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Abstract 

By 2050, it is estimated that the global population will have surpassed 9 billion people, 

presenting a significant challenge with regards to food security. In order to provide 

sufficient quantities of nutritious food in the future, it is necessary to improve 

agricultural productivity by up to 70%.  Nutrient deficiencies are one particular threat to 

food security that can have a negative impact on crop yield and quality. Currently the 

standard agricultural approach to prevention is to supply an excess macronutrient 

fertiliser, such as nitrate or phosphate, during crop production. However, the efficiency 

of this approach is poor as deficiencies of specific nutrients, such as Ca, are not 

prevented in this circumstance, and fertiliser use is associated with a host of adverse 

environmental impacts. Herein, we describe a novel method to detect Ca deficiency 

using synchrotron radiation-based Fourier-transform infrared (FTIR) microspectroscopy 

in live and fixed tissue of the model plant Commelina communis, as a precursor to 

targeted nutrient remediation in the field.  

 

Keywords: Calcium, Deficiency, Fourier-transform infrared (FTIR) microspectroscopy, 

Nutrient, Plant, Synchrotron radiation 

 

1. Introduction 

Food security can be defined as providing a constant supply of nutrition for all, in order 

to live a healthy lifestyle, regardless of social, economic and physical circumstances [1]. 

The expanding global population has increased demand for food of sufficient quality, 

and has further emphasised the challenge of maintaining food security in the modern era 

[2]. Climate change, competition for arable land, and agricultural productivity are 

significant factors affecting global food production [3]. Improving efficiency during crop 

production is an area where small alterations to farming practices, may result in large-

scale yield and quality increases. The difference between the attainable yield and the 

observed yield is known as a yield gap, and it is by reducing this deficit that agricultural 

productivity can be improved [4]. 



Plants require fourteen essential nutrients in order to grow optimally and produce 

the maximum attainable yield; these can be split into macro- (N, P, K, Ca, Mg and S) 

and micro- nutrients (B, Cl, Cu, Fe, Mn, Mo, N and Zn) [5]. Poor availability of one or 

more of these nutrients, can not only reduce the quantity of produce per hectare of land, 

but can also decrease food quality and shelf life. The use of nutrient fertilisers is a 

traditional practice of agricultural intensification that has been shown to increase yield 

(and thus reduce the yield gap) in crop species by between 30-50% [6]. Fertilisers 

containing primary macronutrients (N, P and K) are most commonly applied, as 

deficiencies in these elements are more commonplace in agricultural environments. 

However, it has been shown that use of such fertilisers is relatively inefficient and less 

than 50% of the nutrient applied is recovered in the produce output [7]. Furthermore, the 

use of fertilisers, such as NH4, has a number of detrimental effects on the environment, 

such as eutrophication from nitrate leaching, and also enormous carbon footprints 

associated with their production and application [8]. It is estimated that crop production, 

including farm operations, equates to the generation of around 769.4 kg of CO2, and its 

equivalents (such as N2O), per hectare of farmland each year; of this total, over 90% is 

associated with fertiliser use [9].  It is also important to note that deficiencies in all 

nutrients can occur, with a diverse array of physiological symptoms and severities, 

which would not be remediated by the use of a generic N, P or K containing fertiliser 

[10]. 

Reduced Ca availability can have a significant impact on crop yield, due to the 

pivotal role this element has in structural stability within the plant tissues[11]. Ca pectate 

is a key component of plant cells walls and thus reduced availability of Ca can often 

result in degradation of the cell walls, particularly in developing and enclosed tissues, 

and those that are supplied predominantly by the phloem [12]. Ca is absorbed into the 

plant via the root system and transport is unidirectional in the xylem and transport is 

therefore dependent on the rate of transpiration [13, 14]. Consequently, rapidly growing 

tissues and fruit, are particularly susceptible to reduced Ca availability and therefore 

degradation. Ca deficiencies manifest in a range of crop species, from blossom end rot in 

tomatoes, tip burn in lettuce and bitter pit in apples and in some instances can result in 

up to a 50% loss of yield [15, 16]. Although relatively uncommon in nature, due to 

intensive farming practises, Ca deficiencies are increasingly widespread in agricultural 

settings [17]. Due to the detrimental effect of this deficiency, as well as the role that Ca 



plays in fruit ripening, maintaining fruit firmness and reducing postharvest decay, Ca 

supplementation in agriculture is becoming an emerging section of the crop 

enhancement market [18]. This approach not only directly targets the nutrient status of 

the crop, but also reduces environmental impacts associated with N-based fertilisers.  

