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Abstract: Glucagon is an important pancreatic hormone, released into blood circulation by alpha cells of the islet of 

Langerhans. Glucagon induces gluconeogenesis and glycogenolysis in hepatocytes, leading to an increase in hepatic glu-

cose production and subsequently hyperglycemia in susceptible individuals. Hyperglucagonemia is a constant feature in 

patients with T2DM. A number of bioactive agents that can block glucagon receptor have been identified. These glucagon 

receptor antagonists can reduce the hyperglycemia associated with exogenous glucagon administration in normal as well 

as diabetic subjects. Glucagon receptor antagonists include isoserine and beta-alanine derivatives, bicyclic 19-residue pep-

tide BI-32169, Des-His1-[Glu9] glucagon amide and related compounds, 5-hydroxyalkyl-4-phenylpyridines, N-[3-cano-6-

(1,1 dimethylpropyl)-4,5,6,7-tetrahydro-1-benzothien-2-yl]-2-ethylbutamide, Skyrin and NNC 250926. The absorption, 

dosage, catabolism, excretion and medicinal chemistry of these agents are the subject of this review. It emphasizes the 

role of glucagon in glucose homeostasis and how it could be applied as a novel tool for the management of diabetes melli-

tus by blocking its receptors with either monoclonal antibodies, peptide and non-peptide antagonists or gene knockout 

techniques.  
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INTRODUCTION  

Glucagon is a hormone made up of 29 amino acids. It is 
formed from pro-glucagon precursor. Proglucagon is prote-
olytically processed into various peptide hormones such as 
glucagon in pancreatic alpha cell, glucagon like peptide-1 
(GLP-1), GLP-2, oxyntomodulin and glicentin in intestinal L 
cells and the central nervous system [1]. Diabetes mellitus 
(DM) is characterized by chronic increment of fasting blood 
glucose level associated with marked and sustained post-
prandial hyperglycemia. At the same time, type 2 diabetes 
mellitus (T2DM) is associated with a disturbed secretion and 
function of several pancreatic hormones including insulin 
and glucagon all of which play an essential role in glucose 
homeostasis. T2DM is associated, especially in late stage, 
with a deficiency in insulin secretion and impairment in the 
ability of insulin to trigger its receptors effectively and help 
in the uptake of glucose into specific cells. The deficiency of 
insulin secretion and insulin resistance are correlated with 
reduction of glucose uptake in certain cells such as those of 
skeletal muscle. This condition is associated with hyperpro-
liferation of pancreatic, glucagon secreting alpha cells result-
ing in hyperglucagonemia [2-4]. Several modified molecules  
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of glucagon have been shown to inhibit the function of glu-
cagon receptors, thereby preventing the hyperglucagonemia-
induced hyperglycemia seen in DM [3, 5]. Insulin itself is a 
glucagon antagonist, inhibiting glucagon secretion via the 
activation of GABA receptor and its translocation to the cell 
membrane to prevent glucagon release [6]. The low insulin 
level observed in diabetic patients will result in high level of 
glucagon because of loss of insulin-induced glucagon inhibi-
tion. 

Glucagon receptor belongs to the B-family of the trans-

membrane receptors called G-protein- coupled receptor 
(GPCR) [7]. The receptors responsible for the function of 

key bioactive agents such as GLP-1 and GLP-2, and glucose-

dependent insulinotropic peptide (GIP) are active members 
of this group of receptors as well [8].  

Glucagon promotes glucose production from the liver, 

mainly via binding with the G-protein coupled glucagon re-
ceptor to stimulate gluconeogenesis and glycogenolysis 

through the adenylate cyclase that initiates protein kinase A 

(PKA) activity. Simultaneously, PKA suppresses glycogen 
synthesis and glycolysis and induces ketogenesis [9]. Gluca-

gon also initiates lipolysis in the liver and adipose tissues 

[10]. Glucagon receptors are expressed not only in the liver 
but also in many other tissues such as heart, smooth muscle 

of the intestine, brain, kidney and adipose tissues [11]. 
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GLUCAGON AND DIABETES  

The hormone glucagon plays a major role in the initiation 
and elevation of hyperglycemia in DM. Insulin and glucagon 
antagonize each other in the regulation of glucose level. In 
DM the blood plasma ratio of glucagon versus insulin levels 
in the blood plasma is higher than that observed in healthy 
controls. Although previous studies have reported that dia-
betic patients have significant reduction in the number of 
glucagon receptors, however, the effect of this peptide hor-
mone at its receptor sites and the ability to activate cAMP 
remains largely intact [12]. This is probably due to the fact 
that the activation of 20% of glucagon receptors is enough to 
significantly stimulate adenylate cyclase [13]. Type 1 and 2 
DM are associated with hyperglycemia, due in part to lack of 
suppression of glucagon release because of insulin loss [9, 
14].  

