
Central Lancashire Online Knowledge (CLoK)

Title Power efficiency through tuple ranking in wireless sensor network
monitoring

Type Article
URL https://clok.uclan.ac.uk/id/eprint/18401/
DOI https://doi.org/10.1007/s10619-010-7072-5
Date 2011
Citation Andreou, Panayiotis, Zeinalipour-Yazti, Demetrios, Chrysanthis, Panos K and

Samaras, George (2011) Power efficiency through tuple ranking in wireless
sensor network monitoring. Distributed and Parallel Databases, 29 (1). pp.
113-150. ISSN 0926-8782

Creators Andreou, Panayiotis, Zeinalipour-Yazti, Demetrios, Chrysanthis, Panos K and
Samaras, George

It is advisable to refer to the publisher’s version if you intend to cite from the work.
https://doi.org/10.1007/s10619-010-7072-5

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law.
Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors
and/or other copyright owners. Terms and conditions for use of this material are defined in the
http://clok.uclan.ac.uk/policies/

http://www.uclan.ac.uk/research/
http://clok.uclan.ac.uk/policies/

Noname manuscript No.
(will be inserted by the editor)

Power Efficiency through Tuple Ranking in

Wireless Sensor Network Monitoring

Panayiotis Andreou · Demetrios
Zeinalipour-Yazti · Panos K.
Chrysanthis · George Samaras

Received: date / Accepted: date

Abstract In this paper, we present an innovative framework for efficiently
monitoring Wireless Sensor Networks (WSNs). Our framework, coined KSpot,
utilizes a novel top-k query processing algorithm we developed, in conjunction
with the concept of in-network views, in order to minimize the cost of query
execution. For ease of exposition, consider a set of sensors acquiring data from
their environment at a given time instance. The generated information can
conceptually be thought as a horizontally fragmented base relation R. Fur-
thermore, the results to a user-defined query Q, registered at some sink point,
can conceptually be thought as a view V . Maintaining consistency between V
and R is very expensive in terms of communication and energy. Thus, KSpot
focuses on a subset V ′(⊆ V) that unveils only the k highest-ranked answers
at the sink, for some user defined parameter k.

To illustrate the efficiency of our framework, we have implemented a real
system in nesC, which combines the traditional advantages of declarative ac-
quisition frameworks, like TinyDB, with the ideas presented in this work. Ex-
tensive real-world testing and experimentation with traces from University of
California-Berkeley, the University of Washington and Intel Research Berke-
ley, show that KSpot provides an up to 66% of energy savings compared to
TinyDB, minimizes both the size and number of packets transmitted over the
network (up to 77%), and prolongs the longevity of a WSN deployment to new
scales.

Keywords

Top-K Query Processing, In-Network Aggregation, Sensor Networks.

P. Andreou, D. Zeinalipour-Yazti (contact author), and G. Samaras, Department of
Computer Science, University of Cyprus, Nicosia, 1678, Cyprus; Tel.: +357-22-892755; Fax:
+357-22-892701; E-mail: {panic, dzeina, cssamara}@cs.ucy.ac.cy

P.K. Chrysanthis, Department of Computer Science, University of Pittsburgh, Pittsburgh,
PA 5213-4034, Tel.: +1-412-624-8924; Fax: +1-412-624-8854; E-mail: panos@cs.pitt.edu

2

1 Introduction

The improvements in hardware design along with the wide availability of eco-
nomically viable embedded sensor systems make it feasible today to interact
and understand the physical world at an extremely high fidelity [53,30,40]. The
applications of sensor networks range from environmental monitoring (such as
atmosphere and habitant monitoring [53,47]) to seismic and structural moni-
toring as well as industry manufacturing [17,40]. Recently, Voltree Power [56]
has engineered a bio-energy harvesting technology that allows sensor devices
to recharge themselves by collecting the energy that is naturally produced by
living trees or other large plants. This alternative, minimizes the cost of replac-
ing batteries frequently, especially in large-scale deployments. Such networks
have already been deployed by the United States Department of Agriculture
(USDA) at 5 different sites [56].

Although sensor devices in a Voltree Climate Sensor Network can recharge
themselves to a certain degree, the ratio between energy required/energy col-
lected greatly depends on the executed monitoring query. Long running high
frequency sampling queries can quickly deplete the energy reserves of the sen-
sor device raising the need for energy-conscious algorithms that decrease both
processing and communication. The ideas presented in this paper enable ef-
ficient and effective monitoring of important events using energy-aware algo-
rithms.

In traditional data acquisition techniques [39,60,30], the sensor data is
transmitted to the sink (also denoted as base station or querying node) imme-
diately after it is acquired from the physical world. Although in-network ag-
gregation significantly reduces the consumption of energy, the oblivious trans-
mission of all query results from all sensors at every acquisition round is still
the most energy demanding factor in such environments [53,65,47,67]. Supple-
mentary approaches to cope with the energy challenge during query process-
ing have in the recent years appeared at numerous venues. These approaches
range from efficient join processing algorithms in sensor networks [26,14,52,
33], to the underlying data management layer [12,1,21,65] and network opti-
mization [42,15,6,2], among others. Yet, these approaches focus either on a
different system model or a different problem formulation, than the work we
present in this paper.

In this paper we model the retrieval of data on the presumption that the
user is only interested in the k highest-ranked answers rather than all of them.
A Top-K query [24,9,66,44,66] focuses on the subset of most relevant answers
for two reasons: i) to minimize the cost metric that is associated with the
retrieval of all answers; and ii) to improve the quality of the answer set such
that the user is not overwhelmed with irrelevant results. This assumption
is quite reasonable and has been utilized in numerous other settings (e.g.,
consider a search engine that returns the 10 highest-ranked results to minimize
the consumption of system resources and in order to improve the quality of
the answer set.)

3

Our framework, coined KSpot, utilizes a state-of-the-art top-k query pro-
cessing algorithm, coined INT, in conjunction with materialized in-network
views, in order to minimize the cost of query executions. A view V in rela-
tional databases is a virtual table that contains the results from an arbitrary
query Q which is evaluated every time V is referred to. In order to avoid the
unnecessary re-execution of Q it is beneficial to store V on secondary stor-
age. This introduces the notion of a materialized view (referred to as view
hereafter). Views have a clear space versus time trade-off: A fully materialized
view V requires more space but also less time in evaluating Q, whereas a par-
tially materialized view V ′ requires less space but also more time in evaluating
Q. Materialized views can potentially conserve energy as the application can
avoid the expensive re-evaluation of the in-network Q.

Materialized views have been studied in numerous seminal papers includ-
ing [7,13,11,34]. Although a fully materialized view V maintains the complete
results of a query Q, the distributed nature of a sensor network environment,
along with its distinct characteristics, imposes some fundamental limitations
to this model:

i. Firstly, maintaining consistency between V and the underlying and dis-
tributed base relation R (defined by the sensor readings) is very expensive
in terms of energy. Thus, we focus on maintaining a subset V ′(⊆ V) that
unveils only the k highest-ranked answers for some user defined k; and

ii. Secondly, V ′ is recursively defined using the results that are stored at the
lower-levels of the multi-hop routing tree that interconnects the sink with
the sensing devices. Thus, traditional view maintenance techniques are not
directly applicable.

To illustrate the efficiency of our framework, we have implemented a real
system in nesC, which combines the traditional advantages of declarative ac-
quisition frameworks, like TinyDB, with the ideas presented in this work.
Extensive real-world testing and experimentation with traces from University
of California-Berkeley, University of Washington and Intel Research Berke-
ley, show that KSpot presents an up to 66% of energy savings compared to
TinyDB, minimizes both the size and number of packets transmitted onto the
network (up to 77%), and prolongs the longevity of a WSN deployment to new
scales.

At the foundation of KSpot lies MINT Views, a novel algorithm to minimize
messaging and thus energy consumption in the execution of continuous moni-
toring queries. Like other frameworks, we support single-relation queries with
the standard aggregate functions but our focus is to optimize top-k queries over
multi-tuple answers. Such answers are very typical for queries with a GROUP-BY

clause and for non-aggregate queries.
To facilitate our description, consider the scenario in Figure 1, where we

illustrate a deployment of 9 sensors in a 4-room building. We are interested
in answering Query 1 at the sink (rooted above s1). In particular we want to
find the average temperature of each room every one minute.

4

A B

C DS5,75

S6,75 S7,78

S8,75

S1,40

S4,42

S3,75
S2,74

s1

s2 s4

s5 s6

s3

s7 s8

C,75
A,74

D,76.5
A,75

D,75D,78C,75C,75

C, 75F
A, 74.5F
D, 64F
B, 41F

A 4-room environment monitored by 9 sensors An In-Network View (V)

S9,39

s9

D,39

B,42
D,39

Room,
AVG(temp)

SINK (s0)

Fig. 1 The left figure illustrates a sensor network scenario that consists of 9 sensors
{s1, ..., s9} deployed in four rooms {A, B, C, D}. The label next to each sensor denotes the
identifier of the node and the local temperature reading. The figure on the right presents a
recursively defined In-Network View (V) to query 1. The label next to each node indicate
the local averages for each room.

Query 1
SELECT roomno, AVERAGE(temp)

FROM sensors

GROUP BY roomno

SAMPLE PERIOD 60000

With the TinyDB-based [40,39] in-network aggregation approach each node
forwards tuples of the form (room,sum,count) to its parent every single time
instance1. One alternative approach is the notion of an In-Network View (V)
(Figure 1 on the right). V materializes the result of Q and utilizes these results
to speedup the next execution of Q. The performance of V largely relies on the
premise of temporal coherence between consecutively acquired sensor readings
as local changes will affect the intermediate views until the sink.

To improve the performance penalty of In-Network Views, we propose to
prune the local views stored at each node and focus on the k highest-ranked
answers rather than all of them. This turns out to be extremely useful because
now sensors can discard view updates that do not refer to k highest-ranked
answers. On the other hand, this also imposes an extremely challenging prob-
lem: “a naive local greedy pruning strategy may easily discard tuples that will
be finally among the k highest-ranked answers”.

To understand this problem, consider again Query 1 but assume that we are
only interested in the top-1 result. Such a query should return room (C, 75F).
Assuming that each node naively eliminates anything below its local top-
1 result will lead us to the erroneous answer (D, 76.5F). In particular, the
leaves {s5, s6, s7, s8, s9} will send their only tuple to their respective parent.
The parents {s2, s3, s4} will then aggregate the results of their children along
with their own result and forward this result to their own parent (i.e., s1).

1 For clarity in Figure 1, we only depict the average (i.e., sum/count).

5

In particular, s2 will send (C, 75F), s3 the tuple (D, 76.5F) and s4 the tu-
ple (B, 42F). It is now easy to see that if s1 aggregates the results of its
children {s2, s3, s4} along with its own result (B, 40F), then this will yield
V wrong

0
={(D, 76.5F), (C, 75F), (B, 41F)}, where room D is the top-1 answer

rather than room C.
Our MINT algorithm utilizes an intelligent upper-bounding algorithm and

a local parameter k to construct a subset of V , denoted as the k-covered bound-
set V ′, to be materialized. We will show that any tuple outside V ′ can safely
be eliminated during the execution of a query because this tuple cannot be
among the k highest-ranked results.

The key idea of the MINT pruning algorithm is to exploit a set of |γ| de-
scriptors (γ = {γ1, γ2, ...}), in order to bound above the score of tuples that
are not known at a given level of the sensor network. The elements in γ are
application specific: these can either be known in advance so they can be de-
fined prior to setting up the execution of a query, or these can be learned and
dynamically adjusted during query execution (as we will show in Section 4.5).
Without loss of generality, in the rest of our discussion we will utilize the follow-
ing instances: γ1 =“Maximum possible temperature value” and γ2 =“Number
of sensors in each room”. For instance, the temperature sensor on the TelosB
Weather Board [53] might only record values between -40F to 250F and the
barometric pressure module can only measure pressure in the range 300mb to
1100mb.

This paper builds on our previous work in [63,3], in which: i) we have
presented the preliminary design and simulation results of the MINT [63] al-
gorithm; and ii) we have demonstrated the preliminary utility of the KSpot
framework [3]2. In this paper, we introduce several new improvements and
extensions that are summarized as follows:

– We introduce an elaborate experimental study and solid experimental evi-
dence that shows that the INT/MINT algorithms are indeed offering new
levels of energy efficiency in WSN deployments. Our new study is car-
ried out using real instances in TinyOS measuring energy with Power-
TOSSIM, while previous studies were carried out on a proprietary simu-
lator. Additionally, we compare our algorithms under different real sensor
network traces, querysets and a real micro-benchmark on the CC2420 radio
transceiver [54]. In our experiments we focus on a number of parameters
including energy consumption and pruning magnitude as well as scalabil-
ity and network lifetime. To accomplish this we introduce a series of new
experiments that focus on the scalability of k, cardinality of GROUP-BY
clause and network lifetime.

– We describe in detail how the γ descriptors can be learned during query
execution and dynamically adjusted using a sliding window sampling pre-
diction mechanism.

