg2+ levels 

could lead to the increase of oxidative stress in cardiovascular tissues (Shah et al., 

2011). This divalent cation is involved in several important biological processes 

including transport, contraction, secretion, regulation of ion channels, modulation of 

oxidative stress and its role in apoptotic process (Wolf et al., 2003). Mg2+ is also a co-

factor of many enzymatic reactions in carbohydrate metabolism, binding to the 

enzyme and modifies its structure or act as catalytic role or binding to the substrate 

and mediate the interaction with the enzyme (Wolf & Trapani, 2008). However, 

cinnamon treatment does not seem to have any significant effect on Mg2+ levels in the 

pancreas, liver and kidney of normal and diabetic rats compared to the heart.  
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Another result of this study revealed that potassium level decreased in STZ-induced 

T1DM rats, but this value was not significant in the left ventricle of the heart 

compared to untreated normal rats. This result can be associated with lower Mg2+ 

levels in heart since a deficit of intracellular Mg2+ can lead to K+ depletion. One of the 

mechanisms that has been described is related to Mg2+ depletion which in turn can 

impair Na+/K+ ATPase, which is responsible to K+ uptake in to cells (C.-L. Huang & 

Kuo, 2007).  

Cinnamon treatment seems to increase significantly the K+ levels in heart of STZ-

induced T1DM rats compared to untreated diabetic rats. According to a study by 

Tammaro et al. (2005), the increase of intracellular Mg2+ concentration at 

physiological conditions can facilitate the modulation of the voltage-dependent K+ 

channel, demonstrating an important function in muscle cell (Tammaro et al., 2005). 

Thus, the results from the present study suggest that the improvement of Mg2+ 

homeostasis though cinnamon treatment could also be beneficial in the regulation of 

K+ levels in heart. However, cinnamon treatment does not seem to have any 

significant effect on K+ content in the pancreas, liver and kidney of normal and 

diabetic rats  

 

The results from the present study revealed that calcium levels did not change 

significantly in heart of untreated diabetic rats compared to untreated normal rats. 

This results are in agreement with a previous study (J. Z. Yu et al., 1997). However, 

the treatment of cinnamon with high doses seems to increase the Ca2+ levels in hearts 

compared to hearts of untreated diabetic rats.  

The content of Ca2+ in pancreas did not change significantly comparing untreated 

diabetic and normal rats. In addition, cinnamon treatment, especially with 75 mg/Kg 

dose revealed a significantly increase of Ca2+ levels in pancreas of normal rats 

compared to untreated normal rats and a slightly increased in diabetic-treated rats 

compared to untreated diabetic rats. However, this result was not in agreement with 

another results from the present study. The influx or increased level of Ca2+ by the 

pancreatic beta cell taken from normal rats treated with 75 mg/Kg should promote 

insulin secretion. However, this was not observed in the physiological experiments of 

this study involving the release of insulin following secretagogue stimulation (see 

discussion later). According with the literature search, Ca2+ is an important 

physiological divalent cation that can stimulate the secretion of insulin in pancreatic 
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beta cell. Recent data suggest that the alteration in Ca2+ levels in pancreatic beta cell 

could interfere in the insulin release (S.-N. Yang et al., 2014). Furthermore, the 

treatment with both 75 mg/Kg and 150 mg/Kg doses of cinnamon does not seem to 

have any effect on Ca2+ levels in the liver and kidney of normal and diabetic rats.  

 

In the present study, the results have shown that the levels of copper in heart of 

untreated diabetic rats decreased (but not significantly) compared to untreated normal 

rats. This results is in accordance with previous results, which have demonstrated that 

in STZ-induced T1DM there was a decrease of Cu2+ levels in the heart (L. Zhang et 

al., 2013). Cardiomyopathy is one of the complications of diabetes that has been 

associated with copper-mediated mechanisms. Deficiency of Cu2+ in the heart has 

been reported to be responsible for the maintenance of the integrity of cardiac 

structure. Recent published data revealed that treatment with copper in diabetic rats 

markedly prevent the cardiac contractile dysfunction (L. Zhang et al., 2013). 

In addition, the treatment with a high dose of (150 mg/Kg) cinnamon significantly 

increased the levels of Cu2+ in heart of diabetic rats compared to untreated diabetic 

rats. Thus, this result suggests that aqueous cinnamon extract treatment could also be 

beneficial in the prevention of cardiomyopathy in STZ-induced T1DM rats, in a dose 

dependent-manner. However, the levels of Cu2+ revealed unexpected or possibly 

interested results in the kidneys of untreated and cinnamon treated diabetic rats. The 

results demonstrated a significant increase in Cu2+ levels. In addition, cinnamon 

treatment had no significant effect in either pancreas, serum or liver of normal and 

diabetic rats. 

 

The results from the present study also provided evidence that the hearts and liver of 

untreated diabetic rats contained less (but not significantly) iron
 levels than hearts and 

liver taken from untreated normal rats. These results are not in agreement with those 

reported by previous workers (Cristina et al., 2014). According to the literature, Fe2+ 

plays a pathogenic role in diabetes and it is responsible for such complication as heart 

failure. The mechanism attributed to this pathogenic role of Fe2+ in the heart is 

oxidative injury leading consequently to tissue injury (Swaminathan et al., 2007). 

