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ABSTRACT
Previously, we published cloning, overexpression, characterization and subsequent exploitation of a
carbonyl reductase (cr) gene, belonging to general family aldo-keto reductase from Candida
glabrata CBS138 to convert keto ester (COBE) to a chiral alcohol (ethyl-4-chloro-3-hydroxybutanoate
or CHBE). Exploiting global transcription factor CRP, rDNA and transporter engineering, we have
improved batch production of CHBE by trinomial bioengineering. Herein, we present the
exploration of cr gene in Candida glabrata CBS138 through genome mining approach, in silico
validation of its activity and selection of its biocatalytic phase. For exploration of the gene under
investigation, 3 template genes were chosen namely Saccharomyces cerevisae YDR541c, YGL157w
and YOL151w. The CR showed significant homology match, overlapping of substrate binding site
and NADPH binding site with the template proteins. The binding affinity of COBE toward CR
(¡4.6 Kcal/ mol) was found higher than that of the template proteins (¡3.5 to ¡4.5 Kcal/ mol).
Biphasic biocatalysis with cofactor regeneration improved product titer 4»5 times better than
monophasic biotransformation. Currently we are working on DNA Shuffling as a next level of strain
engineering and we demonstrate this approach herein as a future strategy of biochemical
engineering.

KEYWORDS
binding site; cofactor
regeneration; docking; DNA
shuffling; homology match

Introduction

In previous studies, many enzymes of Aldo-keto
Reductase (AKR) and Carbonyl reductase (CR) family
were cloned, characterized and used in the asymmetric
synthesis of (S)-CHBE1-4 and (R) CHBE.5 AKR & CR
find extensive applications in pharmaceutical industry.
For example, they are used as key chiral intermediates
in the enantioselective synthesis of slagenins B and C,
they serve as 2 potential compounds against murine
leukemia, they are also used for synthesis of HMG-
CoA reductase inhibitors (hypolipidemic agents) and
can be converted into 1,4 dihydropyridine type
blocker (antihypertensive agents).1-5 Similarly, they
are also used for conversion of ethyl-4-chloro-3-oxo-
butanoate (COBE) to optically active ethyl-4-chloro-
3-hydroxybutanoate (CHBE) as CHBE serve as a
versatile precursor for pharmcalogically valuable
products.1-5 Although attempts have been made to

augment bioconversion by either genetically manipu-
lating the biocatalytic system with cofactor regenera-
tion or fabricating the reaction media with single or
multiple solvents, productivity has often faced short-
fall due to obtaining higher reaction rate only at small
substrate concentration (5»230 mM) thus eliciting a
limiting batch output within the reactor.6-9 Hence,
establishment of a biocatalysis system with industrial
competence has always been a prime search through
the years which has driven researchers to find out
newer proteins with improved activity and higher
productivity.

In this context, in our previous publication,10 we
have reported the cloning, expression and purification
of a carbonyl reductase from Candida glabrata CBS
138. We have also introduced the recombinant gene
into globally engineered strain constructed by manip-
ulating global transcription factor CRP. The improved
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tolerance by the host cell against organic phase, which
had been added as an essential component of the bio-
transformation, led the output of the process shoot
outstandingly higher. However, detailed methodology
of the gene exploration together with optimization of
the biocatalysis medium had not been described in
details in the previous report. Thus, exploration of the
gene through bioinformatics guided approach and its
validation through docking studies has been presented
in this work. In addition, this work also focuses on
enhancing cell phenotype through DNA shuffling.
Preliminary data obtained from DNA shuffling
appears to be promising with better product titer and
hence it is envisaged to extend our research on
improvement of microbial cell factory through the
above mentioned techniques.