– We present a detailed description of the KSpot system architecture includ-
ing insight information on all its components and internal procedures. In

2 KSpot is currently publicly available under http://www.cs.ucy.ac.cy/~panic/kspot.

6

this description, we list our data structures and explain why such structures
are beneficial for top-k query aggregation.

– We provide an extensive overview of related work and a taxonomy of related
algorithms based on three different dimensions: data fragmentation, input
scores (exact, approximate) and output ranking (exact, approximate). We
also qualitatively explain the differences and similarities of these techniques
compared to the KSpot framework.

The MINT/INT algorithms, presented at the foundation of this work, make
the following overall contributions to the state-of-the-art:

– We formulate the problem of constructing a hierarchy of recursively defined
top-k views. We solve this problem by introducing MINT Views. We also
present a stateless, non-materialized version of MINT, coined INT (In-
Network Top-k) Views, that is appropriate for sensing device with limited
memory.

– We introduce the notion of a k-covered bound set V ′ which only maintains
the tuples of V that lead to the k highest ranked answers at the sink.
We additionally provide energy-conscious techniques to incrementally and
immediately update V ′.

It is important to mention that these ideas span well beyond the scope of
TinyDB and related technologies, and that these could easily be implemented
in other types of systems that deal with a similar system model.

The remainder of the paper is organized as follows: Sect. 2 presents the
architecture of the KSpot framework. Sect. 3 formalizes our system model and
Sect. 4 presents the underlying algorithms of the KSpot framework. Next, in
Sect. 5 we present our experimental methodology and in Sect. 6 the results of
our evaluation. Finally, Sect. 7 overviews the related research work and Sect. 8
concludes our paper.

2 System Architecture

KSpot features a two-tier architecture (see Figure 2), which consists of server-
side software written in JAVA and sensor-side software written in nesC.

The first tier (server-side), consists of a server, attached to a fixed sensor
node (sink) that is responsible for propagating queries and acquiring results
from the sensor network deployment. Part of this tier is also the KSpot Graph-
ical User Interface (KSpot GUI), which allows: i) the declaration of Top-K
queries in non-SQL and SQL mode, ii) the visual representation of sensor net-
work topology, iii) the visual ranking of results using the KSpot Bullets; and
several other administrative functions. Top-k queries generated through the
KSpot GUI are translated into an extended-TinyDB query syntax and are
then integrated to the KSpot TopK Query API. These queries are then in-
jected into the network through the sink node. The KSpot Top-K Query API
is also responsible for translating the raw data arriving through the sink node
to the KSpot Display panel.

7

T
ie

r
 2

 –
S

e
n

s
o

r
N

e
tw

o
rk

T
ie

r
 1

 -
S

e
rv

e
r

TinyDB client

Communication

Query

Processing

TinyDB API

KSpot

GUI

Schema

TinyOS

Aggregates

KSpot TopK

Aggregates

KSpot TopK

Query API

typedef struct {

uint8_t sameAsPrev:1;

uint8_t vals:3;

uint16_t topVals[MAX_K];

} TopkData;

TinyDB

Query API

Query Panel

Config

Panel

Display

Panel

SELECT

TOPK(k, attribute)

FROM sensors

SELECT

TOPKROOM(k, attribute)

FROM sensors

typedef struct {

uint8_t sameAsPrev:1;

uint8_t vals:3;

uint32_t count:22;

uint32_t room:22;

uint16_t sum[roomCount];

} __attribute__((__packed__))

TopkRoomData;

SELECT TOP k attribute

FROM sensors

SAMPLE PERIOD 2048

SELECT TOP k room, attribute

FROM sensors

GROUP BY room

SAMPLE PERIOD 2048

Fig. 2 Main data structures used in our nesC implementation of the KSpot client

The second tier (sensor-side), consists of a number of sensor nodes that are
positioned in predefined areas of interest. The sensor devices are loaded with
the KSpot client software running on the TinyOS [12] operating system. The
KSpot client currently extends the TinyDB base implementation by enabling
the execution of Top-k queries in the form of aggregates. More specifically, at
each epoch a sensor node acquires its local sensor reading and then merges all
values acquired from its child nodes. As soon as this phase is completed, the
sensor locally prunes a subset of results using the MINT/INT algorithms de-
scribed later in Section 4. Finally, a node recursively transmits the aggregated
result to its parent node until the expected result reaches the sink node.

We have selected TinyOS/TinyDB for the implementation of the KSpot
framework for practical reasons as it already provides a kernel of declarative
data acquisition functionalities (i.e., SQL query syntax). However, we could
have similarly applied our ideas on top of other sensor network operating
systems like Contiki [22] or LiteOS [10].

We describe each of the components of the KSpot architecture individually
in the following sections.

The KSpot Graphical User Interface (KSpot GUI), is used for: i) con-
figuring the number of sensors/rooms displayed in the scenario, ii) execute
Top-K queries, and iii) for displaying the query results in a manner that high-
lights the ranking properties of the executed query. In particular, the KSpot
GUI consists of three panels (see Figure 3):

8

Fig. 3 KSpot’s Graphical User Interface (GUI) allows users to administer the execution
of Top-K Queries through an intuitive and declarative user interface. The above scenario
conducts a Top-3 query over a 14-node sensor network organized in 6 clusters. The Display
Panel (on the right) illustrates the three KSpot-Bullets for the three highest-ranked sensor
clusters.

i. The Configuration Panel (Figure 3, top-left), which enables the user to
load a new scenario from a configuration file or to create a new scenario
that can be stored in a configuration file. Through this panel the user can
specify which nodes belong to (are clustered) in the same physical region.
Additionally, the user can assign values to the |γ| descriptors mentioned in
Section 1. If no specific values are assigned, KSpot assigns the maximum
values for each attribute as these were found in the sensorboard manual.
Note, that both the cluster configuration and γ descriptors are translated
to KSpot commands which are transmitted to the sensor nodes prior the
execution of a top-k query.

ii. The Query Panel (Figure 3, bottom-left), which enables the user to spec-
ify aggregate (AVG, MIN and MAX) and non-aggregate SQL-like queries
either graphically or manually. The constructed query is parsed and trans-
lated to the KSpot Query API if the query is a Top-k query or to the
TinyDB Query API otherwise.

9

TopkRoomM module operations

Step 1. init: initializes the state of the aggregate

Step 2. update: is called when a new value is generated

locally at the sensor

Step 3. merge: is called when new results arrive from the

child nodes of the current sensor

Step 4. hasdata: is called when the results are ready

to be output

hasData performs the following operations

A. Retrieve the current state

B. Sort the current state in DESC order

C. Retrieve the top-k and attribute

parameters

D. Generate upper bounds

E. Find the k highest lower bound

F. Eliminate Tuples not in

k-Covered-Bound set

G. Finalize state

H. Check if generated state is the same as

as the previous one. If yes, do not send

anything (MINT only).

I. Copy current state to the previous one

(MINT only).

initialize

sense

merge

prune

send

initialize

sense

merge

prune

Compare

previous state

INT

operations

MINT

operations

send

TopkRoomM module - INT/MINT operations (for each epoch)

Fig. 4 Internal operations of the INT and MINT Views algorithms.

iii. The Display Panel (Figure 3, right), which allows a user to load a JPG
image representation of the scenario map. Subsequently, the user can drag-
and-drop the sensing devices to the respective positions on the map. Our
system allows the user to choose among a wide range of sensor devices,
coming in various shapes and sizes, in order to accommodate crowded map
configurations. Note that the Display Panel links together nodes of the
same cluster using a black line. Additionally, the panel highlights the K-
highest ranked clusters by utilizing a red bullet, coined the KSpot Bullet,
which projects the rank of the given cluster at any given time instance.
Subsequently, the KSpot bullets are continuously re-ranked such that the
user is informed about the K highest ranked answers instantaneously.

KSpot Top-K Query API: The KSpot Query API has two functions: i) to
translate KSpot Top-K queries into TinyDB query messages with the aid of
the TinyDB parser, and ii) to asynchronously receive the results of a KSpot
Top-K query and deliver these results both to the TinyDB and KSpot GUIs
according to which is making the request. As illustrated in Figure 2, the Query
API supports two new types of queries, the TopK and TopKRoom queries that
have been added to the TinyDB catalog.

KSpot Aggregates: Currently, KSpot supports two different aggregates,
TopK and TopKRoom. Both aggregates are implemented in the TopkM and

10

TopkRoomM modules, which are wired with the AggOperator configuration
component of the TinyDB client system. The KSpot data structures presented
in Figure 2 will be thoroughly described in the Experimental methodology sec-
tion. An abstract representation of the internal mechanisms of the INT and
MINT algorithms that operate inside the TopkRoomM module is illustrated in
Figure 4 (left). Similar to all aggregate operations supported by the TinyDB
framework, both the INT and MINT algorithms follow a linear procedure to
compute the result of each epoch. This procedure includes the following steps:
i) initialize, where all aggregate state variables are reset, ii) sense, where each
sensor generates its local measurement, iii) merge, where each sensor acquires
measurements from its child sensors and merges them with its own, iv) prune,
where the k-Covered-BoundSet is generated by pruning results that will not
appear in the final top-k result, and v) send, where the sensor transmits its
results to its parent. The corresponding nesC functions that implement this
procedure are illustrated in Figure 4 (right). The pruning procedure of the
underlying INT and MINT algorithms that operate inside the TopkM and
TopkRoomM modules are thoroughly described in Section 4.

3 System Model and Definitions

In this section we will formalize our basic terminology upon which we will build
the description of the algorithms that comprise the foundation of the KSpot
Framework. We will then outline the motivation behind the phases of these
algorithms. The main symbols and their respective definitions are summarized
in Table 1.

Let S denote a set of n sensing devices S = {s1, s2, ..., sn}. Assume that
si (i ≤ n) is able to acquire m physical attributes A = {a1, a2, ..., am} from
its environment at every discrete time instance t. This generates tuples of
the form {t, a1, a2, ..., am} at each sensor. At any given time instance, the
aforementioned scenario yields an n × m matrix of readings R:=(sij)n×m.
This matrix is horizontally fragmented across the n sensing devices (i.e., row
i contains the readings of sensor si and R = ∪i∈nRi.

A user submits a query Q at some centralized querying node (denoted as
s0, or sink node) prior deployment and the system then initiates the execution
of Q by disseminating it to the n sensors. In particular, the sink sends Q to
one sensor s1. Subsequently, s1 recursively forwards Q to all of its neighbors
until all n sensors have received the given query. Without loss of generality, we
adopt the First Heard From (FHF) mechanism which is utilized in a variety
of data acquisition frameworks such as [39,60,67,63] and where each sensor
si selects as its parent the first node from which Q was received. This creates
an acyclic subset of the communication graph G (i.e., a spanning tree) which
is denoted as T = (S, E′), where E′ ⊂ E. Each si also maintains a Child
Node List (denoted as children(si)), which is trivially constructed during the
creation of T (i.e., using an acknowledgment from each child to its parent).

11

Table 1 Definition of Symbols

Symbol Definition

Q A Query
k Number of requested results
si Sensor number i (s0 denotes the sink).
n Number of Sensors {s1, s2, ..., sn}
m Number of Attributes at each sensors {a1, a2, ..., am}
Vi Local View (the results to Q) at sensor si (i ≤ n)
V ′

i Pruned View at si (unveils the top-k answers at si)

In other frameworks, like GANC [49] and Multi-Criteria Routing [38], T
can be constructed based on query semantics, power consumption, remaining
energy and others. In more unstable topologies a node can maintain several
parents [16] in order to achieve fault tolerance but this might impose some
limitations on the type of supported queries. Each sensor si is additionally
supplemented with an Alternate Parents List, that is constructed locally at
each sensor by snooping (i.e., monitoring the radio channel while other nodes
transmit and recording neighboring nodes). This list is utilized in cases of
network failures or low-quality links to the parent node.

4 KSpot Framework Algorithmics

In this section we describe the underlying algorithms of the KSpot framework.
As already mentioned in the System Architecture section, that KSpot Frame-
work operates on two new types of aggregate queries, TopK and TopKRoom.

The TopK query dictates that each sensor node must return at most k
results (highest or lowest depending on the query) during each epoch (i.e.,
|V ′

i | ≤ k). The procedure for this is the following: i) at each epoch, a sensor si

collects the results from its child sensors, ii) merges these results with its local
results, generating Vi; and finally iii) selects the k highest-ranked answers,
generating in that way V ′

i . As soon as this process is complete, the sensor si

forwards V ′
i to its own parent node. As the above procedure is conceptually

not very complex, we do not devote any additional description to the internal
mechanisms needed to realize this Top-k aggregate.

On the other hand, the TopKRoom query, which is responsible for GROUP-
BY queries, features a much more complex pruning procedure that we will
outline next. In this type of query, it is not always possible to discard tuples
from V ′

i because these may appear in the final k highest-ranked answers (recall
the example that appeared in Section 1). To overcome this problem, we propose
the MINT Views algorithm that utilizes an upper-bounding mechanism, which
ensures that no tuples appearing in the final result will be omitted from V ′

i

during the pruning phase. Additionally, the MINT Views algorithm employs
a temporal coherence filter that allows the suppression of results, if these do
not change between subsequent epochs.