Interesting, these are initiating events of pathological progression involving apoptosis, 

fibrosis and cardiac dysfunction. (Gammella et al., 2015)  
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The results also demonstrated that cinnamon treatment, especially with a high dose of 

150 mg/Kg, seems to increase significantly the Fe2+ levels in the hearts of diabetic and 

normal rats compared to untreated diabetic and normal rats, respectively. This result 

suggests that cinnamon treatment with a high dose (150 mg/Kg) may not be of 

beneficial use in diabetes mellitus condition. However, cinnamon treatment, both 75 

mg/Kg and 150 mg/Kg doses, seemed to decrease the Fe2+ levels in the kidney of 

normal rats compared to untreated normal rats. In this case, cinnamon seems to exert 

a protective effect in the prevention of overload of Fe2+ levels in the kidney. 

Moreover, cinnamon treatment resulted in no significant change in Fe2+ levels in 

pancreas of normal and diabetic rats. 

 

The results from the present study have clearly shown that the levels of zinc
 in the 

pancreas of untreated diabetic rats do not change significantly compared the untreated 

normal rats. This finding is not consistent with a previous study, which revealed that 

the pancreas of STZ-induced T1DM rats contains significantly less Zn2+ levels than 

age-matched control rat (Changrani et al., 2006). Although there was no significant 

effect on tissue zinc level in untreated hearts, the treatment of cinnamon with 75 

mg/Kg slightly increased the Zn2+ levels in pancreas of diabetic rats compared to 

untreated diabetic rats. This result could be a possible beneficial effect of cinnamon 

since that Zn2+ has an important role in the synthesis, storage and secretion of insulin 

in pancreatic beta cell (Chausmer, 1998). In addition, cinnamon could prevent the 

Zn2+ deficiency that has been associated with the increased of inflammation and 

oxidative damage process in tissue of diabetic animal model (C. Zhang et al., 2012). 

Moreover, cinnamon seems do not exert an beneficial effect in normal rats after 

treatment with 75 mg/Kg of cinnamon, since that its administration during a period of 

11 weeks revealed a decrease in the level of Zn2+ in heart of normal rats compared to 

untreated normal rats. According to previous study, this cation can exert a beneficial 

role in the diabetic heart though its antioxidant action (Y. Song et al., 2005). 

Furthermore, cinnamon treatment had no effect on zinc levels in serum, liver and 

kidney of diabetic and normal rats. 
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4.9 Effect of ACE on insulin secretion from pancreatic islet 

of normal and diabetic rats   

The results of the present study have demonstrated that untreated diabetic rats 

displayed lower basal insulin secretion levels from pancreatic islet compared to 

untreated normal rats. These results clearly demonstrated that untreated STZ-induced 

type 1 diabetic pancreas produced less insulin than untreated normal rats confirming 

that the animal were indeed diabetic. Others studies which induced diabetes with 

streptozotocin reported similar results (Lotfy et al., 2014). Furthermore, the 

administration of aqueous cinnamon extract with a higher dose (150 mg/Kg) during 

11 weeks showed a dose-dependent increase in insulin secretion from the pancreatic 

beta cell at basal conditions in diabetic rats, compared with untreated diabetic rats. 

The maximum effect of aqueous cinnamon extract was obtained with glucose (16 

mM) stimulation. Previous studies suggested that hypoglycemic effect of cinnamon 

may be due to stimulation of insulin secretion in STZ-induced diabetic rats (Jia et al., 

2009). The increased insulin levels after cinnamon oil administration was also 

suggested to be due to an increase in the levels of insulin secretion (C. Han & Cui, 

2012). The possible bioactive compound responsible for this effect is cinnamic acid, 

which is part of aqueous cinnamon extract employed in this study. Cinnamic acid can 

also stimulate insulin secretion in isolated islets in a concentration-dependent manner 

after glucose stimulation in T2DM rats (Hafizur et al., 2015).  

The possible mechanism(s) of action whereby cinnamon can increase endogenous 

insulin secretion from the pancreas is possible through the stimulation of the 

gastrointestinal hormone, glucagon-like peptide (GLP-1). It is well known that GLP-1 

is an incretin that can stimulate glucose-dependent insulin secretion. In human study, 

the ingestion of 3 g of cinnamon significantly increased the variation of maximum 

concentration of GLP-1 (Hlebowicz et al., 2009). The signalling transduction pathway 

of GLP-1 in the pancreatic cell seems to occur by its binding to G-protein coupled 

receptor, facilitated Gαs subunit activation of the complex. In turn, this activates 

adenylate cyclase leading to the production of cyclic AMP which induces the protein 

kinase A activation and secretion of insulin from the granules in pancreatic beta cell 

(Meloni et al., 2013). In addition, cinnamon can also act as GLP-1 mimetic action 

through the activation of G-protein-coupled receptor in the pancreatic cell. Recently, 
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trans-cinnamic acid, another bioactive compound identified in aqueous cinnamon 

extract employed in this study, was shown to bind to G-protein-coupled receptor and 

consequently the activation of phosphorylation of AMP-activated protein kinase 

(Kopp et al., 2014).  

Another proposed possible mechanism of action of cinnamon, as demonstrated in the 

present study, is that cinnamon can improve the secretion of insulin from the 

pancreatic cells by enhancing protein levels of sirtuin. Sirt 1 can regulate insulin 

secretion in beta cell through the repression of UCP2 transcription in beta cell, 

allowing the secretion of insulin in response to glucose (Bordone et al., 2006). In in 

vitro C6 glioma cell in rats, cinnamon polyphenols demonstrated a significant 

increase of sirt1 protein levels compared to cells control cultures (Bolin Qin et al., 

2014).  