It has been proposed that accurate determination of the nutrient status of plants 

can be used to better understand and target the specific nutritional needs of crops [19, 

20]. In doing so, nutrient use efficiency would be vastly improved as the appropriate 

nutrient can be applied as and when required, improving the agricultural productivity 

whilst also reducing financial and environmental burdens. Currently, crop nutrient status 

is determined by foliar and soil analyses using analytical techniques such as flame 

photometry and flame atomic absorption spectroscopy [21, 22]. Although these 

approaches derive elemental information to a high degree of sensitivity, they require a 

nutrient extraction step, usually via acid digestion, which can often be time-limiting and 

also removes any information regarding spatial origin and distribution [23]. It is evident 

that there is a need for a novel crop screening approach that is able to detect the effects 

of nutrient deficiency before any detrimental effects are observed, which can be rapidly 

acquired in the field without any effect on the plant, and without extensive sample 

preparation requirements.  

Vibrational spectroscopy may be such a tool to fill this gap. It has been widely 

shown that infrared (IR) or Raman microspectroscopy can be used to characterise 

valuable plant substances, but can also be implemented to analyse in vivo and fixed plant 

tissues samples in order to monitor plant health [24-27]. The application of Raman 

microspectroscopy in plant research had been relatively limited due to intrinsic 

fluorescence issues found within tissues. However, analysis of live samples has recently 

been shown to effectively quench fluorescence due to the presence of water allowing the 

acquisition of high quality point spectra and spectral maps [24, 28]. Conversely, Fourier-

transform IR (FTIR) microspectroscopy has been largely restricted to the interrogation 

of fixed plant samples, as water has a detrimental effect on the IR spectrum due to its 

strong dipole moment. This has been overcome by the use of attenuated total reflection 

(ATR) acquisition mode FTIR, which uses a refractive prism to attenuate the IR beam 

into the sample and has recently allowed the investigation of foliar tissues [29, 30]. 



The combination of FTIR microspectroscopy with synchrotron radiation (SR) 

can improve the spatial resolution and signal-to-noise ratio (SNR) achievable in 

comparison to conventional benchtop instruments that employ globar IR sources [31, 

32]. This is because SR is up to 1000 times brighter than thermally produced IR 

radiation, and thus is delivered to the sample at high flux density [33]. SR-based FTIR 

(SR-FTIR) microspectroscopy may therefore shed light upon molecular changes at 

spatial resolutions <10 µm, providing subcellular detail unachievable with traditional 

FTIR microspectroscopy [23, 34]. In plant research, SR-FTIR microspectroscopy has 

been employed to interrogate the molecular composition in a range of tissues including 

kernels, roots, and leaves [35-38]. The imaging capabilities of SR-FTIR have also been 

exploited to image the spatial distribution of cell wall components, and tissue 

microstructures [39-42]. As more information is derived using SR-FTIR at a cellular 

level, the technique represents a powerful tool for plant research and can be exploited in 

a range of stress determination studies, including biotic stresses such as pest and disease 

and abiotic stresses such as nutrient deficiency [43]. However, in contrast to the 

biomedical and material science fields, SR-FTIR has not been widely implemented in 

plant-based studies due largely to the aforementioned limitations of FTIR with water 

containing samples, which restricts in vivo analyses [35]. Nevertheless, it has been 

suggested that the high brilliance of a synchrotron light source, may overcome 

interference from water [44]. Water absorbs strongly at ~1650 cm-1 and thus can result in 

a loss of spectral information in this important spectral region, often associated with the 

amide I of protein structure and composition. Therefore it may be possible to obtain 

spectra from live samples or samples in aqueous environments, when employing SR 

[45]. 

Herein we investigate the effects of Ca depletion on the model plant species 

Commelina communis using SR-FTIR microspectroscopy for pre-symptomatic detection 

of Ca deficiency. C. communis is commonly used to study intracellular signalling in 

stomatal guard cells due to the ease with which the abaxial epidermis in which the 

stomata are primarily located can be isolated from the leaves of this species [46]. In this 

investigation, this characteristic is exploited in order to examine the effects of sample 

preparation on deficiency detection by comparing freshly isolated tissue (unfixed) with 

chemically fixed tissue that is conventionally interrogated using FTIR and SR-FTIR 

microspectroscopy. 



2. Material and Methods 

2.1 Plant growth conditions 

C. communis seeds were sown into rock wool cubes and supplied with distilled water 

until germination (~10 days). Seedlings were then transferred to purpose built 

hydroponic nutrient supply systems containing three distinct Ca concentrations (optimal 

Ca, 200; low Ca, 100, Ca deficient, 0 ppm), supplied using a modified Hoagland’s 

solution for 21 days [47]. These treatments were chosen to mimic common nutrient 

requirements of agriculturally relevant crops such as Solanum lycopersicum. Each Ca 

treatment was replicated in three separate systems, each of which contained 16 L of 

nutrient solution and housed 6 seedlings from which three were randomly selected for 

analysis. Dissolved oxygen levels were maintained at 5.5 ± 0.5 mg/L using aquatic air 

pumps (Boyu, China); conductivity at 2 ± 0.1 mS; and pH 6.1 ± 0.1. Plants were grown 

25 ± 2°C / 20 ± 2°C, day / night; 16 h photoperiod; 150 ± 25 µmol m-2 s-1 using 600W 

metal halide lamps (Osram Ltd, UK) and transferred to the laboratory immediately prior 

to acquisition where they were maintained under similar conditions. The youngest, fully 

expanded leaves were excised from each four-week-old plant and were prepared for SR-

FTIR microspectroscopy or fixation immediately post-excision. 