12

4.1 Overview of Operation

In this section, we overview the three phases of the MINT Views algorithm,
which addresses the TopKRoom-types of queries (i.e., group-by queries). We also
present the INT Views algorithm, MINT’s stateless version, which is appro-
priate for sensing devices of limited main memory.

The MINT Views algorithm consists of three phases:

A. The Creation Phase, executed during the first acquisition of readings from
the distributed sensors. This phase results in n distributed views Vi (i ≤ n);

B. The Pruning Phase, during which each sensor si locally prunes Vi and
generates V ′

i (⊆ Vi). V ′
i contains only the tuples that might be located

among the final top-k results; and
C. The Update Phase, executed once per epoch, during which si updates its

parent node with V ′
i .

The above conceptual phases are executed in a distributed manner us-
ing the tree-based query routing protocol established by the operating system
layer [29] after the query has been disseminated to the n sensors. In the follow-
ing sections we thoroughly describe each phase of the MINT Views algorithm.

4.2 MINT Creation Phase

The first phase of the algorithm is a recursive execution of Algorithm 1 at all
sensors in a given network. Recall that a sensor generates an (m + 1)-tuple
of the form v = {t, a1, a2, ..., am} at each timestamp t. A sensor starts out by
performing the selection σQ that retains the tuples that satisfy the selection
criterion (e.g., temperature>60). Note that a sensor can acquire concurrently
several readings, all of which might not be of interest to a particular query.
For example, the Xbow Weather board which was utilized in the Great Duck
Island study [53] supplements the motes with 14 physical parameters. Thus,
we only project the attributes related to Q prior to storing the result in the
in-memory buffer Vi (line 3). The next step of the algorithm merges the tuples
that arrive from the children of si into Vi (line 4-13). This yields an in-network
view similar to Figure 1 (right).

If the various values at each node of the depicted tree do not change across
consecutive timestamps, then V can efficiently provide the answer to the sub-
sequent re-execution of Q. On the contrary, whenever we have a deviation, or
a change, in a parameter at si, this change has to cascade all the way up to
the sink. A change at all sensors has a worst-case message complexity of O(n)
for every single timestamp of the epoch duration, thus we seek to optimize this
process through the proposition of the pruning phase.

13

Algorithm 1 : Construct MINT/INT View

Input: A distributed sensor si (∀si ∈ S) that generates m attributes {a1, a2, ..., am}, a
query Q, an empty buffer Vi = {}
Output: A set of n distributed views V = {V1, V2, ..., Vn}.

1: procedure Construct MINT View(si, Q)
2: // Execute Q and store the answer in Vi (takes O(1) time).
3: insert(πQ(σQ(current reading())), Vi);
4: for j = 1 to |children(si)| do
5: c = child(si, j); // c is the jth child of node si

6: // w is a list of tuples returned to query Q.
7: w = Construct Mint V iew(c, Q);
8: for l = 1 to |w| do
9: // wl is the lth entry of table w.

10: // Inserts tuple wl into local table Vi in O(1) time.
11: insert(wl, Vi);
12: end for
13: end for
14: send(Vi, parent(si));
15: end procedure

4.3 MINT Pruning Phase

Algorithm 1 constructs a hierarchy of views, where ancestor nodes in the
routing hierarchy maintain a superset view of their descendants. Before we
explain the details of the pruning phase which minimizes messaging between
sensors consider the following query:

Query 2 (Q2)

SELECT TOP k room,avg(temp)

FROM SENSORS

GROUP BY room

SAMPLE PERIOD 60000

which returns the k rooms with the highest average temperature. If si could
locally define the k-highest answers to Q2 (at s0), then si could use this in-
formation to prune its local view Vi. However, this is a recursively defined
problem that can only be solved once all tuples percolate up to the sink s0.
In order to avoid this, we utilize a set of descriptors γ which are utilized to
bound above the attributes in V0 and subsequently enable a powerful pruning
framework.

Consider the example of Figure 5 (left), where we illustrate the Vi for a
given sensor. Prior to the execution of Q2 we established that γ1=“Maximum
possible temperature value”=120 and γ2=“Number of sensors in each room”=5.
The figure indicates the sum and count for several room numbers. By observ-
ing column 3 (i.e., count), it becomes evident that the sum for the rooms
{2, 5, 11, 12, 15} is a partial value of the sum returned at the sink (since
γ2 = 5).

14

room

vub

2

5

6

11

12

15

sum

2

5

6

11

12

15

4

4

5

4

3

2

200

270

500

460

290

130

320

390

500

580

530

490

800100

K-Covered

200 400 600

(V’i)

Bound-Set

room countsum sum'

lb
vk

Fig. 5 The left table illustrates the Vi of a given node during the execution of query Q2.
The right figure illustrates the intuition of the pruning algorithm. In particular, we plot the
(lb,ub) ranges for the various returned tuples at some arbitrary node. We then generate a
k-covered bound set V ′

i using Algorithm 2. We only propagate a tuple u to the parent of si,
if u ∈ V ′

i .

On the contrary, the tuple of room 6 is already in its final form (i.e., 500).
In this example the sum of each row is bounded above using the following
formula sum′ = sum + (γ2 − count) ∗ γ1 and bounded below using the actual
attribute sum. This creates six lower-bound (lb) and upper-bound (ub) pairs
which precisely show the range of possible values for the sum attribute at the
sink.

Having such knowledge locally, it can now help us to prune (lb, ub) pairs
which will not be in the final top-k result. The intuition behind our algorithm
is to identify the kth highest lower bound (i.e., vlb

k) and then eliminate all the
tuples that have an upper bound (i.e., vub) below vlb

k . Figure 5 (right), visually
depicts this idea. We will prove that by applying locally such an operation
yields at the end the correct top-k tuples at the sink. In order to achieve this
we define the notion of a k-Covered Bound-Set as following:

Definition 1: k-Covered Bound-Set (V ′
i) is the subset of Vi that satisfies

the following condition: If there is some v /∈ V ′
i , then vub < vlb

k , where vlb
k is

the kth highest lower bound3.

Algorithm 2 illustrates the pruning of Vi at some arbitrary node si and the
construction of the candidate set V ′

i . This algorithm applies to both the MINT
View and the INT View algorithms. The first step of the algorithm (lines 2-6)
identifies the pruning threshold vlb

k . This threshold allows the algorithm to
prune-away tuples that will not be in the result.

Although Vi physically resides in main memory, we want to minimize the
running time of our algorithms in order to accommodate the scarce energy
budget. In particular, we utilize similarly to the well known selection algorithm,
a k-element buffer kBuff in order to locate vlb

k in linear time (i.e., O(k) per

3 Due to contraposition, the condition could also be expressed using the implication if
vub ≥ vlb

k
, then v ∈ V ′

i .

15

Algorithm 2 : Prune MINT/INT View

Input: A distributed sensor si (∀si ∈ S), a buffer Vi that contains the local view, a set of
descriptors γ = {γ1, γ2, ...}, a query result parameter k.
Output: A locally pruned view V ′

i , such that V ′

0
can be utilized to answer a top-k query

Q.

1: procedure Prune MINT View(Vi)
2: for j = 1 to |Vi| do // Identify the pruning threshold vlb

k
.

3: vj = Vi[j] // vj=(vlb
j , vub

j) pair.

4: kHighest(vlb
j ,kBuff)

5: bucketinsert(vub
j ,sortedUBs)

6: end for
7: vlb

k
= min(kBuff);

8: for j = 1 to |sortedUBs| do
9: vub

j =sortedUBs[j]

10: If (vub
j < vlb

k
) then break; end if

11: add to candidates(vj , V ′

i);
12: end for
13: end procedure

tuple). This procedure takes place inside the kHighest function which inserts
vlb

j into kBuff , if the former is larger than the minimum item in kBuff .

The next step of the algorithm is to locate the tuples that have an upper
bound vub below the threshold vlb

k . By visually examining Figure 5, it is easy
to see that an efficient way to do so is to create an ordered list of upper bounds
and then perform a linear scan in descending order until a tuple vub

j (<vlb
k) is

located. Any upper bound below or equal to vub
j can be safely eliminated.

The ordered list can be constructed in parallel with the location of the
pruning threshold vlb

k . In particular, while scanning for vlb
k , we insert each

upper bound vub
j into a new table sortedUBs (line 5). This takes only O(1)

per tuple as we utilize an idea similar to bucketsort. However, if memory is
limited then this optimization can be avoided without any consequence on the
correctness of our approach.

In lines 8-12, we finally perform a linear scan of the sortedUBs table in
descending order and stop when we find a tuple vub

j that is below vlb
k . The

correctness of our algorithm is established by Theorem 1.

Theorem 1. The k-Covered Bound-Set V ′
i correctly identifies the k-highest

ranked answers to Q.

Proof (by contradiction): Let v denote an arbitrary tuple which is not
included in the k-Covered Bound-Set V ′

i . We have to show that v will have a
smaller value than any of the k highest-ranked tuples w (i.e., v < w). Assume
that v ≥ w. It always holds that vub ≥ v which consequently yields vub ≥ w (by
using the assumption). However if vub ≥ w, then v would have been included
in V ′

i , by definition 1, a contradiction �

16

Algorithm 3 : Update MINT View

Input: A buffer T ′ that contains the V ′

i of the previous time instance, the vlb
k

of T ′, a tuple
update x from some child.
Output: A locally pruned view V ′

i , such that V ′

0
can be utilized to answer a top-k query

Q.

1: procedure Update MINT View(T ′, vlb
k

, x)
2: V ′

i = T ′;

3: if (vlb
k

≤ xub) then
4: add to candidates(x, V ′

i);

5: if (xlb ≤ vlb
k

) then
6: send(x, parent(si)); // Single tuple x update
7: else // xlb > vlb

k
8: Prune MINT View(V ′

i); // Using Algorithm 2
9: send(V ′

i , parent(si)); // Complete V ′

i update
10: end if
11: end if
12: T ′ = V ′

i ;
13: end procedure

4.4 MINT Update Phase

In the previous step, we transformed Vi into a pruned subset V ′
i . We shall now

describe how to incrementally and recursively update V ′
i . Let T ′ denote the

V ′
i taken at the last execution of Q. The below description only applies to the

MINT View algorithm, for which T ′ is available. The update phase of the INT
View algorithm is simply a re-execution of Algorithm 1 which re-constructs
V ′

i from the beginning.
Since our objective is to identify the correct results at the sink, we utilize an

immediate view maintenance mechanism: “As soon as a new tuple is generated
at si, this update is reflected in V ′

i ”. In order to minimize communication, si

only re-transmits V ′
i to its parent, if V ′

i has changed (temporal coherence filter
as in TINA). Additionally, in order to minimize energy consumption even
further, we seek to minimize processing consumption as well. Therefore, our
objective is to construct V ′

i by avoiding the re-executing of Algorithm 2.
Algorithm 3 presents the MINT Update Algorithm and Figure 6 illustrates

the respective steps of the algorithm. In particular, line 3 of Algorithm 3 shows
that any tuple update x with an upper bound (denoted as xub) less than the
vlb

k can be ignored (also see respective example 1 of Figure 6). In the opposite
case, we add the tuple x to the set of candidates V ′

i (line 4 of Algorithm 3 and
example 2 of Figure 6).

Now the remaining question is whether vlb
k has changed by this addition of

x. If xlb ≤ vlb
k is true then vlb

k has not changed. Consequently, si only prop-
agates the update x towards its parent rather than a complete view update.
In the implementation we buffer these updates until all children send their
updates to their parents. If on the contrary vlb

k < xlb, then vlb
k might have

changed. As a result si has to reconstruct V ′
i using Algorithm 2 and transmit

the complete V ′
i to its parent (also see respective example 3 of Figure 6). This

re-construction procedure is necessary to guarantee the correctness of our al-

17

lb
kv

100 200 300 400 500 600 700 sum

ignore

tuple update

update
'

iV

Action (t+1)Update (t)

lb
k

ublb vxx <≤

ublb
k

lb xvx ≤≤

ublblb
k xxv ≤<

Example 1:

Example 2:

Example 3:

Fig. 6 The figure illustrates how different tuples will be handled during the update phase.

gorithm. Note that the reconstruction only happens for |V ′
i | elements rather

than all the elements (i.e., |Vi|), had we executed Algorithm 2 for the first
time.

4.5 Dynamically Tuning the γ Descriptors

The gamma descriptors are used for bounding above the maximum possible
value of tuples in the INT and MINT Views algorithms. In our examples so
far, γ1 denoted the “Maximum possible temperature value” and γ2 denoted the
“Number of sensors in each room”. While the static (fixed) configuration of
these descriptors is general enough to fit different application scenarios (e.g.,
using humidity, light, sound, etc.), this could lead to a sub-optimal pruning
power of our framework when these are over-estimates. While our experimental
evaluation in Section 6 shows that this will not be very typical, in this section
we discuss for completeness how these descriptors can be adjusted dynamically
with runtime knowledge.

