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Abstract 

 

In silico methods to predict toxicity include the use of (Quantitative) Structure-Activity 

Relationships ((Q)SARs as well as grouping (category formation) allowing for read-across. A 

challenging area for in silico modelling is the prediction of chronic toxicity and the No 

Observed (Adverse) Effect Level (NO(A)EL) in particular. A proposed solution to the 

prediction of chronic toxicity is to consider organ level effects, as opposed to modelling the 

NO(A)EL itself. This study has focussed on the use of structural alerts to identify potential 

liver toxicants. In silico profilers, or groups of structural alerts, were developed based on 

mechanisms of action and informed by current knowledge of Adverse Outcome Pathways. 

These profilers are robust and can be coded computationally to allow for prediction. 

However, they do not cover all mechanisms or modes of liver toxicity and recommendations 

for the improvement of these approaches are given.  
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Introduction – The Current Paradigm for In Silico Modelling: The Success (or Otherwise) of 

(Quantitative) Structure-Activity Relationships ((Q)SARs) to Predict Toxicity 

There are a many so-called in silico or computational approaches to predict the toxicity of 

chemicals (1, 2). These attempt to relate the physico-chemical or structural properties of a 

molecule to its toxic effect. They include, amongst other methods, the use of (quantitative) 

structure-activity relationships ((Q)SARs) as well as grouping or category formation which 

allows for read-across. These methods have a number of applications from screening libraries 

of compounds in product development through to full risk assessment. They also enable 

toxicologists and risk assessors to replace and reduce animal testing. However, these methods 

are not always reliable and must be assessed on their individual merit for the compound and 

context in questions. Indeed, they may not be appropriate for some toxicity endpoints in 

some circumstances. In order to understand when they may be successfully used, it is 

essential to describe and assess the relative strengths and weaknesses of the various in silico 

approaches. The aim of this paper is to provide an overview of the shortfalls of the current in 

silico approaches to predict toxicity and illustrate how they may be improved for “difficult” to 

predict endpoints – in this case repeated dose toxicity at the organ level, focussing on the 

liver.  

In order to understand the difficulties of using in silico approaches for toxicity prediction, and 

for which endpoints they are most appropriate, it is worthwhile to consider when they are 

likely to provide robust models. In particular, (quantitative) structure-activity relationships 

((Q)SARs) work optimally when a steady-state, or equilibrium, is achieved; this explains their 

utility for endpoints such as acute fish toxicity (where an equilibrium is normally observed 

(3)), and, with an understanding of the caveats such as metabolism, degradation and 

volatility, bioaccumulation (4). SARs, which can be defined in terms of structural alerts, are 

very amenable to provide predictive approaches to endpoints where there is a direct 

interaction between the chemical and the biological system, such as the formation of a 

covalent bond in the disruption of DNA (leading to mutagenicity) (5) or an immunoprotein 

(leading to skin sensitisation) (6).  
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In general “traditional” QSARs provide a correlative approach between an effect (usually 

defined in terms of a regulatory endpoint) and properties of a molecule. Therefore, when a 

trivial relationship occurs, this provides a model. However, many adverse effects following 

exposure to chemicals are a result of disruption or perturbation to pathways leading complex 

organ level toxicity (which are increasingly being described through the use of Adverse 

Outcome Pathways (AOPs)) (7, 8). There may be many triggers to such toxicity and many 

interactions that result in these effects. They are often dependent on various absorption, 

distribution, metabolism and excretion (ADME) effects as well as dose, duration and type of 

exposure and even lifestage of the organism. Due to the complexity of the results of complex 

tests e.g. for repeated dose, reproductive and development toxicity, “traditional” (Q)SAR 

techniques have struggled to provide meaningful and robust models. In terms of regulatory 

endpoints, this has meant that there are a number of toxicological endpoints that are 

currently, at best, only poorly predicted by (Q)SAR techniques; these include chronic , 

reproductive and developmental toxicity, as well as non-genotoxic carcinogenicity (9). Of 

these more difficult toxicity endpoints for modelling, there are often complex and interacting 

mechanisms that bring about the effect.  