The present study also showed an unexpected result regarding the effect of aqueous 

cinnamon extract on insulin secretion. In normal rats, cinnamon administration (150 

mg/kg bw) significantly decreased the insulin secretion after 11 weeks of treatment 

with the spice compared to untreated normal rats. The possible mechanism for this 

decrease in insulin output is already unclear. However, this results confirmed those of 

a previous study in which the extract of C. Ceylon treatment potentiated the decreased 

of insulin response to meal in normal rats. The authors of that study showed that the 

effect of cinnamon extract was not due to a stimulation of insulin secretion 

(Beejmohun et al., 2014). 

4.10 Effect of ACE on heart fibrosis of normal and diabetic 

rats 

The results of the present study have also revealed that untreated diabetic rats 

developed more fibrosis than untreated normal rats. According to the literature, the 

possible mechanism is due to STZ-induced diabetes leading to different pathological 

changes allowing the development of diabetic cardiomyopathy in rats (D’Souza et al, 

2011). These changes include collagen deposits in the cardiac interstitium and 

consequently hyperplasia of medial layer after 30 days of STZ injection (Manjarrez-

gutiérrez, 2014). Left ventricular heart dysfunction has been associated with this 

cardiac changes of experimental animal models of diabetes (Brom et al., 2010).  
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The administration of aqueous cinnamon extract especially with higher doses (75 and 

150 mg/Kg) decreased fibrosis in the ventricle of the left heart of diabetic rats 

compared to hearts from untreated diabetic rats. Although the results demonstrated in 

this study revealed a marked increase in fibrosis, the data, however, were not 

statistically significant. Treatment with aqueous cinnamon extract seems to have a 

beneficial effect in the prevention/treatment of fibrosis in left ventricle over 11 weeks 

of treatment. However, the experiments have to be prolonged for longer periods of 

treatment to observe significant changes. In the literature no results were found 

regarding the effect of aqueous cinnamon extract either in prevention or treatment of 

fibrosis in left ventricle of heart. For this reason, it is not possible to compare the 

results from this study with others.  

The possible mechanism of action of the protecting effecting of cinnamon in either 

preventing or reducing cardiac fibrosis during DM could be attributed to the 

inhibition of the accumulation of advanced glycation- endproducts (AGE) in the heart 

through its antioxidant properties. A recent work revealed that cinnamon and its 

bioactive compounds, namely procyanidin-B2, could be beneficial in diabetic 

nephropathy in rats, another major complication of this metabolic disease. Cinnamon 

and procyanidin-B2 prevented AGE, thereby ameliorating the renal malfunction in 

diabetic rats (Muthenna et al., 2014). In in vitro study, cinnamon proanthocyanidins 

were shown to prevent the formation of AGE through reactive carbonyl scavengers 

(Peng et al., 2008). This mechanism could also be attributed to the extract employing 

in this study since its antioxidant capacity has also been demonstrated to possess a 

strong anion scavenging activity. 

It is also tempting to suggest that the increase of Mg2+ levels in the left ventricle of 

diabetic treated rats treated with cinnamon may be involved in the development of 

fibrosis in the diabetic heart. According to previous histopathological study, the 

administration of Mg2+ showed a marked reduction in fibrosis in the heart of diabetic 

rats (Patel et al., 2014). In STZ-induced T1DM rats the lack of insulin impairs 

Mg2+homeostasis and transport in cardiac cells (Reed et al., 2008).  
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4.11 Effect of ACE on distribution of alpha and beta 

pancreatic cell of normal and diabetic rats  

The results from the present study have shown that the distribution of insulin positive 

beta cells in pancreas of untreated diabetic rats was different compared to untreated 

normal rats. The diabetic pancreas was shown to have less insulin positive beta cells 

compared to normal rats. This result is in accordance with a previous study (Lotfy et 

al., 2014). Streptozotocin (STZ) is the drug that was used to induce diabetes. This 

diabetogenic agent causes rapid destruction of pancreatic beta cells (Szkudelski, 

2001). In the present study, it is apparent that the STZ treatment did not destroy 

completely all pancreatic beta cells in diabetic rat pancreas, an observation which was 

made by other studies (Lotfy et al., 2014). This is very important because by 

destroying all the beta cells there will be no endogenous insulin and as such, the 

animals could be demised during the course of the experiments. In addition, partially 

damaged beta cells tended to survive and regenerate due to the low level of 

circulating insulin and other endogenous growth factors in the body of the rats. 

In diabetic animals, the administration of aqueous cinnamon extract seems to increase 

the immune-reactivity beta cells. In a previous study employing KK-A mice, it was 

also demonstrated that treatment with cinnamon oil for 35 days increased the area of 

insulin immune-reactive in beta cell of pancreas compared with untreated diabetic rats 

(Ping et al., 2010). In addition, the administration of both C. tamala and C. cassia 

(200 mg/Kg) extract also improved the insulin concentration in the pancreas of rats 

(Chen et al., 2012). Cinnamon and its bioactive compound may exert a protective 

effect by preventing beta cell death. This could be due to its anti-oxidant property. As 

also referred earlier in the results of this study in the antioxidant characterization 

experiments, aqueous cinnamon extract was revealed to possess a strong capacity to 

superoxide anion scavenger. This is one of the radicals originated in the diabetes 

induction by drugs. This free radical can in turn lead to the destruction of beta cell 

(Szkudelski, 2001). On the other hand, if cinnamon is acting as an incretin, as well in 

stimulating insulin secretion either directly or indirectly via GLP-1, the spice could 

probable responsible for stimulation of pancreatic beta cell replication/development 

(Friedrichsen et al., 2006). Thus, the results of this work suggest that cinnamon can 

partly repair the pancreatic beta cells and their mass in diabetic rats. 
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In normal rats, an unexpected result was observed in this study regarding insulin 

secretion. The treatment with cinnamon with both 75 and 150 mg/Kg decreased the 

percentage of positive beta cells in pancreas. This result is not consistent with a 

previous study, in which cinnamon oil treatment partly recovered the beta cells (C. 