Tuning γ1 (Maximum Possible Sensed Value): Assume that we need
to determine the maximum value for a sensed parameter (e.g., temperature)
over the past. Using the running maximum (i.e., highest value seen so far),
is certainly not efficient as some outlier, or some abnormal past recording,
will set the running maximum to a high value. Subsequently, this will limit
the pruning power of the KSpot framework. However, since the majority of
sensor readings (e.g., temperature, humidity, light, voltage, etc.) usually follow
the Gaussian distribution, the maximum possible value for an attribute can
be predicted using a sliding window sampling mechanism. Given the limited
memory and processing capabilities of sensor devices, the size of the sliding
window must be relatively small, for memory and processing reasons, but also
large enough to accurately predict the next maximum value.

In our setting, we have implemented the sliding window sampling mecha-
nism using a circular buffer (CB) of size 40 bytes (10x4 bytes). CB records the
requested sensor measurement (val) for the previous 10 epochs. In the case
where the CB structure is full, the oldest value is omitted. We can configure

18

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000

T
em

pe
ra

tu
re

 (
re

l.)

Time Instance

Adjusting γ1 (Average for all n sensors)
 (Dataset=Intel54, Attribute=temperature)

Fig. 7 Dynamic adaptation of the γ1 de-
scriptor using a sliding window prediction
mechanism.

0%

20%

40%

60%

80%

100%

 0 200 400 600 800 1000

P
re

di
ct

io
n

ac
cu

ra
cy

 (
%

)

Time Instance

γ1 Prediction Accuracy (Average for all n sensors)
 (Dataset=Intel54, Attribute=temperature)

Fig. 8 Prediction accuracy (γ1) of the slid-
ing window prediction mechanism.

the γ1 descriptor using the following formula: γ1=MAX
|CB|
i=0

(vali ∈ CB) +
2×σN

i=0
(vali ∈ CB), where σ is the standard deviation.

Figure 7 shows how γ1 is dynamically adapted through 1000 timestamps
using the Intel49 dataset presented in Section 5. We observe that γ1 is tightly
bounding the real recorded value, i.e., it is approximately ≈ 4% higher than
the recorded value. Additionally, Figure 8 shows that this prediction is correct
in 95% of the cases and that the incorrect situation is usually corrected in
the immediately next epoch. The above discussion shows that one can easily
achieve higher pruning power with acceptable levels of accuracy.

Tuning γ2 (Number of Sensors Per Room): Now assume that we need to
dynamically determine the γ2 descriptor, which refers to the number of sensors
per room. A room in our description is a “conceptual region that needs to be
monitored using several sensors such that a group-by aggregate per region - e.g.,
average - can be determined.” In case the sensor board features a GPS (e.g.,
Crossbow’s MTS420), then the conceptual partitioning can easily be conducted
at the sink, by the human operator, after acquiring over the air the coordinates
of the participating nodes. If on the other hand absolute positioning techniques
are not available, then sensor devices can derive their coordinates through
relative means.

In particular, several localization technologies have been discussed in the
literature including methods based on Infrared, Bluetooth, RFID, UWB, ul-
trasound and WLAN [28]. The underlying positioning algorithms may utilize
different types of measurements, such as Angle of Arrival (AOA), Time of Ar-
rival (TOA), Time Difference of Arrival (TDOA) and Received Signal Strength
(RSS). These techniques could have been utilized for localizing nodes and for
dynamically tuning the γ2 descriptor, but a more extensive exploration of these
techniques remains outside the scope of this paper.

19

4.6 Discussion

MINT vs. INT: The differences of the two algorithms are summarized as
following: i) MINT exploits a temporal coherence in order to suppress view
updates that do not change between consecutive time instances, while INT
has to re-send these updates, because it is stateless. ii) In MINT, we only have
to update V ′

i using Algorithm 3 (in O(|V ′
i |) time), while in INT we have to

construct it every time from the beginning, in O(|Vi|) time, using Algorithm
2. iii) INT has the advantage of not requiring any extra storage thus is more
appropriate for sensors for which the storage is at premium.

Deferred View Updates: In order to minimize communication even more in
the MINT/INT Views, we could have opted for a deferred view maintenance
mechanism, rather than a immediate one. A deferred mechanism could prop-
agate changes periodically, after a certain number updates or even randomly.
In all cases this would produce probabilistic answers at the sink, as the sink
would not have at its disposal the most up-to-date view. Although deferred
view maintenance mechanisms are extremely interesting in the context of sen-
sor networks, as these allow us to trade accuracy versus energy consumption,
in this paper we only focus on exact answers.

In-Memory Buffering: The materialized views and temporary results of all
algorithms, can either reside in an SRAM-based buffer or a Flash-based buffer.
For instance, a typical MICA mote with a 2KB SRAM might need to exploit
the 512KB on-chip flash memory, while Intel’s i-mote might easily store these
results in the 64KB SRAM. There is a growing trend for more available local
storage in sensor devices [65] and therefore local buffering of results is not a
threat to our model.

Supported Query Types: We support single-relation queries with the stan-
dard aggregate functions (i.e., SUM, MIN, MAX and AVERAGE). In contrast with
other frameworks, we optimize queries with multi-tuple answers. Such answers
could be generated by a GROUP-BY clause, or by a non-aggregate query. Note
that for single-tuple answers, such as those generated by an aggregate query
without a GROUP-BY clause, there is no notion of a top-k result.

5 Experimental Evaluation Methodology

In this section we describe our experimental methodology which involves a set
of trace-driven simulations with real datasets from the Department of Atmo-
spheric Sciences at the University of Washington, Intel Research Berkeley and
University of California-Berkeley and a real micro-benchmark on the CC2420
radio chip [54], utilized on MICAz, TelosB and IMote2 sensing devices. Our
testbed is a publicly available real system that has been demonstrated at [3].

20

The experimental evaluation described in this section focuses on five pa-
rameters: i) the Energy Consumption Cost, for the INT and MINT Views
algorithms proposed in this paper compared to two other popular query pro-
cessing algorithms namely, TAG and TINA, ii) the Pruning Magnitude, of
the k-Covered Bound-Set V i

i of the INT and MINT Views algorithms, iii) the
Scalability with respect to k, were we evaluate the efficiency of the MINT
Views algorithm with different values of the k parameter, iv) the Cardinality
of the GROUP-BY clause, were we evaluate the effect of different cardi-
nalities on the energy consumption of the MINT Views algorithm, and v) the
Network Lifetime, of all algorithms presented in this paper.

5.1 Experimental Testbed

In order to fairly compare the INT and MINT Views algorithms we have
implemented, or ported, all algorithms discussed in this paper under the KSpot
Framework. It is important to mention that the TAG algorithm is already
implemented as part of the TinyDB framework (that lies at the kernel of
KSpot) and has been used as a baseline for comparison. The rest algorithms,
TINA, INT and MINT Views, were implemented from scratch in nesC [27],
the programming language of TinyOS[29].

TinyOS is an open-source operating system designed for wireless embedded
sensor nodes. It was initially developed at University of California-Berkeley
and has been deployed successfully on a wide range of sensor devices (e.g.,
Mica, Telos, IMote2 mote, etc). TinyOS uses a component-based architecture
that enables programmers to wire together the minimum required components
in on-demand basis. This minimizes the final code size and energy consumption
as sensor nodes have extremely limited power and memory. nesC [27] is the
programming language of TinyOS and it realizes its structuring concepts as
well as its execution model.

We utilize the TOSSIM [37] environment to conduct realistic trace-driven
simulations of our code with a variety of input datasets described next. TOSSIM
[37] provides a scalable, high fidelity simulation environment of TinyOS sen-
sor networks. It simulates the TinyOS network stack, allowing experimen-
tation with low-level protocols in addition to top-level application systems.
In order to conduct fine-grained power modeling in TOSSIM, we use Power-
TOSSIM [50], a popular power modeling extension of TOSSIM. PowerTOSSIM
has been shown [50,65], to be more than 90% accurate. In particular, the au-
thors in [50] measure the energy for executing the demonstration examples
bundled with TinyOS both using PowerTOSSIM and on real sensors (mea-
sured with a multi-meter). The authors show that this yielded an average
error of only 4.7%. Similar observations also apply for more complex appli-
cations like TinyDB and Surge that were shown to have an error of 9.5% on
average. Consequently, we expect that the accuracy will remain at the same
high levels with our integrated TelosB power model.

21

Step 1: Create lossy radio model

java net.tinyos.sim.LossyBuilder-d 7 2

-s 20 –o 7x2_20.nss

Step 2: Run experiment with TOSSIM and

collect power statistics

DBG=power ./build/pc/main.exe –b=10 –seed=10 –t=1000

–r=lossy –rf= 7x2-20.nss -p 14 > mintGDI.trace

Step 3: Get energy results from power

statistics

./postprocess.py --detail --sb=1 –em

telos_energy_model.txt mintGDI.trace

>mintTotalEnergy.txt

Fig. 9 Sample execution scenario for the MINT
Views algorithm on the GDI dataset.

…

38: POWER: Mote 38 ADC ON at 2741220

38: POWER: Mote 38 ADC ON at 2741220

38: POWER: Mote 38 ADC ON at 2741220

38: POWER: Mote 38 RADIO_STATE ON at 2741220

8: POWER: Mote 8 RADIO_STATE TX at 2791414

38: POWER: Mote 38 RADIO_STATE RX at 2842220

8: POWER: Mote 8 RADIO_STATE RX at 2850614

8: POWER: Mote 8 RADIO_STATE RX at 2851464

8: POWER: Mote 8 RADIO_STATE RX at 2852264

8: POWER: Mote 8 RADIO_STATE RX at 2853064

8: POWER: Mote 8 RADIO_STATE RX at 2853864

8: POWER: Mote 8 RADIO_STATE RX at 2853864

38: POWER: Mote 38 RADIO_STATE TX at 2862733

38: POWER: Mote 38 RADIO_STATE TX at 2863533

…

Fig. 10 Trace from the PowerTOSSIM
log file.

Figure 9 illustrates an example of the process that we utilized in order
to collect power statistics for our experiments. In the first step, we create a
lossy model for the topology and store it in an .nss file. We then execute the
experiment for a fixed time period (e.g., 1000s (-t=1000)) and collect power
statistics in the .trace file. An example of the PowerTOSSIM trace file is
depicted in Figure 10. Finally, we process the power statistics file in order to
generate the energy results for each sensor.

Our simulation experiments were performed on a Lenovo Thinkpad T61p
PC with an Intel Core 2 Duo CPU running at 2.4GHz and 2.0 GB of RAM.
In order for us to collect realistic results for a large period of time, we collect
statistics for 1000 epochs in each experiment. To increase the fidelity of our
measurements we repeated each experiment 5 times and present the average
energy consumption for each type of plot. The above process, resulted in quite
long simulation runs for each type of plot as the simulation time required for
completing an experiment and generating the power trace file, ranged from
2.5 to 8.5 hours. Furthermore, the generated power trace file size ranged from
20-250MB, depending on the dataset. This led to an additional time overhead
of 30-100 minutes for processing each power trace file, in order to collect the
energy results. Our simulation statistics are depicted in Figure 11.

5.2 Datasets

We utilize the following three real datasets in our trace-driven experiments in
order simulate different network sizes:

i. Great Duck Island (GDI14): This is a real dataset from the habitat
monitoring project deployed in 2002 on the Great Duck Island which is
15km off the coast of Maine [53], USA. We utilize readings from the 14
sensors that had the largest amount of local readings. The GDI dataset
includes readings such as: light, temperature, thermopile, thermistor, hu-
midity and voltage.

ii. Washington State Climate (AtmoMon32): This is a real dataset of
atmospheric data collected at 32 sensors in the Washington and Oregon

22

 0

 2

 4

 6

 8

 10

T
im

e
(H

ou
rs

)

Dataset

Average Simulation Time - of all experiments

 GDI14
 AtmoMon32

 Intel49

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

GDI14 AtmoMon32 INTEL49

F
ile

 S
iz

e
(M

B
)

Dataset

Average Trace File Size - for each algorithm per simulation

 TAG
 TINA

 INT
 MINT

 0

 2

 4

 6

 8

 10

T
im

e
(H

ou
rs

)

Dataset

Average Processing Time - for each trace file

 GDI14
 AtmoMon32

 Intel49

Fig. 11 Simulation Statistics: Average Simulation Time required for each experiment
(Left); Average File Size required for storing the power statistics for each algorithm (Middle).
Average Processing Time for each power trace file (Right).

states, by the Department of Atmospheric Sciences at the University of
Washington [23]. More specifically, each of the 32 sensors maintains the
average temperature and wind-speed on an hourly basis for 208 days be-
tween June 2003 and June 2004 (i.e., 4990 time moments).

iii. Intel Research Berkeley (Intel49): This is a real dataset that is col-
lected from 58 sensors deployed at the premises of the Intel Research in
Berkeley [31] between February 28th and April 5th, 2004. The sensors
utilized in the deployment were equipped with weather boards and col-
lected time-stamped topology information along with humidity, tempera-
ture, light and voltage values once every 31 seconds (i.e., the epoch). The
dataset includes 2.3 million readings collected from these sensors. We use
readings from the 49 sensors that had the largest amount of local readings
since some of them had many missing values.