 

In Silico Models for Repeated Dose Toxicity – Predicting No Observed (Adverse) Effect Levels 

(NO(A)ELs) 

Due to the complexity of the phenomenon, the test design and protocol, and the endpoint 

required for (regulatory) risk assessment purposes, predicting the toxicity of chemicals 

following low dose repeated exposure, with in silico methods, remains a great challenge. 

There are many reasons for the difficulty in modelling effects brought about by low dose 

repeated applications of a chemical. Many of these effects are different to those brought 

about by acute exposure; in order to understand and model such toxicity reference to, and 

understanding of, the mechanism of action is required. There are potentially many 

differences between the (toxic) effects of chemicals at high, acute, doses as compared to low 

repeated doses. A high, acute, dose may lead to lethality by a single, and sometimes well 

defined, mechanism and or AOP – however currently the AOP is currently often unknown.  
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Prolonged exposure to low doses may lead to a multitude of adverse effects being the results 

of different mechanisms, or AOP networks (many which may currently be unknown). (10). A 

proportion of mechanisms have as the initiating step a weak receptor interaction, the nature, 

quantification and relevance of which may be poorly understood. The perturbation of 

biochemical pathways, and their assessment and prediction, of these so-called adverse events 

has become the focus (at least partially) of what is currently recognised as “21st Century 

Toxicology” (11) whilst it is noted that many, possibly the vast majority of, chemicals will cause 

toxicity via unspecific effects (12-14). This provides a strong clue, or guiding hand, for 

modelling, in other words the models should be based around the individual adverse effect 

rather than the regulatory endpoint.   

Whilst it has become apparent that modelling would be more successful if based on individual 

adverse effects, it is true to say that there are many current QSARs that attempt to predict 

the “outcomes” from in vivo repeated dose toxicity tests. The reason for this is that such data 

are perceived as being useful to risk assessment and have been easily retrievable from 

historical databases. For instance, taking chronic mammalian toxicity as an example, the 

outcome is often interpreted as a no observable (adverse) effect level (NO(A)EL) for a 

substance (please note in this manuscript the term NO(A)EL is intended to include both the 

no observable effect level (NOEL) and no observable adverse effect level (NOAEL)). Rather 

than this being a definable effect, such as a concentration that causes a 50% effect (EC50) to 

a specific organ, NO(A)ELs are the concentration at which no (adverse) effect is seen and rely 

on expert interpretation of study findings. As such the derivation and elucidation of the actual 

NO(A)EL, e.g. for risk assessment purposes, is dependent on the doses tested and what are 

seen as being important and relevant adverse effects etc. Thus, whilst it is useful for risk 

assessment purposes, the modelling of a relatively arbitrarily derived values such as a NO(A)EL 

may potentially pose many problems. Determination of the NO(A)EL from chronic toxicity 

testing follows examination of all relevant organs (for changes and alterations compared to 

the control) as well as clinical chemistry, behaviour etc. For many chemicals, the NO(A)EL is 

dependent on organ level toxicity i.e. the organ(s) which is / are affected by the lowest dose. 

In terms of predicting NO(A)ELs, this means that if the NO(A)EL value is as a result of organ 

level toxicity (acknowledging that the NO(A)EL value may be a result of many other effects), 
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it could be considered to be a prediction of organ level effects. In terms of the strengths of 

the QSAR approach, it is unlikely the NO(A)EL value represents any type of steady-state 

equilibrium and is often an artefact of the test design and doses tested (benchmark dose may 

be more appropriate for modelling however, but has been seldom evaluated). Neither will 

the QSAR comply with a strict interpretation of the first of the OECD Principles for the 

Validation of QSARs in terms of it being a defined endpoint (15).  