Discovery of CR protein from Candida glabrata
CBS138

Three open reading frames namely S. cerevisiae
YDR541c, YGL157w and YOL151w, reported for
encoding aldo-keto reductases,11 were subjected to
Protein BLAST (BLASTP) along with 2 crystallo-
graphically elucidated proteins of the same class
namely aldehyde reductase 2 from Sporobolomyces sal-
monicolor AKU4429 (PDB ID: 1UJM) and an alde-
hyde reductase from Sporidiobolus salmonicolor (PDB
ID: 1Y1P). The BLASTP results from all attempts
revealed the repetitive hypothetical protein from Can-
dida glabrata CBS138 (Protein ID: XP_445913.1). The
BLAST scores revealed that the yeast proteins bear a
plausible 55% to 62% identity to the target protein
together with a staggering 98% sequence coverage
with the latter. In contrast, 1UJM and 1Y1P possessed
only 30% identity with the CR protein, however their
95% sequence swap with the target protein led us to a
reliable approximation that XP_445913.1 from Can-
dida glabrata CBS138 might belong to the same family
as S. cerevisiae YDR541c, YGL157w, YOL151w
together with 1UJM and 1Y1P. Multiple sequence
alignment of the structures showed that they preserve
a high degree of homology match with each other
(Fig. 1) with a comprehensive amount of conserved
amino acids at most of the positions.

Homology modeling

For further investigations of XP_445913.1 from C. glab-
rata CBS138, homology model of the same was

constructed using 5 template proteins as used for
BLAST. In this process, primary homology models
have been created for S. cerevisiae YDR541c, YGL157w
and YOL151w since crystallographic structure has not
been elucidated till date for these proteins. Homology
modeling of all the 4 proteins were acquiesced using
MODELLER9.12 (www.scilab.org/modeler). The over-
all folding of the homology model structure was same
(RMSD 0.466) as analyzed by swiss pdb.

A further insight and analogical comparison of the
modeled structure of XP_445913.1 with other proteins
exhibited that the conserved catalytic residues such as
S134, Y175 and K179 were similar to the crystal struc-
ture of carbonyl reductase from Sporobolomyces salmo-
nicolor and other yeast proteins (Fig. 2). In addition,
similarities have been obtained for a lot of other amino
acids too such as amino acids spanning hydrophobic
channel of the 2 proteins, such as Phe 94!Phe 97,
Trp 226!Val229, Pro241!Ala238, ILeu172!Leu174.
However, for XP_445913.1, Q168 and E244 make the
beginning of the channel little less hydrophobic than
the crystal structure (1UJM) where there is Pro170 and
Leu 241 in the equivalent positions (Table 1).

For estimation of modeling parameters, several
parameters of our model has been performed such as
ANOLEA (Atomic Non Local Environment),12

QMEAN (Qualitative Model Energy Analysis),13

GROMOS (Groningen Molecular Simulation Com-
puter Simulation Package).14 While ANOLEA calcu-
lates knowledge based distance dependent mean force
potential, QMEAN evaluates the quality of the model
based on certain scoring function and GROMOS is
the force field based on molecular simulation. PRO-
CHECK15 has been used for Ramachandran Plot. The
modeled protein quality check with ANOLEA,
QMEAN and GROMOS have been provided in
Figure 3. The model quality assessment has been per-
formed using the Swiss-model workspace.16

Ramachandran plot has been performed to assess
the model quality by analyzing the favored, allowed
and generously allowed perturbations of residue-residue
interaction (Fig. 4). From the plot, it can be observed
that most of the residues have been clustered in a and
b regions with a very few outliers suggesting that most
of the interactions are favored folding interactions.
Total quality of the model is assessed based on the reli-
ability model and was found to be QMEAN6 of 0.528.
The coloring residues plot with respect to errors
(Fig. 5A) and normalized QMEAN6 plot with respect
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to query protein residues (Fig. 5B) have been provided
to demonstrate the CR model accuracy. The pseudo
energy plot of the contributing terms (Fig. 5C) has also
been provided with their z-scores (with respect to the
scores obtained from high-resolution structures in this
protein subset). The scores obtained from high-resolu-
tion structures solved by X-ray crystallography has
been taken as baseline score.

Docking studies

The docking studies were performed in AutoDockVina
to evaluate the binding affinity of the substrate with the
enzyme. The binding affinity of the target enzyme was
compared with that of aforementioned standard AKR
proteins to elucidate the enzyme potential as aldo-keto
reductase against COBE. The energy minimized

structure of COBE was prepared and converted to
PDBQT format through MGL Tools 1.5.6. The modeled
protein structures were freed from water molecules and
inbound ligand by Discovery Studio 3.5 Visualizer. All
the bonds and torsional angles of the ligand were allowed
to rotate freely. C. glabrata CR was found to have more
binding affinity (¡4.6 Kcal/mol) compared with other
same family of proteins (binding affinity ranging from
¡3.5 to¡4.5 Kcal/mol) (Table 2). A binding site analysis
displayed that the substrate can fit nicely into the hydro-
phobic cavity of the enzyme and the amino acids espe-
cially T111 and Y175 can form hydrogen bonds with the
substrate carbonyl oxygen atom (Fig. 6).