5.3 Sensing Device

We use the energy model of Crossbow’s TelosB [17,46] research sensor device
to validate our ideas (see Figure 12). TelosB is a ultra-low power wireless
sensor equipped with a 8 MHz MSP430 core, 1MB of external flash storage,
and a 250Kbps Chipcon (now Texas Instruments) CC2420 RF Transceiver
that consumes 23mA in receive mode (Rx), 19.5mA in transmit mode (Tx),
7.8mA in active mode (MCU active) with the radio off and 5.1µA in sleep
mode. Our performance measure is Energy, in Joules, that is required at each
discrete time instance to resolve the query.

As TelosB is not part of the PowerTOSSIM module, we had to extend
PowerTOSSIM by incorporating a new energy model for TelosB. In particular,
the process of configuring different hardware platforms in PowerTOSSIM, boils
down to the customization of the configuration file that enumerates the power
consumption of the individual operations (e.g., RADIO RX, RADIO OFF,
CPU ACTIVE, etc.).

23

Fig. 12 Crossbow’s TelosB Mote (TPR2420).
Our micro-benchmark and trace-driven experi-
ments utilize the energy model of the TelosB sensor
device and the CC2420 radio transceiver.

<mote id> <mote id> <error rate>

…

0 0 0.0

0 1 8.99E-4

0 2 0.5

0 3 0.5

0 4 8.99E-4

0 5 0.012694

0 6 0.5

0 7 0.002147

0 8 0.5

0 9 0.5

0 10 0.00965

…

Fig. 13 Trace from the LossyBuilder
output.

5.4 Multi-hop Topologies

In order to create a multi-hop network topology, we have utilized the Lossy-
Builder component of TOSSIM. LossyBuilder allows the creation of “lossy”
radio models for the topologies utilized in all datasets. These lossy models po-
sition sensors at various distances from the sink node and generate a Gaussian
packet loss probability distribution for each distance. TOSSIM then generates
packet loss rates for each sensor pair by sampling these distributions and trans-
lating them into independent bit error rates. An example of the LossyBuilder
output is depicted on Figure 13 where we list some of the bit error for sensor
mote (with id=0) on a topology of 10 nodes. For example, line 3 (0 2 0.5) of
Figure 13 states that mote 0 listens to mote 2 with a bit error rate of 50%.
This process allows the creation of multi-hop network topologies required for
all of our experiments.

5.5 Communication Protocol

Our communication protocol is based on the ubiquitous for sensor networks
IEEE standard 802.15.4 (the basis for the ZigBee [68] specification used by
most sensor devices including the TelosB sensor device). ZigBee uses the
CSMA/CA collision avoidance scheme where a node employs a random ex-
ponential back-off algorithm that backs-off for a random interval of 0.25-0.5s
before retransmission.

The TinyDB message frames are structured as follows [37]: Each message
is associated with a 7 Bytes TinyDB application layer header that includes:
(i) the source identifier (2B), the query source identifier (2B), the sequence
number (2B) and the hop count (1B). In the remaining payload (29B) we
allocate our KSpot structures according to the query being executed:

i. For the TopkData data structure: we allocate 1 bit for identifying if the
current state is the same as the previous state, 3 bits for identifying the
number of tuples in the current state and 2B for the attribute value.

24

ii. For the TopkRoomData data structure: which is used for Top-k GROUP-BY

queries, we allocate a number of variables for storing results for each room.
In order to maximize the number of rooms that can be supported by this
query we utilized a packed data structure that consists of the following
information: i) sameAsPrevious (1 bit): is a bit flag that indicates whether
the current result is the same as the previous result and thus should not
be transmitted, ii) vals (3 bits): the number of values in the topk result.
Note that the number of values is identical to the number of rooms that
have reported their values. The maximum number of values (i.e., maxi-
mum number of rooms is 7)., iii) count (22 bits): This attribute records
the number of results for each room using a 3-bit counter for each room
(maximum number of rooms=7 x 3-bits = 21), iv) room (22 bits): This at-
tribute records the room id of each room, and v) sum (16 bits x maximum
number of rooms): stores the cumulative total of the sensor’s result for each
room. Since the maximum number of bytes available in the TinyDB mes-
sage payload is 25 bytes, our packed data structure supports a maximum
of 7 rooms.

Both of our data structures are illustrated in Figure 2.

5.6 Query Syntax

We utilize the following query syntax:

SELECT TOP K attribute [,aggregate]

FROM sensors

[WHERE filter]

[GROUP BY attribute]

[ORDER BY [attribute|aggregate] [ASC|DESC]]

[SAMPLE PERIOD time (ms)]

The attribute statement mentioned in the query syntax refers to all mea-
surements that can be acquired from the sensorboard as well as variables
stored locally at each sensor node. In the KSpot framework, when a TOP k
attribute query is executed over the network we only return the k highest re-
sults for that attribute, if no ORDER BY clause is used. However we could
have easily returned the k lowest results in a similar way. The aggregate state-
ment mentioned in the query class form refers to all aggregates supported by
the TinyDB framework. Roughly, these aggregates can be distinguished in:
i) distributive aggregates, where records can be aggregated in-network with-
out compromising correctness (e.g., Max, Min, Sum, Count), and ii) holistic
aggregates, where in-network aggregation might compromise the result correct-
ness (e.g., Median), thus all tuples have to be transmitted to the sink before
the query can be executed. If a GROUP-BY query is posted to the network,
results are grouped by the attribute statement and aggregates are calculated
for each group individually. In our experiments we utilize the following query:

25

Table 2 Configuration parameters for all experimental series.

Section Objective Dataset k Rooms (R)

6.1 Energy Consumption GDI14, AtmoMon32, 5% 4-7

Intel49

6.2 Pruning Magnitude AtmoMon32 5% 7

6.3 Scalability of k GDI14 5%-100% 4

6.4 GROUP-BY cardinality GDI14 5% 1-7

6.5 Network Lifetime GDI14 5% 4

SELECT TOP K room, AVG(temp)

FROM sensors

GROUP BY room

ORDER BY AVG(temp) [DESC]

SAMPLE PERIOD 4096

where k is configured as the 5% of the complete answer set. We also use
the same epoch duration for all our experiments which specifies the amount
of time that sensors have to wait before re-computing the continuous query.
More specifically we set the epoch duration to be equal to 4096ms.

6 Experimental Evaluation Results

In order to assess the efficiency of the algorithms presented in this paper we
have conducted six experimental series. In the first experimental series we have
compared the energy consumption of the INT and MINT Views algorithms to
the TAG and TINA algorithms, showing that the former algorithms present
significant energy savings compared to their competitors. In the second ex-
perimental series, we study the pruning magnitude of the INT and MINT
Views algorithms. In the third experimental series, where we investigate the
scalability of the parameter k, we manually test the efficiency of the MINT
Views algorithm with different values for k. In the fourth experimental se-
ries we investigate the effect of the GROUP-BY cardinality. Note that in all
datasets, we randomly and uniformly divide the sensors into areas (rooms).
In this experiment, we distribute the sensors in different room configurations
and study the energy consumption of all algorithms. In the fifth experimental
series, we evaluate the efficiency of the overall KSpot framework focusing on
energy consumption and system lifetime. Finally, in the sixth series, we have
conducted one micro-benchmark on the CC2420 radio transceiver in order to
quantify its reception inefficiencies in a real setting.

Table 2 summarizes the configuration parameters for all experiments men-
tioned in the subsequent sections.

26

0

20

40

60

80

100

 0 200 400 600 800 1000

E
ne

rg
y

C
on

su
m

pt
io

n
(T

A
G

%
)

Time Instance

Energy Consumption (Average for all n sensors) (NO INTERPOLATION)
 (Algorithm(s)=All Dataset=GDI14, n=14, network=250Kbps)

 TAG
 TINA

 INT
 MINT

0

20

40

60

80

100

 0 200 400 600 800 1000

E
ne

rg
y

C
on

su
m

pt
io

n
(T

A
G

%
)

Time Instance

Energy Consumption (Average for all n sensors)
 (Algorithm(s)=All Dataset=GDI14, n=14, network=250Kbps)

 TAG
 TINA

 INT
 MINT

0

20

40

60

80

100

 0 200 400 600 800 1000

E
ne

rg
y

C
on

su
m

pt
io

n
(T

A
G

%
)

Time Instance

Energy Consumption (Average for all n sensors)
 (Algorithm(s)=All Dataset=AtmoMon32, n=32, network=250Kbps)

 TAG
 TINA

 INT
 MINT

0

20

40

60

80

100

 0 200 400 600 800 1000

E
ne

rg
y

C
on

su
m

pt
io

n
(T

A
G

%
)

Time Instance

Energy Consumption (Average for all n sensors)
 (Algorithm(s)=All Dataset=Intel49, n=49, network=250Kbps)

 TAG
 TINA

 INT
 MINT

Fig. 14 Energy Consumption for the TAG, TINA, INT View and MINT View algorithms
using the TelosB sensor energy model.

6.1 Experimental Series 1: Energy Consumption

In the first experimental series, we evaluate the energy consumption of INT and
MINT Views algorithms compared to the popular TAG and TINA acquisition
frameworks. We execute query Q on the three datasets and measure the energy
consumption for each dataset separately.

In Figure 14 (top-left), we illustrate the energy consumption of the four
algorithms (MINT, INT, TINA and TAG) using the GDI14 dataset. Let us
mention the preliminary observation that the energy scale among consecutive
time instances fluctuates greatly. This happens due to the arbitrariness of when
and under which condition top-k pruning and temporal coherence filtering
takes place. In order to correct this situation in the subsequent graphs, we
apply a spline interpolation smoothing between consecutive data points. We
shall next also mention the real observations we determine from the given
execution.

In Figure 14 (top-right), we plot the results using the GDI14 dataset. Since
we utilize TAG as the baseline of comparison, it always has a value of 100%.
The TAG line accounts for approximately 57±2.52J average energy for all

27

14 nodes of the network. Recall that in TAG, a sensor always transmits all
aggregated tuples to the sink. Although TINA still returns all answers to the
sink, it takes the average energy consumption down to 48±1.57J. This validates
that exploiting temporal coherence can be beneficial in most cases. The INT
Views approach on the other hand, performs in-network pruning of the results
which reduces the energy consumption to 34±1J (i.e., ≈ 41% less than TAG).

Finally, the MINT Views algorithm exploits temporal coherence in addi-
tion to top-k pruning and only consumes an average of 19±0.56J which is
equivalent to a 66% energy reduction from TAG, 49% energy reduction from
TINA and 25% from INT. The reason why the TINA and MINT Views follow
a similar pattern is because in both curves, the energy reduction is dominated
by the savings that are due to the temporal coherence between consecutive
time points.

In this figure, we also observe surges (deviations) for the TINA, INT and
MINT Views algorithms in all experiments. In the case of the TINA algorithm,
the surges attribute to the fact that, at some time instances, the sensors exploit
the temporal coherence and do not report their results to their parents. This
decreases the overall energy consumption of the network. In the case of the
INT algorithm, the surges correlate with the fact that, at some time instances,
the amount of results pruned from Vi is decreased or increased because of
the deviation of values in the dataset. This is an indication that the top-k
answer has changed at the particular timestamp and that this has brought
some increase in energy consumption, until the updates propagate to the sink.
On the other hand, the surges of the MINT Views algorithm correlate to both
of the aforementioned attributes as MINT exploits both temporal coherence
and top-k pruning.

By repeating the same experiment on the AtmoMon32 dataset, we observe
in Figure 14 (bottom-left), that MINT continuous to maintain a competitive
advantage over TAG and TINA. In particular, we observe that MINT con-
sumes 50% less energy than TAG (i.e. 115±4J versus 234±2J). The same con-
clusion applies for the INT Views algorithm although we observe that the per-
formance difference compared to TINA has decreased. This happens because
in the AtmoMon32 dataset, the temperature values do not change frequently
and this allows the temporal coherence filter to significantly reduce the num-
ber of tuples transmitted over the network. However, the top-k pruning filter
of the INT algorithm still manages to considerably decrease the size of packets
that are transmitted through the network thus maintaining an advantage over
TINA.

In the final dataset, Intel49 (Figure 14 (bottom-right)) we observe that all
algorithms behave in a similar manner to the previous experiments. The differ-
ence is that the energy performance of all algorithms has increased compared
to TAG. One reason that this happens, is the fact that like the AtmoMon32
dataset the temperature values of the Intel49 do not change frequently, which
is exploited by the temporal coherence filter of the TINA and MINT Views al-
gorithms. On the other-hand, the INT Views algorithm which does not employ
a temporal coherence filter, outperforms significantly the TAG and TINA al-

28

Table 3 Average Energy Consumption for all sensors in experimental series 1: Evaluation
of the TAG, TINA, INT and MINT Views algorithms under different datasets.