2.2 Epidermis isolation for unfixed samples 

Isolated epidermis was prepared according to Weyers and Travis [48]. In short, a 

rectangular strip around 8 mm in width was cut from the lamina on either side of the 

major leaf vein using a sharp blade. A small incision was then placed onto the adaxial 

surface, without damaging the lower epidermal surface, creating a tab that can be 

carefully peeled backwards using forceps. The epidermal strip was then trimmed to a 

rectangular area (~8 mm x 35 mm) before being mounted on a BaF2 slide (Crystran Ltd, 

UK), with 50 µL of 50 mM KCL, 10 mM Mes/KOH, pH 6.15 (KCl-Mes) buffer. 

Samples were then immediately analysed using SR-FTIR microspectroscopy. 

2.3 Sample fixation and embedding 

Formalin fixation followed by paraffin embedding was chosen as a model approach for 

sample preparation prior to SR-FTIR microspectroscopy, as this technique has been well 

implemented in plant and biomedical studies [41]. Rectangular leaf sections were first 

excised and immediately fixed in 10% formalin for 24 h, dehydrated in an ethanol series 



(70, 90 and 100%) for 6 h, and placed into xylene for 1 h. At each stage of fixation, the 

solution was changed twice. 

To begin the embedding process, samples were transferred to molten paraffin 

wax at 60°C for 24 h to allow for sufficient wax infiltration. Samples were then 

orientated longitudinally in wax moulds in order to isolate the epidermis, and left to cool 

on ice for 30 min. Sections were cut at a thickness of 5 µm using a microtome, and 

placed into a warm water bath to allow expansion of the paraffin wax, before being 

floated onto a BaF2 slide. Samples were dewaxed using xylene for 1 h, and hydrated 

using an ethanol series (100, 90 and 70%) for 6 h. Fixed samples were stored at room 

temperature (20 °C) until analysis. 

2.4 Synchrotron radiation- based FTIR microspectroscopy  

Spectra were obtained using a Bruker Vertex 80 V FTIR spectrometer coupled to a 

Hyperion 3000 microscope (×36 objective and condenser), a LN2 cooled MCT detector, 

and the SR IR source, at the Multimode IR Imaging and Microspectroscopy (MIRIAM) 

beamline at Diamond Light Source, UK. An aperture size of 10 µm × 10 µm was used to 

collect spectra at a spectral resolution of 4 cm-1 with 256 co-additions across the mid-IR 

region (4000 - 600 cm-1). Measurements were acquired in transmission mode as recent 

literature has identified its advantages over reflection measurements [49]. On average, 

10 spectra were obtained per sample each live and fixed sample. A background 

measurement was taken from the substrate for every ten sample spectra to account for 

atmospheric conditions. Spectra were converted to absorbance units using OPUS 8 

software (Bruker, UK). 

2.5 Globar-based FTIR microspectroscopy 

A Thermo Nicolet 6700 FTIR spectrometer coupled to a Nicolet Continuµm microscope 

(Thermo Fisher Scientific, UK) and a LN2 cooled mercury cadmium telluride (MCT) 

detector was employed to acquire transmission IR measurements (4000 - 650 cm-1). 

Spectra were acquired using a 36× objective at a spectral resolution of 4 cm-1, with 256 

co-additions, whilst background spectra were taken after every ten sample spectra. 

Spectra were converted to absorbance units using Omnic spectra software (Thermo 

Fisher Scientific, UK). 

 



2.6  Spectral pre-processing 

Spectral analysis was conducted using the IRootLab Matlab toolbox 

(https://github.com/trevisanj/irootlab) unless otherwise stated [50]. Initially, spectra were 

quality tested using in-house written scripts to identify spectra with low SNR and 

potential outliers. The number of features within each spectrum was then reduced by 

focusing on the fingerprint region (1800 - 900 cm-1) as this is where biological molecules 

are known to absorb IR [51]. Spectra were first order differentiated (1st order 

polynomial) with Savitzy-Golay smoothing, and vector normalised to account for 

confounding sample characteristics such as thickness. For biomarker extraction using 

first derivative data, the point at which the spectra cross the zero line will represent the 

peak maxima from the original spectra and thus these values are used throughout. 

Absorbance alterations can be interpreted by observing the slope across the zero line; 

with an increase in absorbance shown by a sharper slope. 