NADPH dependence for C. glabrata CBS138 CR
was interpreted by aligning the crystallographic struc-
ture of S. salmonicolor AKR protein together with that
of C. glabrata and followed by comparing the cofactor

Figure 1. Multiple sequence alignment of XP_445913.1 from Candida glabrata CBS138 with other reported Aldo-keto Reductase group
of proteins namely one aldose reductase from Sporobolomyces salmonicolor and 3 Saccharomyces cerevisiae derived genes encoding car-
bonyl reductases (YDR541c, YGL157w, YOL51w). The conserved domains are highlighted as black and gray boxes
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attachment domain between the 2 proteins (Fig. 7).
The cofactor domain mapping of the target protein
together with comparing it with that of S. salmonicolor
(1UJM) and S. cerevisiae (YDR541c, YGL157w and
YOL151w) AKR proteins has been accomplished
using standard alignment and labeling tools of
PyMOL (www.pymol.org).

Thus homology model construction, alignment of
important amino acids residues, analyzing substrate
binding site, exploring cofactor domain and docking
score comparisons with other standard ALR/ CR group
of enzymes suggested that XP_445913.1 should belong
to the same family of enzymes as the standards and
thus we treated XP_445913.1 as CR (Carbonyl Reduc-
tase) group of protein from Candida glabrata CBS138.
These findings encouraged us to try and explore its
actual biocatalytic potential in realistic experimental
condition. Thus we cloned the gene in heterologous
vector, overexpressed and subsequently purified the
protein, characterized through kinetic studies, calibrated

through pH and temperature and finally exploited it in
actual bioconversion through trinomial bioengineering
as described in our earlier report.

Optimization of bioconversion

The optimization of the reaction system was accom-
plished by analyzing the outputs with any 2 variables
of the 3 key factors controlling the bioconversion such
as monophasic system, biphasic system and NADPH
as cofactor. Apparently, best yields were obtained
when biphasic reaction system was used together with
cofactor regeneration as reported by other research-
ers.1-5 As mentioned earlier,10 gene encoding Glucose
dehydrogenase (GDH) from Bacillus subtilis has been
cloned in the recombinant microbial cell factory
together with CR from Candida glabrata CBS 138 to
follow cofactor regeneration of NADPH from oxidized
NADPC via exogenously added substrate glucose.
When whole cells over-expressing the CR and GDH
proteins (cofactor regenerating) were used with previ-
ously reported conditions10 within biphasic reaction
system, the substrate being in butyl acetate phase
while recombinant host in the buffer phase, the prod-
uct formation improved rapidly up to 4h and obtained
steady-state within 6h (88.3% bioconversion from
COBE to CHBE, Fig. 8A). In contrast, without cofac-
tor regeneration even in biphasic system, only 5% bio-
conversion was achieved together with having a
longer reaction time »8–10 h (Fig. 8A). However, a
cofactor regenerating system within single buffer
phase (0.1 M Potassium phosphate buffer, pH 7.5)
produced a bioconversion of 20.80% necessitating the
contribution of cofactor in enhancing the product
yield. Figure 8B depicts a comparative portfolio of bio-
conversion under 3 aforementioned conditions.

DNA shuffling- Library formation and mutant
selection for future host construction

We used error-prone PCR (ep-PCR) in our previous
study10 to construct highly stress tolerant mutant as

Figure 2. Positions of important amino acids for COBE binding
shown in stick representation by pyMOL. Overlap of crystal struc-
ture from S. Salmonicolor (light blue) and homology model struc-
ture from C. glabrata (green), S. cerevisae YDR541C (yellow), S.
cerevisae YGL157W (red), S. cerevisae YOL151W (gray).

Table 1. Comparison of binding site.