 

Whilst NO(A)ELs are difficult values to model and hence predict, we are rapidly approaching 

a time when there will be widely available mammalian chronic toxicity data and use must be 

made of these data. These data will be publicly available, or available on restricted or for 

commercial use. The databases include, amongst others, RepDose (16), ToxRefDb (17), HESS 

(18), eTox (19), LeadScope (www.leadscope.com) and COSMOS (20; https://www.mn-

am.com/projects/cosmosdatasharepoint) as well as regulatory data available within the 

OECD QSAR Toolbox (www.qsartoolbox.org), eChemPortal (www.echemportal.org) and 

AMBIT (http://cefic-lri.org/lri_toolbox/ambit/). Because of this greater access to data, often 

of unknown quality, reliability and / or relevance, we must develop strategies to model 

NO(A)ELs efficiently, in a manner suitable for regulatory use and other risk assessment 

scenarios. Thus, in terms of modelling a NO(A)ELs, it may be necessary to identify and model 

the doses that bring about individual organ level effects rather than attempting to predict the 

response level in an in vivo test.  

Key to modelling the NO(A)EL values will be understanding the value itself and how it has 

been derived i.e. which organ level (or other) effect has been chosen as being sufficiently 

significant to be described as toxicity. The modeller should not lose sight of the fact that the 

NO(A)EL value is a result of a complex in vivo study which requires dosing of animals at a 

number of levels, aiming to observe no (adverse) effect to a number of organs. The results, 

normally in the form of a detailed report require expert interpretation and analysis to 

determine the NO(A)EL. Some recent work has attempted to make this process transparent 

with regard to the derivation of Thresholds of Toxicological Concern (TTC) (21) – whilst not 

intended for modelling, such approaches may be of interest to modellers.  
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Despite the difficulties in predicting NO(A)ELs, there have been a number of QSAR models 

(22), however there has been no coherent or consistent assessment of their performance. 

More recent approaches are based around the grouping of chemicals and application of read-

across (23, 24). These recent approaches include the use of new, and freely available, expert 

systems for grouping chemicals according to chronic toxicity – e.g. the OECD QSAR Toolbox, 

the HESS system, AMBIT and associated database (see previous links). Whilst there may be 

no obvious overlap between the more established models and the new systems, it is, of 

course, entirely possible that the expert system approaches are implicitly identifying “similar” 

chemicals and using those to make the predictions of chronic toxicity. This process is at the 

heart of grouping and read-across which will be described in more detail below.  

 

In Silico Modelling of Liver Toxicity 

The liver is a key organ in terms of toxicology and crucial in interpreting repeated dose toxicity 

(25-27). Obviously the liver has a vital physiological role and is prone to toxicity due to high, 

first-pass, blood flow which increases the likelihood of toxicants reaching a significant 

concentration. There is a range of direct, indirect and idiosyncratic effects that chemicals can 

cause in the liver, some of which are described in more detail below. The possibilities for 

toxicity (and its modelling) are complicated by the often contradictory effects of metabolism 

in the liver (28). The liver accounts for a significant proportion of in vivo metabolism. It must 

be remembered that the high metabolic capacity to produce a large number of novel 

metabolites is both beneficial (in terms of detoxification and excretion) and harmful in terms 

of toxification. The situation is made even more complex due to the naturally occurring 

defence mechanisms in the liver. Therefore, whilst some compounds may have the ability to 

be reactive in the liver, no toxicity is seen due to the protection offered by these systems. 

Commercially, toxicity to the liver is very important and has many consequences. Whilst it is 

especially significant to the pharmaceutical industry – where the term coined is Drug Induced 

Liver Injury (DILI) – all industrial sectors need to be careful of the harmful effects of 

compounds to the liver (28).   
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There are a number of problems in the computational modelling of liver toxicity; these are 

centred around the complexity of the endpoint, data and the current suite of modelling 

techniques available (29). Specifically the problems can be summarised as follows: 

• Toxicity data for modelling – whilst there are guidelines for the standardised 

reporting of preclinical outcomes, it must be remembered that there is no specific 

in vivo “test” for liver toxicity, as would be associated with other endpoints e.g. skin 

sensitisation or irritation. Therefore the modeller is reliant on other forms of data 

e.g. histopathological observations from in vivo testing or reports of adverse drug 

reactions from clinical use etc. It is also noted that there is inherent variability in all 

in vivo studies (25, 27). The net result is that such data that may be available are not 

from consistent assays, may not reflect potency and will be of variable quality. In 

addition, the presentation of the data may not be in a form suitable for modelling 

i.e. they may be held within study reports and not readily available in databases.   

