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ARTICLE

Genome-wide analysis identifies a role for common
copy number variants in specific language impairment

Nuala H Simpson1, Fabiola Ceroni1, Rose H Reader1, Laura E Covill1, Julian C Knight1, the SLI Consortium10,
Elizabeth R Hennessy2, Patrick F Bolton3, Gina Conti-Ramsden4, Anne O’Hare5, Gillian Baird6,
Simon E Fisher7,8 and Dianne F Newbury*,1,9

An exploratory genome-wide copy number variant (CNV) study was performed in 127 independent cases with specific language

impairment (SLI), their first-degree relatives (385 individuals) and 269 population controls. Language-impaired cases showed an

increased CNV burden in terms of the average number of events (11.28 vs 10.01, empirical P=0.003), the total length of

CNVs (717 vs 513 Kb, empirical P=0.0001), the average CNV size (63.75 vs 51.6 Kb, empirical P=0.0005) and the number

of genes spanned (14.29 vs 10.34, empirical P=0.0007) when compared with population controls, suggesting that CNVs may

contribute to SLI risk. A similar trend was observed in first-degree relatives regardless of affection status. The increased burden

found in our study was not driven by large or de novo events, which have been described as causative in other neurodevelopmental

disorders. Nevertheless, de novo CNVs might be important on a case-by-case basis, as indicated by identification of events affecting

relevant genes, such as ACTR2 and CSNK1A1, and small events within known micro-deletion/-duplication syndrome regions, such

as chr8p23.1. Pathway analysis of the genes present within the CNVs of the independent cases identified significant

overrepresentation of acetylcholine binding, cyclic-nucleotide phosphodiesterase activity and MHC proteins as compared with

controls. Taken together, our data suggest that the majority of the risk conferred by CNVs in SLI is via common, inherited events

within a ‘common disorder–common variant’ model. Therefore the risk conferred by CNVs will depend upon the combination of

events inherited (both CNVs and SNPs), the genetic background of the individual and the environmental factors.

European Journal of Human Genetics (2015) 23, 1370–1377; doi:10.1038/ejhg.2014.296; published online 14 January 2015

INTRODUCTION

Specific language impairment (SLI) is a developmental disorder that,
in the absence of neurological deficits, affects an individual’s spoken
and/or receptive language acquisition. SLI is a common but genetically
complex disorder with an estimated prevalence of up to 7%1 and
shows significant overlap with autism, dyslexia and ADHD, both
phenotypically2 and genetically.3,4 Like many common disorders, the
majority of the genetic risk for SLI is expected to be conferred by
combinations of common genetic variants that is, the ‘common
disorder–common variant’ model.5 Nonetheless, a growing body of
evidence suggests that single nucleotide variants alone do not explain
the heritability of complex traits (the ‘missing heritability’) and that
the underlying aetiology may include other factors such as copy
number variants (CNVs), rare variants and epigenetic modifications.6

Studies have found that individuals with autism or ADHD generally
have an increased burden of rare CNVs compared with controls7–9

and that the severity of phenotype across neurodevelopmental
disorders may be positively correlated with the burden of large
CNVs.10 The ‘burden’ of CNVs can be considered in many ways,
for example, the number of CNVs an individual carries, the average
size of CNVs, the total size of CNVs across the genome or the number

of genes affected by CNV events. Similarly, one can filter the types of
CNVs considered, restricting the investigation to rare, de novo, exonic
or large (usually defined as 41Mb in the literature) events.
Individuals with autism from simplex families (ie, parents and a
single affected child) have been reported to carry a higher rate of
de novo CNVs than those from multiplex families (ie, parents and
multiple affected children).11–13 Some CNVs have been associated
across disorders; for example, a 600 kb microduplication on 16p11.2
has been associated with childhood apraxia of speech,14,15 autism,16

bipolar disorder and schizophrenia,17 indicating that the same CNV
may give different outcomes. The exact outcome has been proposed to
depend on the genetic background of an individual and environmental
cues. Other CNVs are not recurrent within a disorder but private to a
particular family, presumably contributing to a biological pathway that
is shared in other individuals.
We explore the contribution of CNVs to SLI, by studying a set of

families collected by the SLI Consortium (SLIC). We compare
CNV burden between independent cases and unselected popula-
tion controls and examine CNV load across the wider SLIC
sample set, which includes first-degree relatives of variable affec-
tion status.
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MATERIALS AND METHODS