GLUCAGON RECEPTOR  

The binding of glucagon to its GPCR, located on the 
plasma membrane results in conformational alterations in the 
nature of GPCR. The G s and G q subunits of GPCR play 
an important role in glucagon-induced cell signaling in se-
lected cells. Activation of G s receptor induces large and 
significant increases in adenyl cyclase, and consequently in 
the cytoplasmic levels of cAMP and PKA. Moreover, stimu-
lation of G q induces large increases in the level of phos-
pholipase C, synthesis of inositol 1,4,5-triphosphate, fol-
lowed by the release of calcium ion intracellularly, leading to 
glucose release from hepatocytes through initiation of glyco-
genolysis, gluconeogenesis and glycolysis and suppression 
of glycogenesis [15]. Abolition of glucagon receptors 
(Gcgr / ) leads to reduction in plasma glucose levels [16]. 

GLUCAGON RECEPTORS IN THE TREATMENT OF 
DIABETES  

The pathogenic symptoms of DM, such as hyperglycemia 
and ketoacidosis are mainly due to the excessive circulating 
glucagon levels, while deficient insulin level or insulin resis-
tance leads to decreased uptake of glucose. This physiologi-
cal role of glucagon encourages many investigators to focus 
on putative glucagon antagonists to restore normoglycemia 
in patients suffering from DM. In view of this, glucagon re-
ceptor antagonists or molecules that could suppress the ex-
pression of glucagon receptors have attracted the attention of 
investigators working on the treatment of DM [17]. 

GLUCAGON RECEPTOR GENE KNOCKOUT AS A 
TOOL FOR VALIDATING THIS RECEPTOR AS A 

POTENTIAL DRUG TARGET 

The fact that glucagonemia is not a good sign in DM has 
prompted investigators to try and block glucagon receptors 
on hepatic cells. This idea has stimulated scientists to con-
struct mice lacking glucagon receptors Gcgr / . The inabil-
ity of Gcgr /  mice to develop hyperglycemia have sup-
ported the role of glucagon and its receptors in the patho-
genesis of diabetes-induced hyperglycemia. Glucagon recep-
tor gene knockout Gcgr /  mice under normal diet showed a 
decreased blood glucose level. This Gcgr /  mice also resist 
streptozotocin-induced hyperlycemia and show less beta cell 
damage [18]. In other studies, blocking of glucagon action 

(absence of glucagon receptor) in Gcgr /  streptozotocin-
induced diabetic mice leads to enhancement of metabolic 
state and this finding indicates that glucagon receptor gene 
deletion in type 1 diabetic mice restores its normal metabo-
lism [19]. Fasted Gcgr /  mice also showed a decrease in 
blood glucose level but not an overt hypoglycemia, because 
increase in blood glucose is not regulated by glucagon alone 
but also by several other hormones including catechola-
mines, corticosteroids and growth hormone [20]. However, 
fasted Gcgr /  mice showed considerable deficiency in lipid 
production, secretion, and oxidation [21]. This result indi-
cates that a minimal essential level of glucagon receptor ex-
pression is needed to maintain normal lipid metabolism in 
the liver [21]. In contrast, other studies have shown that the 
level of lipids is normal in the presence of lower glucagon 
receptor level [22].  

Gcgr /  mice were characterized by enhanced glucose 
tolerance and associated with increased GLP-1 plasma con-
centrations. This elevation of GLP-1 is mainly produced by 
alpha cells [16]. The improvement of glucose homeostasis in 
these Gcgr /  mice resulted mainly from either suppression 
of glucagon signaling or increased secretion of GLP-1 [23]. 