Han & Cui, 2012). The possible explanation for this result is the different form of 

administration of cinnamon. According to the study by Han et al. (2012), the liquid 

loadable tables improved the bioavailability and glycaemic metabolism of cinnamon 

(C. Han & Cui, 2012). Another possible explanation is that cinnamon in interfering 

with the antibodies or with the insulin assay. 

 

Regarding to distribution of alpha cell in pancreas, untreated diabetic rats 

demonstrated a higher area of glucagon distribution than untreated normal rats. 

Similar results were found in another study (Lotfy et al., 2014). According to previous 

study, in STZ-induced diabetic rats there is a marked loss of islet beta cell 

accompanied with an expansion of alpha cells as well as a regeneration of alpha cells 

(Z. Li et al., 2000). In this study, the pancreas of diabetic rats treated with both 75 and 

150 mg/Kg produced dose-dependent increase in alpha cell number compared to 

untreated diabetic rats. No reported published data was found regarding the effect of 

cinnamon on the number of positive glucagon cells. For this reason, the mechanism is 

yet unclear. However, the results of the present study suggest that cinnamon can act 

as protective effect on alpha cells by exerting its antioxidant and anti-inflammatory 

properties. Furthermore, in normal rats, the results demonstrated that cinnamon does 

not seem to exert any effect on the percentage of glucagon in the alpha pancreatic 

cells. 

4.12 Effect of cinnamon tea on blood glucose level after 

OGTT of non-diabetic humans 

Since cinnamon has be reported previously to possess beneficial hypoglycaemic 

effects in both animal models and in human studies with conflicting results (see tables 

1.2 to 1.5 in the introduction), it was decided to test the effect of the ingestion of 

cinnamon on blood glucose metabolism employing healthy human subjects 
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undertaking only acute OGGT experiments. The rationale was to determine if both 

rats and human can give more or less the same hypoglycaemic results for the spice. 

 The results of the present study have shown that cinnamon tea (6 g of C. burmannii 

into 100 ml water) can improve postprandial blood glucose (PBG) in healthy non-

diabetic adults. The ingestion of cinnamon tea decreased blood glucose levels at 30 to 

120 minutes after OGTT compared to OGTT alone (without cinnamon tea 

administration). However statistical analysis revealed that there is no interaction 

between the independent and repeated measures factors (p=0.209), which means that 

it is not possible to infer about differences in BGL in different moments. 

Nevertheless, these findings are not in close agreement with previous studies where 

cinnamon powder was demonstrated to reduce significantly PBG after 30 min of 

OGTT (Hlebowicz et al., 2007; Magistrelli & Chezem, 2012; T P J Solomon & 

Blannin, 2007). The effect of aqueous cinnamon extract at 120 min in this study 

seemed to exert similar results compared with other published data (Hlebowicz et al., 

2007; T P J Solomon & Blannin, 2007). These differences were observed in several 

studies and they could be attributed to the different cinnamon preparations employed 

in the studies, including cinnamon tea, cinnamon powder, capsule or its individual 

component.  

The results also show that the area under the curve for glycaemia demonstrated a 

large decrease after OGTT following cinnamon tea ingestion compared to OGTT 

alone between 0 and 120 min. The value was close to significance. In their study, 

Beejmohum et al. (2014) showed that administration of 6 g of cinnamon significantly 

decreased AUC between 0 and 60 min after OGTT in healthy subjects (Beejmohun et 

al., 2014). Although previous studies demonstrated that 3 g of cinnamon powder did 

not reduce significantly Cmáx and ∆Cmáx BGL (Hlebowicz et al., 2009), the results 

from the present study have revealed that cinnamon tea, after OGTT, significantly 

reduced Cmáx (p = 0.040) and ∆Cmáx (p = 0.029) compared with OGTT without 

cinnamon tea. This effect may be due to the concentration of cinnamon employed in 

this study compared with the other study. This heterogeneous results on glycaemia, 

also demonstrated in a meta-analysis review (Allen et al., 2013), could be attributed to 

variations in doses, species and formulation (cinnamon tea, powder or capsule) or 

study design employed in different studies.  

The possible mechanisms of actions for the hypoglycaemic effect of this spice has 

been postulated or suggested by several authors previously. These include reducing 
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gastric empting (Hlebowicz et al., 2007), insulin-mimetic action (Cao et al., 2007; 

Bolin Qin et al., 2012), which can lead cellular glucose uptake (Shen et al., 2010); and 

reducing intestinal glycosidase activity. This effect on enzyme can lead to a decrease 

in the breakdown of dissacaridases into glucose, allowing a slow absorption of 

glucose and reducing PBG level (S. H. Kim et al., 2006a).  

The hypoglycaemic effect of cinnamon observed in the present study could also be 

attributed to the phenolic content of C. burmannii tea demonstrated in the present 

study. According to literature, the molecular mechanism(s) of action of cinnamon 

polyphenols include a number of processes including an increase of insulin receptor-β 

protein in adipocytes suggesting act beneficially in insulin signalling (Cao et al., 

2007) as well as others.  

