Screening for Barrett’s Cancer:
Who, How and Why?

Janusz Jankowski
Professor of Medicine
Pro Vice Chancellor Research
Complex Genetic interplay versus unclear Environment

Reductionism strongly reflects a certain perspective on causality

Transdisciplinary/Holistic system needed where causality unclear

Brit Med J Jankowski et al, 2010
Making sense of Barrett's oesophagus; doing more for the few

BOB CAT: a Large-Scale Review and Delphi Consensus for Management of Barrett’s Esophagus With No Dysplasia, Indefinite for, or Low-Grade Dysplasia

Bennett C et al, Am J Gastroenterol. 2015;110:662-682

ACG Clinical Guideline: Diagnosis and Management of Barrett’s Esophagus

Nicholas J. Shaheen, MD, MPH, FACP¹, Gary W. Falk, MD, MS, FACP², Prasad G. Iyer, MD, MSc, FACP³ and Lauren Gerson, MD, MSc, FACP⁴

Am J Gastroenterol advance online publication, 3 November 2015; doi:10.1038/ajg.2015.322

What is screening?

Screening means testing people for early stages of a disease before they have any symptoms.
For screening to be useful the tests
• need to be reliable at picking up cancers
• need to be simple and quick
• shouldn’t show that someone has cancer when they don’t (false positive results)
• need to not cause any harm

NICE accredited
www.nice.org.uk/accreditation
b Risk factors for escalation and de-escalation.

General population
- Males at higher risk aged >60 year old with uncontrolled GERD symptoms for >10 years

Barrett's esophagus
- Higher risk groups (including age 50 years or older, white race, male sex, central obesity and symptoms)

Indefinite for dysplasia
- IND is an interim diagnosis only

Lower risk LGD
- Lower risk LGD: present on only one occasion, or LGD absent after 2 consecutive follow up endoscopies

Higher risk LGD
- Higher risk LGD: long segment, multifocal, persistent, visible lesion

Who?
Summary statements

What are the risk factors for BE?

1. The known risk factors for the presence of BE include the following:
 a. Chronic (>5 years) GERD symptoms
 b. Advancing age (>50 years)
 c. Male gender
 d. Tobacco usage
 e. Central obesity
 f. Caucasian race

2. Alcohol consumption does not increase risk of BE. Wine drinking may be a protective factor.

3. BE is more common in first-degree relatives of subjects with known BE.

What are the risk factors associated with dysplasia and development of EAC in patients with BE?

1. The known risk factors for the development of neoplasia in BE include:
 a. Advancing age
 b. Increasing length of BE
 c. Central obesity
 d. Tobacco usage
 e. Lack of nonsteroidal anti-inflammatory agent use
 f. Lack of PPI use
 g. Lack of statin use.

What is the cancer risk in BE, based on degree of dysplasia?

1. The risk of cancer progression for patients with nondysplastic is \(\sim 0.2\text{--}0.5\% \) per year.
2. For patients with low-grade dysplasia (LGD) the annual risk of progression to cancer is \(\sim 0.7\% \) per year.
3. For patients with high-grade dysplasia (HGD), the annual risk of neoplastic progression is \(\sim 7\% \) per year.
4. The majority (\(>90\% \)) of patients diagnosed with BE die of causes other than EAC.
Pre-Endoscopy - Screening

Recommendation

We suggest endoscopic screening to detect BE (and for the investigation of dyspepsia) in men >60 years old with prolonged GERD (≥10 years) symptoms.
Conditional recommendation, very low-quality evidence.

BOSS Trial (CI H Barr) awaited in 2021 for efficacy of surveillance
13. Patients should only undergo surveillance after adequate counseling regarding risks and benefits of surveillance (strong recommendation, very low level of evidence).

14. Surveillance should be performed with high-definition/high-resolution white light endoscopy (strong recommendation, low level of evidence).