2.6  Multivariate analysis 

Exploratory principal component analysis (PCA) was conducted on the mean centred 

data in order to reduce the dataset down to factors that accounted for underlying variance 

in the spectra. This output was then fed in linear discriminant analysis (LDA), to 

minimize intra-class differences and maximises inter-class separation, and therefore give 

optimum separation of the dataset classes. The number of principal components used 

were optimized using the PCA pareto tool in IRootLab; this was determined as the 

‘elbow’ point of the cumulative variance plot and always accounting for >95% of the 

variance in the dataset [52]. This process was cross validated using 10 k-folds and a 

leave-one-out approach, to prevent overfitting of the data. Classification of spectral 

classes was conducted using a PCA-linear discriminant classifier (LDC) with the same 

validation parameters. 

2.7 Statistical Analysis 

A Mann-Whitney ‘U’-test per wavenumber was conducted to compare spectral 

differences in pre-processed data at a confidence interval of 0.01. This approach was 

conducted on loadings plots as derived from PCA-LDA to derive spectral regions that 

discriminated between Ca treatments.  

 

https://github.com/trevisanj/irootlab


3 Results & Discussion 

3.1 Unfixed and fixed tissue 

As it is possible to derive meaningful spectra from water containing samples, we look to 

compare the reproducibility and suitability of both fixed and unfixed (ex vivo) plant 

tissue samples for identifying Ca nutrient deficiency. Figure 1A presents representative 

bright field image of freshly prepared isolated abaxial epidermis in which the stomatal 

pores, surrounded by a pair of guard cells (GCs; identified with an arrow), and 

subsidiary and epidermal cells (ECs) are clearly visible. This contrasts markedly with the 

representative sample from fixed leaf tissue shown in Figure 1B. In order to produce a 

sample appropriate for transmission FTIR measurements, paraffin embedded tissue must 

be sectioned to a thickness no greater than 12 µm [53]. During this process it is 

challenging to construct a sample that contains both epidermal and guard cells. The GCs 

surrounding the open stomatal pore are clearly visible in Figure 1B; the surrounding 

material is likely to be derived from the spongy mesophyll, which can be recognised by 

the irregular cell architecture of this tissue that is necessary to allow the movement of 

gas within the internal airspaces of the leaf. As a consequence of this, only stomatal GCs 

are probed in fixed leaf tissue samples for the remainder of this study, whilst both guard 

and epidermal cells are investigated in live tissue.  

 

In regards to the biochemical alterations that occur due to chemical fixation, clear 

differences can be observed between unfixed and fixed samples (Fig. 2, Table 1). It is 

preferable to remove any paraffin wax from samples prior to spectral acquisition due to 

the strong absorbance of the wax in the fingerprint. However, many dewaxing protocols 

have been shown to have significant effects on the resultant spectra obtained, 

particularly in regard to lipids [54]. This is evident when comparing fixed and unfixed 

plant tissue, where a decrease in lipid absorbance at 1740 cm-1 can be seen following 

fixation and dewaxing. The absorbance profiles of key cell wall polysaccharides are also 

stronger in live tissues, shown predominantly at 1416 and 1356 cm-1. GC cell walls 

characteristically contain more phenolic esters of pectins than the surrounding cells, 

which is more effectively differentiated when using unfixed samples [55]. Fixed tissues 

displayed an increased absorbance at the amide II region, whilst live tissues depicted a 

higher absorbance at 1533 cm-1, showing widespread protein alterations in the spectra. 



This effect may be tentatively associated with protein cross-linkages as a consequence of 

formalin fixation [56]. Overall, a slight reduction in signal strength can be observed in 

live tissues, which may be due to underlying water interference and a lower 

concentration of biological material compared to fixed samples which are dehydrated. 

 

3.3 Guard cells versus epidermal cells 

GCs are crucial for the regulation of gas exchange (uptake of CO2 for photosynthesis and 

loss of water via transpiration) in plants [64]. This is mediated by rapid alterations in the 

water content of the GC in response to external stimuli, driven by fluxes of osmotically 

active anion and cations and controlled by a well characterised signalling network [65]. 

An increase in GC turgor pressure results in the opening of the stomatal pore, thus 

promoting gas and water exchange, whilst a reduction in turgor pressure closes the 

stomatal pore[66]. These cells are therefore key indicators of stress and have been 

studied in response to a range of biotic and abiotic stresses [46, 67-69]. The surrounding 

ECs act as a barrier to internal and external environments and thus have a relatively 

simple function in comparison to GCs and consequently, the biochemical composition of 

stomatal GCs are distinctly different from the surrounding ECs [55]. Here we investigate 

the suitability of GCs as a target in plant monitoring studies using vibrational 

spectroscopy by observing the effects of Ca deficiencies on these tissues.  

When comparing derivative spectra obtained from GCs and ECs in unfixed 

tissue, distinct difference in cell wall materials can be seen, particularly regarding 

cellulosic polysaccharides (Fig. 3A). Increased absorbance at 1740, 1246, and 1049 cm-1 

corresponding to celluloses and lignins in GCs corresponding to the differentially 

thickened cell walls in these cells, up to 5 µm across compared to the 1-2 um typical of 

ECs, that is essential to GC function (Table 1) [66]. Increased absorbance at the amide I 

band at 1637 cm-1, also indicates a markedly different protein content in GCs compared 

to ECs which may be due to the varying functions of each cell, with GCs responding 

dynamically to changes environmental conditions, whereas epidermal cells require a 

constant protein conformation to maintain overall leaf structure. Interestingly, the levels 

of unesterified pectins, another crucial cell wall component, are considerably higher in 

the epidermis, which has also been observed in other studies [55]. This could be 



indicative of the ordered structure of epidermal tissues, which are maintained by Ca-

pectin cross-linking that provides structural support to the leaf.  

