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One-basedness and reductions of elliptic curves 
over real closed fields

Davide Penazzi

June 16, 2017 (accessed)

Abstract

Building on the positive solution of Pillay’s conjecture we present a
notion of “intrinsic” reduction for elliptic curves over a real closed field
K. We compare such a notion with the traditional algebro-geometric re-
duction and produce a classification of the group of K-points of an elliptic
curve E with three “real” roots according to the way E reduces (algebro-
geometrically) and the geometric complexity of the “intrinsically” reduced
curve.

1 Introduction

Definability in this article is meant in first order logic. Those not familiar with
logic can simply consider the class of definable sets of a structure M as a class of
subsets of Mn, for all n, determined in a unique way after assigning a language
LM , and that is closed under finite unions, finte intersection, complementation
and projection.

A definable group (G, ∗) in M is a group with a definable underlying set
G ⊂ Mn and whose operations ∗ : G×G → G and −1 : G → G have definable
graphs.

In model theory there exists a notion of an “infinitesimal subgroup” G00 of
a definable group G in a structure M . The group G00 is the smallest type-
definable bounded-index subgroup of G. The motivating example of such group
is when G = ([−1, 1),+ mod 2) in a real closed field; then G00 turns out to be
the subgroup of infinitesimal elements around 0.

For a large class of structuresG00 exists; in particular in o-minimal structures
we obtain a functorial correspondance L : G → G/G00, where G/G00 is a real
Lie group. This correspondance is known to preserve many properties of the
group and can be thought of a sort of “model theoretic” or “intrinsic” reduction
of the group G.

An important question is whether L preserves the geometric complexity (in
the sense of geometric stability theory) of the group G. The pioneering work
of Zilber [16] led to a classification of sets in a class of structures called Zariski
Geometries: a definable set in a Zariski Geometry either “resembles” a pure set,
or a vector space or an algebraically closed field.

For o-minimal theories a trichotomy classification has been given by Peterzil
and Starchenko in [10], which roughly states that an o-minimal structure locally
resembles either a pure set, or a vector space, or a real closed field.
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In this article we work in the o-minimal context, and the concept of a struc-
ture having geometric complexity of a vector space is captured by the notion of
having a 1-based theory, following Pillay’s work [12]. An equivalent definition
to 1-basedness is for a structure to have the CF-property (Collapse of Families);
this roughly states that given a uniformly definable family of functions, then
the germ of such functions at any point can be defined using a single parameter.
See [5] for details.

Instead of a theory, we shall analyse the geometric complexity of a definable
set or of a type-definable set in a saturated structure (i.e. obtained as an infi-
nite, but smaller than the cardinality of the structure, intersection of definable
sets) or of a type-definable quotient (i.e. the quotient of a definable set by a
type-definable equivalence relation, called a hyperdefinable set) induced by the
ambient structure in which it lives. The method we use is to “extract” the
induced theory of a definable set and then study 1-basedness of such theory.

When the ambient structure is a saturated real closed fieldK, all its definable
sets will have the geometric complexity of real closed fields, in particular, also
any definable group G. We can ask if the geometric complexity of hyperdefinable
sets K does not always behave so trivially. In particular a good candidate for
nonstandard behaviour is the group G/G00, where G is definable in a saturated
real closed field K. We then work in a suitable espansion of K in which G/G00

is definable and “extract” its theory. The general aim of our project is to give a
dichotomy classification, à la Peterzil-Starchenko (see [10]) of the groups G/G00

where G is a 1-dimensional definable, definably connected, definably compact
group in a saturated real closed field K. Such a project has been initiated in
the author’s thesis [8] and in [9] for some specific groups G.

We present in this article an analysis when G is the connected component
of an elliptic curve with three “real” (meaning in K rather than its algebraic
closure) roots. A first observation is that for elliptic curves E(M) over a valued
field (M,w) with discrete valuation group there is an algebraic-geometric notion
of reduction to a (possibly singular) curve Ẽ(kw) defined over the residue field.
There seems not to be such a notion for real closed valued fields, so we need
to adapt the algebraic-geometric reduction to the context of real closed valued
fields (that, we recall, have R as residue field).

It is natural then to ask if the bad behaviour when an elliptic curve E(Kw)
reduces to a singular curve is connected to a loss of structural complexity from
the group E(Kw)0 to E(Kw)0/E(Kw)00. This would shed light on what is the
relation between the “intrinsic” reduction E(Kw)0 → E(Kw)0/E(Kw)00 and
the “algebraic geometric” reduction E(Kw) → Ẽ(R), and if we can determine
model theoretical properties using valuation theoretic notions.

In the rest of this section we shall describe the setting we work in, the main
results obtained in [9]. An outline of the proof of the main theorem is given.

In Section 2 we introduce elliptic curves, the notion of minimal form for an
elliptic curve and the definition of algebraic-geometric reduction.

In Section 3 we proceed with the study of 1-basedness when G = E(K)0

where E is an elliptic curve with three “real” roots.
In Section 4 we extend the results obtained to truncations of the groups

studied in Section 3.
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1.1 Setting and basic facts

For the rest of the paper K denotes a saturated real closed field, whilst M
denotes a saturated o-minimal structure. (Saturated means big enough to find
in the structure realizations for all consistent types with < |M | parameters.)
This allows us to state the results used in full generality.

A definable group G is definably connected if there are no proper definable
subgroups of finite index, and G is definably compact if any definable function
from an open interval of the base structure to G has its limit in G. The fol-
lowing theorem has been completely proved in [2] but is still known as Pillay’s
conjecture.

Theorem 1.1 (Pillay’s conjecture). Given G a definably connected definable
group in a saturated o-minimal structure M , we have that

1. G has a smallest type-definable subgroup of bounded index G00.

2. G/G00 is a compact connected Lie group, when equipped with the logic
topology.

3. If, moreover, G is definably compact, then the dimension of G/G00 (as a
Lie group) is equal to the o-minimal dimension of G.

4. If G is commutative then G00 is divisible and torsion-free.

We thus obtain a functor from the category of definable, definably connected,
definably compact groups to the category of compact Lie groups: L : G →
G/G00

We recall a few facts about o-minimality, in particular the notion of dimen-
sion of a definable set in an o-minimal structure; we refer the reader to the book
of Van den Dries [15] for an extensive introduction.