Inclusion criteria for SLI samples
One-hundred and twenty-seven independent cases with SLI (92 males and
35 females) and 385 available first-degree relatives (parents and siblings (sibs),
192 males and 193 females from 152 families) from the UK-based SLIC were
analysed for CNVs. This cohort has previously been described in detail.18–21

The SLIC cohort consists of British nuclear families ascertained to include at
least one child affected by SLI, defined as expressive and/or receptive language
skills (ELS and RLS, respectively) ≥ 1.5 SD below the normative mean and
nonverbal IQ not 41.5 SD below that expected for their age (77.5). Language
skills were measured in all children using the Clinical Evaluation of Language
Fundamentals (CELF-R);22 a battery of language-based tests that assess a range
of traits and thus provide a broad profile of language ability in the child.
Nonverbal skills were measured by the WISC Perceptual Organisation Index
(a composite score derived from Picture Completion, Picture Arrangement,
Block Design and Object Assembly subtests).23 In the current study,
independent cases were selected to represent one affected individual (as defined
above) per family. All available first-degree relatives (parents and siblings) were
then used to follow-up findings that were significant in the independent
cases. For these follow-up analyses, siblings were classified as affected
(as defined above, 37 individuals), unaffected (ELS and RLS above mean, 19
individuals) or undefined language status (if they did not meet the criteria for
affected or unaffected or had missing CELF data, 105 individuals). For parents,
CELF-R data were not available. However, we were able to classify parental
language status using a test of non-word repetition (NWR), which has been
proposed as a strong behavioural marker of SLI24,25 and shows high sensitivity
and specificity of a positive history of language difficulties in adult subjects.26

Thirty-five parents were classified as affected (NWR41.5 SD below the mean),
27 were unaffected (NWR 4mean) and 162 had undefined language status
(did not meet the criteria for affected or unaffected, or were missing NWR
data). In our child cohort, the NWR measure was observed to have a moderate
level of sensitivity (45% of affected children had NWR scores below − 1.5 SD)
and a high specificity (none of the unaffected sibs had NWR scores below − 1.5
SD). Thus, although we expect the NWR measure to classify some parents
with a positive history of language impairment as unknown, importantly, it is
less likely to classify unaffected parents as affected. Ethical agreement for the
SLIC study was given by local ethics committees, and all subjects provided
informed consent.

Control samples
Two-hundred and sixty-nine healthy ‘white-British’ adult population controls
(115 males and 154 females), unselected in terms of language ability, were
obtained from a study of gene expression in primary immune cells.27 The study
was approved by the Oxfordshire Research Ethics Committee (COREC
reference 06/Q1605/55).

SNP genotyping
DNA was extracted from peripheral blood or buccal smears and all samples
were genotyped on the Illumina HumanOmniExpress-12v1 Beadchip
(San Diego, CA, USA) that contains ~ 750 000 SNPs. SNPs were excluded if
the gentrain (genotype clustering quality) score waso0.5 or genotyping success
rate was o95%. Samples were excluded if they had o95% SNP genotype rate,
or heterozygosity rate of ≥± 2 SD or fell outside the European cluster in a
principal components analysis. Importantly, all samples were genotyped on the
same arrays.

CNV calling
CNVs were identified using PennCNV (16 June 2011 version)28 and
QuantiSNP (v2.2).29 For both algorithms, CNVs were required to have at least
three consecutive SNPs and a confidence value (PennCNV) or log Bayes Factor
(QuantiSNP) of 410. In PennCNV individuals with an SD for the log R ratio
(LRR) 40.35, a B-allele frequency (BAF) drift value 40.002 or a waviness
factor 40.04 or o− 0.04 were excluded. In QuantiSNP, individuals with an
average SD for the LRR 40.3 or an SD for BAF 40.15 were excluded.
If a CNV was predicted by both PennCNV and QuantiSNP, with

a minimum intersection of 50% each way, it was considered to be of

‘high confidence’ and was carried forward for analyses described below. The
innermost boundaries of the two algorithm calls were used. CNVs were
excluded if they spanned the centromere or telomeres.