• The datasets available for consideration are noted below, however, their chemical 

space is often biased towards pharmaceutical active ingredients and may not be 

representative of chemical space for other types of compounds e.g. cosmetics or 

industrial chemicals.   

• As noted above, there is a plethora of modes and / or mechanisms of action that 

bring about liver toxicity. This inevitably complicates modelling if compounds with 

different mechanisms of action are lumped together. Whilst it may be preferable to 

develop models on a mechanistic basis, there is currently no easy method to classify 

compounds into particular mechanisms. The situation with modes of action is 

complicated by the sheer number of mechanisms and the fact they may be inter-

related, dependent on dose duration and level, the age and nutritional status of the 

organism, genetic susceptibility etc.  

• The current (Q)SAR approaches to modelling do not take into account the 

complexity of relevant issues such as metabolism (either toxification or 

detoxification) or the defence mechanisms naturally present in the liver. As such, 

they run the risk of oversimplifying a complex toxicological event.   
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Whilst there are undoubtedly concerns over the quantity and quality of data relating to liver 

toxicity, there are some significant areas where data could be utilised. Sources of liver toxicity 

data are reviewed and summarised by Przybylak and Cronin (29). There are several distinct 

and usable (albeit of variable meaning and quality) sources of data. For instance information 

on liver toxicity has long been available in the literature and clinical reports on the adverse 

effects of drugs. Whilst these data are available (including the significant datasets noted 

below), as noted above, they are seldom compiled in a format suitable for modelling i.e. with 

checked structures, downloadable etc. There are, of course, a number of biomarkers for liver 

toxicity e.g. ALT, ADH etc (30). These may provide usable information, although not wholly 

mechanistically based. Other, more reasonable (in terms of modelling) examples of potentially 

usable hepatotoxicity data exist, for instance the United States Food and Drug Administration 

(US FDA) Adverse Effects Reporting System (FAERS), which contains information for 

pharmaceuticals as well as human hepatotoxicity data gathered from spontaneous, voluntary 

reporting adverse effects 

[https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/Adve

rseDrugEffects/ucm083765.htm]. Zhu and Kruhlak developed a bespoke human 

hepatotoxicity database for the purposes of modelling (31). This section is not intended to be 

a full review of available liver toxicity data (refer to (29) for a more detailed description). The 

key to modelling liver toxicity is not only to obtain more data, but to develop an efficient 

strategy to use the data that are easily available to create mechanistically relevant models.     

There are a wide variety of (Q)SAR type approaches that have been applied to predict liver 

toxicity and related effects. These range from simplistic regression-based QSAR approaches 

for small series of compounds to much larger studies of heterogeneous groups of compounds. 

A commonality in all modelling approaches is that no consistent data set or test has analysed, 

with information relating to liver toxicity being derived from a many sources ranging from 

assays based on biomarkers, through to in vivo toxicity studies and (human) clinical reports. 

It is possible to use data from high throughput screening to derive structural rules for the 

hepatotoxicity of drugs (32) which can be applied for the screening of new compounds (see 

also below). Other simple QSAR analyses have quantified the role of biomarkers for liver 

effects and demonstrate that these can be rationalised according to the chemistry 
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underpinning the mechanism(s) of action (33). At the other end of the spectrum QSAR analysis 

have been performed on large datasets using multivariate techniques (34), with particularly 

large, information-rich, datasets becoming available e.g. Mulliner et al (35) utilised 

information for over 3700 drugs. Other approaches have also used biological information to 

support predictions from chemistry alone (36-38). Including biological and / or mechanistic 

information is likely to improve predictions, but implicitly to use such models will require 

experimental measurements of the compounds of interest.  

