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Abstract 

Malignant glioma is the most common and aggressive form of tumours and is usually 

refractory to therapy. Telomerase and its altered activity, distinguishing cancer cells, 

is an attractive molecular target in glioma therapeutics. The aim of this thesis was to 

silence telomerase at the genetic level with a view to highlight the changes caused in 

the cancer proteome and identify the potential downstream pathways controlled by 

telomerase in tumour progression and maintenance. A comprehensive proteomic 

study utilizing 2D-DIGE and MALDI-TOF were used to assess the effect of 

inhibiting two different regulatory mechanisms of telomerase in glioma.  RNAi was 

used to target hTERT and Hsp90α. 

 Inhibition of telomerase activity resulted in down regulation of various cytoskeletal 

proteins with correlative evidence of the involvement of telomerase in regulating the 

expression of vimentin. Vimentin plays an important role in tumour metastasis and is 

used as an indicator of glioma metastasis. Inhibition of telomerase via sihTERT 

results in the down regulation of vimentin expression in glioma cell lines in a grade 

specific manner. While, 9 of 12 glioblastoma tissues (grade IV) showed vimentin to 

be highly expressed, its expression was absent in lower grades and normal tissues. 

This suggests that vimentin can be potentially used as a glioma progressive marker. 

This is the first study to report the potential involvement of telomerase in the 

regulation of vimentin expression. This study also identified that combination 

therapy, comprising siRNA targeted towards telomerase regulatory mechanisms and 

the natural product Epigallocatechin-3-gallate (ECGC), results in decreased cell 

viability producing comparable results to that of other chemotherapeutic drugs. 
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1. Introduction  

Cancer is a perversion of cellular genotype and phenotype marked by unrestrained and 

invasive growth of genetically transformed cells. These genetically transformed cells cause 

disruption of the complex and interdependent condominium of cells which otherwise leads 

to multicellularity in a healthy body. The incidence of cancer is expected to double on a 

global scale over the next decade (Eaton, 2003). In England it is estimated that by 2020 the 

incidence of cancer will increase by 33 % thereby accounting for 299 000 cases in 2020 in 

contrast to 224 000 in 2001 (Moller et al., 2007). Cancer results in the deregulation of a 

number of signal transduction pathways, molecules involved in DNA repair, cell cycle 

checkpoints, cellular apoptosis and invasion. This makes cancer a very complex and 

dynamic disease. 

 

1.1 Hallmarks of cancer 

Hanahan and Weinberg succinctly summarised the essential alterations in the cellular 

physiology that collectively dictates the malignant transformation of cells into six 

hallmarks of cancer. Each of these hallmarks breach the anticancer mechanism, hardwired 

in the cells, and are commonly shared in almost all types of cancers (Hanahan and 

Weinberg, 2000). These hallmarks are shown in Fig 1.1 and can be described as follows: 
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Figure 1.1 Hallmarks of cancer as described by Hanahan and Weinberg (2000). 

 

1.1.1 Self-sufficiency in growth signals 

Cell proliferation is rigidly controlled by signaling molecules, bound to transmembrane 

receptors, which prompt cellular growth and division. Mutations in cancer cells results in 

over expression of growth factors or their receptors causing hypersensitivity to growth 

signals which in turn imparts self-sufficiency in growth signals.  An example of this 

mechanism is the activation of H-Ras oncogene which encodes proteins involved in 

regulating cell division when stimulated by growth factor (Hanahan and Weinberg, 2000). 
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1.1.2 Insensitivity to growth-inhibitor signals 

Cellular growth and development is regulated by an intricate network of positive and 

negative feedback loops. Cancer cells ignore the anti-growth signals and continue to 

proliferate maintaining replicative potential. An example of this process is the loss the 

retinoblastoma protein (pRB), a tumour suppressor gene, which makes the cancer cells 

insensitive to the growth-inhibitory signals (Hanahan and Weinberg, 2000). 

 

1.1.3 Evasion of apoptosis 

Factors such as DNA damage, insufficiency of cell survival factors, imbalanced signaling, 

over expression of oncogenes and hypoxia act as sensors and initiate programmed cell 

death in normal cells. In cancerous cells this mechanism is violated, cells evade apoptosis 

and continue to divide. A classic example of a mechanism that aids to evade apoptosis is 

the expression of a muatated p53 tumour suppressor gene in over 50% of human cancer 

(Hanahan and Weinberg, 2000). 

 

1.1.4 Sustained angiogenesis 

Angiogenesis is necessary for tumour invasion and metastasis. In cancer cells the process 

of angiogenesis is deregulated causing an over-production of angiogenic inducers and a 

lack of angiogenic inhibitors or both. The over-production of vascular endothelial growth 

factor which stimulates the growth of new blood vessels is an example of how cancer cells 

sustain angiogenesis. 
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1.1.5 Tissue Invasion and Metastasis 

Metastasis is the ultimate stage of cancer development. Tumour cells migrate from their 

primary site of development and invade distant locations in the body. Following invasion, 

cancer cells transit the extracellular matrix, intravasate and traverse the blood vessels, 

extravasate and grow at secondary sites. Metastasis can be characterised by disruption of 

cell adhesion molecules and integrins and increased proteolysis which facilitates tissue 

invasion.  An example of this mechanism is the inactivation of transmembrane proteins     

E-cadherin, which regulates cell adhesion in normal cells (Hanahan and Weinberg, 2000). 