Given a structure M and X ⊆ Mn a definable, definably linearly ordered
or circularly ordered set, we say that X is o-minimal (resp. weakly-o-minimal)
if any definable (with parameters from M) subset S ⊆ X is a finite union of
intervals and points (resp. convex sets). We recall that a circularly ordered set is
a set equipped with a ternary relation R(a, b, c) meaning that c is after b that is
after a clockwise. We then define an open interval to be (a, c) = {b : R(a, b, c)},
and closed intervals and convex sets in the obvious way. For linearly ordered
sets consider as intervals also (−∞, a) and (a,∞).

Observe that in the definition of o-minimal sets above when X = M we
obtain the usual notion of o-minimal structure.

Basic examples of o-minimal structures are any pure linearly ordered dense
set without endpoints, such as (Q, <), ordered vector spaces over a field and
real closed fields. Real closed fields with a predicate for a convex set, and real
closed valued fields are weakly-o-minimal structure.

A well known fact proved by Knight, Pillay and Steinhorn in [4] states that
if a structure M with language LM is o-minimal, all structures satisfying the
same first order LM -sentences (i.e. all N such that N � Th(M), the theory of
M) are o-minimal. We can thus say that a theory T is o-minimal if any/all of
its models M � T are o-minimal. This is not generally true for o-minimal sets,
but it holds if the set is stably embedded (see below).

O-minimal structures carry a notion of dimension:
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Definition 1.2. Given a definable set X,

dim(X) = max{i1 + · · ·+ im| X contains an (i1, · · · , im)− cell}.

Here an (i1, · · · , im)− cell is defined inductively by:

1. A (0)− cell is a point x ∈M , a (1)− cell is an interval (a, b) ∈M .

2. Suppose (i1, . . . , im)−cells are already defined; then an (i1, . . . , im, 0)−cell
is the graph of a definable continuous function f : Y → M , where Y is
an (i1, . . . , im)-cell; further an (i1, . . . , im, 1) − cell is a set (f, g)Y (i.e.,
the set of points (x, y), x ∈ Y , f(x) < y < g(x)), where f, g are definable
continuous functions f, g : Y →M , f < g and Y is a (i1, . . . , im)− cell.

We say that a definable group G is n-dimensional if its underlying set is
n-dimensional.

Given an o-minimal theory T , and a model M , with f(x, y) a ∅-definable
function in M , and a ∈ M , we define an equivalence relation ∼a on tuples of
the same length as y by c ∼a c′ if neither of f(−, c), f(−, c′) is defined in an
open neighbourhood of a or if there is an open neighbourhood U of a such that
f(−, c) = f(−, c′) in U . We call the equivalence class of c the germ of f(−, c)
at a, and denote it by c/ ∼a.

We say that T is 1-based if in any saturated model M � T , for any a ∈ M ,
for all definable functions f(x, y) : M ×Mn → M , and for any c ∈ Mn such
that a /∈ dcl(c), we have c/∼a ∈ dcl(a, f(a, c)) as an imaginary element, i.e., in
the appropriate sort of Meq: the expansion of M by predicates for all definable
quotients.

The basic example of a 1-based o-minimal theory is the theory of an ordered
vector space over a field (Th(Q,+, 0, <)); an example of non-1-based theory is
the theory of real closed fields (Th(R,+,−, ·, 0, 1, <)).

We have now a notion of structural complexity of a theory, we want to adapt
it to definable sets.

Given a definable (infinite) set S in M we can “extract” its theory (with all
the induced structure from K): consider the structure S whose underlying set
is S and work in a language LS where there is a predicate for every definable
(in M and with parameters in M) subset of Sn for all n. We call the theory
TS = Th(S) the theory of S induced by M . Such a theory is generally hard to
study and analyze, since the language will have |M | predicates.

We obtain a more tame theory for stably embedded sets: a set S is stably
embedded in M if every definable subset of Sn with parameters in M is definable
with parameters from S. This implies that LS needs only to have predicates for
evey ∅-definable subset of Sn.

We say that a set S is 1-based if the theory TS is 1-based.

A basic but fundamental lemma is the following:

Lemma 1.3. Given a saturated structure M , o-minimal definable sets X,Y
definably linearly ordered or circularly ordered, and a definable bijection ϕ :
X → Y , then X is (non-) 1-based if and only if Y is (non-) 1-based.

Proof. By o-minimality, the bijection ϕ is piecewise strictly monotone and thus
preserves one-basedness.
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In a real closed field it is well known that any definable infinite set is non-
1-based, therefore every definable group G will have the same geometric com-
plexity of a field. We sketch a proof below; the proof uses some results of
o-minimality that, although basic, are not recalled in this article. We suggest
the book of van den Dries [15] to the interested reader.

Fact 1.4. Given a real closed field K, any definable infinite set S ⊆ Kn is
non-1-based.

Sketch proof: By cell decomposition of K there is a projection π on some coor-
dinate of Kn such that π(S) contains an interval I. Any interval I ⊆ K is in
definable bijection with the interval [0, 1), and is stably embedded. It sufficies,
by Fact 1.3, to witness non-1-basedness in [0, 1). Let 0 < a < b < c < 1 be alge-
braically independent elements such that a · b+ c = d is still an element of [0, 1).
Thus we have dim(a, b, c, d) = 3 (here it is dcl-dimension). Since (b, c)/∼a is
simply (b, c), if [0, 1) was 1-based, (b, c) ∈ dcl(a, d) and thus dim(a, b, c, d) = 2,
contradicting dim(a, b, c, d) = 3. Therefore [0, 1) is non-1-based, and so is S.

We recall some basics of valuation theory mantaining the notation of [9]. We
denote a real closed valued field by Kw =

(
K,Γw, w

)
, where K is a saturated

real closed field with its language, Γw a divisible abelian ordered group, called
the value group, with its language, and w a valuation, i.e., a surjective map
w : K → (Γw ∪∞) satisfying the following axioms: for all x, y ∈ K

1. w(x) =∞ ⇐⇒ x = 0,

2. w(xy) = w(x) + w(y),

3. w(x− y) ≥ min{w(x), w(y)}.

We denote the valuation ring (i.e. the ring {x ∈ K|w(x) ≥ 0})by Rw, its
unique maximal ideal (the valuation ideal) by Iw, kw = Rw/Iw the residue field ;
we recall moreover that the value group Γw is K∗/(Rw \ Iw).

When the valuation ring is Fin: the convex hull of Q in K, we call the val-
uation the standard valuation and denote it by v; the corresponding real closed
valued field is Mv. The valuation ideal is µ, the infinitesimal neighbourhood of
0. The standard residue field, kv, is R, and the projection Fin → R is called
standard part map.