In healthy animals and healthy human subjects, cinnamon has been reported to act 

beneficially in hyperglycaemia. The administration of C. cassia and C. tamala 

extracts (200 mg/Kg bw) once daily significantly reduced the blood glucose AUC for 

OGTT in animals (Chen et al., 2012). In healthy subjects, the ingestion of 6 g of 

cinnamon powder to a meal significantly decreased post-prandial BGL (Magistrelli & 

Chezem, 2012). However, lower doses of cinnamon powder (1 or 3 g) did not affect 

glycaemia (Hlebowicz et al., 2009). Moreover, a dose of 5 g of cinnamon capsule also 

resulted in a improvement of glucose response on OGTT (13%), which was not 

observed with 3 g of cinnamon capsule (Thomas P J Solomon & Blannin, 2009). 

These hypoglycaemic effects demonstrated by cinnamon in animal and human 

healthy subjects has also been demonstrated in DM. The bioactive constituents of 

aqueous C. burmannii extract identified in the sample employed in the present study 

could be responsible for its benefit properties. Cinnamaldehyde, a majority compound 

(23.9 %) found in aqueous C. burmannii extract demonstrated to improved fasting 

blood glucose levels and improved hyper-insulinemia (Babu et al., 2007). Another 

component is cinnamic acid, which is also part of aqueous C. burmannii extract (3.7 

%). Cinnamic acid can also stimulate insulin secretion in isolated islets after glucose 

stimulation in T2DM animals (Hafizur et al., 2015).  
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4.13 Proposed mechanism(s) of action of ACE 

The schematic model in the figure 4.1 summarizes the main mechanism(s) of actions 

that may occur in DM at least in cardiac cell leading to apoptosis, cardiac 

hypertrophy, cardiomyopathy and fibrosis.  The sequence of mechanisms is described 

in the figure. Moreover, the results obtained in this study on the heart suggest the 

potential beneficial effects of cinnamon in the cardiac cell. DM is characterized by the 

destruction of pancreatic islets leading to hyperglycaemia (Banting et al., 1991). This 

disorder leads to a number long-term complications in different organs (subsequently, 

end–organ failure) (Fowler, 2008). Cardiomyopathy is one of the complications that 

can cause cardiac fibrotic process, apoptosis and then demodulation of the 

myocardium tissue (Asbun & Villarreal, 2006; Brom et al., 2010). 

The high blood glucose levels has been reported to be associated with the activation 

of NADPH oxidase enzyme, an enzyme presented in the membrane of the cell. In turn 

the NADPH oxidase activation leads to the generation of reactive oxygen species 

(ROS) in the cardiac cell (H. B. Lee, 2003), which contributed to the development of 

cardiac hypertrophy, fibrosis and cardiomyopathy (Seddon et al., 2007). These ROS 

can also activate signalling pathways in the cell of diabetic hearts including the 

activation of protein kinase C (PKCα/β) (Way et al., 2002). The PKCα/β stimulates a 

sequence in the collagen promoter yielding to collagen production and consequently 

fibrosis and hypertrophy (X. Song et al., 2015). Furthermore, the activation of PKCα/β 

also induces the phosphorylation of a number of proteins involved in cardiac 

excitation-contraction coupling and therefore disturbs cellular Ca2+ homeostasis in the 

myocardium. In STZ-induced T1DM rats, the alteration in SERCA transporters leads 

to dysfunctional intracellular Ca2+ signalling/mobilization. These events seem to 

interfere with the effective sequestrations of Ca2+ in sarcoplasmic reticulum (SR) and 

the overload in the cytosol (elevated diastolic calcium) and subsequently impairing 

diastolic dysfunction or relaxation of the heart (Trost et al., 2002). 

Another possible mechanism is related with the intracellular glucose concentration 

increased after uptake of glucose from the blood by GLUT1 transporters. This 

intracellular glucose generated the activation of diacylglycerol (DAG) through the 

alteration of enzymes transcription. DAG can activate the PKCα/β, which can lead to a 

sequence of events including cardiac hypertrophy, cardiomyopathy and fibrosis, as 
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explained earlier (van Baal et al., 2005). In addition, the high glucose concentration in 

the cell could also promote the AGEs production (Nowotny et al., 2015), which can 

lead to the apoptosis in the cardiac cell (Lan et al., 2015). 

Furthermore, the copper deficiency in STZ-induced T1DM rats has been reported to 

promote alterations of heart morphology and functions (Y. Li et al., 2005; S. Zhang et 

al., 2014). This mechanism could also be associated with an increase in oxidative 

stress due the suppression of superoxide dismutase on superoxide anion (O2�
-). This 

events lead to ROS increases in the cell (McCord & Fridovich, 1969). In cardiac 

ventricular of STZ-induced diabetic rats, the results showed a decrease of 

mobilization magnesium (Mg2+) content to the cell (Reed et al., 2008; Tashiro et al., 

2013). This dysfunction of Mg2+ homeostasis can lead to an impairment of the L-Type 

calcium channel voltage-dependent modulation, and then the influx of calcium by the 

cardiac cell (M. Wang & Berlin, 2007).  

This study suggests that aqueous cinnamon extract (ACE) administration could be of 

beneficial use in STZ-induced T1DM rats by regulation of Cu2+ levels in heart, thus 

preventing the cardiomyopathy in diabetic rats. In addition, cinnamon seems to be 

effective as a scavenger of superoxide anion, demonstrated in in vitro study. In turn, 

this could also be of beneficial use cardiomyocytes though the prevention of ROS. 