Catalytic residues Hydrophobic channel

C. glabrata S133 Y 175 K 179 F 94 I 172 F 245 V229 P 241 —
S. salmonicolor S134 Y 177 K 181 F 97 L 174 L 241 W 226 A 238 P170
S. cerevisaeYDR541C S129 Y 167 K 171 Y 89 I 164 P 235 — — —
S. cerevisaeYGL157W S131 Y 169 K 173 F 91 V 166 Y 239 I223 — —
S. cerevisaeYOL151W S127 Y 165 K 169 — V 162 I 232 — — P161
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our biocatalysis host and thus achieved significant
improvement of product yield with elongation of cell
fitness during the biphasic reaction. However we are
still in search for further improvement of cell pheno-
type as we believe that cell fitness can be a key factor
to tower the product yield during such bioreaction.
Many such strategies are under investigation, among
them DNA shuffling has emerged as a successful tool
to improve cell phenotype in multitude of condi-
tions.17-20

DNA shuffling was performed with a little modifi-
cation of the procedure as described by Stemmer,
199421 taking whole crp operons of 3 ep-PCR mutants
(M1 » M3) as templates. The acquisition of M1» M3
and their amino acid mutations have been already
described in our previous publication.10 4 mg of total
template DNA was used for DNA shuffling. The total
template DNA was digested by DNAse-I at 15�C for 3
mins and subsequently 50–200 bp DNA fragments
had been recovered from gel electrophoresis for

further process. Afterwards, DNA fragments were
subjected to undergo PCR without primer and finally
chimeric crp was recovered by amplification with for-
ward and reverse crp primer, the sequences as dis-
cussed in our previous publication.

The DNA shuffling library was finally constructed
by cloning the chimeric crp into pACYC Duet-I plas-
mid with Kpn I and Bam HI and subsequent introduc-
tion into E. coli DH5a as discussed earlier.10 The
introduction of chimeric crp-pACYC Duet-I conjugate
into E. coli DH5a through electroporation yielded a
variant library in the order of 104»105. DNA shuffling
mutants were grown in LBGMg medium (Bacto tryp-
tone 10 g/L, Yeast extract 1 g/L, NaCl 10 g/L, Glucose
2 g/L, MgSO4 10 mM) and the winner was selected by
subjecting the mutant library in 3 rounds of selection
with 0.23»0.25% (v/v) toluene. 50 mL High Density
Polypropylene centrifuge tubes (BD Bioscienes, USA)
with parafilm sealing have been used for culturing the
variant with proper oxygenation (37�C, 200 rpm).

Figure 3. ANOLEA, QMEAN and GROMOS plot of modelled XP_445913.1 from Candida glabrata CBS138.
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Proper dilution of the culture from each round was
plated onto LBGMg-agar plates to isolate the colonies.
Selected clones from the third round were taken, the
plasmid DNA was isolated by mini-preparation with
QIAGEN plasmid isolation kit (Qiagen, USA). The
shuffled mutations were verified by DNA sequencing
and relevant plasmids were re-introduced into fresh E.
coli DH5a background to create fresh variants. The
fresh variants were challenged in LBGMg medium
under 0.4% – 0.5% (v/v) toluene pressure to select the
variant with best growth profile.

One DNA shuffling mutant (DSM) was isolated
and sequenced to reveal amino acid substitutions such
as T127N F136I T208N. The DSM revealed better
growth profile against higher concentrations of

toluene (0.4% – 0.5% (v/v). Under 0.40% toluene, the
DSM reached to OD600 »2.5 in 24 h where other
mutants’ growth (M1» M3) remained within OD 2.0
»2.3 (Fig. 9A). In 0.50% toluene, where other reached
a saturation OD »2.0 in 22 h, DSM reached a OD
»2.4 in the same time (Fig. 9B).

Discussion and conclusion

The CR from Candida glabrata was identified through
BLASTP guided sequence search method. It is known
that if there is a significant sequence match between 2
proteins, then it is highly likely that there are similari-
ties in their functions. In this research work, it was
found that there was a 55% »62% identity match

Figure 4. Ramachandran Plot of modelled XP_445913.1 from Candida glabrata CBS138.
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between CR and 3 reported AKR family of proteins
YDR151c, YGL157w and YOL151w.11 This suggests
that the target protein might have an AKR like activ-
ity. The overlapping of active site between the target
and the template proteins also imply similar tertiary
structure of the proteins.