We can obtain a real closed valued field from a real closed field via a
particular kind of Dedekind cut, called valuational cut. Given a structure
(M,+, 0, <, . . . ) expanding an ordered group, a cut is a tuple α = (L,R) where
L,R ⊆ M such that L < R and L ∪ R = M . Forε ∈ M , we can define
α+ ε := {x ∈M |x− ε ∈ R}. A valuational cut is then a cut α such that there
exists ε ∈ M , ε > 0, for which α + ε = α. By Theorem 6.3 of [6], if M is a
weakly o-minimal expansion of an ordered field with a definable valuational cut,
then M has a nontrivial definable convex valuation.

We define the open balls B>γ(a) = {x ∈ K|w(x − a) > γ} and closed balls
B≥γ(a) = {x ∈ M |w(x − a) ≥ γ}, where γ ∈ Γw and a ∈ K. A simple remark
is:

Remark 1.5. There is a definable field isomorphism B≥γ(0)/B>γ(0) ∼= kw for
any γ ∈ Γw
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Clearly the map f : B≥γ(0) → B≥0Γw
(0), sending x 7→ x

u , where u ∈
K such that v(u) = γ, is well defined in the quotients B≥γ(0)/B>γ(0) →
B≥0Γw

(0)/B>0Γw
(0) = kw and is a field isomorphism.

Remark 1.6. In [7], Mellor proved that every definable subset of Γnw (resp.
knw) definable with parameters from Mw in its valued field language is definable
with parameters from Γw (resp. kw) in its ordered group (resp. ordered field)
language. This implies the following fact

Fact 1.7. Th(Γw) = Th(Q,+, 0, <), and therefore Γw is 1-based in Mw. Anal-
ogously Th(kw) = Th(R,+, ·, 0, 1, <), and therefore kv is non-1-based in Mw.

Given a group equipped with a linear order G = (G, ∗, <), a truncation of
G by an element a is the group

([
a−1, a

)
, ∗ mod a2

)
, where the operation

∗ mod a2 is defined as follows:

b ∗ mod a2 c =

 b ∗ c if a−1 < b ∗ c < a
b ∗ c ∗ a−1 if b ∗ c > a
b ∗ c ∗ a if b ∗ c < a−1 .

Similarly a truncation can be defined for circularly ordered groups, i.e.,
groups equipped with a circular ordering R such that for all a, b, c, d ∈ G,
R(a, b, c) ⇒ R(da, db, dc). Observe that this condition implies that the oper-
ation is continuous in the interval (definable) topology of G, where an open
interval is (a, c) = {b : R(a, b, c)}.

A truncation of (G,R) by an element a (such that R(a−1, 1, a)) is then the
group ([a−1, a), ∗ mod a2), where

b ∗ mod a2 c =

 b ∗ c if b ∗ c ∈ (a−1, a)
b ∗ c ∗ a−1 if b ∗ c ∈ (a, a2)
b ∗ c ∗ a if b ∗ c ∈ (a−2, a−1) .

For a truncation by an element a “far enough” from the identity (i.e., such
that R(a, a−1, 1) but R(a−2, a2, 1) more care is needed: one method to define
such truncation is to consider the 2-cover of G and to modify the definition
consequently. Since this is not relevant to the article we will not go into details.

By proposition 2 of [13] a truncation naturally inherits a definable circular
ordering.

In [9] the following theorem is proved:

Theorem 1.8. Given a definable, definably compact, definably connected, one
dimensional (in the o-minimal sense) group G in a saturated real closed field
K, if G is an additive truncation, a small multiplicative truncation, i.e., G =([
b−1, b

)
, ∗ mod b2

)
, with v(b) = 0, or a truncation of SO2(K), G/G00 is non-

1-based in the expansion of K by a predicate for G00.
If G is a big multiplicative truncation, i.e., G =

([
b−1, b

)
, ∗ mod b2

)
, with

v(b) < 0, the group G/G00 is 1-based in the expansion of K by a predicate for
G00.
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1.2 Main theorem and outline of its proof

The rest of the article is devoted to prove Theorem 1.9 below. The outline of the
proof is given here and the details of the proof are carried out in the following
sections:

• Given an elliptic curve E over K, we shall define a notion of minimal form
of an elliptic curve, and for curves in minimal form we define three kinds
of reductions of their K-points.

This is done in Section 2.

• Consider an elliptic curve E in minimal form over K. If G = E(K)0,
or G is a truncation of E(K)0, its unique minimal, bounded index, type-
definable subgroup G00 determines a valuational cut on K.

This is proven at the beginning of Section 3 and in Section 4.

We denote the structure (K,G00, . . . )eq by K ′. In K ′ the cut above becomes
definable and it determines a valuation w on K. Given a group G as above, we
canonically determine (definably) in K ′ a value group Γw and a residue field
kw; therefore K ′ will be interdefinable with a real closed valued field Keq

w , and
we shall use this identification throughout the article.

The group G/G00 is thus a definable set in K ′ and it makes now sense to
ask about its being 1-based or not. We show, case by case, that:

• The group G/G00 is in definable bijection with a definable group whose
underlying set is a subset of Γnw for some curves and of knw for other curves
(see the points 1.3 and 2.3 of Theorem 1.9 below for details).

This is proven in Sections 3.1, 3.2 and 4.
We shall identify G/G00 with the group it is in definable bijection using

Lemma 1.3
By Theorem 2 of [3], G/G00 is stably embedded in K ′, i.e., every subset of

(G/G00)n definable with parameters from K ′ is definable with parameters from
G/G00.

This and Remark 1.6 imply that TG/G00 as a definable set in K ′ equals the
theory TG/G00 as a definable set of Γw (resp. kw) seen as a structure on its own,
i.e. as an ordered vector space (resp. a real closed field).

Thus, using Fact 1.7, TG/G00 is 1-based if and only if G/G00 is in definable
bijection with a definable group whose underlying set is a subset of Γnw.

The full statement of the main theorem is then the following:

Theorem 1.9. Given the group G = E(K)0, or G a truncation of E(K)0, where
E is an elliptic curve with three “real” roots, over a saturated real closed field K,
the structure K ′ obtained by adding a predicate for G00 to K is interdefinable
with a real closed valued field Kw.

There are two possible behaviours, either one of the following set of condi-
tions hold:

1. The group G/G00 is 1-based.
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2. The group G/G00 is in definable bijection with a definable group in K ′

whose underlying set is a subset of Γnw.

3. • Either G = E(K)0 and E has split multiplicative reduction, or

• G is the truncation of E(K)0 by a point P with infinitesimal projec-
tion on the x-axis, where E is an elliptic curve with split multiplica-
tive reduction.