Suppression of liver Gcgr expression was seen after 
treatment of db/db mice with antisense oligonucleotide. Re-
duction of liver Gcgr expression was associated with de-
creased blood glucose concentration, plasma free fatty acids 
and triglycerides with undetected hypoglycemia [24].  

In addition, Gcgr antisense oligonucleotide administra-
tion to ob/ob and db/db mice and Zucker diabetic fatty rats 
showed a reduction of both blood glucose levels and liver 
triglycerides. Also, treatment of rodents via Gcgr antisense 
oligonucleotide leads to increased blood concentration of 
glucagon and GLP-1 with hyperproliferation of alpha cells 
[25]. This investigation in rodents revealed that the suppres-
sion of Gcgr expression and glucagon effect lead to a reduc-
tion of liver glucose output with enhanced glucose tolerance 
[26]. 

Gcgr /  mice of either streptozotocin-provoked or high-
fat diet treated has been investigated. The results of glucagon 
receptor deletion mice compared to normal control mice had 
showed that Gcgr /  mice were characterized by reduced 
body weight, appetite and gastric motility with decreased 
blood glucose concentrations and enhanced glucose homeo-
stasis. In addition, Gcgr /  mice showed decreased hyper-
leptinaemia and liver steatosis induced by high-fat diet and 
less susceptible hyperglycemia in streptozotocin-induced 
beta cell damage [18]. 

Prominent alpha cell hyperplasia and elevated blood glu-
cagon levels were seen in Gcgr /  mice as a compensatory 

effect due to deletion of Gcgr. Moreover, a reduction in free 

fatty acid and -hydroxybutyrate concentrations were seen in 
Gcgr /  mice [19]. 

ANTIBODY NEUTRALIZATION OF GLUCAGON  

Many investigators have reported that suppression of 
glucagon action causes considerable improvement in ele-
vated blood glucose concentrations in animal models of DM. 
Immunoneutralization of glucagon by monoclonal antibody 
in diabetic rats, mice and rabbits lead to a significant de-
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crease in blood glucose levels. Moreover, there was a sig-
nificant reduction in serum levels of glycosylated hemoglo-
bin A1c and serum triglyceride in ob/ob mice treated with 
glucagon antibodies [18-21]. In addition, glucagon antibod-
ies significantly decrease the output of glucose from the 
liver, which in turn reduces the elevated blood glucose levels 
in diabetic and normal rabbits [20]. Other studies reported 
that glucagon immunoneutralization leads to a marked de-
crease in glucagon levels and improve glucose tolerance in 
experimental animals [18, 19]. It is clear from these studies 
that immunoneutralization of glucagon may be a promising 
tool for the treatment of DM (Table 1).  

PEPTIDE ANTAGONISTS OF GLUCAGON RECEP-

TORS  

Glucagon antagonists inhibit both glucagon receptors 
binding and the action of glucagon at the receptor binding 
site. Some glucagon antagonists may inhibit glucagon action 
via competitive or noncompetitive pathways [31, 32]. Glu-
cagon receptors show species specificity as some of them are 
more effective on human glucagon receptor than those of 
rodents [33]. According to many reports, experimental ani-
mal expressing receptors similar to those of human will be a 
potent tool to demonstrate the in vivo estimation of the effec-
tiveness of glucagon receptor antagonists in the treatment of 
human DM [34]. 

Many recent studies were directed towards the discovery 
of new ways of suppressing glucagon action using glucagon 
receptor antagonists with a strong binding activity towards 
glucagon receptors than the native glucagon [35-37]. The 
administration of glucagon receptor antagonists leads to a 
reduction in blood glucose levels in normal and diabetic ro-
dent models [38-40]. A number of glucagon antagonists have 
recently been reported. Many studies were focused on the 
discovery of glucagon peptide derivatives of potent glucagon 
receptor antagonist through the modification of different 
amino acids moiety in native glucagon hormone. Many glu-
cagon derivatives studied include His1, Phe6, Ser8, Asp9, 
Tyr10, Ser11, Lys12, Tyr13, Asp15, Ser16, Arg17,18, 
Asp21 and Trp25 [41] and bicyclic 19-residue peptide BI-
32169, Des-His(1)-[Glu(9)]-glucagon amide. This naturally 
occurring peptide was isolated from Streptomyces sp [42]. 
Administration of this bicyclic 19-residue peptide BI-32169 
showed a strong reduction in human glucagon receptor activ-
ity in a cell-based experiment [43]. Bicyclic 19-residue pep-
tide BI-32169 novel peptide is considered to belong to the 
lasso group. The potential advantage of this compound is the 
fact that it is a naturally occurring substance (Table 2).  