Rare, novel and de novo CNV identification and validation
All ‘high-confidence’ CNVs were compared against the Database for Genomic
Variants (DGV; downloaded from UCSC genome browser hg19, January 2012)
to identify ‘rare and novel’ CNVs. Those that intersected o50% with five or
less CNVs in the DGV were considered rare. Those that did not overlap with
any CNV in the DGV were classed as novel.
To detect de novo CNVs, 161 individuals (67 probands, 18 affected siblings,

27 unaffected siblings and 49 siblings of undefined affection status) who had
genotype data available for both parents were analysed using trio and
quartet algorithms in PennCNV.
All rare events 4100 kbp, all novel exonic events 4100 kbp and all de novo

exonic events were subsequently validated by quantitative PCR using four PCR
primer pairs, two outside the CNV and two within it. PCRs were performed in
triplicate using iQ SYBR Green Supermix (Bio-Rad, Hercules, CA, USA) and
calibrated against a control DNA that did not contain the identified CNVs and
a control gene (ZNF423) that did not contain any CNVs within our sample set.
The parents of individuals with de novo exonic CNVs were also examined. Copy
numbers in each individual were calculated using the 2−ΔΔCt method.30

Statistical analysis of CNV burden
‘High-confidence’ CNVs, as defined above, were analysed using PLINK v1.0731

to identify burden differences between independent cases and population
controls. Metrics that differed significantly (empirical Po0.05) were then also
examined in the first-degree relatives. Burden analyses were also performed for
‘rare and novel’ and the de novo CNVs. Empirical P-values were calculated
using 10 000 permutations within PLINK.
PLINK was also employed to determine whether pre-defined gene sets

showed enrichment for CNVs in independent cases compared with population
controls. Given the phenotypic and genetic links reported between autism and
SLI, we specifically interrogated 531 autism-candidate genes (compiled from
Xu et al.32 and Betancur et al.33 and the SFARI database (October 2012)).
In addition, we investigated 1315 putative targets of the Foxp2 protein
(as reported in Vernes et al.34). Mutations of FOXP2 cause developmental
language disorder, and targets of this transcription factor have been implicated
in language and developmental disorders.15,35,36

Five candidate regions that have consistently been associated with neuro-
developmental disorders were also interrogated for CNV events and compared
between independent cases (127 individuals) and population controls
(269 individuals). These consisted of chromosomes 7q11.23,37 15q11-13,15–17,38

16p11.2,38,39 16p13.138 and 22q11.2.38,39

Pathway analysis
WebGestalt40 was used to identify gene ontology (GO) terms (Gene Ontology,
version 1.2, 11 November 2012) that were enriched for genes present within
‘high-confidence’ CNVs and the ‘rare and novel’ CNVs between independent
cases and population controls. GO categories that were enriched in the
independent cases, but not the population controls, are reported. P-values
were adjusted for multiple testing using the false discovery rate.

RESULTS

Burden analysis
1432 ‘high-confidence’ CNVs were identified in 127 independent cases
(11.3 per individual), compared with 4081 in 385 SLIC first-degree
relatives (10.6 per individual) and 2693 in 269 population control
samples (10.01 per individual). A full list of all ‘high-confidence’
CNVs identified in SLI cases and their first-degree relatives has been
submitted to DGVa (accession estd218).
Four burden metrics (average number of CNVs, average total length

of CNVs, average size of CNVs and average number of genes spanned)
differed significantly between independent cases and population
controls (Table 1). The average number and average total length of
CNVs were driven by deletion events (Table 1) while the other two
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Table 1 Burden analysis for (a) all CNVs; (b) deletions; (c) duplications in independent cases compared with population controls

No. of CNVs

Average no. of

CNVs per

individual

Proportion of

sample with one

or more CNV

Average total length

of CNVs spanned

per individual (kb)

Average

CNV size

(kb)

Average no. of genes

spanned by CNVs

per individual

Proportion of CNVs

containing at least

one gene

Average no. of

genes per total

CNV (kb)

Total Burden
Independent cases and population controls

Cases 1432 11.28 1 717.4 63.75 14.29 0.95 0.02
Controls 2693 10.01 1 513.9 51.55 10.34 0.99 0.02
Empirical P-value 0.003 1 0.0001 0.0005 0.0007 1 0.95

All SLIC family members and population controls
Family members 4081 10.6 720.3 70.09 12.84

Controls 2693 10.01 513.9 51.55 10.34

Empirical P-value 0.03 0.0001 0.0001 0.0005

Affected SLIC family members and population controls
Family members 770 10.69 773.1 77.26 12.46