Or one of the following condition holds:

1. The group G/G00 is non-1-based.

2. The group G/G00 is in definable bijection with a definable group in K ′

whose underlying set is a subset of knw.

3. • Either G = E(K)0, or G is a truncation of E(K)0, where E has good
or nonsplit multiplicative reduction, or

• G is the truncation of E(K)0 by a point P with projection on the
x-axis non infinitesimal, where E is an elliptic curve with split mul-
tiplicative reduction.

Remark 1.10. Conditions 1.2 (resp. 2.2) above can be stated in model theoretic
terms as: the group G/G00 is internal to Γw (resp. kw) in K ′.

2 Elliptic curves

An introduction to the theory of elliptic curves can be found in [14]. Here we
briefly recall the main notions and define the algebraic geometric reduction for
curves defined in a real closed field.

An elliptic curve over a field F is a nonsingular one-dimensional projective
curve defined by an equation of the form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where a1, . . . , a6 ∈ F , plus a point at infinity, denoted by O. Given a field K,
E(K) = {(x, y) ∈ K2|y2 + a1xy+ a3y = x3 + a2x

2 + a4x+ a6 = 0} is the set of
K-points of E.

When we work in the projective space we define it by ZY 2 + a1XY Z +
a3Y Z

2 = X3+a2X
2+a4XZ

2+a6Z
3, and the point at infinity is O = [0 : 1 : 0].

We can endow E(K) with a group structure, whose identity is O. Any line
will intersect the elliptic curve at precisely three points (also O is a point). Given
points P,Q the line through P and Q (or the tangent line P = Q) intersects E
at the point R. The line between R and O will again intersect E at one point,
which we call R′. We then define P ⊕ Q to be R′. We denote the inverse of a
point P by 	P .

There exists also an algebraic definition for this operation, which we will
state later, after simplifying the form of the curve.

As any abelian group, E is also a Z-module, with scalar operation denoted
by [m]P .
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Working with a real closed field K, observe that E(K) is a topological group,
but with the usual topology of K it is totally disconnected.So, instead of con-
sidering the usual connected component of E(K), we consider its semialgebraic
(definable) connected component E(K)0.

In this article we view (E(K)0,⊕) as living in two different categories: model
theoretically as a definable group, to which we can apply the functor described
in Pillay’s conjecture, and algebraic-geometrically as the K-points of a curve,
to which we can apply the reduction map.

Whilst the model theoretic functor is defined intrinsecally and can be applied
to curves in any form, the reduction map depends on how E(K)0 sits in the
ambient space. We need thus to determine a minimal form of the elliptic curve.

To easen the further computations the most obvious choice is to consider
the curve in its Legendre form y2 = x(x − 1)(x − λ), where λ ∈ Kalg = K[i]
and λ 6= 0, 1, to ensure non-singularity. If λ ∈ K we say that the elliptic curve
has three “real roots”, where by root we mean a point in which E(K) intersects
the y = 0 line. Curves with three real roots are the only ones discussed in this
article.

A translation and an homothety transform our curve into y2 = x(x+1)(x+ε),
with 0 < ε < 1. Such a curve is said to be in minimal form in an analogue for
real closed fields of the minimal form for local fields defined in Proposition 1.3,
Chapter V II of [14]. For a curve in minimal form the semialgebraic connected
component E(K)0 is precisely the set of points with nonnegative x-coordinate.

We can explicitly express the sum and the doubling formulae for curves in
this form in a relatively simple way:

(1) xP⊕Q =

(
yQ − yP
xQ − xP

)2

− (1 + ε)− xQ − xP ,

(2) x[2]P =
(x2P + ε)2

4xP (xP + 1)(xP − ε)
,

where a point P is denoted by P = (xp, yp). We omit the formulae for the
y-coordinate, as they are not needed in the paper.

2.1 Algebraic geometric reductions

An important tool in the arithmetic study of elliptic curves defined over local
fields is the notion of reduction over thea residue field. This topic is developed
in Chapter VII of [14]. We present here a description of this tool, adapted to
the context of real closed fields.

We suppose that E is an elliptic curve in minimal form defined over a satu-
rated real closed field K, and equip K with the standard valuation. When we
project the K-points E(K) of the elliptic curve onto the standard residue field
we obtain a curve Ẽ(R) which is easier to study. The definition of this operation
is delicate and requires some care.

We define the reduction Ẽ of a curve E : y2 = x(x+1)(x+ε) to be the curve
over kv defined by y2 = x(x+ 1)(x+ st(ε)), with st : Fin→ R the standard part
map.

9



This gives us a reduction map

E(K) → Ẽ(R)

P 7→ P̃

defined as follows: given a point P = (x, y) ∈ E(K) we rewrite it in ho-
mogeneous coordinates: P = [x; y; 1]. This clearly can always be rewritten
with coefficients in Fin: P = [x′; y′; z′], with at least one coefficient with
valuation 0. We can now project the coordinates onto the residue field, and
P reduces to P̃ = [st(x′); st(y′); st(z′)]. We multiply back by λ−1 to obtain
P̃ = [λ−1 (st(x′)) ;λ−1 (st(y′)) ;λ−1 (st(z′))].

In affine coordinates it is then simply{
P̃ = (st(x), st(y)) if x, y ∈ Fin

P̃ = O if x or y are not in Fin .

This operation, however, is not harmless: Ẽ(R) may not longer be an elliptic
curve, and it could have singularities. The set of nonsingular points of Ẽ(R)
forms a group, defined over R, denoted by Ẽns(R).

We define two subsets of E(K) depending on how the curve reduces:

(3) E0(K) = {P ∈ E(K) : P̃ ∈ Ẽns(R)},

i.e., the set of all points of E whose reduction is nonsingular, and

(4) E1(K) = {P ∈ E(K) : P̃ = Õ} (= {P ∈ E(K)|v(xP ) < 0}),

i.e., the set of all points whose reduction is the identity of Ẽns(R).
Having chosen a minimal form for the elliptic curve such notions are well

defined.

A useful proposition is the following:

Proposition 2.1. There is a group isomorphism E0(K)/E1(K) ∼= Ẽns(R).

Proof. After observing that a real closed valued field satisfies Hensel’s Lemma
(this is folklore, a proof of this fact is in Theorem 4.3.7 of [1]), it is sufficient to
follow the proof of Proposition 2.1 of Chapter VII of [14].