As evidenced by recent approaches to modelling that incorporate mechanistic information, it 

is essential for proper model development that an appreciation of mechanistic of action is at 

the heart of the models. This requirement may be a challenge to toxicology as it has typically 

not provided a framework or overview of the mechanisms involved in organ level toxicity in a 

manner that would be amenable to modelling – this may change with the rapid uptake of the 

AOP paradigm as described below. Whilst a formal framework is not available, much 

information about the effects to the liver is provided. For instance, “classic toxicology” has 

identified the main effect to the liver, taking as an example Schwarz and Watkins (40) 

chemically induced liver injury is defined as including (in relative order of severity): steatosis, 

porphyria, veno-occusive disease, cholestasis, hepatitis, cell death from necrosis or apoptosis 

and the development of tumours. Whilst this list covers the main effects, it is a mixture of 

mechanisms and observations of effect. Others have defined the diverse mechanisms that 

result in hepatotoxicity, for instance Jaeschke et al (41) described in some detail the intricacies 

of the mechanisms of bile acid-induced hepatocyte apoptosis, oxidative stress, CYP2E1-

dependent toxicity, drug-induced hepatotoxicity as a result of the formation of reactive 

metabolites and the various effects of mitochondrial dysfunction. More specific mechanisms 

of DILI has been defined by Yuan and Kaplowitz (42). This knowledge, whilst not necessarily 

complete or in a format entirely suitable for modelling, does provide a starting point for the 

development of in silico models for liver toxicity.  

 

A New Paradigm for In Silico Modelling: Incorporating Adverse Outcome Pathways and New 

Approach Methodologies  
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In order to predict toxicity from low dose repeated exposure (to humans) accurately, in silico 

modelling will need to move away from the simplistic aspects of QSAR modelling. The road to 

success, either in terms of predicting adverse effects at the organ level, or directly predicting 

NO(A)ELs, is to deconstruct the problem into the relevant components, model these and then 

combine the predictions into a meaningful estimate of “safety” (43). A toxic effect can be 

rationalised into the intrinsic toxicity of a substance and the exposure to it. This paper 

describes how intrinsic toxicity may be modelled, however prediction of exposure through 

the modelling of kinetics, is described elsewhere. The modelling of the intrinsic toxicity of 

compounds is placed in the context of chemical grouping and read-across.  

Chemical grouping is the process by which chemicals are gathered together on a rational 

basis. Once a group of chemicals or analogues has been created, should a new (the target) 

chemical be allocated into the group, and appropriate data be obtained, then an activity may 

be interpolated by the process of read-across (2). The use of predictions from read-across to 

fill data gaps has grown in popularity recently, in particular as a response to the requirements 

of the REACH legislation (44). The key to grouping compounds successfully is determining a 

suitable criterion, or set of criteria, on which to develop the group (45). With regard to 

grouping relating to predicting NO(A)EL (as with other endpoints), there has already been 

success in forming groups of compounds on a mechanistic basis, particularly emphasising the 

role of organ level toxicity (23, 24). Therefore, in terms of developing a strategy for predicting 

a NO(A)EL, this can be considered to be a two-stage process: 

– identification of relevant organ toxicity that relates to NO(A)EL e.g. through an 

appropriate “profiler” for grouping, and 

– identification of analogues (i.e. sharing similar relevant molecular fragments, stuture 

or properties) and undertaking of read-across with the group. 

Assuming a potential approach to the computational modelling of liver toxicity and formation 

of groups or categories is based around mechanistic (or mode) of action information, a 

process to organise the information is required. One such way forward is through the 

understanding of toxicity pathways and the formalisation (if required) into sAOPs (7, 8, 46-

48). The toxicity pathway concept is at the heart of what is termed 21st Century toxicology 
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(11). AOPs are being developed for numerous human and environmental effects and are being 

recorded on the AOP Wiki (see the web-site: aopwiki.org). The basis for developing an AOP 

has been defined by the OECD, amongst others, and it includes the following: 

- Identification of a molecular initiating event (MIE). The MIE can be thought of as the 

direct link between the interaction of the chemical at the molecular site of action, e.g. 

covalent binding or receptor mediated toxicity. It is the definition of MIE that provides 

the direct link to chemistry, hence it can provide information for 2-D or 3-D structural 

alerts and, as such, can provide the basis of chemical grouping.  