 

As a preliminary step to compare the suitability of GCs versus ECs as targets for 

monitoring nutrient deficiencies, exploratory multivariate analysis was conducted on the 

data (Fig. 3B). The 2D PCA-LDA scores plot examines the differences between the 

three Ca treatments, and whether any effects are more apparent in GCs or ECs. It is clear 

that Ca treatments are separated well in both PC1 and PC2, with some small overlap 

between treatments, showing that there is an observable alteration in the spectra as a 

consequence of Ca depletion, which is further investigated later in this study. With 

regards to the two target tissues, both GC and the epidermis tend to separate almost 

identically with the Ca stress, indicating that both tissues are potentially suitable targets 

for nutrient screening. An optimum level of Ca in this study is defined as 200 ppm, and 

this class of data significantly (P <0.001) separates from depleted treatments in LD1, 

whereas differences between depleted samples separate in LD2. Within the control 

treatment cluster, there are some subtle differences between GC and the epidermis 

although this separation is not visible in lower Ca treatments. This may be due to 

fundamental alterations associated with Ca stress overhauling the sensitive variance 

differences between guard and epidermal cells. 

3.4 Ca deficiency 

The effects of Ca availability in the growth environment (optimal Ca, 200 ppm; low Ca, 

100 ppm; Ca deficient, 0 ppm) on the SR-FTIR spectra obtained from living and fixed 

tissues from C. communis was examined to determine the spectral alterations indicative 

of nutrient deficiency, and whether this spectral information is sufficient to accurately 

identify plants undergoing nutrient stress.  

The processed spectra from each of the tissues exposed to three Ca environments, 

depict clear absorbance alterations throughout the fingerprint region (Fig. 4; Table 1). In 

both ex vivo tissues and fixed tissue samples, absorbance bands associated with proteins 

are shown to decrease consistently in response to Ca deficiency, specifically around the 

Amide I region (1635 and 1630 cm-1) and Amide II (1522 and 1487 cm-1) regions. This 

observation is more apparent in spectra acquired from unfixed tissues (Fig. 4A and 4B), 



in comparison to fixed tissue (Fig. 4C), which in this case is associated with the formalin 

fixation process. As mentioned previously, this sample preparation step can result in 

protein cross linkages and may therefore increase protein stability at the point of spectral 

acquisition. An overall reduction in protein absorbance may be indicative of a 

compromised structure, and possible be an earlier indicator of senescence [24].  

 

Furthermore, widespread polysaccharide absorbance differences can be seen 

across all samples as a consequence of Ca stress. In fixed samples, these differences are 

limited to the lower wavenumber region between 1200 - 1050 cm-1, whereas in unfixed 

tissues, both GCs and the epidermis, these alterations manifest around 1550 - 1250 cm-1. 

Many valuable plant substances have characteristic IR bond vibrations across the whole 

spectrum and there are few regions specific to a given biomolecule, thus this is unlikely 

to be due to a single molecule. However, this difference may again imply details about the 

chemical fixation process on plant tissue prior to IR spectroscopic analysis, as fixation has 

had a substantial impact on bond vibrations in the lower wavenumber region, where simple 

bending vibrations are found [70]. It is evident from Figure 4, that the absorbance of 

pectin-related IR bands (1728, 1354 and 1097 cm-1) increases due to Ca deficiency, and 

may indicate an increased production of structural polymers to accommodate the reduction 

in structural Ca pectate. The peak at 1354 cm-1 however can be seen to be lowest in the 

intermediate Ca treatment (100 ppm), which may suggest a stress response to moderate 

nutrient stress – although this would require further investigation. In contrast, absorbance 

bands associated with cellulosic compounds (1246 cm-1) illustrate a clear decline due to 

Ca deficit. Similar to protein absorbance, this may be symptomatic of a decrease in tissue 

viability, as cell wall growth and expansion is hampered due to lack of Ca.  

 

Cross-validated PCA-LDA, using a leave-one-out approach, was conducted on 

the spectral data in order to maximise the interclass differences, and separate data based 

upon the nutrient availability [78]. Fig. 5 depicts the 2D scores plots from this data 

reduction step, and the consequent loadings plots transformed from this data, indicating 

spectral regions where variance is apparent in the dataset, as described by Martin et al. 

[79]. Tentative band assignments for spectral peaks described as accountable for 

variance in the dataset can be seen in Table 2. 