We easily compute the possible reductions of curves of the form E : y2 =
x(x+ 1)(x+ ε), with 0 < ε < 1, over the reals:

Remark 2.2. We obtain three kinds of curves:

1. Good reduction curves: if v(ε) = 0 and v(ε − 1) = 0, this imples that the
standard part of the root (ε, 0) does not equal the standard part of any of
the other roots, and therefore the reduced curve is nonsingular.

2. Non-split multiplicative reduction curves: if v(ε− 1) > 0, this implies that
the root (ε, 0) is sent by the standard part map to the root (−1, 0), and
therefore the reduced curve has a complex node.

3. Split multiplicative reduction curves: if v(ε) > 0, this implies that the root
(ε, 0) is sent by the standard part map to the root (0, 0), and therefore the
reduced curve has a real node.
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3 Case study

To study the relation between intrinsic and algebraic-geometric reductions we
need to be able to determine G00. Proposition 2 of [13] tells us that G is
definably circularly ordered; there are two possible orientations. We choose the
anticlockwise one. Moreover we can define a dense linear ordering on G\{point}.
Since G00 is a neighbourhood of the identity we choose to remove the “farthest”
point from O: the 2-torsion point T2, and obtain the orientation C on G\{T2}.
The proof of Proposition 3.5 of [11] G00 is bounded by the torsion points of G,
namely it is type-defined by:

(5) G00 =
⋂
n∈ω
{P |∀T [(T BO ∧ [n]T = O)→ 	T C P C T ]} ,

Definition 3.1. We call a bounding sequence of torsion points a subsequence
(Tin)n∈ω of the sequence
(Tn)2<n<ω of torsion points such that [n]Tn = O (i.e., Tn is an n-torsion point),
and there is no n-torsion point T such that O C T C Tn.

A bounding sequence of torsion points (Tin)n∈ω easily determines G00:

(6) G00 =
⋂

2<n<ω

{T | 	 Tin C T C Tin}.

As discussed in the previous section, we suppose from now on that E is
y2 = x(x+ 1)(x+ ε), with 0 < ε < 1.

Since the duplication formula allows us determine the 2n-torsion points, we
shall use the bounding sequence: (T2n)n>1 to compute G00. Recall also that
yT2n

> 0, and thus y	T2n
< 0.

It is also easy to compute directly T4, in fact, by considering the tangent
y = αx to the curve passing by (0, 0), we can determine that xT4 =

√
ε.

For the other points of the bounding sequence we shall just consider an
approximation given by taking the standard valuation of their x-coordinate. In
particular v (xT4

) = 1
2v(ε). The choice of the 4-torsion points as our starting

point for the bounding sequence in not coincidence: for points P,Q such that
T4 C P,Q C O, the operations of sum and formal multiplication respect the
orientation, and thus we deduce the convenient inequalities:

(7) v
(
x[2]P

)
≥ v (xP )

and

(8) v (xP⊕Q) ≥ v (xP ) , v (xQ) .

We recall and shall often use without further mention the following fact: if
v(a) 6= v(b) or sign(a) = sign(b), then v(a+ b) = min{v(a), v(b)}.

Lemma 3.2. Let E be a curve in the form y2 = x(x + 1)(x + ε), with ε > 0,
and G = E(K)0. Then G00 =

⋂
n∈ω

{
P ∈ G|v (xP ) < 1

nv(ε)
}

.

11



Proof. It is sufficient to prove that, for n ≥ 2, v
(
xT2n−1

)
= 1

2v (xT2n
), for T2n

a bounding sequence of torsion points. In fact by (5), and by symmetry of the
curve with respect to the x-axis,

G00 =
⋂
n∈ω
{P |v(xP ) ≤ v (xT2n

)}.

We have two cases:

1. If v(ε) = 0, since xT4 =
√
e, by induction we may assume v

(
xT2n−1

)
= 0.

If v(xT2n
) < 0, then, using (2), we have v(xT2n−1 ) = 0 = 4v(xT2n

) −
3v(xT2n

) = v(xT2n
).

Thus v(xT2
) = 0, and, by induction the equality above is verified after

checking also that the torsion points have cofinal projection in Fin. But

xT2n−1 = 1
4

(
x2
T2n
−ε

)2

xT2n (xT2n
+1)(xT2n

+ε)
<

x4
T2n

4x3
T2n

= 1
4xT2n

.

From which xT2n
> 1

4n−2xT4
= 1

4n−3 ε. So, for each m ∈ Fin, there is
n such that xT2n

> m, i.e., the bounding sequence of torsion points has
cofinal projection in Fin.

2. If v(ε) > 0, using the duplication formula we get:

v
(
xT2n−1

)
= v

(
1
4

(
x2
T2n
−ε

)2

xT2n (xT2n
+1)

(
x2
T2n

+ε
)
)

= 2v
(
x2T2n

− ε
)
− v (xT2n

) −

v (xT2n
+ 1)− v (xT2n

+ ε) =(
since v (xT2n

+ 1) = 0 and v (xT2n
+ ε) = v (xT2n

)
)

= 2v
(
x2T2n

− ε
)
− 2v (xT2n

).

Observe that v
(
x2T2n

− ε
)

= v
(
x2T2n

)
, in fact otherwise v (xT2n

) = 1
2v(ε)

and so 1
2v(ε) = v (xT4

) > 2v
(
x2T8

)
− 2v (xT8

) = 2v (xT8
) = v(ε), contra-

dicting v(ε) > 0.

Then we have v
(
xT2n−1

)
= 2v

(
x2T2n

)
− 2v (xT2n

) = 2v (xT2n
) and we

proved the lemma.

Lemma 3.2 shows that if v(ε) = 0 then G00 is the set of points whose
projection on the x-axis is infinite; whilst if v(ε) > 0, then G00 will contain all
points with finite, noninfinitesimal, x-coordinate, and thus G00 “incorporates”
the whole of the algebro-geometrically reduced curve (except for the 2-torsion
point). We can foresee here that, when v(ε) = 0, G/G00 is an object of the
standard residue field; but, when v(ε) > 0, we have a good candidate for loss
of structural complexity in G/G00. We have to determine if G/G00 will be an
object of a valued group, or of a copy of a nonstandard valued field.

We observe that the projection α onto the x-axis of G00 is a valuational
cut. We recall that α is valuational if exists ε ∈ K>0 such that α + ε =
α. This is witnessed by the same ε defining G. There is therefore a unique
valuation w, not necessarily the standard one, associated to G00, definable in
K ′ = (K,G00, . . . )eq = Keq

w .
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We now study which elliptic curves G = E(K)0 determine a 1-based G/G00,
and relate the map G → G/G00 to the behaviour of E(K) when reduced over
the standard residue field.

