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Abstract—The objective of this work is to investigate potential
accuracy improvements in the fingerprint–based indoor position-
ing processes, by imposing map-constraints into the positioning
algorithms in the form of a–priori knowledge. In our approach,
we propose the introduction of a Route Probability Factor (RPF),
which reflects the possibility of a user, to be located on one
position instead of all others. The RPF does not only affect the
probabilities of the points along the pre-defined frequent routes,
but also influences all the neighbouring points that lie at the
proximity of each frequent route. The outcome of the evaluation
process, indicates the validity of the RPF approach, demonstrated
by the significant reduction of the positioning error.

I. INTRODUCTION

The accuracy achieved by any Real Time Localisation
System (RTLS) is affected by the volume and quality of
information that is available during the position estimation
procedure. The more useful information can be provided, the
higher the probability for producing a more accurate estimate.

Depending on the capabilities of the terminal or the overall
RTLS, in retrieving, storing and processing location-specific
information, advanced positioning algorithms can be devel-
oped in order to provide improved positioning services.

The location-specific information may include radio pa-
rameters, such as Received Signal Strength (RSS), Angle of
Arrival (AOA), Time of Arrival (TOA) and Impulse Responses
(IR) or non-radio parameters, such as inertial measurements,
prior map/layout knowledge etc.

In many cases, the sole utilization of the radio parameters,
during the position estimation, imposes limits that are hard
to overcome. By introducing and fusing additional non-radio
parameters to the localisation process, it is expected that one
could potentially improve the positioning accuracy.

In this direction, the information retrieved from the inertial
sensors can be used in conjunction with environment maps.
The idea is to utilise the available environment description
of building databases and blueprints/architectural drawings of
indoor areas, for the purpose of aiding the localisation process.
By using map–related information, the possible movement
and location of the user is expected to be constrained and
different probabilities can be assigned to different areas of
the environment where the User/Mobile Station (MS) might
reside. As a result, long–term error stability can be achieved

when the map is sufficiently accurate and effectively constrains
the motion.

Proper use of any available information into the positioning
process, is definitely a challenge and can contribute noticeably
to the minimization of the positioning error. In fact, the
information retrieved from environment maps, can offer this
extra knowledge. This paper describes how such environment
knowledge can be extracted and exploited into a fingerprint-
based positioning process. The proposed approach utilizes
an a-priori knowledge of the likelihood of a user being at
a specific location. This a-priori knowledge can be made
available as a means of probabilistic map constraints.

The rest of the paper is organized as follows: In Section II
the related background work is briefly summarized in terms of
indoor positioning algorithms and map information extraction
methods. In Section III, the methodology is analysed, describ-
ing the generation of the RSS fingerprint-based database and
the implementation of the RPF in the positioning algorithms.
The performance evaluation of the proposed approach is
included in Section IV and the final conclusions are given
in Section V.

II. BACKGROUND

A. Fingerprint–based Positioning Algorithms

Fingerprint–based positioning using RSS can be classified
into two main categories (1) Deterministic and (2) Probabilis-
tic approaches. The deterministic positioning methods estimate
location as a convex combination of the reference locations [1].
Usually, the K reference locations with the shortest distance
between ri and s in the n-dimensional RSS space are used
and the estimated location ̂̀ is given by

̂̀= K∑
i=1

(
wi∑K
j=1 wj

`′i

)
. (1)

The set {`′1, . . . , `′l} denotes the ordering of reference
locations with respect to increasing distance between the
respective fingerprint ri and the observed measurement during
positioning s, i.e. ‖ri − s‖. The distance can be calculated
using standard norms, such as the Manhattan (1-norm) [2], the
Euclidean (2-norm) [3], the general p-norm with modifications



[4] or the Mahalanobis norm that employs the sample means
and variances of the reference fingerprint [5].

One possible option for the non–negative weights wi in
Eq. (1) is the inverse of ‖ri−s‖ and in this case the positioning
method is known as Weighted K-Nearest Neighbour (WKNN)
[2]. The K-Nearest Neighbour (KNN) method assumes equal
weights for the candidate reference locations, while setting
K = 1 leads to the simple Nearest Neighbour (NN) method
[3], [6], [7]. In general the KNN and the WKNN methods have
been reported to provide higher level of accuracy compared to
the NN method, particularly with parameter values K = 3 and
K = 4 [2], [3]. However, if the density of the RSS radio map
is high, NN method performs equally well compared to more
complicated methods [1]. Several variants of the KNN method
have been discussed in the literature, including the Database
Correlation Method (DCM) which introduces an additional
term in the error function to penalize missing RSS values in
the fingerprints [8], [9].