 

1.1.6 Limitless replicative potential 

Normal cells undergo senescence after a fixed number of divisions known as the Hayflick 

Limit. DNA polymerase is unable to completely replicate the chromosome due to the end 

replication problem. This result in progressive loss of the chromosomal end called 

telomere (section 1.2). With each division the repetitive telomere sequence loses                           

50-100 base pairs which ultimately results in the exposure of chromosomal DNA, 

senescence and cell death. Tumour cells develop a mechanism to overcome this problem 

by expressing the enzyme telomerase which protects the telomeres from shortening. 

Telomeres can also be lengthened through homologous recombination. As a result, tumour 

cells never grow old and continue to replicate (Hanahan and Weinberg, 2000). 
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1.2 Telomere and telomerase 

Telomerase plays a key role in the acquisition of cancer phenotype by aiding the unlimited 

replicative potential which as explained earlier is a hallmark of cancer. Telomeres have 

been defined as the functional chromosomal ends by H.J. Muller and identified by Barbara 

McClintock, six years before the identification of DNA as hereditary material by Oswald 

Avery (McClintock, 1939; Muller, 1938). 

Human telomeres are tracts of repetitive hexameric DNA sequences (TTAGGG), around 

15-20 kilobase in size at birth, and are followed by a 3‟ single-strand, G-rich overhang 

(Shay and Gazdar, 1997). They are located at the end of chromosomes, and their 

maintenance is essential for cell survival as they provide a buffer of potentially expendable 

DNA that protects the chromosomes from degradation and loss of essential genes that 

could be lost during cell division (Pendino et al., 2006). They protect the cell from end to 

end fusion by forming special t-loop like structures, thereby allowing the cell to distinguish 

between double-strand breaks and natural chromosome ends, thus maintaining 

chromosomal integrity (Griffith et al., 1999).   

During cell division, DNA dependent DNA polymerase cannot replicate the extreme ends 

of the chromosome on the lagging strand due to the putative 5' to 3' exonuclease effect of 

the conventional DNA polymerases. Since no primer is bound at the extreme 5' end of each 

chromosome, there is a gap in replication, leading to a progressive shortening of daughter 

strands with each round of DNA replication (Olovnikon, 1973). This is known as the „end 

replication problem‟ and results in the loss of telomeric material with each division. When 
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a critical telomere length is reached the cells exit the cell cycle and undergo senescence 

marked by growth arrest during the GI phase. These cells are in an irreversible arrest phase 

whereby they are unable to undergo further cell divisions. Though senescent cells are 

unable to divide they can continue metabolic activities (Dimri et al., 1995; Shay and 

Roninson, 2004). 

Telomerase, a multi-subunit, ribonucleoprotein holoenzyme, plays a pivotal role in 

telomere maintenance (Shay and Gazdar, 1997, Pendino et al., 2006). In human cells, 

telomerase functions as a reverse transcriptase to add multiple copies of the                       

5‟-GGTTAG-3‟ motif to the end of the G-strand of the telomere, thereby compensating the 

end replication problem. Telomerase is composed of two core subunits; telomerase reverse 

transcriptase hTERT, the catalytic subunit and a functional RNA subunit hTR which serves 

as a template for telomeric DNA synthesis as shown in Fig 1.2. 

 

Figure 1.2 Telomere length regulation by telomerase solving the end replication 

problem (adapted from stemcells.nih.gov/info/scireport/appendixC.asp accessed on 15 

April 2010). 
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hTERT gene is present as a single copy on chromosome 5 at 5p15.3 and encodes for a      

127 kDa protein with a net basic charge and c-terminal reverse transcriptase motifs. The 

hTERT adds hexameric repeats using its intrinsic RNA as a template for reverse 

transcription (Fan et al., 2003). The hTR gene is present as a single copy on chromosome 3 

at 3q26.3.  The RNA moiety is 445 nucleotides long with a 5‟-CUAACCCUAAC-3‟ 

template sequence (Collins and Mitchell 2002; Keith et al., 2002).  By reverse 

transcription, telomerase makes a DNA copy of its own RNA sequence, which is then 

fused to the 3‟ terminus of the chromosome. 

Telomerase activity is repressed in most somatic cells and telomeres progressively shorten, 

leading to proliferative senescence. Exceptions to these are male germ line cells, activated 

lymphocytes, proliferating progenitor cells hematopoietic proliferating stem-like cells, the 

common feature of these telomerase positive cells being their high regenerative capacity. 