Histological studies have also demonstrated that ACE can improve the fibrosis 

content in left ventricle of the heart of STZ-induced T1DM rats. The increases of Ca2+ 

level verified in cardiac cell of STZ-induced T1DM rats and this could be also 

contributed to the dysregulation of Ca2+ homeostasis and consequently the induction 

and formation of fibrosis. ACE with high doses revealed an increased of Mg2+ levels 

in ventricular tissue of diabetic rats, improving the Mg2+ homeostasis. This effect 

could contribute to the Ca2+ increases level in the cell by L-Type calcium channel 

voltage-dependent modulation.  
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Figure 4.1: A schematic diagram showing proposed mechanisms of actions a cardiac myocyte of STZ-induced diabetic rats. The various events 

are triggered by diabetes and the proposed diagram also shows the potential beneficial effects of cinnamon. The explanations are given then 

(sequence of events 1-10).  
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Sequence of the events described in the figure 4.1 (1-10) representing the 

summarized mechanism(s) of actions in the cardiac myocyte of diabetic rats: 

 

1. NADPH oxidase enzyme activation by the high blood glucose levels and 

production of reactive oxygen species (ROS) leading to the cardiac hypertrophy, 

fibrosis and cardiomyopathy. 

 

2. ROS induced the activation of PKCα/β, leading to collagen production and 

consequently fibrosis and hypertrophy. 

 

3. PKC induced disturbance of Ca2+ homeostasis by alteration in SERCA 

transporters leading to dysfunctional intracellular Ca2+ signalling.  

 

4. Glucose is taken up by GLUT1 transporters leading to the activation of 

diacylglycerol (DAG) through the alteration of enzymes transcription. 

 

5.  The high glucose concentration also promoted the AGEs production leading to 

the apoptosis in the cell. 

 

6. Copper deficiency could promote superoxide dismutase suppression and 

consequently increased of superoxide anion (O2�
-) leading to elevation of ROS 

and heart morphology and functions modification. 

 

7. Decreased magnesium content in the cell could impair the L-Type calcium 

channel voltage-dependent modulation and consequently the uptake of calcium 

by the cell.  

 

8. In the present study, the results suggested that cinnamon could be benefit in STZ-

induced T1DM rats via the regulation of Cu2+ levels leading to increases in its 

content in heart to prevent the cardiomyopathy in diabetic rats. In addition, 

cinnamon seems to be effective in scavenger of superoxide anion, demonstrated 

in in vitro study, which could also beneficiate in heart cell though the prevention 

of ROS. 
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9. Histological studies demonstrated that cinnamon improved the fibrosis content in 

left heart ventricle of STZ-induced T1DM rats. The increases of Ca2+ level 

verified in cardiac cell of STZ-induced T1DM rats could be contributed to the 

dysregulation of Ca2+ homeostasis and consequently leading to fibrosis 

progression. 

 

10. Cinnamon also could also increase cellular Mg2+ content in ventricular tissue of 

diabetic rats, thereby improving Mg2+ homeostasis. This effect could contribute to 

an increase in cytosolic Ca2+ level in the cell by L-Type calcium channel voltage-

dependent modulation. 
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The schematic model in the figure 4.2 summarizes the main mechanism(s) of actions 

that may occur in pancreatic islet β-cell of STZ-induced T1DM leading to impaired 

insulin production (Akbarzadeh et al., 2007). The sequence of mechanisms described 

below is identified in figure 4.2. Moreover, figure also represented the results 

obtained in this study, suggesting the potential beneficial effects of cinnamon in the 

pancreatic β-cell. The biochemical mechanisms occurring in pancreatic β-cell damage 

following T1DM-induction include pro-inflammatory cytokines activation and free 

radicals action (Jun et al., 1999; Maedler et al., 2001).  

The macrophages and cytotoxic T cell (CD8+) activate the destruction of islet β-cell 

by inflammatory mediators such as cytokines (IL-1, TNFα, TNFβ and IFNγ), which 

bind to a specific receptor in β-cell activating different pathways (Rabinovitch & 

Suarez-pinzon, 1998). In addition, the macrophages can also stimulate the free 

radicals production namely, O2
�-, H2O2 and OH�, which damage the cellular 

membrane of pancreatic β-cell and they can also cause further damaging process into 

the cell through H2O2 (Rabinovitch & Suarez-pinzon, 1998). The free radicals, 

together with the actions of cytokines can lead to protein damage and DNA 

fragmentation and consequently mitochondrial damage (Maechler et al., 1999). The 

dysfunction of the mitochondrial resulted in an impairment of β-cell leading to 

cellular death. Moreover, these events also promote the decrease of ATP levels in the 

cell, leading to impaired insulin secretion (Maechler et al., 1999).  