Many investigators have tried to design a glucagon re-
ceptor antagonist by modifying the sequence of its amino 
acid. The des-His(1)-[Glu(9)]-glucagon amide is an outcome 
of this endeavor. The glucagon receptor antagonist des-
His(1)-[Glu(9)]-glucagon amide was reported to totally abol-
ish the activity of glucagon receptor and leads to a reduction 
in hyperglycemia in normal rabbits and in streptozotocin-
induced diabetic rats when administered intravenously [43, 
44]. Des-His-glucagon, a peptidyl glucagon receptor antago-
nist, binds to about 80% of the mice liver glucagon receptors 
and prevents the increase in glucagon-induced plasma glu-
cose [39]. Other glucagon receptor antagonist [1-
natrinitrophenylhistidine, 12-homoarginine]-glucagon 

showed a marked reduction (20-35%) of blood glucose lev-
els in streptozotocin-induced diabetic rats when given intra-
venously [40]. Similar antagonistic effect was reported by 
[des-His, des Phe(6),Glu(9)]-glucagon-NH2, which also has 
hypoglycemic effect. 750 g/Kg body weight induced up to 
63% decrease in the level of hyperglycemia, when given 
intravenously [45] (Table 2).  

NON-PEPTIDE GLUCAGON RECEPTOR ANTAGO-
NISTS  

Many orally administered doses of small molecules such 
as ureas, beta-alanine derivatives, alkylidene hydrazides and 
benzimidazole were reported to be able to block glucagon 
receptor in both non-diabetic and diabetic dogs, and mon-
keys [38-40]. Recent studies have shown that beta-alanine 
urea derivatives can block glucagon from binding to human 
glucagon receptor when given intragastricaly at a dose of 20-
100 mg/kg [46, 47]. Beta alanine, also known as 3-
aminopropanoic acid, is a non-essential amino acid that is 
frequently used by sportsmen to enhance their performance. 
(+)-3,5 diisopropyl-2-(1-hydroxyethyl)-6-propyl-4'-fluoro-
1,1'- biphenyl; C23H31FO) (Bay 27-9955) is a small non-
peptide glucagon receptor antagonist, which has been re-
ported to prevent hyperglucagonemia when administered 
intravenously at a dose of 70-200 mg. However, Bay 27-
9955 can also be given orally. It prevents glucagon-induced 
increase in glucose release from the human liver in a dose-
dependent way [48]. See Fig. (1) for the structure of some 
selected glucagon receptor antagonists.  

One of the other non-peptide glucagon receptor antago-
nists is a 5-hydroxyalkyl-4- phenylpyridines which has about 
70-fold more binding capacity to the human glucagon recep-
tor compared to wild glucagon hormone [49]. In addition, 
compound-1 (Cpd1) is one of the most effective glucagon 
receptor antagonists that can bind glucagon in human liver 
cells. Cpd1 also leads to a reduction in glucagon-stimulated 
glucose increase in mice liver when given intraperitoneally, 
at a dose of 15 mg/Kg body weight. Cpd1is an effective tool 
in the reduction of hepatic glucose release and decreasing 
hyperglycemia in type 2 DM [50].  

Skyrin, a fungal product, is a low molecular weight non-
peptide glucagon receptor antagonists which does not bind to 
glucagon receptors but act only as an inhibitor of glucagon-
stimulated cAMP activation and glycogenolysis, via uncou-
pling or disconnect the glucagon receptor from adenylate 
cyclase activation, thus preventing the glucagon receptor 
from the production of cAMP that inhibits glucose release 
from the liver. The effective dose of skyrin is 10-30 mM 
[51]. 