Literature has shown considerable evidence proving that telomerase activity is regulated by 

cellular proliferation (Shay and Gazdar, 1997; Hiyama and Hiyama, 2003, Dome et al., 

1999 and Elenitoba-Johnson, 2001). Tumours bypass cellular senescence by abrogating 

important cell-cycle checkpoints like p53, p21, p16
INK4a

 and pRb. This leads to extended 

growth which leads to crisis (Wright et al., 2001; Cong et al., 2002) eventually leading to 

activation or upregulation of telomerase. Telomerase is found to be activated in 

approximately 85% of human cancer tissues which makes it an attractive target for anti-

cancer therapy. Furthermore, the biology of telomere and the telomerase holds substantial 

promise in uncovering the molecular process of the treatment of cancers (Shay and Gazdar, 

1997; Hiyama and Hiyama, 2003). 
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Some immortal cells can maintain telomere length even in the absence of telomerase via an 

alternative lengthening of telomere (ALT) mechanism. ALT is a non-conservative 

telomere lengthening pathway implicating homologous recombination and transfer of 

telomere tandem repeats between sister-chromatids wherein one telomere terminus  is 

invaded by another single-stranded DNA telomere which uses it as a copy template 

(Henson et al., 2002; Nittis et al., 2008). ALT can be characterized by heterogeneous 

telomere length and presence of abundant of promyelocytic leukaemia (PML) nuclear 

bodies at the telomeric level (Nittis et al., 2008).  These ALT-associated PML bodies 

(APBs) contain extrachromosomal telomeric DNA, telomere-specific binding proteins, and 

proteins involved in DNA recombination and replication. The mechanism for the 

regulation of ALT has not yet been fully elucidated and much remains to be identified. 

ALT adds complexity to the regulation of the telomere and poses a challenge for the 

development of anti-cancer therapies targeting the telomere (Henson et al., 2005; 

Jeyapalan et al., 2005; Jiang et al., 2005).  ALT, however, is a minor pathway and has been 

reported to be present in only 10% of the tumours and is not the focus of the current thesis. 

 

1.2.1 Regulation of telomerase by telomerase associated proteins 

 Telomerase is composed of two core subunits, telomerase reverse transcriptase hTERT 

which is the catalytic subunit of telomerase and a functional RNA subunit hTR which 

serves as a template for telomeric DNA synthesis (Elenitoba-Johnson, 2001). hTR is 

expressed in all tissues irrespective of telomerase activity, with cancer cells generally 

exhibiting a five fold higher expression than normal cells (You et al., 2006). Antisense 
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hTR experiments have shown to repress telomerase activity and mRNA levels of both hTR 

and hTERT thereby making it an important target in cancer therapy (You et al., 2006). 

hTERT is generally repressed in normal cells and upregulated in immortal cells, suggesting 

that hTERT is the primary determinant for the enzyme activity (Avilion et al., 1996).
 
On 

average, hTERT mRNA is estimated to be present between 1 to 30 copies per cell and is 

closely associated with telomerase activity (Yi et al., 2001; Shervington and Patel, 2008). 

Both, hTR and hTERT are required for the function of the telomerase enzyme (Cairney 

and Keith, 2008), and due to the complexity of hTR and hTERT regulations, this project 

mainly focused on the catalytic subunit (hTERT). 

Telomerase activity is regulated at multiple levels, one of which is the association of 

telomerase with various proteins such as human telomerase-associated protein 1, dyskerin, 

tankyrase, pontin and Hsp90. These proteins mediate and/or regulate the association of 

telomerase with the telomere. They also play a role in the assembly of the holoenzyme 

(Elenitoba-Johnson, 2001; Keith et al., 2007; Toogun et al., 2008). The human telomerase-

associated protein 1 (hTEP1), is the functional equivalent of the p80 component of 

Tetrahymena telomerase and associates with both hTR as well as hTERT (Harrington, 

1997). The precise mechanism and significance of this subunit still remains unclear, with 

only a few investigations suggesting that disruption of the protein has no effect on 

telomerase activity in vivo (Liu et al., 2000). Dyskerin is a crucial component of 

telomerase and is required for the stabilization of the RNA component of telomerase (Cong 

et al., 2002). A complex of hTERT, hTR and dyskerin has been proposed to be the protein 

composition of the catalytically active human telomerase in immortal cells (Cohen et al., 

2007).
 
ATPases pontin and reptin have been recently identified as telomerase components 
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playing a role in the assembly of telomerase. Pontin interacts with both hTERT and 

dyskerin (Venteicher et al., 2008). In addition, L22 and human staufen (hStau)
 
have also 

been reported to be associated with telomerase. The precise role of these proteins is still 

unclear, however it has been suggested that they play a role in the assembly of telomerase 

and in the processing and localization of hTR (Le et al., 2000). Recent findings have 

shown that La autoantigen interacts with hTR and influences telomere length in vivo (Ford 

et al., 2001).
 