In probabilistic methods, location ` can be estimated by
calculating and maximising the conditional posterior proba-
bilities p(`i|s), i = 1, . . . , l given an observed fingerprint s
and a fingerprint database (l is the number of fingerprints in
the database). These methods have been extensively used in
the Maximum A Posteriori (MAP) approach [10]–[12] and
the Minimum Mean Square Error (MMSE) approach [13] to
estimate the expected value of `.

The posterior probability p(`i|s) is obtained by applying
Bayes’ rule:

p(`i|s) =
p(s|`i)p(`i)∑l
i=1 p(s|`i)p(`i)

(2)

where p(s|`i) is a conditional probability calculated through
statistics at the survey stage and p(`i) is the a–priori proba-
bility, a weighting factor based on the probability distribution
of the target over the reference position candidates (database
fingerprints). If we assume that we do not have any prior
knowledge then this prior can be assumed to be unity provid-
ing equal a-priori probability to all the fingerprint candidates
in the database.

B. Map Information Extraction

Most of the work carried out in the direction of utilization
of map information for indoor positioning purposes is related
to the robotics area and the enhancement of the respective
mobility models. In this scope, Liao et al. in [14] and Evennou
et al. in [15] proposed the use of particle filters to make
use of the inherent structure of indoor environments. In order
to simplify the calculation complexity of the unconstrained
particle filters, they suggested the estimation of the locations of
people on the Voronoi graph of the environment. By restricting
particles to a graph, they achieved a more efficient algorithm
and at the same time simulated a basic human motion in the
indoor environment.

In our work, instead of adopting the Voronoi graphs and
particle filters, we define the frequent –or most probable–
routes, based on observations. The recording of the frequent

routes based on simple observations, can be replaced by the
adoption of supervised or unsupervised learning techniques.
As the names suggest, in the case of supervised learning,
the researcher must involve some supervision by an external
source in order to improve the algorithm, while in the case
of unsupervised learning, the algorithm will self-evolve, and
gradually achieve a very representative snapshot of the most
frequently used routes.

III. METHODOLOGY AND TEST ENVIRONMENT

A. Route Probability Factor

This section introduces a new map–aided method, using
the Route Probability Factor (RPF). The RPF reflects the
likelihood of a user to be located at a specific position instead
of all other positions. This means that along a frequent route,
the RPF will be increased, while in remote areas it will be
decreased. The RPF does not only affect the probabilities
along the specified route, but also the positions at its prox-
imity. For this purpose, a normally distributed approach was
implemented, at a radius ρ across the route, creating route
tubes. For every location on each frequent route, the algorithm
assigns a decaying probability to all those fingerprints in the
fingerprint database, which reside within a circle with radius
ρ around this location. This decaying probability is given by
the following formula:

RPF`i = RPF`

(
1

σroute
√
2π

)
e−

1
2 (
‖`−`i‖
σroute

)2 (3)

where RPF` is the route probability factor at the location
` which lies exactly on the route and ‖`− `i‖ is the distance
between location ` and any other location `i within the range
of ρ. Finally, σroute is given with respect to the selected ρ:
for a 99% confidence level σroute = ρ/3, since statistically
3σ provides this confidence level.

This iterative process results in a normalised probability
matrix for every location along each frequent route tube.
All these matrices are then summed up to result into an
accumulated probability matrix which describes the likelihood
of a user being in any location. This matrix has a one to
one relation to the fingerprints database and is then used in
conjunction with the positioning algorithm to improve the
localisation accuracy.

In this paper, we employ the WKNN deterministic algo-
rithm to perform fingerprint–based positioning, extended with
the probabilistic part of the RPF. Our approach takes into
consideration a-priori knowledge of the frequent user routes,
as well as the weighted Euclidean distance of the observed
location. The former allows to incorporate map constraints into
the position estimation, by assigning the different probabilities
of likelihood of each location in the environment, in the form
of a matrix as described above. In this context each fingerprint
in the database is given a prior probability Pi = RPFi, which
multiplies the Euclidean Distance as Pi‖ri − s‖. This gives
less likelihood to fingerprints in constrained areas to appear
higher in the ordered vector {`′1, . . . , `′l} which is then used in
Eq. (1). These prior probabilities can also be combined with



the probabilities explicitly set to a minimum, in areas that are
not accessible by the user (e.g. locked rooms, dangerous and
forbidden areas etc.).

The normalised distribution of RPF in our test environment
is visually presented in Figure 1.

Fig. 1. Prior Probabilities

B. Generation of Fingerprint Database and Test Results
In the literature, two map generation methods are used;

actual measurements and utilization of simulation tools. The
actual measurements method is extremely time consuming,
costly and more difficult to maintain, since in case of changes
in the environment setup, new measurements are required.
Examples of this method can be found in [3] and [13]. The
simulated map generation method, is faster and easier to
maintain. During this procedure, the indoor environment is
created in a simulator and different probabilistic or deter-
ministic propagation models are used to generate the RSS
fingerprints. Examples include the adoption of 2D Ray Tracing
(RT) models in [16] and [17], and full 3D Ray Tracing Models
in [18], [19] and [20]. The 3D RT algorithm typically utilises
the 3D electromagnetic formulation of reflection, refraction
and diffraction based on the Uniform Theory of Diffraction
(UTD). In this work, the generation of the fingerprint database
of the testing environment was performed in TruNET, a 3D
Ray Tracing (RT) Simulator. The 3D model of the building
shown in Figure 2, including the furniture set up, was imported
in the simulator in a digital form (.OBJ).