 Initially, spectra obtained from GCs of unfixed epidermal peels, separate 

strongly with regards to Ca depletion (Fig. 5A). The control treatment of 200 ppm is 

almost entirely separated from low Ca treatments in LD1, whist low Ca treatments are 

distinguishable in LD2. This may indicate that the general response of the plant to Ca 

deficiency is readily observable compared to optimum Ca conditions, whereas a subtle, 

yet still discernible, difference may be found in the response to different levels of Ca 

deficiency. With regards to exact wavenumber regions where variance can be found 

between Ca treatments, observations in the loadings of LD1 and LD2 may shed light on 

these subtle differences. LD1 indicates major differences around the polysaccharide 

region at 1055 cm-1, likely to be correlated to pectin absorbance (Fig. 5B). A decrease in 

Ca, would substantially affect the Ca pectate levels in the plant tissues, and thus this 

response is as expected between the optimal and Ca deficient treatments. Alterations in 

ʋ(C=O) are also evident in the loadings, which can be assigned to both lignin and protein 

contributions to the spectrum, possibly highlighting a structural compensation as a 

consequence of integrity loss. The same response can be seen in LD2; however, the most 

discriminatory spectral region in this curve is attributed to polysaccharides. This could 

potentially imply that this region may be used to discriminate between levels of Ca 

deficiency, in this targeted group of cells. 

 In order to determine the diagnostic potential of this study, a PCA-LDC was 

conducted on the sample data, which was shown to positively classify Ca deficient, low 

Ca and optimal Ca samples at a rate of 100, 93.75, and 96.15% respectively (Table 3). 

This is promising in regards to future studies on large datasets taken from field data, 

which will likely be highly variable in comparison to a laboratory based investigation. It 

is important to note that the use of SR-FTIR for studies in planta in the field would be 

impossible, and so the use of a less powerful technique, such as standard globar-based 

FTIR microspectroscopy, may not provide such high levels of accuracy. As such it is 

encouraging that near perfect classification is possible with the highly sensitive SR-FTIR 

approach. Additionally, one difficulty with detection and consequent remediation of 

nutrient deficiencies is that they are often co-dependent upon the availability of other 

nutrients, yet such a high accuracy rate even for intermediate deficiency samples is 

promising [80, 81]. As such, it may be possible to identify nutrient deficiencies in the 

field and instigate a targeted nutrient remediation process. 

 



 

Spectra obtained from living epidermal tissues exhibit a similar degree of 

separation within a 2D PCA-LDA scores plot, although it is the low (100 ppm) Ca 

treatment that separates on LD1, and the optimal (200 ppm Ca) and deficient (0 ppm Ca) 

treatments that separate effectively in LD2 (Fig. 5C & 5D). Loadings derived from this 

dataset correlate with findings in analysis of live GCs, that depict that the low Ca 

treatment is identifiable by protein differences, specifically at the Amide III region, 

shown in LD1. Additionally, deficient and optimal Ca treatments can be primarily 

isolated due to Amide I protein alterations. As shown earlier in this study, epidermal 

tissue has distinctly less polysaccharide content, and thus spectral alterations as a 

consequence of Ca depletion are less likely to be visible in the absorbance of these 

molecules. Despite this, the rate of classification in this dataset remains high at 100, 

93.10 and 95.83% for deficient, low and optimal Ca treatments (Table 3). This indicates 

that epidermal tissue is marginally less efficient at identifying Ca deficiencies than GCs; 

however, this is a minimal reduction in efficiency and is likely insignificant. 

In fixed tissue, 2D PCA-LDA scores plots indicate an almost identical separation 

pattern to that seen in multivariate analysis of spectra from live GCs, with the optimal Ca 

treatment effectively separating in LD1 (Fig. 5E). There is a larger degree of overlap 

between Ca treatment groups in fixed tissue, and may indicate enhanced difficulty at 

detecting subtle biological changes as a consequence of Ca depletion. This is further 

highlighted in looking at the classification accuracy within this dataset in Table 3, which 

depicts reduced identification of samples grown in Ca deficient conditions, at a rate of 

75.84%. This class is particularly spread in the scatterplot, indicating increased 

variability in these samples which may suggest that the fixation process had a greater 

detrimental effect upon the Ca deficient samples. The optimal Ca treatment groups 

together relatively tightly in comparison, reflected by a high classification rate of 

99.43%. 

Loading plots derived from this dataset exhibit a striking response in LD1 and 2, 

with the former highlighting spectral alterations solely below 1200 cm-1, and the latter 

exclusively above 1300 cm-1 (Fig. 5F). As a consequence, the optimal Ca treatment that 

is clearly distinguishable in LD1, is primarily segregated due to variance in 

polysaccharides, particularly cellulose. The differences between the Ca deficient and low 



Ca treatments shown in LD2, can be correlated predominantly with protein alterations, 

and also pectin and lignin molecules. The pattern displayed here in fixed tissue correlates 

with the differences observable in spectra derived from in vivo measurements of GCs, 

that show that the major differences in spectra explained by LD1, are largely attributed 

to polysaccharide alterations. This is intuitive due to the known effect of Ca deficiency 

on tissue structure; that as the Ca availability reduces, less Ca pectate is found in tissues, 

which may be responsible for the large polysaccharide changes we observe here. Also, 

alterations in cellulose and other cell wall carbohydrates such as arabinose and galactose 

levels may be an indicator of increased production to account for weaknesses in tissue 

structure as a consequence of Ca depletion [82]. 