Furthermore, TCAB1 (telomerase Cajal body protein 1) has been reported to 

act as a regulatory subunit of the telomerase holoenzyme by controlling telomerase 

trafficking. TCAB1 is required for telomerase synthesis and cajal body localization 

(Venteicher et al., 2009). Results from our laboratory have shown the presence of hTEP1, 

dyskerin, Tankyrase (Shervington et al., 2007)
 
and Hsp90 (Shervington et al., 2006) in 

glioma cell lines and tissues. 

Several telomere associated proteins influence telomerase which poses an additional step 

in the regulation of telomerase activity. These proteins play a part in regulating the 

recruitment and accessibility of the telomere to telomerase. These includes proteins such as 

telomere repeat factor 1 (TRF1) and factor 2 (TRF2) which negatively regulates telomere 

length; over expression of these proteins leads to telomere shortening (Smogorzewska et 

al., 2000). Tankyrase 1 and 2 are positive regulators of telomere length; they bind to TRF1 

and ADP-ribosylate, thereby inhibiting its binding to the telomere (Seimiya, 2006). In 

contrast, TRF1-interacting protein 2 (TIN2) protects TRF1 from being modified by 

tankyrase and negatively regulates telomere length (Kim et al., 2002).
 
The protection of 

telomere protein 1 (POT1) acts as a negative as well as a positive regulator of telomerase. 

As a negative regulator, it binds to the 3‟overhang thereby inhibiting access of telomerase 
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to the telomere and inhibits telomere elongation; as a positive regulator it stabilizes the 

open structure of the chromosome and helps in the recruitment of telomerase onto the 

telomere (Liu, 1999; Cong et al., 2002; Colgin et al., 2003). Besides these, TRF2 interacts 

with repressor activator protein 1 (hRap1) and the MRN complex Mre11/Rad50/Nbs1 

DNA repair complex (Karlseder et al., 1999). Also, heterogeneous nuclear 

ribonucleoproteins (hnRNPs), and poly(ADP-ribose) polymerase (PARP) have been 

reported to influence telomere length (Liu, 1999; Ford et al., 2001).  

 

 

Figure 1.3 Schematic representation of the composition of telomeric complexes, 

telomerase and their regulatory proteins (adapted from Hodes et al., 2002). 
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1.2.2 Regulation of hTERT by transcriptional factors 

There is numerous data that provides evidence that transcriptional regulation is one of the 

key regulating mechanisms of telomerase (Horikawa and Barrett, 2003).
 
hTERT gene is 

composed of 16 exons and 15 introns spanning more than 40 kb. Cloning of the hTERT 

promoter has revealed a GC-rich promoter which contains several sites for transcriptional 

binding factors and has no detectable TATA or CAAT boxes (Cong et al., 1998). The    

330 bp upstream has been reported to be the core promoter regulating hTERT activity 

(Takakura et al., 1999). In addition, hTERT promoter has also been shown to contain GC 

boxes that are potential binding sites for stimulating protein 1 (Sp1), a general transcription 

factor that binds to the promoter GC-box, enhancer and locus control regions to activate a 

large number of genes (Takakura et al., 1999; Janknecht, 2004). The presence of several   

E boxes (CACGTG), which are the binding sites for the Myc/Max/Mad network and 

upstream stimulatory factor (USF 1 / 2) have been reported. Myc/Max heterodimers and 

USF 1 / 2 act as activators (Cong et al., 1998; Janknecht, 2004; Flores et al., 2006)
 
in 

contrast with Mad/Max which act as a repressor complex (Cong et al., 1998, Cong et al., 

2002). Sequence analyses of the hTERT promoter have also revealed the presence of E2F 

transcription factor 1 (E2F-1) (Cong et al., 1998; Crowe et al., 2001) and two potential 

estrogen response elements (Janknecht, 2004). Estrogen activates telomerase in hormone 

sensitive tissues through a direct transcriptional regulation of hTERT (Cong et al., 1998; 

Janknecht, 2004). The Wilms‟ tumour suppressor 1 (WT1) (Cong et al., 2002; Oh et al., 

1999),
 
myeloid specific zinc finger protein 2 (MZF-2)

 
(Cong et al., 1998; Fujimoto et al., 

2000) and a novel transcription factor binding element MT box (Tzukerman et al., 2000) 

have also been identified within the hTERT promoter. Moreover, transcription factors such 
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as activator protein 1 (AP1), activator protein 2 (AP2), activating transcription factor 

(ATF), cAMP-responsive element binding protein (CREB), Ikaros2 (IK2), myoblast 

determining factor (MYOD), nuclear factor 1 (NF1), progesterone receptor (PR), and 

thyroid hormone receptor α (T3R α) have all been identified using MatInspector software 

(Cong et al., 2002; Horikawa et al., 1999).
 

The presence of all the above listed 

transcriptional factors suggests that hTERT expression is controlled at multiple levels. 