Fig. 2. 3D Model of the Indoor Environment with Fingerprint Locations

For the creation of the fingerprint database, 1584 isotropic
receivers (Rx) were defined in the floor plan. They were

equally-spaced with a step of 0.5m, at a height of 1.5m. The
underlying wireless network included 8 Wi-Fi (2.4GHz) Ac-
cess Points (APs) with an omni-directional antenna, installed
at a height of 2.2m. The locations of the APs are depicted in
Figure 2. Typical values of the electrical parameters obtained
from literature [21], were used to characterise the morphology
of the walls and other geometric features of the building.

IV. PERFORMANCE EVALUATION

In order to assess the performance of the proposed approach,
two separate simulations have been carried out for positioning
estimation of a user moving along the test route shown
in Figure 3. The purpose of the test route is to evaluate
the positioning accuracy before and after imposing the map
constrains. It consists of 520 equally spaced (0.25m) locations
at a height of 1.5m. When a positioning platform is deployed
under real operating conditions, several factors affect the posi-
tioning accuracy. The user might not be using the same device
as the one used to collect the database fingerprints (device
diversity issues), or even the geometric environment might
have changed (displacement of furniture, new partitions etc.).
Moreover, the movement of people create a more dynamic
environment. To incorporate this profile variability onto the
RSS values estimated along the test route, we have introduced
an uncertainty factor (normally distributed with standard de-
viation σ = ±3dB) on the RSS values of the Mobile Station
(MS) [22], [19]. The WKNN positioning method was tested
iteratively for various values of K in the case where no map
constraints are used and it was found that the optimum one
that minimises the mean error was K = 5. This value was then
also used for the case where map constrains are incorporated
into the positioning process.

The results from the two aforementioned positioning esti-
mations (with and without map constraints) are summarized
in Table I, while the respective graphs showing the CDF of
the obtained localisation accuracy are depicted in Figure 4.

TABLE I
POSITIONING ACCURACY WITH AND W/O MAP CONSTRAINTS

Positioning Estimation Parameter Error m
Without Map Constraints Mean 2.03

CEP 50% 1.79
CEP 67% 2.35
CEP 95% 4.53
Max 17.09

With Map Constraints Mean 1.46
CEP 50% 1.09
CEP 67% 1.62
CEP 95% 3.77
Max 5.95

From the above findings we note that, when the map
constraints are used, a significant improvement of 28% occurs
on the mean positioning accuracy (from 2.03m to 1.46m).
We also observe a radical reduction of 65% on the maximum
error (5.95m instead of 17.09m). The improvement is sustained
in the whole range of Circular Error Probable (CEP), as
it can be seen in Figure 4. The position estimation for all



0 5 10 15 20 25 30

−4

−2

0

2

4

6

8

10

12
 

TX4

TX8

TX3

TX7

TX2

TX6

TX5

TX1

 

Access Points
True Locations
Estimation without Map Constraints
Estimation with Map Constraints

Fig. 3. Estimates along the test route
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Fig. 4. CDF of Localisation Accuracy

points along the test route in the map-aided scenario, is
presented in Figure 3 with square symbols. It can be observed
that, as a result of the implementation of the RPF in the
positioning procedure, the estimated locations were shifted
from the areas captured by furniture (asterisk symbols) towards
more reasonable positions, near the test route.

Given the above improvements in the positioning accuracy,
it is interesting to investigate what would be the effect of the
radius ρ around each of the locations of the frequent route
used for the generation of the a-priori probabilistic knowledge
by the RPF method. In this context, for the optimization of the

RPF, different values of route radius ρ were investigated. As it
is illustrated in Figure 5, the value of ρ affects the localisation
accuracy and should be ρ ≥ dRx, where dRx is the fingerprint
radiomap resolution (step between the receivers).
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Fig. 5. Effect of RPF radius ρ on accuracy

V. CONCLUSION

The introduction of weight coefficients in the form of a–
priori knowledge that reflect the map constraints can result in
significant improvements of position estimation in indoor en-
vironments. In this direction we proposed the implementation
of RPF as a matrix, which can be either populated manually,



by observing the human movement behaviour, or through
the implementation of supervised or unsupervised learning
methods. The value of the radius ρ which defines the range
of effect of the frequent routes, depends on the fingerprint
radiomap resolution and should be optimized accordingly to
minimise positioning error.
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