`
`

`
`

`
`

`
`

`̀
Algor.

Dataset
GDI14 AtmoMon32 Intel49

TAG 57±2.52J 234±2J 523±22J
TINA 48±1.57J 183±6J 289±15J
INT 34±1.01J 170±7J 187±08J
MINT 19±0.56J 115±4J 139±06J

gorithms. This means that the pruning mechanism of INT Views, significantly
decreases the packet sizes thus minimizing energy consumption associated with
transmission.

The results for all experiments are summarized in Table 3.

6.2 Experimental Series 2: Pruning Magnitude

We next study the pruning magnitude of the k-Covered Bound-Set V ′
i using

the AtmoMon32 dataset. In Figure 15 we plot with a white box the average
number of tuples at each level of the topology (for all 1000 time instances).
We also plot with a dashed box the aggregate number of tuples eliminated by
Algorithm 2.

We observe that the closer we move towards the sink, the pruning power
of our framework increases exponentially. This is attributed to the fact that
the cardinality of Vi can increase in the worst case exponentially as well (i.e.,
each sensor reports a different room number). In particular, we observe that
the pruning at level five to one ranges from 0% (where only leaf nodes exist),
to 39% in level two and 77% in level one. It is important to highlight the fact
that such a pruning presents a reduction of more than 20,000 tuples at level
one alone.

A final remark is that these results apply to both MINT and INT, as these
two algorithms only differ in how V ′

i is maintained and not on the final content
of the in-network view.

6.3 Experimental Series 3: Scalability with respect to k

In the third experimental series, we evaluate the efficiency of the MINT al-
gorithm with respect to the parameter k. More specifically, we increase the
parameter k while maintaining the same network topology. We expect that
by increasing the k parameter, packet sizes will also increase as less packets
will be pruned from Vi. We utilize the GDI14 dataset for this experiment and
measure the average energy consumption for all sensor nodes. However, we
mention that similar observations also do hold for the rest datasets.

Figure 16 shows the result of our experiment. For the lowest value of k
(k=25% of the answer set) the overall energy consumption is 66% less than

29

 0

 5000

 10000

 15000

 20000

 25000

 30000

 1 2 3 4 5

T
up

le
s

Hops From Sink

Pruning Magnitude (Average for all n sensors)
 (Algorithm(s)=MINT Dataset=AtmoMon32, n=32, network=250Kbps)

All Tuples
Pruned Tuples

Fig. 15 Pruning Magnitude of MINT
Views on the AtmoMon32 dataset.

0

20

40

60

80

100

 0 200 400 600 800 1000

E
ne

rg
y

C
on

su
m

pt
io

n
(T

A
G

%
)

Time Instance

Scalability with respect to k (Average for all n sensors)
 (Algorithm(s)=MINT Dataset=GDI14, n=14, network=250Kbps)

 TAG
 k=100%
 k=75%
 k=50%
 k=25%

Fig. 16 Scalability with respect to k:
In the worst case scenario (k=100%), the
MINT algorithm maintains a competitive
advantage over TAG.

TAG (19±0.5J). We observe that as the value of the k parameter increases,
the performance gain is decreased. Particularly, for k=50% and k=75% the en-
ergy performance ratio compared to TAG reaches 36.5% (36±1.6J) and 23,4%
(44±1.5J) respectively. This is expected as the number of results transmitted
from each sensor node is correlated with the k parameter (i.e., higher values
of k decrease the number of tuples eliminated from Vi). When the k param-
eter reaches 100% (i.e., all sensor nodes transmit all of their results), then
the MINT Views algorithm behaves identically to the TINA algorithm. More
specifically, since no pruning occurs on the sensors, the MINT Views algorithm
only exploits temporal coherence exactly like the TINA algorithm. However,
like TINA, MINT still maintains a competitive advantage of 18% (47±1.59J)
decreased energy consumption over TAG (57±2.52J).

6.4 Experimental Series 4: Cardinality of the GROUP-BY clause

In the fourth experimental series, we evaluate the efficiency of the MINT Views
algorithm with respect to the cardinality of the GROUP-BY clause (i.e., the
number of rooms that participate in the given query). More specifically, we
manually set the number of rooms (R) to 2, 4 and 7 in the GDI14 dataset and
uniformly distribute the sensors in each room respectively. We measure the
average energy consumption for all 14 sensor nodes. There are two important
parameters that affect the cardinality attribute. Firstly, when R increases, so
is the packet size, as the TopKRoom data structure allocates space to store
R results. On the other hand, since a smaller number of sensors is distributed
in each room, lower-level nodes can quickly calculate the exact result of a
room thus the pruning magnitude is increased. Secondly, when R decreases
the packet size also decreases for the same aforementioned reason. However, in
this case the pruning magnitude rapidly decreases as only higher-level sensor
nodes have a complete picture of the exact result for a room.

30

 0

 10

 20

 30

 40

 50

 0 200 400 600 800 1000

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

Time Instance

Cardinality of GROUP-BY (Average for all n sensors)
 (Algorithm(s)=MINT Dataset=GDI14, n=14, network=250Kbps)

 R=2
 R=4
 R=7

Fig. 17 Cardinality of the GROUP BY
clause for 3 different room configurations
(R=Number of Rooms).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

R=2 R=4 R=7

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

Time Instance

Cardinality of GROUP-BY (Average for all n sensors)
 (Algorithm(s)=All Dataset=GDI14, n=14, network=250Kbps)

 TAG
 TINA

 INT
 MINT

Fig. 18 Cardinality of the GROUP BY
clause for all algorithms.

Figure 17 shows the first result of our experiment. We observe that the best
energy performance occurs when the number of rooms R is equal to 4 (i.e.,
21±0.7J). In the case of fewer rooms (i.e., R=2) we observe that the energy
consumption is slightly increased although in this case the data payload of
MINT becomes almost half the size. The reason for this increase, is the fact
that the MINT pruning phase almost never prunes the V ′

i structure on sensor
nodes that have a hop count greater than 1 (i.e., the results have to reach
nodes very close to the sink in order for a node to be able to eliminate tuples).
On the other case, where R=7, we observe a significant increase in energy
consumption. This is because the data payload is now configured to store 7
tuples at each sensor which requires almost double overall transmission energy.
However, in this case the pruning mechanism of MINT eliminates tuples at
lower levels of the network topology and that is why the standard deviation
of this experiment increases (i.e., 36±1,68J).

Figure 18 presents the results of all algorithms on the GDI14 dataset with
different cardinalities. We have found that MINT always maintains an ad-
vantage against its competitors in all scenarios. In the case where R=7, we
observe that TINA presents better performance than INT. This is attributed
to the fact that TINA suppresses many results from being transmitted to the
network, due to its temporal coherence filter. On the other hand, MINT which
employs both top-k pruning and the temporal coherence filter outperforms all
algorithms.

6.5 Experimental Series 5: Network lifetime

In the fifth experimental series we evaluate an extremely important parameter
of sensor networks deployments, i.e., Network Lifetime. We define network
lifetime as the average amount of energy in the network. In particular, let the
following summation denote the amount of energy that is available at time
instance t in a network of n sensors:

31

 0

 5000

 10000

 15000

 20000

 25000

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

Epoch Number

Network Lifetime (Average energy consumption for all n sensors)
 (Algorithm(s)=All Dataset=GDI14, n=14, network=250Kbps)

5793 6949 9768 16965

 TAG
 TINA

 INT
 MINT

Fig. 19 Network lifetime for the TAG,
TINA, INT and MINT Views algorithms
presented in this paper.

 128

 129

 130

 131

 132

 133

 134

 135

 136

1 10 100

E
ne

rg
y

(µ
J)

Receiver status change frequency

Evaluation of the receiver module (CC2420)
 (Variable transceiver status change frequency)

Fig. 20 Micro-benchmark using the
CC2420 communication module. Changing
the transceiver status from on to off many
times significantly increases energy con-
sumption.

Energy(t) =
∑n

i=1
available energy(si, t)/n

where available energy(si, t) denotes the energy that is available at sensor si

(i ≤ n) at time instance t. We define the network lifetime, similarly to [55], as
the time instance t′ at which Energy(t′) = 0. Note that this applies only to the
case where sensors operate using batteries. Double batteries (AA) used in many
current sensor designs (including the TelosB sensor) operate at 3V voltage and
supply a current of 2,500 mAh (milliAmper per hour). Assuming similarly
to [53], that only 2,200mAh is available, we can calculate that 2xAA batteries
offer 23, 760J (2, 200mAh × 60min × 60s × 3V). We start with this initial
energy and subtract at each epoch and for each sensor the energy required for
processing the top-k query. We terminate this iteration when the termination
condition is satisfied.

Figure 19 illustrates the average energy status of the sensor network, at
each epoch, during the execution of a query using the GDI14 dataset. We
notice that the available energy of sensors under TAG is consumed far faster
than the MINT Views algorithm, leading to a lifetime of just 5,793 epochs (i.e.,
193 minutes). TINA ranks third by offering 6,949 epochs (i.e., 231 minutes)
and INT second with 9,768 epochs (i.e., 325 minutes). Finally, MINT consumes
its available energy budget far later at epoch 43,824 (i.e., 565 minutes), and
this is translated into a ≈292% increase of the network lifetime.

6.6 Experimental Series 6: CC2420 Receiver microbenchmark

During the execution of a continuous query on a multi-hop topology scenario,
each sensor device will periodically (i.e., at each epoch) receive the results from
its child sensors and transmit its results to its parent as previously described in
Section 3. This process can be performed in two ways: i) each sensor device can
operate with its transceiver in continuous STXON/SRXON operation, or ii) each

32

sensor may choose to turn off its transceiver as soon as it obtains the results
of its child sensors and power it on again at the beginning of the next epoch.
We argue that the latter case imposes an additional overhead with regards to
energy consumption on the sensor device and should be avoided.

In order to verify our argument, we have conducted one micro-benchmark
on the CC2420 radio chip [54] (both attached to the TelosB [17] sensor and
in TOSSIM [37]) and justify why data reception inefficiencies have to be opti-
mized in current data acquisition systems. Specifically, we show why a sensor
node should not change the state of its transceiver continuously as this in-
creases the overall energy consumption on the sensor node.

In our experiment we transfer 1000 16-byte packets from a TelosB sensing
device A to another TelosB sensing device B and measure the energy consump-
tion of sensor A when this transfer is conducted in 1, 10, 100 and 1000 rounds
respectively. In particular, we configure sensor B with an always-on transceiver
and sensor A with a transceiver that changes its state from on (STXON/SRXON)
to off (SRFOFF), 1 to 1000 times respectively. In order to measure the energy
consumed by sensor A for the above function we utilized a multi-meter, to
measure the circuit current, and we also measured the wall clock time until
the given operations completed successfully.

Figure 20 shows the result of the first micro-benchmark. We observe that by
changing the transceiver status 1000 times consumes 195µJ while conducting
the same operation one time requires only 128µJ . Although in both cases we
transfer precisely the same amount of data, in the former case we spent 65%
more energy. This increase occurs even though the CC2420 transceiver has
very quick start-up times compared to other transceivers. Notice that during
the startup of the RF module, a voltage regulator and crystal oscillator have to
be started as well as become stable [54]. Thus, it is quite inefficient to change
the transceiver state (from on to off and vice-versa) in a frequent manner.

Due to inherent limitations of TinyDB, all algorithms presented in the pre-
vious experimental sections were set to continuous transceiver on operation.
Consequently, all experiments featured an increased energy consumption, but
in reality this energy cost could have been reduced significantly had we opti-
mized this parameter with techniques like [2,64].

7 Related Work

In this section we will overview related research efforts that relate to the
foundations of the KSpot Architecture, i.e., i) View Management and ii) Top-
K Query Processing.

View Management has been an area of great contributions over the last
decades [7,13,11,34]. Materialized Views, in particular, have been extremely
important in OLAP and Data Warehousing, where users are required to get
quick answers to their aggregate queries over extremely large datasets. Most
of the proposed solutions assume powerful and complex centralized or dis-
tributed DBMSes. Materialized views have also been extremely important in

33

mobile databases because they provided the means to support disconnected
operations [58,57]. Similarly to mobile databases, we focus on wireless (sen-
sor) devices with limited energy, CPU and memory resources. Additionally,
our work is fundamentally different from Temporal View Management [61,
41], as our queries are not historic.

The notion of views in the context of sensor networks, has appeared in
three recent works. The first one proposes a new abstraction, coined Model-
based Views which provides users with a unified view of data that hides away
the irregularities of sensor data [20]. These views are implemented outside the
sensor network. Thus, their scope and objective is supplementary to our ap-
proach, in which we utilize in-network views to optimize the acquisition of data
from sensing devices. The second work [59] is similar to our approach but it
uses in-network views to support ad-hoc queries in a data-centric environment
as opposed to continuous and top-k queries in our approach. Finally, in [35]
the authors present two cluster-based techniques for materializing aggregated
results in a sensor network. The proposed MINV framework replicates aggre-
gated results on some or all sensor nodes inside a cluster and then uses these
results as materialized in-network views in order to speed-up the execution
of spatial aggregation queries. The proposed cluster-based techniques in [35]
can be used in conjunction with the INT and MINT Views algorithms of the
KSpot framework in order to further speed-up query execution as well as to
improve the overall fault tolerance of the system since with MINV, local sensor
results are available to other sensor nodes.