While oncogenes such as SV40, K-ras, Akt, protein kinase C, bcl-2, 2c-Abl, and oncogenic 

variants of HPV E6 proteins and  C-MYC induce hTERT expression, tumour suppressor 

genes such as pRB, autocrine transforming growth factor, p21 and Waf-131 actually 

suppress it (Elenitoba-Johnson, 2001; Cong et al., 2002; Horikawa and  Barrett, 2003). 

 

1.2.3 Regulation of telomerase by epigenetic, post-transcriptional and 

post-translation modifications 

The highly GC-rich CpG island has been identified within the hTERT promoter suggesting 

an allowance for epigenetic modulation via promoter methylation. Depending on the 

cellular context of the study undertaken, the CpG island methylation of the hTERT 

promoter is associated with either enhancing or repressing telomerase activity (Guilleret  

and Benhattar, 2003; Patel et al., 2008). Guilleret and Benhattar`s data demonstrated an 

upregulation of hTERT activity due to methylation
 
(Guilleret  and Benhattar, 2003), in 

contrast to the results obtained from our laboratory showing that inhibition of the DNA 

methyltransferase gene DNMT1 using siRNA, reduces telomerase activity (Patel et al., 

2008). 
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In addition to methylation, epigenetic modifications such as the modulation of nucleosome 

histones, play key roles in the regulation of the hTERT promoter (Kyo et al., 2008). 

Dynamic histone methylation
 
mediated by histone methyltransferases and demethylases 

regulate chromatin structure and hTERT transcription (Kyo et al., 2008). 

Telomerase activity can also be regulated by post transcriptional mechanisms. Kilian and 

colleagues were among the first to suggest that alternative splicing of hTERT transcripts 

may be an important regulatory mechanism of the telomerase activity (Kilian et al., 1997). 

To date, six alternative splicing sites have been proposed which includes two deletion sites 

and four insertion sites. These variants produce mRNA that lacks the critical reverse 

transcriptase motif. Out of the six splice variants, four insertion variants and one deletion 

(β site) variant result in premature termination of the translation process. The second 

deletion (α site) splice variant causes a 36 bp deletion within the reverse transcriptase motif 

and has been shown to inhibit telomerase activity causing telomere shortening and cell 

death. However, none of the splice variants have been able to reconstitute telomerase 

activity. It has also been demonstrated that cells can shift their expression from a full-

length active variant to a β-splice variant which is inactive (Ulaner et al., 1998; Yi et al., 

2001).
 

Post-translation modifications such as protein phosphorylation, can also regulate 

telomerase activity via mediators such as Akt and various isoforms of protein kinase C 

(Kang et al., 1999). Post-translational modifications of telomerase may also involve the 

interaction of hTERT with accessory proteins, chaperones, and polypeptide modifiers (Lee 

et al., 2004; Holt et al., 1999).  
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Increasing the complexity of telomerase regulation, a senescence-inducing gene on 

chromosome 3 has also been reported to suppress the telomerase activity in breast and 

renal carcinomas. Two regions on the short arm of chromosome 3 (3p21.3-p22 and 3p12-

21.1) where these regulatory genes may be located have been proposed, however the 

nature of these 3p genes still remains to be identified (Cuthbert et al., 1999). 

 

1.2.4 Regulation of telomerase by chaperone Hsp90 

The Hsp90 chaperone complex is the first known set of proteins that physically and 

functionally interact with human telomerase (Cong et al., 2002). They play a role in 

regulating the assembly and formation of an active telomerase by binding to hTERT, 

thereby influencing its assembly with hTR. Hsp90 chaperone complex is composed of at 

least Hsp90, p23, Hsp70, Hsp-organizing protein (HOP) and Hsp40.  Hsp90 and p23 are 

found to bind hTERT protein to promote the assembly of the active telomerase complex in 

vivo. Hsp70 and its counterpart, Hsp40, are known to provide energy to the Hsp90/p23 

complex and their physical interaction is facilitated by a unique co-chaperon, HOP (Cong 

et al., 2002; Holt and Shay, 1999). There are contrasting views about the requirement of 

these other chaperones as pre-requisites for telomerase activity (Forsythe et al., 2001; 

Shervington et al., 2006). Thus, Hsp90 plays a key role in telomerase regulation and is 

essential for efficient telomerase assembly (Forsythe et al., 2001; Shervington et al., 2006). 

The Hsp90 inhibitor, geldanamycin, has been shown to prevent the assembly of active 

telomerase (Shervington et al., 2006; Ford et al., 2001). Results from our laboratory have 
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shown that siRNA directed towards hsp90α not only completely silences hsp90α but also 

results in almost 90% silencing of hTERT (unpublished data).  