- A series of one or more key (or intermediate) events. These form the basis of the 

pathway and can be thought of as linked building blocks. These key events are the 

biological linkages, they can be defined and have the potential for assays to be developed 

for them. At this point, rational or intelligent testing of chemicals in assays for the “over-

riding” key event(s), i.e. the rate limiting step(s), could assist in the definition of domains 

of activity of an AOP. 

- An adverse effect or apical event which can, if required, be related to a regulatory 

endpoint. This may be considered at the organ or individual for human toxicology (and 

population or even ecosystem level for environmental effects).  

- In addition, and also linked to mode of action (49), there is a need in risk assessment to 

understand or describe the exposure of an organism to a chemical. This can be thought 

of in terms of the type, route, duration and dose of the exposure. For some endpoints 

e.g. developmental toxicity, the lifestage at which exposure is made may be important. 

 

With regard to modelling and understanding of liver toxicity, a small number of AOPs have 

been formally defined, which may be a good starting point for modelling, these include 

• Cholestatic liver injury induced by inhibition of the bile salt export pump (50). 

• Protein alkylation leading to liver fibrosis (51). 

• Sustained AhR activation leading to rodent liver tumours (52). 
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Whilst progress is being made, the relatively small number of AOPs as compared to the 

number and complexity of liver toxicity mechanisms emphasises that much effort and 

progress is still required in this area. For those AOPs available, they clearly indicate that there 

is a direct link from the MIE to chemistry through understanding of effects such as the 

capability to react covalently with biological (macro-)molecules (53). As a consequence, 

definition of the chemistry associated with protein reactivity may be one starting point for 

defining the domain of an MIE associated, for instance, with fibrosis. The organic chemistry 

mechanisms for protein reactivity has been defined, for instance by Enoch and Cronin (5). 

However, these are very general rules, covering all potential aspects of reactions with 

proteins. It also true, however, that many chemicals will not act through these specific AOPs 

and will need to considered in a different manner (12-14).   

In order to implement the strategy to identify organ level toxicity (and hence having a 

reasonable chance of predicting NO(A)ELs transparently and accurately) more work is 

required. In particular, effort is required to define organ level toxicity and provide profilers to 

assist in the rational and mechanistically based grouping of chemicals. Such an approach is 

provided by Sakuratani and co-workers (23) and several others (24), although it is limited. As 

a starting point, the key organs relating to endpoints following repeated low dose exposure 

to chemicals must be identified. These include for instance, the liver, kidneys, heart, lung, skin 

and several others. The list of important organs is long but not endless. It is, of course, 

important to define which is the “most important” organ level toxicity, but it is beyond doubt 

that the liver represents one of the most important organs with regard to harmful effects of 

chemicals. 

Recently, to support the justification of grouping of compounds to allow for read-across, the 

concept of data from “New Approach Methodologies” (NAMs) has been described. NAMs 

include any evidence that may support toxicological evaluation and prediction, including 

existing data from non-guideline tests, tests to other species or for other effects, in chemico, 

in vitro, high throughput and content and molecular biology data (54). The use of NAMs to 

support grouping has been shown to be important for liver toxicity (24). To illustrate the 

complexity of these issues, the following sections provide a status update on the modelling 
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of toxicity of chemicals that affect the liver, with a particular emphasis on grouping 

compounds.  

 

An Example of In Silico Modelling: Development of Structural Alerts of Liver Toxicity and 

Recommendations for Improvement 

In the context of this paper, a “Structural Alert” is defined broadly as any fragment of a 

molecule (typically 2-D) that is associated with a particular toxicity. Ideally the fragment is 

well defined and can be coded computationally to allow for ease of use and be related to the 

mechanism of action or, in the case, the MIE of the AOP. There are two general applications 

for structural alerts: firstly to make a direct prediction of the hazard associated with a 

compounds, secondly to provide a rational basis for grouping and hence allow read-across. 