The problem of materialized views that are generated by top-k queries in
a centralized DBMS scenario was recently addressed in [18]. In particular, the
authors study the problem of answering a top-k query from a set of N ma-
terialized top-k answers. These answers refer to different top-k queries which
are neither distributed nor organized in a hierarchy, as this is the case in
our setting. Finally in [36], the authors propose to exploit fully materialized
views in sensor networks in order to speedup the execution of multiple queries.
However these views are complete, rather than top-k, therefore their setting is
closer to the TINA framework rather than the solutions proposed in this paper.

Top-k Query Processing has been studied in a variety of contexts including
middleware systems [24,25], web accessible databases [8,43], stream proces-
sors [5], peer-to-peer systems [4] and other distributed systems [9,67,66]. It
has been shown in numerous studies [24,9,8,67], that top-k query processing
is meaningful only if the predicate k refers to a small subset of the complete
answer set (usually up-to 5%). For larger values of k, the query optimizer can
choose to retrieve the complete answer set. For instance the query ”Find the
k=5 rooms with the highest average temperature,” returns a subset of the com-
plete answer set in order to minimize a cost metric that is associated with the
retrieval of the complete answer set. This cost is usually measured in terms of
disk accesses or network transmissions, depending on where the data physically
resides.

34

Distributed Top-k Query Processing algorithms can be classified according
to the approach in which the data are fragmented over the network, that is
vertically or horizontally. In vertically fragmented datasets, each sub-relation
contains a subset of columns (attributes) of the original relation R. An example
of a query that can be executed on a vertically partitioned dataset is “Find
the timestamp on which we had the highest temperature across all sensors”.
Various algorithms [24,66,9,62] have been proposed for top-k query processing
with the Threshold Algorithm (TA)[24] being the most predominant. In [9] the
authors develop a three phase protocol (TPUT) which decreases the number
of remote accesses in large networks. The TPAT algorithm [62] extends the
TPUT algorithm by exploiting data distributions among nodes to improve
pruning. In [66], the authors propose the Threshold Join Algorithm which
operates on a multi-hop network (in contrast with TA,TPUT and TPAT) and
further reduces communication by exploiting in-network aggregation.

While the aforementioned algorithms provide exact results for top-k queries
there is a number of works [44,5,66] that provide approximate answers. In [66],
the authors propose the UB-K and UBLB-K algorithms that return upper/lower
bounds instead of exact answers. In [5] the authors use a centralized coordi-
nator node which distributes filters to each source node so as to ensure that
local top-k result correlate with the global top-k answer. In [44], the authors
propose the KLEE algorithm which extends the TPUT algorithm by providing
approximate answers. The idea is to provide an adaptive framework which al-
lows trading-off efficiency against result quality and bandwidth saving against
the number of communication messages. A sampling-based approach to opti-
mize Top-k queries in sensor networks is also the core topic in [51].

In horizontally fragmented datasets, each sub-relation contains a subset of
tuples (rows) of the original relation R. An example of a query that can be
executed on a vertically partitioned dataset is “Find the two rooms with the
highest average temperature”.

A method for continually providing approximate answers in a hierarchical
sensor network scenario by exploiting temporal coherency was addressed in
TINA [48,49]. The basic idea behind TINA is to send a reading from a sensor
only if the reading differs from the last recorded reading by more than a
stated tolerance ǫ. The problem of continually providing approximate top-k
answers in a client-server setting was studied in [5]. The problem is tackled by
installing arithmetic constraints at each node which define the current Top-
k scores at any point. This work was later extended to a hierarchical sensor
network environment in [19].

In [45] the authors propose a range caching algorithm for continuous top-k
processing. This approach utilizes k+1 individual filters that are selectively
adapted rather than a hierarchical in-network pruning mechanism. In [4,32],
the problem of identifying the Top-k objects from relations which are horizon-
tally fragmented over peers in a P2P environment is studied. The proposed
solution depends on each peer having knowledge of the total score of each
object that it manipulates. This is not possible for vertically partitioned rela-

35

tions, as this requires access to all relations in their entirety, which constitutes
their approach inapplicable in our context.

Finally, most of the above horizontal approaches assume a star (or single-
hop) communication topology, in which all nodes are directly accessible by the
querying entity. On the other hand, our work has focused on the challenges of
a hierarchical (or multi-hop) topology. In all cases the results are approximate
and continuous over a single attribute, thus operate over individual attributes
(columns), while our approach is exact and operates horizontally covering all
tuple attributes.

8 Conclusions and Future Work

In this paper, we present an innovative framework for efficiently monitoring
WSNs, to achieve both efficiency and query result quality. Our framework,
coined KSpot, utilizes a novel top-k query processing algorithm we developed,
in conjunction with the concept of in-network views, in order to minimize
the cost of query execution. In particular, we formulate the problem of con-
structing a hierarchy of recursively defined top-k views. We then describe the
MINT Views algorithm that identifies the K highest-ranked answers efficiently.
We also present a stateless, non-materialized version of MINT, coined INT
(In-Network Top-k) Views that is appropriate for sensing device with limited
memory.

To illustrate the efficiency of our framework, we have implemented a real
system in nesC, which combines the traditional advantages of declarative ac-
quisition frameworks, like TinyDB, with the ideas presented in this work.
Extensive real-world testing and experimentation with traces from University
of California-Berkeley, University of Washington and Intel Research Berke-
ley, show that KSpot presents an up to 66% of energy savings compared to
TinyDB, minimizes both the size and number of packets transmitted onto the
network (up to 77%), prolonging in that way the longevity and health of a
WSN deployment.

In the future we plan to incorporate an automated transceiver operation
module that will automatically tune the waking window of each sensor device
using application layer semantics [2,64]. Additionally, we plan to investigate
the applicability of these ideas over Mobile Sensor Networks and Networks of
Smartphone Devices.

Acknowledgements: We would like to thank Joe Polastre (University of
California-Berkeley) for the Great Duck Island data trace and Panayiota Gi-
anni (University of Cyprus) for assisting with the experimental evaluation.
This work was supported in part the second author’s Startup Grant, funded
by the University of Cyprus between 2010-2011, the Open University of Cyprus
under project SenseView, the US National Science Foundation under projects
S-CITI (#ANI-0325353) and AQSIOS (#IIS-0534531), the European Union
under the projects IPAC (#224395) and CONET (#224053), and the project

36

FireWatch (#0609-BIE/09), sponsored by the Cyprus Research Promotion
foundation.

References

1. D. Agrawal, D. Ganesan, R.K. Sitaraman, Y. Diao, S. Singh, “Lazy-Adaptive Tree:
An Optimized Index Structure for Flash Devices”, In Proceedings of the Very Large
Databases (VLDB) Endowment, Vol.2, No.1, pp.361-372, 2009.

2. P. Andreou, D. Zeinalipour-Yazti, P.K. Chrysanthis, G. Samaras, “Workload-aware
Query Routing Trees in Wireless Sensor Networks”, In Proceedings of the 9th Inter-
national Conference on Mobile Data Management (MDM’08), Beijing, China, April
27-30, pp.189-196, 2008.

3. P. Andreou, D. Zeinalipour-Yazti, M. Vassiliadou, P. K. Chrysanthis, G. Samaras,
“KSpot: Effectively Monitoring the K Most Important Events in a Wireless Sensor
Network”, In Proceedings of the 25th International Conference on Data Engineering
(ICDE’09), Shanghai, China, May 29-April 4, pp.1503-1506, 2009.

4. W-T. Balke , W. Nejdl, W. Siberski, U. Thaden, “Progressive Distributed Top-K Re-
trieval in Peer-to-Peer Networks”, In Proceedings of the 21st International Conference
on Data Engineering (ICDE’05), Tokyo, Japan, April 5-8, pp.174-185, 2005.

5. B. Babcock, C. Olston, “Distributed Top-K Monitoring”, In Proceedings of the 2003
ACM SIGMOD international conference on Management of data (SIGMOD’03), San
Diego, California, USA, June 9-12, pp.28-39, 2003.

6. Z. Benenson, M. Bestehorn, E. Buchmann, F.C. Freiling, M. Jawurek, “Query Dis-
semination with Predictable Reachability and Energy Usage in Sensor Networks”, In
Proceedings of the 7th international conference on Ad-hoc, Mobile and Wireless Net-
works (ADHOC-NOW’08), Sophia-Antipolis, France, September 10-12, pp.279-292,
2008.

7. J. Blakeley, P.A. Larson, F.W. Tompa, “Efficiently Updating Materialized Views”, In
Proceedings of the 1986 ACM SIGMOD international conference on Management of
data (SIGMOD’86), Washington, D.C., USA, May 28-30, pp.61-71, 1986.

8. N. Bruno, L. Gravano, A. Marian, “Evaluating Top-K Queries Over Web Accessible
Databases”, In Proceedings of the 18th International Conference on Data Engineering
(ICDE’02), San Jose, California, USA, February 26-March 1, pp.369-382, 2002.

9. P. Cao, Z. Wang, “Efficient Top-K Query Calculation in Distributed Networks”, In
Proceedings of the 23rd annual ACM symposium on Principles of distributed comput-
ing (PODC’04), St. John’s, Newfoundland, Canada, July 25-28, pp.206-215, 2004.

10. Q. Cao, T. Abdelzaher, J. Stankovic, T. He, “The LiteOS Operating System: Towards
Unix-Like Abstractions for Wireless Sensor Networks”, In Proceedings of the 7th
international conference on Information processing in sensor networks (IPSN’08), St.
Louis, Missouri, April 22-24, USA, pp.233-244, 2008.

11. S. Chaudhuri, R. Krishnamurthy, S. Potamianos, K. Shim, “Optimizing Queries with
Materialized Views”. In Proceedings of the 11th International Conference on Data
Engineering (ICDE’95), Taipei, Taiwan, March 6-10, pp.190-200, 1995.

12. L.W.F. Chaves, E. Buchmann,F. Hueske, K. Bohm, “Towards materialized view selec-
tion for distributed databases”, In Proceedings of the 12th International Conference
on Extending Database Technology: Advances in Database Technology (EDBT’09),
Saint Petersburg, Russia, March 23-26, pp.1088-1099, 2009.

13. L.S. Colby, T. Griffin, L. Libkin, I.S. Mumick, H. Trickey, “Algorithms for Deferred
View Maintenance” In Proceedings of the 1996 ACM SIGMOD international confer-
ence on Management of data (SIGMOD’96), Montreal, Quebec, Canada, June 4-6,
pp.469-480, 1996.

14. A. Coman, M.A. Nascimento, “A Distributed Algorithm for Joins in Sensor Net-
works”, In Proceedings of the 19th International Conference on Scientific and Statis-
tical Database (SSDBM ’07), Banff, Canada, July 9-11, pp.27, 2007.

15. A. Coman, J. Sander, M.A. Nascimento, “Adaptive processing of historical spatial
range queries in peer-to-peer sensor networks”, In Distributed and Parallel Databases
(DAPD’07), December, Vol.22, No.2(3), pp.133-163, 2007.

37

16. J. Considine, F. Li, G. Kollios, J. Byers, “Approximate Aggregation Techniques for
Sensor Databases”, In Proceedings of the 20th International Conference on Data
Engineering (ICDE’04), Boston, MA, USA, March 30-April 2, pp.449-460, 2004.

17. Crossbow Technology Inc., http://www.xbow.com/
18. G. Das, D. Gunopulos, N. Koudas, D. Tsirogiannis, “Answering Top-k Queries Using

Views”, In Proceedings of the 32nd international conference on Very large data bases
(VLDB’06), Seoul, Korea, September 12-15, pp.451-462, 2006.

19. A. Deligiannakis, Y. Kotidis, N. Roussopoulos, “Compressing historical information in
sensor networks”, In Proceedings of the 2004 ACM SIGMOD international conference
on Management of data (SIGMOD’04), Paris, France, June 13-18, pp.527-538, 2004.

20. A. Deshpande, S.R. Madden, “MauveDB: Supporting Model-Based User Views in
Database Systems”, In Proceedings of the 2006 ACM SIGMOD international con-
ference on Management of data (SIGMOD’06), Chicago, Illinois, USA, June 26-29,
pp.73-84, 2006.

21. Y. Diao, D. Ganesan, G. Mathur, P. Shenoy, “Rethinking Data Management for
Storagecentric Sensor Networks”, In Proceedings of the 3rd Biennial Conference on
Innovative Data Systems Research (CIDR’07), Asilomar, California, USA, January
7-10, pp.22-31, 2007.

22. A. Dunkels, B. Gronvall, T. Voigt, “Contiki - A Lightweight and Flexible Operating
System for Tiny Networked Sensors”, In Proceedings of the 29th Annual IEEE Inter-
national Conference on Local Computer Networks (LCN’04), Tampa, Florida, USA,
November 16-18, pp.455-462, 2004.