Hsp90 is an abundantly expressed and highly conserved protein belonging to the family of 

the heat shock proteins. It is a molecular chaperone and helps in the folding of several 

client proteins. It is involved in cell cycle progression, apoptosis, and plays a role 

in malignant phenotypes associated with invasion, angiogenesis and metastasis (Yi et al., 

2001). There are over 100 known Hsp90 client proteins which include many kinases, like 

epidermal growth factor receptor (EGFR) and cyclin dependent kinase 4 (CDK4), 

transcription factors such as estrogen and androgen receptors, Hypoxia inducible factor 1, 

p53, survivin and hTERT (Workman et al., 2007). Since Hsp90 client proteins have an 

effect on such a diverse range of cellular proteins, the therapeutic potential of targeting 

Hsp90 may be best appreciated by considering the possibility of simultaneously targeting 

the six hallmarks of a cancer cell. Hsp90 inhibition alters the various cancer dependencies 

and antagonizes all of the hallmark pathological traits of malignant cells (Xu and Neckers, 

2007) (Fig.1.4). Hence in this study silencing of hsp90 was selected as the indirect 

regulatory mechanism for inhibiting the activity of telomerase. 
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Figure 1.4 Diagramatic representation of how all the six hallmarks of cancer can be 

affected by the multiple Hsp90 client proteins (adapted from Xu and Neckers, 2007). 

 

1.3 Telomerase activity and its downstream effects (in 

vivo studies of telomerase) 

In addition to telomere maintenance, recent observations have indicated other complex 

roles of telomerase in cell proliferation, differentiation and DNA damage response (Calado 

and Chen, 2006). Suppression of telomerase activity in animal models has provided some 

useful data and clues. One such study showed that suppressing telomerase in the mouse 

model system reduced tumour invasion (Bagheri et al., 2006). Another study conducted in 
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mouse embryonic stem cells suggested that telomerase confers cellular resistance against 

apoptosis by antagonizing the p53 pathway (Lee et al., 2005). In vivo studies have 

highlighted a few unidentified roles of telomerase such as, a decrease in telomerase activity 

leads to an increased expression of tyrosinase, a key enzyme in melanin biosynthesis, the 

inhibition of telomerase activity results in down regulation of glycolytic pathway genes, 

which correlates with decreased glucose consumption and lactate production (Bagheri et 

al., 2006; Kondo et al., 1998). These studies have opened up new roles for telomerase in 

altering the energy state of the cells, thereby providing a model for explaining the 

mechanism by which an increase in telomerase activity can promote tumour invasion and 

metastasis (Bagheri et al., 2006; Kondo et al., 1998). 

Studies of animal models provides an excellent depiction of processes that take place 

inside the organism, this data increases the confidence level with respect to the processes 

taking place in vivo. However, research shows that many of the results obtained with 

animal cells are not transferable to human systems due to the high diversity in biochemical 

characteristics among the different species (Guilleret and Benhattar, 2003). Thus, it is 

essential to be able to study the protein levels in primary cultures to mirror the changes 

taking place in human cells.  

 

1.4 Proteomic studies of telomerase 

Though mRNA studies are informative they do not necessarily reveal the true picture of 

the condition of the cell because mRNA levels do not necessarily correlate with the cellular 

protein content. Proteins are often subjected to proteolytic cleavage, alternative splicing or 
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post-translational modifications, such as phosphorylation or glycosylation (Walsh et al., 

2005). The proteome is the cell-specific protein complement from the genome and 

encompasses all proteins that are expressed in a cell in a particular condition. An 

estimation of over 1.5 million proteins have been predicted to be a part of cancer proteome 

due to the various post translation and epigenetic changes (Khalil and Madhamshetty, 

2006; Alaoui-Jamali and Xu, 2006; Sun et al., 2007). In contrast to the genome, the 

proteome is dynamic and is in constant flux (Srinivas et al., 2002). Genomic studies alone 

will not be able to fully identify the fate of telomerase and hence the outcomes of these 

studies need to be complemented with proteomic data. Therefore, it is important to use 

proteomic methods which will generate a circuit of information on the various regulatory 

and downstream effects of telomerase that take place within the cancer proteome (Thakkar 

and Shervington, 2008). 

Very few proteomic based studies have been undertaken so far that target telomerase. A 

few significant proteomic studies on telomerase after the ectopic expression of hTERT 

have been summarised. Recombinant hTERT retrovirus transduction of human bone 

marrow mesenchymal stem cells (hMSCs) prolonged the life span of these cells and 

changed the cellular protein level (Huang et al., 2008). Proteomic analysis was carried out 

using two-dimensional gel electrophoresis and peptide mass fingerprinting by matrix-

assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrophotometry. 