Since the CR has been structurally elusive together
with YDR151c, YGL157w and YOL151w, all the pro-
teins have been modeled to churn any similarities
between their structures as well as the active sites. The
models were first validated then the active site com-
parison revealed that similar hydrophobic channels
spanned the target and template protein residues
including structurally elucidated proteins 1UJM and
1Y1P. Thus it is a plausible assumption the substrate
COBE may bind with the proteins in the same way,

however the specificity and affinity may change
depending upon the hydrophobicity of the channel.
Furthermore, an in silico docking of COBE with the
proteins revealed that COBE has even more binding
affinity toward CR than other template proteins. This
really encouraged us to try the CR from Candida glab-
rata in realistic bioconversion.

One critical bottleneck for enzymatic bioconversion
is the hydrophilicity of the enzyme since enzymes usu-
ally are dissolved in buffered system for prolonging its
stability and activity. Thus, a prior investigation of CR
in this sort through GRAVY (grand average of hydro-
pathicity) analysis (http://web.expasy.org/cgi-bin/prot
param/protparam) revealed a negative gravy index as
¡0.359. This indicated protein’s hydrophilicity22 thus
advocating its competence in buffer mediated biocon-
version. Then we challenged the enzyme in actual bio-
conversion and optimized it through whole cell
biotransformation.

It is important to note that biphasic biotransforma-
tion provides better output in this reaction. The rea-
son being that improved solubility of COBE in the
organic phase (compared with aqueous) enhances the

Figure 5. Different model validation parameters of modeleld XP_445913.1 from Candida glabrata CBS138. A. Coloring residue plot with
errors (blue depicting most reliable residues while red suggests potentially unreliable residues). B. Psuedo-energy plot of contributing
terms with their z-scores. C. QMEAN6 plot with query residues.

Table 2. Docking scores of proteins.

Protein Binding affinity (Kcal/mol)

C. glabrata XP_445913.1 ¡4.6
S. cerevisiae YDR541c ¡3.9
S. cerevisiae YGL157w ¡3.5
S. cerevisiae YGL157w ¡4.5
AKR protein from S. salmonicolor ¡3.7
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substrate carriage to the host cells. Also, COBE under-
goes partial hydrolysis in aqueous phase which retards
the rate of reaction in the monophasic biotransforma-
tion (data not shown). Cofactors are required to sup-
ply the hydrogen for the biotransformation.1-5,23

Harboring the aforementioned highly efficient
recombinant enzyme for improved biotranformation,
we have tried to overcome secondary challenges in
biphasic biocatalysis such as tolerance of the host cell
toward organic phase and improved substrate uptake
inside the host cell reported in our previous publica-
tion.10 We have demonstrated that error prone PCR
has been undertaken to improve cell phenotype

during biocatalysis. Also, cell phenotype has been
improved by DNA shuffling. For DNA shuffling we
have used whole crp operon from the mutants because
the crp operon contains 3 parts: the transcription fac-
tor binding site (Transcription Factor B involving 2
CRP-cAMP binding sites, 4 FISbinding sites, and 3
crp native promoters), thecrp gene, and a specifically
designed rrnB terminator.24,25 The resultant in vitro
recombination yielded a super-performing mutant
(DSM) which showed improved performance than the
mothers against extremely hydrophobic toluene. Tolu-
ene has been selected as the challenging solvent
because a “winner” against such extremely hydropho-
bic solvent would have good chance to survive other
organic solvents too. LBGMg medium has been a
choice of medium for survival of colonies against
organic solvent.26 The DSM combines mutations at 3
regions namely T127 (in the cAMP binding pocket-ca
helix that stabilizes cAMP- CRP binding),27 F136 (sta-
bilizing interdomain hinge)28 and T208 (in the DNA
binding domain).27 We propose that implementation
of DNA Shuffling mutant in future biotransformation
might improve the product titer even better and might
gain other applications as well.

Figure 6. Binding site analysis of COBE in CR from Candida glab-
rata CBS138. The binding site analysis has been done using the
standard protocol in Discovery Studio Visualizer 3.5. The dotted
bond represents hydrogen bonding.

Figure 7. Positions of important amino acids for NADPH binding
for C. glabrata (green) and S. salmonicolor (red).

Figure 8. (R)-CHBE production profile in biotransformation reac-
tion. A. Yield profile with or without cofactor regeneration B.
Comparative study of bioconversion under 3 reaction schemes
The data points are the average ( § standard deviation) of 3
independent observations (n D 3).
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