In addition to skyrin, other agents including N-[3-cano- 
6-(1,1-dimethylpropyl)-4,5,6,7-tetrahydro-1-benzothien-2-yl]- 
2-ethylbutamide, has been examined. It was shown that  
N-[3-cano-6-(1,1-dimethylpropyl)-4,5,6,7-tetrahydro-1-benzo- 
thien-2-yl]-2-ethylbutamide inhibits the attachment and func-
tion of the glucagon-receptor complex thereby suppressing 
the action of glucagon at 15 g (i.p.) and act as glucagon 
receptor antagonists [50]. Compounds such as (2R)-N-[4-
({4-(1-cyclohexen-1-yl)[(3,5-dichloroanilino) carbonyl] 
anilino} methyl) benzoyl]-2-hydroxy-balanine, (NNC 25-
0926) has been shown to inhibit hepatic production of 
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Table 1.  The use of immunoneutralization of glucagon receptors by monoclonal antibody. 

Dosage 1 - 30 mg/kg (monoclonal antibody) References 

Mode of delivery Subcutaneous (s.c.) 

Efficacy 

Single s.c. injection of 3 mg/kg body weight maintained normoglycemia for 8 days. 

30 mg/kg body weight achieved a longer duration of normoglycemia. No hypoglycemia was recorded. 

Monoclonal antibody against glucagon receptors was ineffective in the face of severe hyperglycemia  

without the addition of insulin. 

[18-21] 

 

Table 2.  Peptide antagonists of glucagon receptors. 

 Dosage Mode of Delivery Efficacy References 

Bicyclic 19-residue peptide 

BI-32169 
320-440 nM 

Subcutaneous (s.c.) or 

intravenous (i.v.) 
Investigations still in the experimental phase. [42, 43] 

Des-His(1)-[Glu(9)]-

glucagon amide 
10 g Intravenously (i.v.) 

Single dose blocks up to 40-80% of endo- as well 

as exogenous glucagon, including free as well as 

hepatocyte-bound. 

[39,40, 43-45] 

 

Fig. (1). Chemical structure of selected glucagon and/or glucagon receptor antagonists. 

 
glucose when administered at a dose of between 10 and 100 
mg/Kg body (intragastrically). See Fig. (1) for the structure 
of selected glucagon receptor antagonists. 

A study of the activity of urea biaryl amide derivative 6i 
as glucagon receptor antagonist on Sprague-Dawley rats has 
showed 50% inhibition of glucagon action on glucose liver 

 
Compound Chemical Structure 

1 Spiro-urea 

 

2 Benzimidazole 

 

3 Skyrin 

4 NNC25-0926 
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output under glucagon challenge [52]. Similarly, a spiro-
ureas substitution, compound 15, has revealed as inhibitory 
action as glucagon receptor antagonist on genetically modi-
fied mice expressing human glucagon receptor with moder-
ate reduction of hyperglycemia provoked by glucagon [53]. 
In a related study, a trisubstituted urease derivative, com-
pound 4a, has demonstrated its potent suppression of gluca-
gon receptor action in glucagon-challenged mice expressing 
human glucagon receptor. This treatment leads to lowering 
plasma glucose concentrations under high lipid diet [54]. 

A 1,3,5-pyrazoles substitution, compound 26, has 

showed a strong glucagon receptor antagonists on rhesus 

monkey and mice expressing human glucagon receptor. 
Orally administered compound 26 reduced the hyperglyce-

mia under glucagon effect [55].  

Oral effective aminobenzimidazole glucagon receptor an-
tagonist has been established as a glucagon suppressor drug. 
Aminobenzimidazole showed reducing effect on glucose 
concentrations in glucagon-induced murine diabetic model, 
rhesus monkeys, and genetically modified human glucagon 
receptor mice [56]. 

A study of the pharmacodynamics effect of orally -

alanine derivatives as glucagon receptor antagonists lead 

compound 25 and the optimized derivative 57 had revealed 
that they suppressed the glucagon-challenged hyperglycemia 

in rats mainly through reduction of glucagon action on liver 

glucose production [57].  

A promising glucagon receptor antagonist compound 15 
is derived from -alanine series by changing the -alanine 

motif to isoserine. Compound 15 has confirmed as suppres-
sor glucose output under glucagon-challenge from rat liver 
cells. In addition, compound 15 reduced hyperglycemia in 
Sprague-Dawley rats and in ob/ob mouse [46]. 

Epigenetic changes occur via a variety of mechanisms 
including, chromosome conformational modification, histone 
alteration, other DNA-associated proteins and non-coding 
RNAs [58].  