We have three possible kinds of reduction; see Remark 2.2.

3.1 The good reduction and the nonsplit multiplicative
reduction cases.

These are the cases of a curve E : y2 = x(x + 1)(x + ε) in minimal form, with
v(ε) = 0. we show that for such cases the intrinsic and the algebraic geomet-
ric reductions coincide (at least when we consider the semialgebraic connected
component E(K)0).

In fact the algebraic geometric reduction leads to the curve Ẽ(R) : y2 =
x(x+ 1)(x− st(ε)).

Clearly then E(K)0 = E0(K)0, and, by Lemma 3.2,

E1(K)0 = {P ∈ E(K)|v(xP ) < 0} = G00.

This, together with Proposition 2.1, implies that

(9) G/G00 = E(K)0/E(K)00 = E0(K)0/E1(K)0 ∼= Ẽ0(R).

We add to K a predicate for G00: let K ′ = (K,G00, . . . )eq. The valuational
cut determined by G00 induces the standard valuation on K ′.

We can define in it the sets Fin and µ:

(10) Fin =
{
x ∈ K|∃y ∈ K

(
(x, y) /∈ G00 ∧ (−x, y) /∈ G00

)}
,

(11) µ =
{
x ∈ K|x−1 /∈ Fin

}
.

Clearly in the real closed valued field with the standard valuation (with
symbols for the imaginaries) Kv = (K,Fin, µ, v, . . . ) the set G00 is definable, so
K ′ is interdefinable with Keq

v .
Moreover G/G00 is definably isomorphic in K ′ to the group E0(R), that is

a definable group with underlying set in kv. By Fact 1.7 kv is non-1-based in
K ′ and by Lemma 1.3 and Fact 1.4 also G/G00 is non-1-based in K ′.

We therefore proved the following lemma:

Lemma 3.3. Given an elliptic curve E in minimal form, and such that E(K)
has good or nonsplit multiplicative reduction, the group G/G00, where G =
E(K)0, is non-1-based in K ′ = (K,G00, . . . )eq and is definably isomorphic to
a group with underlying set in kv, the residue field of the standard real closed
valued field interdefinable with K ′.

Whilst in the good reduction case (i.e., when v(ε − 1) = 0) the definable
(in K ′) isomorphism of groups G/G00 ∼= Ẽ0(R) extends naturally to an isomor-
phism E(K)/E(K)00 ∼= Ẽ(R) with the reduced curve; in the nonsplit multiplica-
tive reduction case we can observe a difference between intrinsic and algebraic
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geometric reductions of the whole curve. In fact, in this case, the algebro-
geometric reduction leads to a singular curve with a “complex node” at the
point (−1, 0). By Exercise 3.5, page 104 of [14], Ẽ(R)0 ∼= SO2(R) as a Lie
group.

So applying the algebraic geometric reduction we obtain a connected com-
ponent isomorphic to SO2(R) and an isolated point (−1, 0), whereas the image
under the functor L is still a nonsingular curve, with the two connected compo-
nents in bijection and therefore both isomorphic to SO2(R).

3.2 The split multiplicative reduction case

This is the case of a curve E : y2 = x(x+1)(x− ε) where v(ε) > 0; the algebraic
geometric reduction of E(K) is then a curve with a singularity, more precisely
a real node, at (0, 0).

We denote by H the group
([
ε, 1ε
)
, ∗ mod ε2

)
(a “big” truncation of the

multiplicative group by ε). Theorem 4.10 of [9] states that the group H/H00

is 1-based in KH00 = (K,H00, . . . )eq. To obtain 1-basedness for G/G00 in
K ′ = (K,G00, . . . )eq from the known case of the “big” multiplicative truncation,
it will suffice, by Lemma 1.3, to show that KH00 is interdefinable with K ′, and
to find a definable bijection f : G/G00 → H/H00.

We denote by P a point in G and by P∼ the class in G/G00 of which it is
a representative. Analogously we denote by x an element of H and by x∼ an
element in H/H00.

We firstly define a map f∗ : G→ H as follows:

f∗(P ) =



1 if xP ≥ 1,(
1
xP

)
if yP ≥ 0 ∧ ε < xP < 1,

xP if yP < 0 ∧ ε < xP < 1,
ε if xP ≤ ε.

We prove that f∗ induces a well defined bijection f : G/G00 → H/H00 on
the quotients. Due to the definition of f∗ it is necessary to cosider separately
the cases of G00 and of (T2)∼.

Lemma 3.4. The map f sends G00 to H00.

Proof. We recall Lemma 3.2:

G00 =
⋂
n∈ω

{
P | v(xP ) <

1

n
v(ε)

}
.

It easy to see that H00 =
⋂
n∈ω

{
x| ε < xn < 1

ε

}
=
⋂
n∈ω

{
x| |v(x)| < 1

nv(ε)
}

.
Thus f∗(G

00) = H00, and then f(O∼) = 1∼.

We characterise (T2)∼ via the valuation of the projection of its points on the
x-axis.

Lemma 3.5. We have (T2)∼ =
⋂
n∈ω

{
P ∈ G|v(xP ) ≥ n−1

n v(ε)
}
.
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Proof. By definition P ∈ (T2)∼ if and only if P 	 T2 ∈ G00 if and only if
v(P 	 T2) < 1

nv(ε), for all n.

Then, using (1), v(xP	T2
) = v

(
y2
P

x2
P
− 1− ε− xP

)
=

= v
(

(xP+1)(xP+ε)
xP

− 1− ε− xP
)

= v
(
x2P + xP + εxP + ε− xP − εxP − x2P

)
−

2v(xP ) = v(ε) − v(xP ). So v(xP	T2
) < 1

nv(ε), for all n, if and only if v(xP ) ≥
n−1
n v(ε), for all n.

In H/H00 the class of the 2-torsion h2 = ε is (h2)∼ = {x ∈ H||v(h)| ≥
n−1
n v(ε)}. The proof of the following lemma is now immediate.

Lemma 3.6. The map f sends (T2)∼ to (h2)∼.

We want to prove for all the other cases that the map f is well-defined.

Theorem 3.7. The map f is a well-defined function G/G00 → H/H00.

Proof. Let P,Q ∈ P∼, then P 	Q ∈ G00, i.e., v(xP	Q) < 1
nv(ε), for all n. Our

aim is to prove that f∗(P ) ∼ f∗(Q): i.e., f∗(P )f∗(Q)−1 ∈ H00. Notice that
we already proved this for the class of T2 and for G00, we shall then suppose
P,Q /∈ (T2)∼, and P,Q /∈ G00, so we have, by symmetry of the elliptic curve
and the lemmas above, sign(yP ) = sign(yQ) and v(ε) > v(xQ), v(xP ) > 1

mv(ε)
for some m ∈ N.