In hyperglycaemic status, the blood glucose is taken up by the pancreatic β-cell by 

GLUT2 transporters and in turn the glucose is phosphorylated by glucokinase (Postic 

et al., 1999). Thereafter, the metabolism of glucose leads to an increase in the 

ATP/ADP ratio promoting closure of the ATP-sensitive K+ channel and consequently 

to the depolarization of the cell membrane (Zou et al., 2014). The membrane 

depolarization is associated with the promotion of calcium influx into the cell by 

voltage-gated Ca2+ channel, release of intracellular calcium and consequently the 

exocytosis of insulin and its secretion into the blood (Zou et al., 2014). However, the 

excess of glucose concentration in the β-cell can develop toxic effects through the 

accumulation of reactive oxygen species (ROS) originated by mitochondrial 

dysfunction. These ROS, in excess and over time, can lead to oxidative stress, which 

causes impairment to the insulin gene expression and consequently a decreases in 

insulin synthesis and content and subsequently, reduced insulin secretion 

(Arcidiacono et al., 2015; Federici et al., 2001; Robertson, 2004). These event 
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pathways seem to occur through loss of PDX-1 gene expression and MafA protein, 

two essential transcription factors of insulin production (Arcidiacono et al., 2015). 

This study suggests that aqueous cinnamon extract (ACE) administration could be 

beneficial in STZ-induced T1DM rats by improving Ca2+ levels in pancreas thereby 

preventing the impairment of insulin secretion from the pancreas of Type 1 diabetic 

rats. The results of the present study clearly have demonstrated that although, not 

significantly, ACE can improve insulin secretion in STZ-induced T1DM rats. In 

addition, cinnamon seems to be effective as a scavenger of superoxide anion, 

demonstrated in in vitro study, which could also be of beneficial use in pancreatic β-

cell though the prevention of ROS production. Histological studies demonstrated that 

ACE also improved the insulin content in β-cell. The high potential antioxidant 

properties of ACE could contribute to this beneficial effect (C. Zhang et al., 2012). 

Moreover, the increase of Zn2+ levels in pancreas of diabetic rats could also be of 

some benefit in the elevation of insulin content, since that Zn2+ has an important role 

in the synthesis and storage of insulin (Chausmer, 1998).  
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Figure 4.2: A schematic diagram showing proposed mechanisms of action in the pancreatic β-cell of diabetic rats triggered by diabetes and the 

potential beneficial effects of cinnamon. The explanations are given then (sequence of events 1-15).  
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Sequence of the events described in the figure 4.2 (1-15) representing the 

summarized mechanism of action in the pancreatic β-cell of diabetic rats: 

 

1. Macrophages stimulate free radicals production (O2
�-, H2O2 and OH�) leading to 

cellular membrane damage.  

 

2. At the same time, the macrophages and cytotoxic T cell (CD8+) activate 

cytokines inflammatory, IL-1, TNFα, TNFβ and IFNγ, which also bind to specific 

receptor in β-cell to cause further damage. 

 

3. The H2O2 diffuse intra-cellularly to the cell and O2
�- is activated into the cell by 

signalling pathways of cytokines.  

 

4. These intracellular radicals lead to protein damage and DNA fragmentation and 

consequently mitochondrial dysfunction. 

 

5. The mitochondrial dysfunction impaired β-cell leading to cellular death. 

 

6. The mitochondrial damage also promotes the decrease of ATP in the cell, leading 

to impaired insulin secretion.  

 

7. Glucose is taken up by GLUT 2 transporters and its phosphorylation by 

glucokinase leading to ATP elevation. 

 

8. The ATP/ADP ratio elevation induces the ATP-sensitive K+ channel closure and 

consequently to the depolarization of the membrane and opening of voltage-gated 

Ca2+ channel.  

 

9. Exocytosis of insulin-containing granules.  

 

10. The excess of glucose concentration in the β-cell promotes the ROS production 

by mitochondrial damage. 
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11. These ROS in excess and over time lead to impaired insulin gene expression by 

loss of PDX-1 gene expression and MafA protein. 

  

12. Decreases of insulin content by impaired of insulin gene expression. 

 

13. This study suggests that cinnamon administration could be benefit in STZ-

induced T1DM rats by improving Ca2+ levels in pancreas leading to increase of 

insulin secretion in diabetic rats.  

 

14. In addition, cinnamon seems to be effective as a scavenger of superoxide anion, 

demonstrated in in vitro study, which could also beneficiate in pancreatic β-cell 

though the prevention of ROS production.  

 

15. Histological studies demonstrated that ACE improved the insulin content in β-

cell, which could be attributed by potential antioxidant properties of ACE. 

Moreover, the increase of Zn2+ levels in pancreas of diabetic rats verified in this 

study could also beneficiate in the elevation of insulin content. 

 

In summary, the results of this study have clearly demonstrated the potential 

beneficial use of cinnamon in preventing end-organ failure, at least in the heart and 

pancreas. It may also have the same beneficial use(s) in such other organs as the 

kidneys, the brain, the eyes and in the nerves in the body. However experiments have 

to be do it. 
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4.14 Conclusion 

From the results of the present study, it can be concluded that the treatment of 

diabetic rats with aqueous cinnamon extract can result in improvements in body 

weight and BGL compared to untreated animals. In contrast, cinnamon did not seem 

to exert any beneficial effect on biochemical parameters in both normal and diabetic 

rats. The administration of cinnamon for 11 weeks also demonstrated a beneficial 

effect in its antioxidant status in both normal and diabetic animals.  

The results obtained from the measurements of cations content in serum and the 

different organs show that in serum, cinnamon treatment significantly decreased Na+, 

Ca2+ and K+ in normal rats and decrease Na+, Ca2+ and Mg2+ in diabetic rats (p<0.05). 

In heart, cinnamon, with both doses, had significant effect (p<0.05) in normal and 

diabetic rats, namely increases in Mg2+, K+, Ca2+ and Fe. In liver, kidney and 

pancreas, cinnamon treatment seems to have no significant effect (p>0.05) on the 

most of cations analysed from these tissues. 