15. Routine use of advanced imaging techniques other than electronic chromoendoscopy is not recommended for endoscopic surveillance at this time (conditional recommendation, very low level of evidence).

16. Endoscopic surveillance should employ four-quadrant biopsies at 2 cm intervals in patients without dysplasia and 1 cm intervals in patients with prior dysplasia (strong recommendation, low level of evidence).

17. Mucosal abnormalities should be sampled separately, preferably with endoscopic mucosal resection (EMR). Inability to perform EMR in the setting of BE with nodularity should lead to referral to a tertiary care center (strong recommendation, low level of evidence).

18. Biopsies should not be obtained in mucosal areas with endoscopic evidence of erosive esophagitis until after intensification of antireflux therapy to induce mucosal healing (strong recommendation, very low level of evidence).

19. For BE patients with dysplasia of any grade, review by two pathologists, at least one of whom has specialized expertise in gastrointestinal (GI) pathology, is warranted because of interobserver variability in the interpretation of dysplasia (strong recommendation, moderate level of evidence).

20. Use of additional biomarkers for risk stratification of patients with BE is currently not recommended (strong recommendation, low level of evidence).
Recommendations

1. BE should be diagnosed when there is extension of salmon-colored mucosa into the tubular esophagus extending ≥1cm proximal to the gastroesophageal junction (GEJ) with biopsy confirmation of IM (strong recommendation, low level of evidence).
2. Endoscopic biopsy should not be performed in the presence of a normal Z line or a Z line with <1cm of variability (strong recommendation, low level of evidence).
3. In the presence of BE, the endoscopist should describe the extent of metaplastic change including circumferential and maximal segment length using the Prague classification (conditional recommendation, low level of evidence).
4. The location of the diaphragmatic hiatus, GEJ, and squamocolumnar junction should be reported in the endoscopy report (conditional recommendation, low level of evidence).
5. In patients with suspected BE, at least 8 random biopsies should be obtained to maximize the yield of IM on histology. In patients with short (1–2cm) segments of suspected BE in whom 8 biopsies may be unobtainable, at least 4 biopsies per cm of circumferential BE, and one biopsy per cm in tongues of BE, should be obtained (conditional recommendation, low level of evidence).
6. In patients with suspected BE and lack of IM on histology, a repeat endoscopy should be considered in 1–2 years of time to rule out BE (conditional recommendation, very low level of evidence).
Intervention steps for escalation and de-escalation.

GENERAL POPULATION
Endoscopic screening only in higher risk group.

BARRETT'S ESOPHAGUS
Endoscopic surveillance in higher risk groups, unless life expectancy <5 years.
If visible lesion, ER for diagnosis then appropriate ablative therapy.

INDEFINITE FOR DYSPONASIA
Close follow up of IND, with short intervals between surveillance (within 1 year), and careful biopsy sampling, to detect prevalent neoplasia.
Increase acid suppressive therapy.

LOWER RISK LGD DE-ESCALATE
LGD on a single occasion is managed with continued (intensive, 6–12 month) surveillance.
Confirmed absence of LGD after two consecutive endoscopies can revert to routine surveillance.

HIGHER RISK LGD ESCALATE
Ablative therapy with follow up.
If visible lesion: ER (+ ablative therapy) + follow up.
Autonomic nervous function in upper gastrointestinal endoscopy: a prospective randomized comparison between transnasal and oral procedures

Akihiro Mori¹, Noritsugu Ohashi¹, Hideharu Tatebe¹, Takako Maruyama¹, Hiroshi Inoue¹, Shoudou Takegoshi¹, Toshiharu Kato², and Masataka Okuno¹

¹Department of Gastroenterology, Inuyama Chuo Hospital, Goromuru, Inuyama, Aichi 484-8511, Japan
²Department of Laboratory Medicine, Inuyama Chuo Hospital, Aichi, Japan