4 Conclusions 

The use of SR-FTIR for plant-based studies has, to date, been relatively underdeveloped 

as the strong absorption of water in the fingerprint region can often conceal spectral 

information, particularly in live tissue samples. In this study, we investigated the ability 

of such an approach to identify Ca deficiencies in both living and fixed tissue, to 

determine how accurately this can be determined prior to the appearance of nutrient 

deficiency symptoms. Due to the high flux density of SR, the interference from water 

can be minimised, allowing sampling from isolated epidermal tissues. The ability to 

sample from living tissues, is promising for further investigations using SR-FTIR in 

planta, and also prevents the need to fix tissue samples, which is both time consuming 

and detrimental to the spectral output, including the ability to detect Ca deficiencies. 

Using this approach, it is possible to differentiate between specific cell types on 

the abaxial leaf surface of leaves by observing increased levels of absorbance in 

cellulosic compounds in GCs compared to ECs. In order to determine a standard 

approach for crop screening in the field, it is first important to establish an ideal target 

for spectroscopic analysis. Initially, leaves are an ideal focus as they are relatively 

disposable, and readily exhibit symptoms of stress; however, the heterogeneity of such 

tissues indicates the need to identify a sole target for screening. Using the highly specific 

approach of SR-FTIR, both GCs and ECs performed equally well in detection of Ca 

deficiency prior to symptom onset, and were able to identify both low Ca and Ca 

deficient treatments at above 90% classification accuracy. As both cell types were 

uniform in their suitability, it could indicate that the whole epidermis of a leaf could be 



an ideal target for field trials observing nutrient deficiencies. As a prerequisite for such 

trials, the proficiency at which a globar based FTIR study is able to accurately detect Ca 

deficiencies is needed.  

In this study, we show that SR-FTIR as a crop screening tool, is able to accurately 

determine the Ca nutrient status of C. communis leaf samples grown at a range of Ca 

availabilities. Such a technique would not only be highly beneficial for wider nutrient 

screening applications, but also for identifying other abiotic stresses such as ozone 

damage, and biotic stresses including pest infestations [30]. In doing so, the overall 

efficiency of our agricultural practises can be improved with targeted remediation, that 

will increase yield and contribute towards the global food security. 
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Figure 1.  Brightfield images obtained from an unfixed abaxial epidermis (A), and a fixed 

sample (B), of C. communis gown at optimal (200 ppm) Ca. Stomatal guard cells (GCs) can be 

identified in both samples, although at a higher frequency in isolated epidermis, due to the 

simplicity of this approach for their isolation 

 

  



Figure 2. A comparison of pre-processed spectra from unfixed isolated abaxial epidermis and 

formalin-fixed paraffin embedded tissue from C. communis. Spectra were cut to the fingerprint 
region (1800 - 900 cm-1), first order differentiated, vector normalised and offset for clarity. 

Dashed markers indicate the top five statistically significant wavenumbers where the gradient is 

maximum (y=0). 

 

  



Figure 3. SR-FTIR spectral analysis of unfixed abaxial epidermis from C. communis. (A) Pre-

processed spectra from guard cells (GCs) that surround the stomatal pore are compared with 
surrounding ECs to identify differences in biomolecular composition. Spectra were cut to the 

fingerprint region (1800 - 900 cm-1), first order differentiated, vector normalised and offset for 

clarity, whilst dashed markers indicate the wavenumber regions that most discriminate between 

the two classes. (B) A 2-dimension scores plot of cross validated PCA-LDA (leave-one-out) to 
compare the suitability GCs (▲ ● ■) and ECs (∆ ○ □) as screening targets for detection of Ca 

deficiencies. 200 ppm is defined as optimal conditions, whereas 0 ppm is defined as Ca deficient. 

 

 

  



Figure 4. Pre-processed spectra comparing the effects of varying Ca availabilities in guard cells 

(GCs) (A) and epidermal cells (ECs) (B) from unfixed epidermal peels; additional to fixed tissue 
samples (C) samples. Spectra were cut to the fingerprint region (1800 - 900 cm-1), first order 

differentiated, vector normalised and offset for clarity, whilst dashed markers indicate the 

wavenumber regions that most discriminate between the three Ca treatment classes. 