These applications are not independent, but seldom well defined. Due to the complexities of 

modelling organ level toxicity, and effects to the liver in particular, future efforts must pay 

more attention to the role of mechanisms of action. As such, AOPs provide a possible 

framework for organising the effort and modelling initiatives. Recent progress has used the 

information provided by AOPs to derive in silico modelling approaches, some recent advances 

are summarised in Table 1 and associated references (55-62). What is clear from Table 1 is 

the breadth and diversity of the mechanisms, the MIE and, as a result, the type of modelling 

approach taken. These modelling approaches range from organic chemistry derived alerts for 

covalent binding through to groups of SMARTS strings and 3-D toxicophores for receptor 

binding.  

Following the development of a limited number of alerts for liver toxicity, the following 

recommendations are made for further development of alerts in the future.  

 

There is a Need for the Better Definition of Structural Alerts 

The structural features associated with protein reactivity described and defined by Enoch and 

Cronin (5), and which are freely available in the OECD QSAR Toolbox and ToxTree software, 
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are intended to be generalistic and provide an overview of the entirety of possible organic 

chemistry mechanisms associated with protein reactivity. They may be used to identify 

potentially reactive compounds (and hence hepatotoxic due to reactivity) but they should not 

be considered to be predictive of any single endpoint; indeed, the intention of developing 

these alerts was to provide a basis for grouping with the assumption the read-across would 

be performed and the strong possibility that the group would contain compounds with, and 

without, toxicity (53, 63). A further complication of such reactive compounds is whether 

metabolism is relevant and how this may have been captured within the alerts (for some 

structural alerts metabolism is implicit, for others it must itself be predicted).  

For individual organ level toxicity, the current set of alerts could be better defined. It should 

be noted that some structural alerts are already well defined and documented, for instance 

those present within the DEREK Nexus software 

[https://www.lhasalimited.org/products/derek-nexus.htm]. However, as we more formally 

link alerts to toxicity pathways through the AOP, the alerts themselves will need to be defined 

more precisely. As noted previously, so-called “chemistry” alerts for use in grouping and read-

across are very general; for organ level toxicity these will need to be more carefully defined. 

Indeed, such alerts could go further into what are being termed “chemotypes” (64). 

Chemotypes have the capability to incorporate structural features with physico-chemical 

properties. Technically, these may need to extend the use of SMARTS strings into more 

sophisticated mark-up languages such as CSRML. A proposal has already been made for the 

incorporation of chemotypes, captured through CSRML to be integrated into KNIME 

Workflows for the prediction of chronic toxicity (57, 65). 

 

There is a Need to Develop Alerts or Categories for Non-Reactive Liver Toxicity AOPs 

A significant area for improvement is the development of alerts for AOPs for non-reactive 

mechanisms of liver toxicity. This can be performed in at least three ways: 

• Firstly, the MIE(s) can be identified and structural alerts built around them. This has 

the advantage of being thorough and robust, but it is likely to be slow.  
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• A second method is to search chemical structures associated with toxicity for alerts. 

The utility of structural similarity is that it may rapidly provide indicators of structural 

alerts associated with toxicity (59, 66). A posteriori these can be interpreted in terms 

of mechanisms. Whilst this may be a more rapid process to develop alerts, it still 

requires effort to interpret alerts, will inevitably be dependent of current (published 

and available) knowledge, and could be open to misinterpretation of results. At this 

point, some of the large data compilations (e.g. ChEMBL, PubChem) may be relevant 

to assist in the interpretation of models (61, 65).  

• Thirdly, alerts could be developed from the AOPs and defined through rational testing 

of the key, or intermediate, events. This is by far the most costly and time consuming 

method to determine and define categories but will result in the most mechanistically 

relevant and robust categories, supported by experimental evidence.  