Comparing the expression of these transduced cells with primary hMSCs, 20 differentially 

expressed proteins have been identified which highlights various non-catalytic functions of 

telomerase. These proteins are part of several biological processes that are related to 

proliferation and transformation of cells. Annexin A1 and Reticulocalbin 1, in particular, 
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are both calcium dependent proteins and have a direct effect on cell proliferation (Huang et 

al., 2008).  One of the important observations made was the significant down regulation of 

glutathione S-transferase P1 (GSTP1) in the transduced cells, suggesting that telomerase 

modified cells suffer less oxidative stress. The results of Annexin A1, Reticulocalbin 1 and 

GSTP1 (all downregulated) in primary and transduced cells did not correlate with the 

mRNA levels highlighting the importance of proteomics in identifying the post 

transcriptional and translational changes. The hTERT–hMSCs cells did not show 

tumourogenecity and this was also evident in the proteomic profile of the protein 

prohibitin, which remained unaffected in the treated as well as control cells (sustaining a 

consistent level of prohibitin causes a concomitant sustained level of p53 expression and 

prohibitin and p53 keep hTERT–hMSCs in a non-transforming status) (Huang et al., 

2008).  

The over expression of hTERT in human umbilical vein endothelial cells (HUVECs) 

resulted in their immortalization compared to their normal and senescent counterparts; 

however, no tumourgenic transformation was observed. Phenotypically, these transformed 

cells are similar to their normal counterparts. However, their protein expression profile 

assessed by two-dimensional differential in-gel electrophoresis (DIGE) technology 

followed by mass spectrophotometry analysis was different. Moreover, a number of valued 

proteins such as GSTP1, inter-cellular adhesion molecule 1 and carbohydrate 

sulfotransferase 3 were found to play a role in atherosclerosis which could be attributed to 

the presence of the senescent and hTERT immortalized endothelial cells in the 

atherosclerotic lesions (Changa et al., 2005). These findings shed light on a few 

downstream pathways influenced by telomerase and reveal the importance of performing a 
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proteomic study in order to trace the downstream effect of telomerase on various biological 

functions as well as disease formation processes (Changa et al., 2005). 

Mazzucchelli and colleagues extensively studied the effect of the hTERT transfection on 

the proteome of human fibroblast cells (WI38) (Mazzucchelli et al., 2008). Cytosolic and 

nuclear fractions of WI38 cells were subjected to a 2D-DIGE followed by MALDI-TOF-

TOF. This study confirms the correlation of Hsp90 with hTERT, playing an important role 

in the regulation of telomerase and tumour cell transformation (Mazzucchelli et al., 2008).
 

The over expression of Hsp90α reported in this study was consistent with the genomic data 

mentioned earlier which showed that Hsp90 is one of the major regulators of telomerase. 

Proteomic studies help to provide an additional dimension and conformation of existing 

genomic data. An interesting observation from this study was the upregulation of the cajal 

bodies (CBs) associated factors, which provide evidence that hTR localizes in CBs that 

could act as storage sites and deliver components of the telomerase complex when needed. 

This may shed light on the possible mechanism of the formation and transport of this 

holoenzyme.  

In addition to these regulatory proteins, it also identified a few proteins that are a part of 

the downstream pathways of telomerase (Mazzucchelli et al., 2008). For example, it 

supports the hypothesis that hTERT transfection enhances natural endoplasmic reticulum 

(ER) capacity and modulates Calcium cell signaling pathways potentially resulting in an 

over protection mechanism against endogeneous and exogeneous disorders. These results 

are in accordance with the identified down-regulation effect of the apoptotic effectors 

Galectin-1 and Annexin 5 (Mazzucchelli et al., 2008). 
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Thus, it is clear that hTERT proteomic studies have provided further evidence of the 

involvement of telomerase in other physiological processes besides telomere elongation, 

such as apoptosis, cell cycle regulation and ER homeostasis (Changa et al., 2005; Huang et 

al., 2008; Mazzucchelli et al., 2008). It is also apparent that hTERT induced cells are stress 

resistant and exhibit enhanced natural cell repair mechanisms. The significance of 

proteomic based studies on telomerase can therefore  

i) Underpin the regulation of this complex enzyme itself, as evident by the cajal bodies,  

ii) Highlight the post-translational changes which may not be detected by genomic studies 

as in the case of GSTP1,  

iii) Reinforce the hypothesis put forward by genomic studies as evident with Hsp90, 

annexin 1 and others,  

iv) Shed light on the downstream effect of telomerase in the various biological processes.  

These studies have provided us with a model for proteomic investigations aimed at 

deciphering telomerase regulation and evaluating anti-telomerase drugs that induce 

proteome alterations. 

Thus, it is evident that besides the canonical functions of telomerase, it is also involved in 

various other proinvasive and prometastatic pathways. Although the importance of 

telomerase for tumour proliferation is well documented, very little is known about the 

downstream effect of telomerase on the various physiological and signaling pathways. 

Silencing telomerase at the genetic level highlights the changes caused in the cancer 
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proteome and may identify the potential downstream pathways controlled by telomerase in 

tumour progression and maintenance (Fig 1.5) 

 

Figure 1.5 Non catalytic functions of telomerase as reported by various proteomic 

studies. 