Unsedated transnasal EGD

1. Feasibility
2. Safety
3. Accuracy & quality of biopsies
4. Tolerance
5. 2 way or 4 way angulations
6. Self-training
7. Cost savings
Screening to detect BE

7. Endoscopic screening for BE is not justified in the general population. STATEMENT ENDORSED, overall agreement 94.2%. A+, 58.7%; A, 35.5%; U, 2.5%; D, 1.7%; D+, 1.7%.
Table 1. GI disorders for which clinical genetic testing is currently available

<table>
<thead>
<tr>
<th>Class</th>
<th>Condition</th>
<th>Gene(s)</th>
<th>Inheritance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colon cancer (polyposis syndromes)</td>
<td>Familial adenomatous polyposis (FAP)</td>
<td>APC</td>
<td>AD</td>
</tr>
<tr>
<td></td>
<td>Gardner syndrome</td>
<td>APC</td>
<td>AD</td>
</tr>
<tr>
<td></td>
<td>Attenuated FAP (AFAP)</td>
<td>APC</td>
<td>AD</td>
</tr>
<tr>
<td></td>
<td>MYH-associated polyposis (MAP)</td>
<td>MUTYH</td>
<td>AR</td>
</tr>
<tr>
<td></td>
<td>Polymerase proofreading-associated polyposis (PPAP)</td>
<td>POLD1, POLE</td>
<td>AD</td>
</tr>
<tr>
<td></td>
<td>Peutz–Jeghers syndrome</td>
<td>STK11</td>
<td>AD</td>
</tr>
<tr>
<td></td>
<td>Cowden syndrome</td>
<td>PTEN</td>
<td>AD</td>
</tr>
<tr>
<td></td>
<td>Bannayan–Riley–Ruvalcaba</td>
<td>PTEN</td>
<td>AD</td>
</tr>
<tr>
<td></td>
<td>Juvenile polyposis</td>
<td>BMPR1A, SMAD4</td>
<td>AD</td>
</tr>
<tr>
<td>Colon cancer (nonpolyposis)</td>
<td>Lynch syndrome</td>
<td>MLH1, MSH2, MSH6, PMS2, EPCAM</td>
<td>AD</td>
</tr>
<tr>
<td>Gastric cancer</td>
<td>Hereditary diffuse gastric cancer</td>
<td>CDH1</td>
<td>AD</td>
</tr>
<tr>
<td>Pancreatic cancer</td>
<td>Hereditary pancreatic cancer</td>
<td>BRCA1&2, ATM, CDKN2A, PALB2, STK11, Lynch syndrome genes</td>
<td>AD</td>
</tr>
<tr>
<td>Pancreatic endocrine tumors</td>
<td>MEN-1 syndrome</td>
<td>MEN1</td>
<td>AD</td>
</tr>
<tr>
<td>Inflammatory bowel disease</td>
<td>Crohn’s disease</td>
<td>Multiple, including ATG16L1, NKK2.3, STAT3, IL-10, NOD2</td>
<td>Complex</td>
</tr>
<tr>
<td>Inflammatory bowel disease</td>
<td>Ulcerative colitis</td>
<td>Multiple, including NKK2.3, STAT3, ECM1, IL-10</td>
<td>Complex (CFTR)</td>
</tr>
<tr>
<td>Pancreatitis</td>
<td>Hereditary pancreatitis</td>
<td>PRSS1, CFTR, SPINK1</td>
<td>AR, PRSS1</td>
</tr>
<tr>
<td>Celiac disease</td>
<td>Celiac disease</td>
<td>Haplotypes HLA-DQ2, HLA-DQ8</td>
<td>AR</td>
</tr>
<tr>
<td>Metabolic liver disease</td>
<td>Wilson disease</td>
<td>ATP7B</td>
<td>AR</td>
</tr>
<tr>
<td></td>
<td>Alpha-1-antitrypsin deficiency</td>
<td>A1AT</td>
<td>AR</td>
</tr>
<tr>
<td></td>
<td>Hereditary hemochromatosis</td>
<td>HFE, TFR2, SLC40A1</td>
<td>AR (HFE, TFR2)</td>
</tr>
<tr>
<td>Hyperbilirubinemas</td>
<td>Crigler–Najjar syndrome, type II</td>
<td>UGT1A1</td>
<td>AR</td>
</tr>
<tr>
<td></td>
<td>Gilbert’s syndrome</td>
<td>UGT1A1</td>
<td>AR</td>
</tr>
<tr>
<td></td>
<td>Dubin–Johnson syndrome</td>
<td>ABC2</td>
<td>AR</td>
</tr>
<tr>
<td></td>
<td>Rotor syndrome</td>
<td>SLCO1B1, SLCO1B3</td>
<td>AR</td>
</tr>
<tr>
<td>Auto-inflammatory disorders</td>
<td>Familial Mediterranean fever</td>
<td>MEFV</td>
<td>AR</td>
</tr>
<tr>
<td>GIST</td>
<td>Hereditary GIST</td>
<td>CKIT</td>
<td>AD</td>
</tr>
<tr>
<td>Other</td>
<td>Autosomal dominant polycystic liver disease</td>
<td>LRP5, PRKCSH, SEC63</td>
<td>AD</td>
</tr>
<tr>
<td></td>
<td>Hirschsprung disease</td>
<td>Multiple</td>
<td>AD</td>
</tr>
<tr>
<td></td>
<td>Acute porphyrias</td>
<td>PBGD, ALAD, CPOX, PPOX</td>
<td>AD (PBGD, CPOX, PPOX)</td>
</tr>
</tbody>
</table>