Epigenetic alterations may be caused by methylation of 
chromosomes. This in turn may either activate or suppress 
relevant genes [59]. Other ways in which epigenetic varia-
tion may occur is by histone post-translation alterations such 
as acetylation, citrullination, cutting, methylation, phos-
phorylation and ubiquitination [58]. Alterations in histone 
structure can change the way that histone binds or interacts 
with other proteins that modify transcriptional mechanism 
[60]. Furthermore, non-coding RNAs association with DNA 
can change chromosomal structure eventually leading to 
alterations in post-translational gene expression [61].  

Chromosomal alterations may contribute to epigenetic 
variants that are involved in genomic modifications associ-
ated with some cancers and others diseases [62]. It has been 
shown that epigenetic chromosomal methylation influences 
type 1 diabetes via alteration of insulin and interleukin genes 
[60]. Epigenetic changes leading a decrease in the gene ex-
pression of either Glut4 or Pdx-1 has been observed in 
T2DM [63-65]. Moreover, it has been shown that chromo-
somal modification accompanied with histone acetylation 
can cause the progression of DM and thus, the use of histone 
deacetylase inhibitors as an epigenetic therapy can suppress 

 

Fig. (2). Effects of either glucagon or glucagon receptor antagonist on reduction of diabetic complications.  

Fig. (2). shows how a schematic diagram of interaction between glucagon, glucagon antagonist, glucagon receptor antagonist and glyco-

genolysis in the regulation of blood glucose level. (-) = inhibition, = reduction.  
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Table 3. The advantages and disadvantages of glucagon neutralization and glucagon receptor antagonists. 

 Advantages Disadvantages References 

Neutralizing antibodies against glucagon 
Reduced hyperglycemia; lowers triglyceride 

concentration 
Weight gain [22] 

Glucagon receptor antagonism Decreased blood glucose concentrations Abnormal lipid production [16, 21] 

 
Table 4.  The effect some glucagon receptor antagonists. 

Drug Compound Efficacy Dosage Adverse effect 
Clinical 

phase 
Ref 

Spiro-urea Compound 15 

(a)Reduced glucose excursion 

after glucagon challenge ; (b) 

blocks glucagon effect 

10 and 30 mg/kg (i.m.) 
thirst, dry mouth, nausea, 

polyuria 
Pre-clinical [53, 67] 

Benzimi-

dazole 
Compound 36 

Reduced glucose levels in dia-

betes; suppressed glucagon-

induced glucose increase in 

animals 

10 and 3 mg/kg in rhesus  

monkeys 

Reduced human liver 

microsome stability 
Pre-clinical [56, 68] 

Skyrin 
Fungal bisan-

thro-quinone 

Antagonized functional gluca-

gon (uncouples glucagon recep-

tor from adenylate cyclase in 

hepatocyte plasmalemma 

30 micromol/l inhibited 

glucagon-stimulated cAMP 

production and glucose 

output 

Suppressed Na+, K+-

activated ATPase; Inhibits 

microsomal activity in rat 

brain 

Not in 

clinical 

trial 

[51, 69] 

 
the development of DM [66]. Other agents that prevent un-
warranted DNA methylation and other molecular factors 
leading to epigenetic changes will be useful in the manage-
ment of DM. In fact it has been reported that GLP-1 and 
GIP, molecules related to glucagon can overturn the epige-
netic phenomenon in T2DM [64]. In fact it has been shown 
that GLP-1 and GIP act via GPCR, the receptor through 
which glucagon exerts its action [7]. 

CONCLUSION 

Optimal management of diabetic patients using glucagon 
antagonist must avoid the adverse effects of this drug, such 
as hypoglycemia, liver stenosis, increases in liver enzymes, 
and disturbed lipid metabolism. Accordingly, reduction of 
blood glucagon level by using glucagon receptor antagonists 
must balance between therapeutic benefits and adverse ef-
fects. 

This mini-review has shed light on the role of glucagon 
in the regulation of glucose metabolism and how it could be 
used as a tool for the treatment of DM either by using an-
tagonists or gene knockout techniques that could neutralize 
the action of glucagon or blocking the binding of glucagon to 
its receptors with antibody immunization (Fig. 2 and  
Table 3) A summary of the efficacy, dosage, adverse effect 
and the status of some glucagon receptor antagonists is given 
in Table 4.  
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