23. Earth Climate and Weather, University of Washington, http://www-
k12.atmos.washington.edu/k12/grayskies/

24. R. Fagin, “Combining Fuzzy Information from Multiple Systems”, In Journal of
Computer and System Sciences, Montreal, Canada, February, Vol.58, No.1, pp.83-99,
1999.

25. R. Fagin, A. Lotem, M. Naor, “Optimal Aggregation Algorithms For Middleware”, In
Proceedings of the twentieth ACM SIGMOD-SIGACT-SIGART symposium on Prin-
ciples of database systems (PODS’01), Santa Barbara, California, USA, May 21-23,
pp.102-113, 2001.

26. I. Galpin, C.Y.A. Brenninkmeijer, F. Jabeen, A.A.A. Fernandes, N.W. Paton, “Com-
prehensive Optimization of Declarative Sensor Network Queries”, In Proceedings of
the 21st International Conference on Scientific and Statistical Database Management
(SSDBM’09), New Orleans, Louisiana, USA, June 2-4, pp.339-360, 2009.

27. D. Gay, P. Levis, R. Von Behren, M. Welsh, E. Brewer, D. Culler, “The nesC Lan-
guage: A Holistic Approach to Networked Embedded Systems”, In Proceedings of the
ACM SIGPLAN 2003 conference on Programming language design and implementa-
tion (PLDI’03), San Diego, California, USA, June 9-11, pp.1-11, 2003.

28. Y. Gu, A. Lo, I. Niemegeers, “A survey of indoor positioning systems for wireless
personal networks,” IEEE Communications Surveys & Tutorials 11(1), pp. 13–32,
2009.

29. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister, “System Architecture
Directions for Networked Sensors”, In ACM SIGPLAN Notices, November, Vol.35,
No.11, pp.93-104, 2000.

30. C. Intanagonwiwat, R. Govindan, D. Estrin, “Directed diffusion: A scalable and robust
communication paradigm for sensor networks”, In Proceedings of the 6th annual inter-
national conference on Mobile computing and networking (MOBICOM’00), Boston,
Massachusetts, USA, August 6-11, pp.56-67, 2000.

31. Intel Lab Data, http://db.csail.mit.edu/labdata/labdata.html
32. P. Kalnis, W-S. Ng, B-C. Ooi, K-L. Tan, “Answering similarity queries in peer-to-

peer networks”, In Proceedings of the 13th international World Wide Web conference
(WWW’04), New York City, NY, USA, May 19-21, pp.482-483, 2004.

33. D. Klan, K. Hose, K-U. Sattler, “Developing and deploying sensor network applications
with AnduIN”, In Proceedings of the 6th Workshop on Data Management for Sensor
Networks (DMSN’09), Lyon, France, August 24, No.11, 2009.

34. P.-A. Larson, H.Z. Yang, “Computing Queries from Derived Relations”, In Proceedings
of the 11th international conference on Very Large Data Bases (VLDB’85), Stockholm,
Sweden, August 21-23, pp.259-269, 1985.

38

35. C.K. Lee, B. Zheng, W.-C. Lee and J. Winter, “Materialized In-Network View for
Spatial Aggregation Queries in Wireless Sensor Network”, ISPRS Journal of Pho-
togrammetry and Remote Sensing, May, Vol.62, No.5, pp.382402, 2007.

36. K.C.K. Lee, W.-C. Lee, B. Zheng, J. Winter, “Processing Multiple Aggregation Queries
in Geo-Sensor Networks”, In Proceedings of the 11th International Conference on
Database Systems for Advanced Applications (DASFAA’06), Singapore, April 12-15,
pp.20-34, 2006.

37. P. Levis, N. Lee, M. Welsh, D. Culler, “TOSSIM: Accurate and Scalable Simulation
of Entire TinyOS Applications”, In Proceedings of the 1st international conference
on Embedded networked sensor systems (SenSys’03), Los Angeles, California, USA,
November 5-7, pp.126-137, 2003.

38. Q. Li, J. Beaver, A. Amer, P.K. Chrysanthis, A. Labrinidis, “Multi-Criteria Routing in
Wireless Sensor-Based Pervasive Environments”, In Journal of Pervasive Computing
and Communications (JPCC’05), Vol.1, No.4, pp.313-326, 2005.

39. S.R. Madden, M.J. Franklin, J.M. Hellerstein, W. Hong, “The Design of an Acqui-
sitional Query Processor for Sensor Networks”, In Proceedings of the 2003 ACM
SIGMOD international conference on Management of data (SIGMOD’03), San Diego,
California, USA, June 9-12, pp.491-502, 2003.

40. S.R. Madden, M.J. Franklin, J.M. Hellerstein, W. Hong, “TAG: a Tiny AGgregation
Service for Ad-Hoc Sensor Networks”, In Proceedings of the 5th symposium on Op-
erating systems design and implementation (OSDI’02) , Vol.36, No. SI, pp.131-146,
2002.

41. R. Maiocchi, B. Pernici, “Temporal Data Management Systems: A Comparative View”,
In IEEE Transactions on Knowledge and Data Engineering (TKDE’91), December,
Vol.3, No.4, pp.504-524, 1991.

42. B. Malhotra, M.A. Nascimento, I. Nikolaidis, “Better tree - better fruits: using dom-
inating set trees for MAX queries”, In Proceedings of the 5th workshop on Data
management for sensor networks (DMSN’08), Auckland, New Zealand, August 24,
pp.1-7, 2008.

43. A. Marian, L. Gravano, N. Bruno, “Evaluating Top-k Queries over Web-Accessible
Databases”, In ACM Transactions on Database Systems (TODS’04), June, Vol.29,
No.2, pp.319-362, 2004.

44. S. Michel, P. Triantafillou, G. Weikum, “KLEE: A Framework for Distributed Top-K
Query Algorithms”, In Proceedings of the 31st international conference on Very large
data bases (VLDB’05), Trondheim, Norway, August 30-September 2, pp.637-648, 2005.

45. M. Wu, J. Xu, X. Tang, W-C. Lee, “Top-k Monitoring in Wireless Sensor Networks”,
In IEEE Transactions on Knowledge and Data Engineering (TKDE’07), July, Vol.19,
No.7, pp.1041-4347, 2007.

46. J. Polastre, R. Szewczyk, D.E. Culler, “TELOS: Enabling Ultra-low Power Wireless
Research”, In Proceedings of the 4th international symposium on Information pro-
cessing in sensor networks (IPSN’05), Los Angeles, California, USA, April 25-27, pp.
364-369, 2005.

47. C. Sadler, P. Zhang, M. Martonosi, S. Lyon, “Hardware Design Experiences in Ze-
braNet”, In Proceedings of the 2nd international conference on Embedded networked
sensor systems (SenSys’04), Baltimore, Maryland, USA, November 3-5, pp.227-238,
2004.

48. M.A. Sharaf, J. Beaver, A. Labrinidis, P.K. Chrysanthis, “TiNA: a scheme for temporal
coherency-aware in-network aggregation”, In Proceedings of the 3rd ACM international
workshop on Data engineering for wireless and mobile access (MobiDe’03), San Diego,
california, USA, September 19, pp.69-76, 2003.

49. M.A. Sharaf, J. Beaver, A. Labrinidis, P.K. Chrysanthis, “Balancing Energy Efficiency
and Quality of Aggregate Data in Sensor Networks”, In the International Journal on
Very Large Data Bases (VLDBJ’04), December, Vol.13, No.4, pp.384-403, 2004.

50. V. Shnayder, M. Hempstead, B. Chen, G. Werner-Allen, and M. Welsh, “Simulating the
Power Consumption of Large-Scale Sensor Network Applications”, In Proceedings of
the 2nd international conference on Embedded networked sensor systems (SenSys’04),
Baltimore, MD, USA, November 3-5, pp.188-200, 2004.

39

51. A. Silberstein, R. Braynard, C. Ellis, K. Munagala, J. Yang, “A Sampling-Based
Approach to Optimizing Top-K Queries in Sensor Networks”, In Proceedings of the
22nd International Conference on Data Engineering (ICDE’06), Atlanta, Georgia,
USA, April 3-8, pp.68, 2006.

52. M. Stern, E. Buchmann, K. Bohm, “Towards Efficient Processing of General-Purpose
Joins in Sensor Networks”, In Proceedings of the 2009 IEEE International Conference
on Data Engineering (ICDE’09), Shanghai, China, March 29-April 2, pp.126-137, 2009.

53. R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, D. Culler, “An Analysis of a
Large Scale Habitat Monitoring Application”, In Proceedings of the 2nd international
conference on Embedded networked sensor systems (SenSys’04), Baltimore, Maryland,
USA, November 3-5, pp.214-226, 2004.

54. Texas Instruments, “CC2420, Single-Chip 2.4 GHz IEEE 802.15.4 Compli-
ant and ZigBee(TM) Ready RF Transceiver”, In Texas Instrument Document
http://www.ti.com/lit/gpn/cc2420, 2007.

55. H. Thomas, S. Yi, H.D. Sherali, “Rate allocation in Wireless Sensor Networks with
Network Lifetime Requirement”, In Proceedings of the 5th ACM international sympo-
sium on Mobile ad hoc networking and computing (MobiHoc’04), Tokyo, Japan, May
24-26, pp.67-77, 2004.

56. Voltree Power Inc., http://www.voltreepower.com/
57. S. Weissman-Lauzac, P.K. Chrysanthis, “Personalizing information gathering for mo-

bile database clients”, In Proceedings of the 2002 ACM symposium on Applied com-
puting (SAC’02), Madrid, Spain, March 11-14, pp.49-56, 2002.

58. S. Weissman-Lauzac, P.K. Chrysanthis, “Utilizing Versions of Views within a Mobile
Environment”, In Proceedings of the International Conference on Computing and
Information (ICCI’98), Winnipeg, Manitoba, Canada, June 17-20, pp.201-208, 1998.

59. P. Xia, P.K. Chrysanthis, A. Labrinidis, “Similarity-Aware Query Processing in Sensor
Networks”, In Proceedings of the 14th International Workshop on Parallel and Dis-
tributed Real-Time Systems (WPDRTS’06), Island of Rhodes, Greece, April 25-26,
pp.8, 2006.

60. Y. Yao, J.E. Gehrke, “The cougar approach to in-network query processing in sensor
networks”, In ACM SIGMOD Record (SIGMOD’02), September, Vol.31, No.3, pp.9-
18, 2002.

61. J. Yang, J. Widom, “Maintaining Temporal Views over Non-Temporal Information
Sources for Data Warehousing”, In Proceedings of the 6th International Conference
on Extending Database Technology: Advances in Database Technology (EDBT’98),
Valencia, Spain, March 23-27, pp.389-403, 1998.

62. H. Yu, H. Li, P. Wu, D. Agrawal, A.E. Abbadi, “Efficient Processing of Distributed
Top-k Queries”, In Proceedings of the 16th International Conference on Database and
Expert Systems (DEXA’05), Copenhagen, Denmark, August 22-26, pp.65-74, 2005.

63. D. Zeinalipour-Yazti, P. Andreou, P.K. Chrysanthis, G. Samaras, “MINT Views: Ma-
terialized In Network Top-k Views in Sensor Networks”, In Proceedings of the 8th
International Conference on Mobile Data Management (MDM’07), Mannheim, Ger-
many, May 7-11, pp.182-189, 2007.

64. D. Zeinalipour-Yazti, P. Andreou, P.K. Chrysanthis, G. Samaras, A. Pitsillides, “The
MicroPulse Framework for Adaptive Waking Windows in Sensor Networks”, In
Proceedings of the 1st International Workshop on Data Intensive Sensor Networks
(DISN’07), Mannheim, Germany, May 11, pp.351-355, 2007.

65. D. Zeinalipour-Yazti, S. Lin, V. Kalogeraki, D. Gunopulos, W. Najjar, “MicroHash:
An Efficient Index Structure for Flash-Based Sensor Devices”, In Proceedings of the
4th USENIX Conference on File and Storage Technologies (FAST’05), San Francisco,
California, USA, December 13-16, pp.31-44, 2005.

66. D. Zeinalipour-Yazti, S. Lin, D. Gunopulos, “Distributed Spatio-Temporal Similarity
Search”, In Proceedings of the 15th ACM international conference on Information and
knowledge management (CIKM’06), Arlington, VA, USA, November 6-11, pp.14-23,
2006.

67. D. Zeinalipour-Yazti, Z. Vagena, D. Gunopulos, V. Kalogeraki, V. Tsotras, M. Vla-
chos, N. Koudas, D. Srivastava, “The Threshold Join Algorithm for Top-K Queries in
Distributed Sensor Networks”, In Proceedings of the 2nd international workshop on

40

Data management for sensor networks (DMSN’05), Trondheim, Norway, August 29,
pp.61-66, 2005.

68. ZigBee Alliance, “ZigBee specification”, In ZigBee Document 053474r06, Version 1.0,
2004.