AD, autosomal dominant; AR, autosomal recessive.
<table>
<thead>
<tr>
<th>GI Disease</th>
<th>No. SNPs currently identified</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBD</td>
<td>~ 165</td>
</tr>
<tr>
<td>Colorectal Cancer</td>
<td>~ 30</td>
</tr>
<tr>
<td>Coeliac Disease</td>
<td>~ 20</td>
</tr>
<tr>
<td>Barrett’s Oesophagus</td>
<td>16</td>
</tr>
<tr>
<td>Oesophageal Adenocarcinoma</td>
<td>16 + 1 (independent of BE)</td>
</tr>
</tbody>
</table>
Environmental Component: High Sugar, Salt, Fat, Alcohol and Cigarettes

So how do we fix the clinical problems now?
Prevention of progression

Chemoprevention with aspirin (acetylsalicylic acid; ASA), statins, or diet was not agreed upon in this consensus (see Appendix 2 online, Results).

34. The use of PPIs (compared with no therapy or histamine receptor type 2 antagonists) is associated with a decrease in progression from benign BE metaplasia to BE neoplasia (dysplasia and EA). STATEMENT NOT ENDORSED, overall agreement 53.3%. A+, 10.8%; A, 42.5%; U, 20.8%; D, 23.3%; D+, 2.5%.

Recommendation

Strong research recommendation for more data from the aspirin esomeprazole chemoprevention trial (AspECT) and chemopreventive trials of PPIs in patients with BE.
Why?

- Patients with Barrett's esophagus, approximately 2 percent will die of esophageal cancer.

- Patients with Barrett's esophagus died more frequently of other causes, such as ischemic heart disease and pneumonia.

- Therefore need for adequate weight, diet, smoking and alcohol modification strategies.

- Need for better quality endoscopy and perhaps FNE in select centers in the community.
Summary

• Who
 60 years (men)
 Obese
 Smokers/alcohol
 Long standing heartburn

• How
 Quality endoscopy
 Unsedated TNE

• Why
 Increase global health benefits CVS and cancer deaths
 Decrease burden and cost of BE surveillance
Cumbria recruiting now; contact jjankowski@uclan.ac.uk