 

 

  



Figure 5. Leave-one-out cross validated PCA-LDA analysis of both fixed and unfixed C. 

communis samples. (A), (C) and (E) display the 2-dimensional scores plots from guard cells 
(GCs), epidermal cells (ECs) and fixed tissue at three Ca concentrations (▲ 200 ppm, ● 100 

ppm, and ■ 0 ppm), whilst (B), (D) and (F) show the corresponding first and second linear 

discriminant loadings from GCs, ECs and fixed tissue, respectively. The most discriminating 

wavenumbers are indicated with a dashed line for each individual loading.  

 

 

 

  



 

 

 

Table 1. Discriminating spectral regions derived from Figure 3, 4 and 5 with tentative molecular 

assignments, and description of the direction of change in regards to the data class.  

Wavenumber 

(cm
-1

) Tentative Band Assignment Ref. 

Description 

1740 ʋ(C=O) polysaccharide, esterified pectin, lipids [57, 58] ↑ Live 

↑ GC 

1728 ʋ(C=O) lipid, polysaccharide, esterfied pectin, cutin [29, 58] ↑ Deficient* 

1637 Amide I  [58] ↑ GC 

1635 β-sheet of amide I [41, 58] ↓ Deficient* 

1630 ʋ(C=O) and ring breathing, β-sheet of amide I [41, 59] ↓ Deficient 

1533 Amide II, C=N [60] ↓ Live 

1522 Amide II, C=N, C=C [58] ↓ Deficient 

1487 ʋ(C=C), δ(C-H), Amide II [26, 58] ↓ Deficient 

1416 δ(NH), δ(CH), ʋ(C-N) polysaccharides, unesterfied pectin [55, 58] ↑ Live 

1356 δ(C-OH) polysaccharide [61] ↑ Live  

↓ GC 

1354 ʋ(C-O),  δ(C-H), δ(C-OH), pectin, cellulose [26, 61] ↑ Deficient 

1246 ʋ(C-O) cellulose and hemicellulose, asymmetric  ʋ(PO2
-), [40, 58] ↑ GC  

↓ Deficient 

1242 Asymmetric  ʋ(PO2
-), Amide III [58] ↑ Live 

1097 ʋ(C-O) carbohydrate,  asymmetric  ʋ(PO2
-), [58, 62] ↑ Deficient* 

1049 ʋ(C-O), δ(C-OH) carbohydrate [58, 63] ↑ GC 

1020 ʋ(C-O),  ʋ(C-C), δ(C-OH) polysaccharides, pectin,  [26, 58] ↓ Deficient* 

* in fixed tissue 
 

 



Table 2. Discriminating biomarkers of Ca deficiency as derived from PCA-LDA loadings plots of 

SR-FTIR spectra of unfixed and fixed C. communis samples exposed to low Ca availabilities.  

Wavenumber (cm
-1

) Tentative Band Assignment 
Ref. 

1740 ʋ(C=O) polysaccharide, esterified pectin, lipids [57, 58] 

1730 ʋ(C=O) ester, lipid, lignin [41, 58] 

1720 ʋ(C=O) unsaturated ester, pectin [27] 

1703 ʋ(C=O)  [71] 

1697 ʋ(C=O) [58] 

1649 ʋ(C=O),  ʋ(C=N) Amide I [40, 60, 72] 

1645 Amide I [58] 

1639 Amide I [58] 

1599 ʋ(COO-) pectin, carboxylic acids, ʋ(C=C) lignin [41, 73, 74] 

1525 Amide II, C=N, C=C [27, 58] 

1497 δ(C-H) Amide II [26] 

1410 δ(NH), δ(CH), ʋ(C-N) polysaccharides [55, 58] 

1355 δ(C-OH) polysaccharide [61] 

1345 Carbohydrate [75] 

1335 δ(CH) polysaccharides, pectin, cellulose [58] 

1306 Amide III [58] 

1161 ʋ(C-OH), ʋ(C-O-C) polysaccharide, cellulose [43, 62, 73] 

1074 ʋ(CO),  ʋ(CC)  [58] 

1070 ʋ(CO),  ʋ(CC) cellulose [76] 

1055 ʋ(CO),  ʋ(CC),  δ(C-OH), pectin [76] 

1040 ʋ(CO),  ʋ(CC), cellulose [76] 

1032 ʋ(O-CH3) cellulose [29, 58] 

1026 ʋ(CO),  ʋ(CC) cellulose [74] 

1011 ʋ(CO),  ʋ(CC),  δ(C-OH), pectin [26, 58] 

933 Carotenoid, carbohydrate [58, 77] 



 

 

Table. 3 Classification rates of each tissue sample and Ca treatment (%) as derived from principal 

component analysis (PCA) fed linear discriminant classifiers, using a leave-one-out approach and 10 

k-folds 

 Classification Rate (%) ± SE 

 0 ppm 100 ppm 200 ppm 

Unfixed Guard Cell 100.0 ± 0.0 93.75 ± 4.49 96.15 ± 3.92 

Unfixed Epidermis 100.0 ± 0.0 93.10 ± 4.96 95.83 ± 4.26 

Fixed Tissue 75.84 ± 6.30 91.49 ± 4.30 99.43 ± 0.06 