Thus, to develop better organ-specific profilers we need to start from a mechanistic basis (e.g. 

through the AOP concept) and have several high quality anchors including data for apical 

endpoints and / or adverse effects along with key events. Should structural similarity be 

attempted as a fast track to develop these alerts, the information must not be over-

interpreted and there must be confidence to eliminate poor, badly defined, or unjustifiable 

alerts. Many alerts will be related to receptor binding interactions (e.g. with hormonal 

receptors or signally pathways). This will require new technologies to power the next 

generation of profilers – the profilers in the OECD QSAR Toolbox, for example, are based on 

2-D structure. This will have to transform into capturing 3-D structure, a full capability to 

capture stereoisomerism information as well as toxicophores. Many of these techniques are 

well established in drug discovery, we need to see a greater cross-over into toxicology as 

proposed by Tsakovska et al (62). Lastly, development of in silico models as described here is 

not a short-term fix, it is a long-term solution and there must be patience, understanding of 

the limitations and a better integration of efforts between disparate sciences such as 

molecular (systems) biology, computational chemistry, chemoinformatics and toxicology.  
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There is a Need for a Better Understanding, and Inclusion in Models, of the Role of Metabolism 

and (Bio)Kinetics 

All in silico models for toxicity prediction need to incorporate the role of metabolism either 

implicitly, or through the prediction of metabolites. Clearly this is even more vital for liver 

than most other organs. Whilst considerable progress has been made on the development of 

metabolic simulators (67), there has still be no true assessment of their reliability to, for 

example, predict reactive metabolites. Due to the long-term effort in the development of 

systems for prediction of metabolism, it is likely that they are comprehensive. What is 

required is a concerted effort to define the likely routes for the production of reactive 

metabolites. Then we must determine if any routes are missing from the current predictive 

schemes and implement them more effectively. As part of this, better strategies are required 

to identify the stable and significant metabolites (rather than complete metabolic trees which 

may include short-lived metabolites).  

As a final part of the strategy for predicting chronic toxicity, and organ level effects in 

particular, more effort will be required in the use of biokinetics to predict organ-level 

concentrations. This topic is outside of the scope of this paper, but the role of toxicokinetics 

has been well known for many years. The key will be to provide models to assess whether 

concentration of toxicant in an organ will be above what is being termed the Point of 

Departure (POD) (68). 

 

Conclusions and Overall Recommendations for In Silico Modelling to Support the Prediction 

of Organ Level Toxicity 

Chronic toxicity is a key (regulatory) endpoint for risk assessment of chemicals across 

numerous industrial sectors. Risk assessment is normally performed by consideration of the 

NO(A)EL values for a particular chemical. There are a number of methods to predict NO(A)EL 

values but few, if any, currently have the capability to replace the existing in vivo tests. In the 

future, in silico modelling may be based around the prediction of organ-level effects, with 

regard to this the prediction of effects to the liver is one of the most important. There is a 



18 

 

need for a better liver toxicity prediction strategy, this may include more reliable data with an 

understanding of mechanisms / effects and a framework of mechanisms of action and / or 

AOPs – such approaches could be applied to all other relevant organs. In particular there is a 

need to define MIEs to create alerts, groups and potentially (Q)SARs. To assist this, we need 

better use of rational and intelligent NAMs, i.e. non-animal (e.g. in vitro,-omics etc) testing to 

define domains of the MIEs. Lastly, no single model, or modelling approach will predict organ 

level toxicity efficiently, and a better consideration and integration of metabolism and kinetics 

is required both at the level of physiologically-based pharmacokinetic (PBPK) modelling to 

predict internal dosing and distribution as well as in vivo and in vitro toxicokinetics to allow 

for extrapolation.  

The following overall recommendations for the development of in silico models for toxicity 

following low dose repeated exposure are made. 

• Developing QSAR models directly to predict NO(A)EL values for a broad spectrum of 

compounds and effects is unlikely to provide robust models. 

• In order to develop models to predict repeated dose toxicity computationally, organ 

level effects must be considered. 

• Most in silico toxicology effort at the organ-level has centred on the liver; however, 

predicting liver toxicity requires further effort to identify the effects, mechanisms and 

suitable data. 

• Structural alerts provide the basis for grouping compounds into categories which may 

allow for read-across. There is evidence that read-across within robust categories may 

be a suitable method to predict NO(A)ELs especially when supported by NAMs. 

• Structural alerts will need to developed for further mechanisms of action of organ 

level toxicity. Adverse Outcome Pathways (AOPs) will provide a guide to collect this 

information. 

• AOPs should be utilised to establish the link between the definition of chemistry 

underpinning the MIE and the adverse effect.  
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