Suppose then that for all n we have 1
nv(ε) > v (xP	Q). Using the addition

formula (1) and the fact that x	Q = xQ and y	Q = −yQ we have v (xP	Q) =

v
(

(yP+yQ)2

(xP−xQ)2 − ε− 1− xP − xQ
)

= v
(
xP (xP + 1)(xP + ε) + xQ(xQ + 1)(xQ +

ε)+2yP yQ− εx2P − εx2Q+2εxPxQ−x2P −x2Q−2xPxQ− (xP +xQ)(xP −xQ)2)−
2v(xP − xQ

)
=

= v(εxP + εxQ + 2xPxQ + 2εxPxQ + x2PxQ + xPx
2
Q + 2yP yQ)− 2v(xP − xQ) ≥(

since 2yP yQ = 2
√
xPxQ(xP + ε)(xQ + ε)(xP + 1)(xQ + 1) <

< 2
√
xPxQ(2xP )(2xQ)(xP + xQ + 1)2 = 4xPxQ(xP + xQ + 1)

)
,

≥ v(ε(xPxQ+2xPxQ)+xPxQ(xP +xQ+2)+4xPxQ(xP +xQ+1))−2v(xP −
xQ) =
= v(ε(xP + xQ + 2xPxQ) + xPxQ(5xP + 5xQ + 6))− 2v(xP − xQ) =(

since v(ε(xP+xQ+2xPxQ)) = v(ε)+min{v(xP ), v(xQ)} > v(xP )+v(xQ) =

v(xPxQ(5xP + 5xQ + 6))
)
,

= v(xP ) + v(xQ)− 2v(xP − xQ).

So P 	Q ∈ G00 implies that v(xP ) + v(xQ)− 2v(xP − xQ) ≤ 1
nv(ε), for all

n.

We recall that, for P,Q /∈ (T2)∼, (G
00)∼, f∗(P ) ·f∗(Q)−1 =

xQ

xP
∈ H00 if and

only if
∣∣∣v (xQ

xP

)∣∣∣ ≤ 1
nv(ε).

We have two cases to consider:

• If xP ≥ xQ, then v(xP ) ≤ v(xQ) and clearly v
(
xQ

xP

)
≥ 0, we just need to

show that v
(
xQ

xP

)
≤ 1

nv(ε), for all n. But then v(xP ) + v(xQ)− 2v(xP −
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xQ) ≥ v(xP ) + v(xQ)− 2v(xP ) = v
(
xQ

xP

)
, so v

(
xQ

xP

)
≤ 1

nv(ε), and we are

done.

• If xP < xQ, then v(xP ) ≥ v(xQ), v
(
xQ

xP

)
≤ 0 and 1

nv(ε) ≥ v(xP )+v(xQ)−

2v(xP − xQ) ≥ v(xP ) + v(xQ)− 2v(xQ) = v
(
xP

xQ

)
, so v

(
xQ

xP

)
≥ − 1

nv(ε),

and we have proved the theorem.

We can now easily check that f is a bijection:

Corollary 3.8. The map f is a bijection G/G00 → H/H00.

Proof. Surjectivity: trivial by construction.

Injectivity: We need to consider only points of E(K)0 not in (T2)∼, O∼.

Suppose f(P∼) = f(Q∼). We have
∣∣∣v (xQ

xP

)∣∣∣ < 1
nv(ε), for all n. And by

our assumption 0 < xP , xQ < 1. We need to prove that P 	 Q ∈ O∼, i.e.,
v(xP	Q) < 1

nv(ε) for all n.
But v(xP	Q) = v(εxP + εxQ+2xPxQ+2εxPxQ+x2PxQ+xPx

2
Q+2yP yQ)−

2v(xP − xQ) ≤(
since 2yP yQ > 2x2Px

2
Q,
)

≤ v(ε(xPxQ + 2xPxQ) + xPxQ(xP + xQ + 2) + 2x2Px
2
Q)− 2v(xP − xQ) =

= v(ε(xP + xQ + 2xPxQ) + xPxQ(4xP + 4xQ + 1 + xPxQ))− 2v(xP − xQ) =

(since v(ε(xP +xQ+2xPxQ)) = v(ε)+min{v(xP ), v(xQ)} > v(xP )+v(xQ) =
v(xPxQ(4xP + 4xQ + 1 + xPxQ)),)

= v(xP ) + v(xQ)− 2v(xP − xQ) ≤ v(xP ) + v(xQ)− 2 min{v(xP ), v(xQ)}.
But v(xP ) + v(xQ) − 2 min{v(xP ), v(xQ)} =

∣∣∣v (xQ

xP

)∣∣∣ < 1
nv(ε) for all n, so

also v(xP	Q) < 1
nv(ε) for all n, and we are done.

Remark 3.9. From the proof above we deduce that if P∼ 6= Q∼, and P,Q are
representatives in E(K)0, then v(xP	Q) = v(xP )+v(xQ)−2 min{v(xP ), v(xQ)},
and a case by case study shows that f : G/G00 → H/H00 is an isomorphism of
Lie groups. This is rather tedious and we omit the details.

In [9] it is proved that the structure (K,H00, . . . )eq is interdefinable with a
nonstandard real closed field Keq

w , whose valuation is w and that H/H00 is a
definable (in Keq

w ) group with underlying set in Γw. Having found a definable
bijection between G/G00 and H/H00 we get then that G/G00 is internal to Γw,
and Lemma 1.3 implies the following theorem.

Lemma 3.10. Given an elliptic curve E with split multiplicative reduction, the
group G/G00 is 1-based in the structure K ′ = (K,G00, . . . )eq and is in definable
bijection with a group whose underlying set is in the value group Γw of the real
closed valued field interdefinable with K ′.
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Observe that in fact the map f is in fact a definable bijection between G/G00

and a truncation of the value group Γw.
Lemma 3.3 and Lemma 3.10 prove part of Theorem 1.9. In the next section

is proved the remaining part, with the analysis of the truncations.

4 Truncations of elliptic curves

Given an elliptic curve E defined over a saturated real closed field K, a trun-
cation of E(K)0 is a group G = ([	S, S),⊕ mod [2]S), where S ∈ E(K)0 \ T2,
yS > 0, and the interval is considered according to the (anticlockwise) orienta-
tion C of E(K)0 \ {T2}, . We denote by ⊕∗ the operation on G.