Controls 2693 10.01 513.9 51.55 10.34

Empirical P-value 0.08 0.0001 0.0001 0.02

Unaffected SLIC family members and population controls
Family members 501 10.89 792.2 71.24 13.85

Controls 2693 10.01 513.9 51.55 10.34

Empirical P-value 0.07 0.0002 0.0001 0.005

Independent cases selected on the basis of low NWR and population controls
Cases 674 11.42 1 704 60.46 12.51 0.95 0.02
Controls 2693 10.01 1 513.9 51.55 10.34 0.99 0.02
Empirical P-value 0.004 1 0.0004 0.03 0.03 1 0.92

Deletions
Independent cases vs controls

Cases 1027 8.09 1 356 45.19 7.8 0.92 0.03
Controls 1878 6.98 1 236.4 34.77 5.6 0.94 0.03
Empirical P-value — 0.001 1 0.0001 0.0003 0.0007 0.86 0.64

All SLIC family members and population controls
Family members 2995 7.78 344.8 45.51 7.44

Controls 1878 6.98 236.4 34.77 5.6

Empirical P-value — 0.002 0.0001 0.0001 0.0005

Affected SLIC family members and population controls
Family members 546 7.58 352.9 49.3 6.96

Controls 1878 6.98 236.4 34.77 5.6

Empirical P-value 0.07 0.0001 0.0002 0.04

Unaffected SLIC family members and population controls
Family members 364 7.91 376.2 46.81 8.59

Controls 1878 6.98 236.4 34.77 5.6

Empirical P-value 0.03 0.0001 0.002 0.002

Duplications
Independent cases vs controls

Cases 401 3.16 0.91 392.5 121.7 6.44 0.76 0.02
Controls 813 3.02 0.96 286.4 89.41 4.72 0.86 0.03
Empirical P-value — 0.31 0.99 0.003 0.005 0.07 1 0.97

All SLIC family members and population controls
Family members 1072 393.3 129

Controls 813 286.4 89.41

Empirical P-value — 0.0004 0.0001

Affected SLIC family members and population controls
Family members 223 442.7 124.5

Controls 813 286.4 89.41

Empirical P-value 0.0009 0.004

Unaffected SLIC family members and population controls
Family members 132 442.6 119.6

Controls 813 286.4 89.4

Empirical P-value 0.01 0.03

Abbreviations: CNV, copy number variant; NWR, non-word repetition; SLIC, specific language impairment Consortium.
Those metrics that differed significantly between independent cases and population controls were then examined further in affected first-degree relatives and all first-degree relatives compared with
population controls. In Table 1, an alternative definition of affection was also explored; independent cases were selected on the basis of NWR 41.5 SD below that expected for their age. Categories
in bold had a P-value o0.05.
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categories were significant for both deletions and duplications
(Table 1). SLIC first-degree relatives (who included affected, unaf-
fected and undefined parents and siblings) also had significantly more
CNVs that were, on average, longer and covered more genes, than
those observed in population controls (Table 1). The same patterns
were seen when the first-degree relative sample set was restricted to
include only affected, or only unaffected relatives, although the trends
did not always reach significance in these smaller sample sets
(Table 1). In order to explore the effect of case ascertainment method
(currently based upon expressive and receptive language skills
(ELS and RLS, respectively) and nonverbal IQ – see Materials and
methods) upon the observed trends, we applied an alternative
definition of SLI affection within our case cohort. When independent
cases were alternatively selected to have NWR scores o1.5 SD below
that expected for their age (59 individuals, 46% of cases), the same
four burden metrics (average number of CNVs, average total length of
CNVs, average size of CNVs and average number of genes spanned)
again differed significantly between independent cases and population
controls (Table 1).

Rare and novel CNVs
Approximately 10% of the ‘high-confidence’ CNVs were ‘rare and
novel’. A total of 131 ‘rare and novel CNVs’ were identified in
independent cases (1.03 per individual), 319 in SLIC first-degree
relatives (0.83 per individual) and 275 in population controls (1.02 per
individual; Table 2). The burden of ‘rare and novel’ CNVs, for the
main part, did not differ significantly between independent cases and
population controls (Table 2). Although independent cases had an
increased length of duplications than population controls (Table 2),
these differences were less significant than those found for all ‘high-
confidence’ events.
Twenty ‘rare’ or ‘novel’ CNVs that were larger than 100 kbp were

identified in the independent cases, 14 (70%) of which were exonic
(Table 3), while 36 were identified in the population controls, of
which 23 (64%) were exonic. The rarity of these events precludes a
statistical evaluation. However, as a note of interest, these CNVs
included the NDUFB3, NIF3L1, PPEF2, CACNA2D1 and GPC5 genes,
which are expressed in the brain and/or have been implicated in
neurological disorder.