Treatment of cinnamon with both 75 mg/Kg and 150 mg/kg seems to stimulate the 

production/proliferation of pancreatic beta cell and the secretion of insulin from the 

pancreas in diabetic rats. In normal rats, cinnamon treatment decreased insulin 

secretion from the pancreatic segments incubated with secretagogues. Similarly, 

cinnamon improved the distribution of alpha pancreatic cells in isolated pancreatic 

fragments in a dose-dependent manner in diabetic rats, which was not observed in 

normal rats. The results also suggest a possible positive influence of cinnamon on the 

reduction or prevention of fibrosis in the hearts of diabetic animals compared to age-

matched control rats.  

Furthermore, data from the human study suggest that ingestion of cinnamon tea seems 

to exert a hypoglycaemic benefit effect in healthy non-diabetic subjects during 

postprandial period. The high phenolic compound contents and anti-oxidant capacity 

in aqueous cinnamon extract employed in the present study may contribute to these 

health benefits.  

Together, the results of this study have demonstrated some beneficial effects of 

aqueous cinnamon in both rats and human as discussed in the proposed mechanisms 

of action. However, further studies are required to unravel further its precise 
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mechanism (s) of action(s) not only with aqueous cinnamon extract but also with its 

powder, its capsule and its different purified components for comparison. 

4.15 Scope for future studies 

This work should be continued for further studies investigation a number of other 

parameters to unravel how this plant-based medicine can be used effectively and 

successfully in the treatment of DM and other diseases. These new investigation 

should employ scientific techniques such as microscopy, cell culture and molecular 

and gene expression studies to better understood the mechanism(s) of action of this 

traditional spices in the treatment of DM and other diseases. Several studies can be 

employed in the future: 

 

A. Do long term aqueous cinnamon extract, cinnamon powder, cinnamon capsules 

and the different components of cinnamon administration over a period of 6-12 

months, employing different doses and repeat the various measurements similar 

to those employed in this study. 

B. Investigate the effect of cinnamon on glucose uptake in L6 skeletal muscle cell 

line comparing the uptake with exogenous insulin in the absence and presence of 

a tyrosine kinase inhibitor. 

C. Investigate the effect of cinnamon and its extracted compounds individually on 

glucose absorption in enterocyte. 

D. Investigate the action of cinnamon and its extracted compounds individually on 

the stimulation of insulin gene expression in the pancreas. 

E. Investigate the anti-oxidant defense system in pancreatic tissues with cinnamon 

treatment. 

F. Investigate the effect of cinnamon on the stimulation of GLP-1 gene expression. 
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The following tables represent the results (mean ± SEM) in animal study regarding to blood 

glucose, body weight, food intake, OGTT-blood glucose, antioxidant status, biochemical 

parameters, insulin secretion from pancreatic β cell, % of positive pancreatic cells, fibrosis in 

the heart and the cations levels in serum, heart, liver, kidney and pancreas. In addition the 

results  (mean ± SEM) in human study is also represented regarding to blood glucose in 

human study. 

 
Table A1.1: Table showing mean±SEM values for blood glucose level over the experimental period. 

 
*p < 0.05, for diabetic treated group compared to diabetic untreated group 
 
 
Table A1.2: Table showing mean±SEM values for body weight over the experimental period. 

 
*p < 0.05, for diabetic treated group compared to diabetic untreated group 
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Table A1.3: Table showing mean±SEM values for food intake over the experimental period. 

 
*p < 0.05, for diabetic treated group compared to diabetic untreated group 
 
 
Table A1.4: Table showing mean±SEM values for OGTT-blood glucose level over the experimental 
period. 

 
 
 
Table A1.5: Table showing mean±SEM values for antioxidant status over the experimental period. 
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Table A1.6: Table showing mean±SEM values for biochemical parameters over the experimental 
period. 

*p < 0.05, in the same row values sharing a common superscript letters are significantly different.  
 
 
Table A1.7: Table showing mean±SEM values for insulin secretion from pancreatic β cell tissue in 

vitro over the experimental period. 

*p < 0.05, for normal treated group compared to normal untreated group 
 
 
Table A1.8: Table showing mean±SEM values for % of positive pancreatic cells over the experimental 
period. 
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Table A1.9: Table showing mean±SEM values for fibrosis content over the experimental period. 

 
 
 
Table A1.10: Table showing mean±SEM values for cations levels in serum over the experimental 
period. 

 
*p < 0.05, in the same row values sharing a common superscript letters are significantly different. 
 
 
Table A1.11: Table showing mean±SEM values for cations levels in heart over the experimental 
period. 

 
*p < 0.05, in the same row values sharing a common superscript letters are significantly different. 
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Table A1.12: Table showing mean±SEM values for cations levels in liver over the experimental period. 

 
*p < 0.05, in the same row values sharing a common superscript letters are significantly different. 
 
 
Table A1.13: Table showing mean±SEM values for cations levels in kidney over the experimental 
period. 

 
*p < 0.05, in the same row values sharing a common superscript letters are significantly different. 
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Table A1.14: Table showing mean±SEM values for cations levels in pancreas over the experimental 
period. 

 
*p < 0.05, in the same row values sharing a common superscript letters are significantly different. 
 
 
 
Table A1.15: Table showing mean±SEM values for incremental area under the curve (AUCi), 
maximum concentration (Cmax) and variation of maximum concentration (∆Cmax) blood glucose levels 
levels in serum over the experimental period. 

 
*p < 0.05, for cinnamon group compared to control group 
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