We now extend the classification above to such G proving the following
theorem:

Theorem 4.1. The truncation G = ([	S, S),⊕ mod [2]S) of the K-points of
an elliptic curve E is 1-based in K ′ = (K,G00, . . . )eq if and only if G/G00 is
in definable bijection with a group whose undelying set is in the value group of
K ′ = Keq

w , and if and only if E has split multiplicative reduction and v(xS) > 0.

Proof. We shall consider all the possible cases, and therefore obtain all the
implications in the theorem by exhaustion.

1. The first case is the one of a truncation G by a point S ∈ E(K)0 \E(K)00,
then G/G00 is simply a truncation of E(K)0/E(K)00 and thus G/G00 has
the same properties of E(K)0/E(K)00.

To see this, let G = ([	S, S),⊕ mod 2S) and S /∈ E(K)00. This implies
that TEn CPCT

E
n+1 for some n and a bounding sequence (TEn )n∈N of E(K)0.

For any k let Tk be a torsion point of a bounding sequence of G, defined
as in Definition 3.1, then it is easy to see that xTE

kn
< xTk

< xTE
k(n+1)

,

and therefore G00 = E(K)00. Moreover G/G00 is a definable truncation
of E(K)0/E(K)00 in the expansion K ′ of K by a predicate for G00, and
so, by Corollary 3.8, if E has good or nonsplit multiplicative reduction,
then G/G00 is non-1-based and in definable bijection with a group with
underlying set in the residue field of K ′; if E has split multiplicative
reduction, G/G00 is 1-based and in definable bijection with a group with
underlying set in the value group of K ′.

2. This is the case of a truncation by a point S such that v(xS) < 0.

Thus for P ∈ G, v(xP ) < 0. Hence v
(
x[2]P

)
= v

(
(x2

P−ε)
2

4xP (xP+1)(xP+ε)

)
=

2v(x2P − ε)− 3v(xP ) = v(xP ), and so G00 = {P ∈ G|v(xP ) < v(xS)}.
It will suffice to prove that for P,Q /∈ G00 (and thus v(xQ) = v(xP ) =
v(xS)), P 	∗ Q ∈ G00 (i.e. v(xP	∗Q) < v(xS)) if and only if v(xP −
xQ) > v(xS) and yS , yQ have the same sign. In fact this would imply
that G/G00 is in definable bijection with a definable group in the quotient
B≥v(xS)(0)/B>v(xS)(0). We saw in Remark 1.5 that there is a definable
field bijection B≥v(xS)(0)/B>v(xS)(0) ∼= kv ∼= R, therefore G/G00 is in
definable bijection with a group with underlying set in the residue field of
a real closed valued field and so it is non-1-based by Lemma 1.3.
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Suppose firstly that v(xP	∗Q) < v(xS).

Using the computation in 3.7, v(xP	∗Q) ≥ v(ε(xP + xQ + 2xPxQ) +
xPxQ(5xP + 5xQ + 6))− 2v(xP − xQ) =

(since v(xQ), v(xP ) = v(xS) < 0 ≤ v(ε),)

= v(xP ) + v(xQ) + min{v(xP ), v(xQ)} − 2v(xP − xQ).

So 2v(xP − xQ) > 2v(xS), so v(xP − xQ) > v(xS),)

Now suppose v(xP − xQ) > v(xS). Then v (xP	∗Q) =
= v(εxP+εxQ+2xPxQ+2εxPxQ+x2PxQ+xPx

2
Q+2yP yQ)−2v(xP−xQ) ≤

(since 2yP yQ > 2xPxQ,)

≤ v(ε(xPxQ + 2xPxQ) + xPxQ(xP + xQ + 2) + xPxQ(4xP + 4xQ + 6)) =
= v(ε(xP + xQ + 2xPxQ) + xPxQ(5xP + 5xQ + 6))− 2v(xP − xQ) =

= v(xP ) + v(xQ) + min{v(xP ), v(xQ)} − 2v(xP − xQ) ≤ v(xP ) + v(xQ) +
min{v(xP ), v(xQ)} − 2v(xS) = 3v(xS)− 2v(xS) = v(xS).

With this we proved Case 2.

The above are the only possible cases when E has good or nonsplit multi-
plicative reduction. We have two more cases when E has split multiplicative
reduction. So from now on we assume v(ε) > 0.

3 S ∈ E(K)00 and v(xS) > 0. With such assumptions any point P ∈ G has

valuation v(xP ) < v(ε). Then v
(
x[2]P

)
= v

(
(x2

P−ε)
2

4xP (xP+1)(xP+ε)

)
= 2v(x2P +

ε)− v(xP )− 0− v(xP ) = 2v(xP ). Thus G00 = {P ∈ G|v(xP ) < 1
nv(ε)}.

As in the split multiplicative case we can define in the suitable expansion

a bijection G/G00 → H/H00 with H =

([
xS ,

1
xS

)
, ∗ mod

(
1
xS

)2)
a

“big” multiplicative truncation.

The map f∗ : G→ H as

f∗(P ) =



1 if xP ≥ 1(
1
xP

)
if yP ≥ 0,

xP if yP < 0,

induces a map f : G/G00 → H/H00. The same calculation that led
to Corollary 3.8 gives us that f is a definable bijection. Therefore G/G00

inherits 1-basedness from H/H00 by Lemma 1.3 and again it is in definable
bijection with a group with underlying set in the value group of a real
closed valued field.

4 S ∈ E(K)00 and v(xS) = 0. It is again immediate to observe that if
xP ∈ G and v(xP ) = 0, v

(
x[2]P

)
= 2v(xP ). Therefore G00 = {P ∈

G|v(xP ) < 0}. By the same argument as Subcase 3 we obtain a definable
bijection with a multiplicative truncation, though this time it is a “small”
one, and therefore G/G00 is non-1-based and in definable bijection with a
group with underlying set in the residue field of a real closed valued field
again by Lemma 1.3.
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The inspection of the cases considered gives us the proof of Theorem 4.1.

With this last case study we have completed the proof of Theorem 4.1 and
therefore of Theorem 1.9.

It is a natural question then to what extent the notion of “intrinsic” reduction
can help in obtaining a reduction theory for abelian varieties over fields with a
continuous valuation. In particular we wonder whether we can obtain a similar
classification of higher dimensional abelian varieties.

The author would like to thank Prof. Anand Pillay for his guidance and
support, Dr. Marcus Tressl for many interesting discussions and the anonymous
referee for the many good suggestions.
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