Table 2 Burden analysis for (a) ‘rare and novel’ CNVs and deletions; (b) duplications in independent cases compared with population controls

No. of

CNVs

Average no.

of CNVs per

individual

Proportion of

sample with

one or more

CNV

Average total

length of

CNVs

spanned per

individual

(kb)

Average

CNV

size

(kb)

Average no.

of genes

spanned by

CNVs per

individual

Proportion

of CNVs

containing

at least one

gene

Average no.

of genes per

total CNV

(kb)

Total burden
All CNVs in independent cases vs controls

Cases 131 1.03 0.58 102.4 55.42 2 0.41 0.05

Controls 275 1.02 0.63 77.56 47.4 0.99 0.41 0.07

Empirical P-value — 0.47 0.85 0.08 0.13 0.08 0.54 0.59

Deletions
Deletions in independent cases vs controls

Cases 61 0.48 0.38 42.47 33.31 0.46 0.24 0.07

Controls 177 0.66 0.46 62.6 46.36 0.52 0.26 0.05

Empirical P-value — 0.98 0.96 0.98 0.95 0.7 0.74 0.21

Duplications
Independent cases vs controls

Cases 67 0.53 0.29 142 88.12 1.5 0.22 0.03

Controls 97 0.36 0.3 65.95 53.72 0.45 0.18 0.11

Empirical P-value — 0.14 0.59 0.004 0.006 0.06 0.2 0.86

All SLIC family members and population controls

Family members 98 92.23 76.44

Controls 97 65.95 53.72

Empirical P-value 0.03 0.02

Affected SLIC family members and population controls

Family members 22 95.71 89.66

Controls 97 65.95 53.72

Empirical P-value 0.12 0.08

Unaffected SLIC family members and population controls

Family members 18 92.32 67.32

Controls 97 65.95 53.72

Empirical P-value 0.15 0.22

Abbreviations: CNV, copy number variant; SLIC, specific language impairment Consortium.
As no significant differences were found for the total burden and deletion burden of ‘rare and novel’ CNVs, only independent cases vs controls are shown in this table.
Those metrics which differed significantly between independent cases and population controls were then examined further in affected first-degree relatives, unaffected first-degree relatives and all
first-degree relatives compared with population controls. Categories in bold had a P-value o0.05. Although the affected- and unaffected-only family members did not reach significance, similar
trends were seen within these smaller groups.
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Gene enrichment analysis
No enrichment for autism-candidate genes or Foxp2 targets was
observed for the ‘high-confidence’, ‘rare and novel’ or de novo CNVs
in independent cases.

Pathway analysis
There were 719 genes that had GO categories defined within the ‘high-
confidence’ events in independent cases and 757 within population
controls. For the ‘rare and novel’ CNVs, 179 genes had GO categories
defined within the independent cases and 176 in population controls.
Pathway analyses indicated that six GO categories were significantly
and specifically enriched in independent cases but not in population
controls after correcting for multiple testing. ‘Acetylcholine binding’
(GO:0042166, CHRNA7, CHRNA3, ACHE and CHRNB4), ‘cyclic-
nucleotide phosphodiesterase activity’ (GO:0004112 and GO:0004114,
PDE8A, PDE1A, PDE4D, PDE6H and PDE1C) and ‘MHC protein
complex’ (GO:0042611, HLA-DMA, HLA-C, HLA-H, HLA-DQA1,
MICA and HLA-DMB) were enriched when considering all CNV
events. While the cellular components ‘proteasome activator complex’
(GO:0008537, PSME1 and PSME2) and ‘nuclear inclusion body’
(GO:0042405, NXF1 and ATXN1) were enriched in the ‘rare and
novel’ CNV set (Table 4).

De novo CNVs
Genotype data were available for both parents for 161 children
(including 85 affected individuals (independent cases or affected
siblings), 27 unaffected siblings and 49 individuals of undefined
affection status). Analyses of these trios/quartets identified 77 putative
de novo CNVs in 56 individuals, of whom 24 were affected
(17 independent cases), 12 were unaffected and 20 had undefined
affection status. Although the sample size is small, burden analysis
comparisons did not find differences in the rate or size of de novo
CNVs between the affected and unaffected individuals.
Genic de novo CNVs in independent cases (5 events in 4 individuals;

Table 3) were all confirmed to be absent in the parents by qPCR.
Four of the five events were not observed in any other individuals in
this dataset. Three of these include genes of potential interest for SLI

(see Discussion). Two of the de novo CNVs fell within regions of
known structural variation in neurodevelopment; 8p23.141 and
22q11.2,38,39 although they were smaller than the typical micro-
deletion/-duplication events typically reported.

Specific candidate regions
Five CNV candidate regions in neurodevelopmental disorders were
investigated: 7q11.23, 15q11-13, 16p11.2, 16p13.1 and 22q11.2. No
CNVs were found in 7q11.23, 16p11.2 or 16p13.1 in independent
cases. CNVs on 15q11-13 and 22q11.2 were found in both indepen-
dent cases and population controls (Supplementary Table). The
frequency of these events was similar between independent cases
and population controls (Supplementary Table). All the events
identified consisted of small CNVs within these sites rather than the
classical large events typically associated with neurodevelopmental
disorder.

DISCUSSION

An exploratory study of CNVs in individuals with SLI and their first-
degree relatives was performed. Consistent, statistically significant
increases in burden were found for individuals with SLI suggesting
that copy number does have a role in this disorder. More specifically,
our cases showed a significantly higher number of deletions, with
larger CNVs and deletions that covered more genes than controls. The
differences in burden appear to be primarily driven by the size of
events. Our cases, on average only carried one more CNV than
population controls, but each event was, on average, 12 kb longer and
the total CNV length across the genome therefore totalled 200 kb
more in cases than population controls. Furthermore, these events on
an average, hit four more genes in the cases than population controls.
In contrast to that reported for autism and ADHD7–9 we found only

an increase in the average total length of ‘rare and novel’ duplications
and the average ‘rare and novel’ duplication size in independent cases
compared with population controls (Table 2). Furthermore, we note
that the majority of CNVs observed in independent cases were
o100 kb. Sizeable events are reported to be of importance in
intellectual disability10 but, interestingly, not in developmental
dyslexia.10 Note, however that the contribution of smaller, common

Table 4 Pathway analysis output of GO terms for genes present in all CNVs and the rare and novel CNVs of independent cases

GO category

No. of reference

genes in the

category

No. of genes in the

gene set and also in

the category

Expected no. in

the category

Ratio of

enrichment

Raw

P-value

P-value adjusted for

multiple testing

All CNVs Molecular function – cyclic-nucleotide

phosphodiesterase activity –

GO:0004112

25 5 0.7 7.11 0.0006 0.04

All CNVs Molecular function – acetylcholine bind-

ing – GO:0042166

13 4 0.37 10.94 0.0004 0.04

All CNVs Molecular function – 3′,5′-cyclic-
nucleotide phosphodiesterase activity –

GO:0004114

24 5 0.68 7.41 0.0005 0.04

All CNVs Cellular component – MHC protein com-

plex – GO:0042611

38 6 1.09 5.53 0.0007 0.048

Rare and novel CNVs Cellular component – proteasome activa-

tor complex – GO:0008537

3 2 0.02 84.21 0.0002 0.034

Rare and novel CNVs Cellular component – nuclear

inclusion body – GO:0042405

4 2 0.03 63.16 0.0004 0.034

Abbreviations: CNV, copy number variant; GO, gene ontology.
GO categories are listed that did not occur in population controls and survived multiple testing.
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CNVs to dyslexia has yet to be evaluated and that the number of these
events in our cohort was small.
We extended our investigations to consider CNV burden across the

first-degree relatives of our independent SLI cases. We studied all
available parents and siblings (regardless of their language status) as
well as subsets of only affected or only unaffected relatives. We again
observed a significantly increased burden of larger, genic CNVs
compared with population controls (Tables 1 and 2). Furthermore
we found that these trends were consistent across the first-degree
relatives, regardless of affection status (Tables 1 and 2).
De novo CNVs have been reported to be of particular importance in

neurodevelopmental disorders, especially when fecundity is reduced.
Although our sample set was small, we observed a similar level of
de novo CNVs across 85 SLI cases and 27 unaffected siblings. Thus,
unlike that reported for autism and schizophrenia,11,37 we propose
that de novo CNVs do not represent a major risk factor for SLI.
Given the data generated from this study, we hypothesise that the

increased copy number burden observed in SLI occurs via a ‘common
disease–common variant’ model in which certain combinations of
common CNV events confer the majority of CNV-based risk. In this
small sample set, we find evidence that children affected by SLI carry a
higher burden of common CNVs of moderate size that hit genes more
often than that observed in population controls. This finding extends
to the first-degree relatives of children affected by SLI, indicating that
the major driving force is likely to be inherited rather than de novo.
We did not observe a significant correlation between CNV burden and
language-related phenotypic scores (Supplementary Figure 1) amongst
cases and their first-degree relatives (Supplementary Figure 1),
indicating that the correlation between CNV burden and absolute
risk is not straightforward. Together, these data suggest that the
absolute risk conferred by CNVs depends upon the position and
combination of events inherited, and the genetic background of the
individual, which may also include sequence variants of effect and
environmental factors.
Although we did not observe an increased rate of de novo CNVs

in cases, we do not preclude the possibility that these events are
important on a case-by-case basis. A number of genes within de novo
CNVs represent interesting candidates (Table 3). A deletion in the
ACTR2 gene was found in an independent case (SLI-45_2, Table 3)
and his monozygotic twin, who was also affected, indicating that this
event occurred prior to the division of the blastocyst. ACTR2 encodes
a component of the ARP2/3 complex, a reduction of which may cause
abnormal neuronal and glial migration and impaired neurite
extension.42 One independent case (SLI-146_3, Table 3) was found
to have two de novo events; a deletion in CSNK1A1, which has been
related to dopamine signalling and ADHD43 and a duplication within
the region typically duplicated in 22q11.2 microduplication syndrome.
A further case (SLI-59_3, Table 3) had a duplication that fell within
the 8p23.1 duplication syndrome region, which can include language
delay.41 Interestingly, each of the independent cases carrying de novo
CNVs were from simplex families, apart from the monozygotic twin
described above, perhaps indicating a different mechanism of risk
within isolated cases of language impairment and suggesting that
clinical screening of such cases may prove fruitful.
Pathway analyses identified several GO categories of functional

interest, six of which survived multiple testing (GO:0004112,
GO:0004114, GO:0042166, GO:0042611, GO:0008537 and GO:0042405;
Table 4). Acetylcholines (GO:0042166) act as neurotransmitters and
cyclic-nucleotide phosphodiesterase enzymes (GO:0004112 and
GO:0004114) are widely expressed in brain tissue.44 The MHC loci
(GO:0042611), HLA-C and HLA-DQA1, have been recently associated

with SLI.45 Proteasome activator complexes (GO:0008537) have been
associated with neurodegenerative and autoimmune diseases46 as have
genes in the ‘nuclear inclusion body’ GO category (GO:0042405;
NXF1 and ATXN1).
In summary, our exploratory study found that children with SLI

and their first-degree relatives have an increased burden of moderate-
size CNVs (both deletions and duplications) than population controls.
However, in contrast to that reported for other neurodevelopmental
disorders, we propose that the majority of copy number effects in SLI
are conferred by common inherited events. It has previously been
proposed that the burden and size of CNVs correlates with the severity
of disorder10 and our results fit this model. The increased burden
observed for our cases is not as extreme as that described for autism
and intellectual disability but contrasts with studies of developmental
dyslexia, where no increased burden was found. Furthermore, our
findings correspond with the prototypical complex disorder model in
which multiple events contribute only a small effect upon the overall
phenotype. In SLI, unlike autism, it is unusual to observe isolated cases
within families and family members often present with other language
and/or reading difficulties. Our model therefore suggests that common
inherited events that contribute to SLI may be relevant to other
language-related disorders such as dyslexia. The risk of an individual is
determined by the specific combination of events that hit contributory
loci, in combination with other genetic and environmental risk factors.
It should be noted that this exploratory study used a relatively small,
but well characterised, cohort. Larger sample sizes will be required to
confirm the trends observed here. New technologies such as next
generation paired-end sequencing will be able to detect CNVs at a
higher resolution than is currently possible with SNP genotyping
arrays allowing a more detailed picture of the CNV burden in larger
sample sets.
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