 

1.5 Telomerase a future prognostic and diagnostic marker for 

cancer 

Telomerase activity is detected in almost all cancers, to include breast, head, neck, lung 

and skin and is found to be activated in the early stages of these cancers. However, in 

colon, pancreas and thyroid it is activated in late pathogenesis (Shay and Gazdar, 1997, 

Hiyama and Hiyama, 2003). It is possible to predict survival rates in patients with -cell 



44 

 

chronic lymphocytic leukaemia by measuring telomerase expression (Terrin et al., 2007). 

In patient with Wilms‟ tumour, a correlation between high hTERT mRNA levels and 

tumour reoccurrence has been established (Dome et al., 1999). 

Neuroblastoma studies have shown poor outcomes in the late-stages of the disease 

associated with high telomerase activity. Though the activation of telomerase is not 

concomitant with carcinogenesis in human tumours, the overall prevalence of telomerase 

activity in 85% of human tumour samples involving more than 3000 samples tested using 

the telomeric repeat amplification protocol (TRAP) assay, makes telomerase activity the 

most universal marker for human cancers (Shay and Gazdar, 1997, Hiyama and Hiyama, 

2003).
 
Telomerase inhibition enhances chemosensitivity towards drugs such as cisplatin 

and can be used as an adjuvant therapy (Elenitoba-Johnson, 2001; Kiyozuka et al., 2000), 

hence telomerase can be advocated as a potential prognostic or diagnostic marker of the 

future.  

 

1.6 Telomerase and glioma 

Of all the benign and malignant brain and central nervous system (CNS) tumours, 

gliomas are the most common, accounting for approximately 45-50% of all those 

diagnosed (Phatak and Burger, 2007). Glioma refers to tumours that arise in glial cells; 

these tumours are typically the most aggressive primary tumours in the central nervous 

system (CNS) (Morii et al., 1997). Based on their histology gliomas are classified into 

four grades according to the World Health Organization (WHO). Grades I and II are 

indicated as low-grade glioma, and Grade III is referred to as anaplastic astrocytoma, 
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while Grade IV is referred to as glioblastoma multiforme (GBM), both of which are 

malignant gliomas (Morii et al., 1997; Phatak and Burger, 2007). 

Malignant gliomas are among the most lethal and intractable of all human tumours due to 

its aggressive and invasive nature (Pillai et al., 2004). While less than 20-30% malignant 

gliomas respond to chemotherapy, surgery presents constraints due to the diffused nature 

and close proximity of tumours to vital anatomy (Pouratian et al., 2007). GBM has a 

median survival rate of 9 to 12 months (Pouratian et al., 2007).
 
Gliomas account for 1.6% 

of all cancers in England and Wales. Of all the cancers, glioma is the 12
th

 most common 

cancer in males, and the 15
th

 most common in females with a survival rate of 12–13% for 

males, and 15% for females. Survival rates depends on the grade of glioma with low grade 

glioma having the highest survival rates (Pulkkanen and Yla-Herttuala, 2005; Ohgaki and 

Kleihues, 2005).
  

Malignant gliomas are usually refractory to therapy and despite 

multidisciplinary approach the prognosis of glioma and the clinical outcome remains very 

poor. Efforts are being focused on developing new treatments that could simultaneously 

affect multiple signaling pathways in glioma.  

It has been demonstrated that chemosensitivity of gliomas is related to telomerase 

activity. Langford et al. first reported the presence of telomerase activity in glioma in 

1995 where he established a correlation between telomerase activity and rate of 

malignancy. Other reports also show that the incidence of telomerase expression closely 

correlates with the grade of malignancy in glioma (Komata et al., 2002). In malignant 

gliomas, telomerase is positive in 10-100% of anaplastic astrocytomas and 26-100% of 

GBM; in contrast to the telomerase activity of 0% and 0 to 33% in Grade I and II of 

glioma, respectively (Langford et al., 2005; Mattei et al., 2005; Harada et al., 2000). It 
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is also reported that the level of telomerase activity and hTERT expression is 

significantly higher in secondary glioblastomas than in primary (Harada et al., 2000; 

Chen et al., 2006). In particular, malignant gliomas are one of the best candidates for 

telomerase targeted therapy. The fact that malignant glioma are predominantly 

telomerase positive whereas normal brain tissues do not express telomerase makes 

telomerase a very attractive target and an extremely useful prognostic and diagnostic 

marker of glioma (Yin et al., 2007).  

Studies in our laboratory have show that hsp90α is expressed in both glioma tissue and cell 

lines whereas it was absent in normal brain tissues and cell lines, making it an important 

target in glioma cells. Predesigned siRNAs were used to inhibit hsp90α at the post 

transcriptional level. siRNA oligo 3 directed towards exon 9 was reported as the most 

efficient oligo for silencing hsp90α after 24 hr in glioma cell lines (Cruickshanks et al., 

2010).  

 

1.7 Current project 

The activity of telomerase can be regulated at multiple levels. One such aspect is the 

regulation of telomerase by various telomerase and/or telomere associated proteins which 

either mediate or regulate the association of telomerase with the telomere. Previous results 

from our laboratory have shown that siRNA directed towards hsp90α not only completely 

silences hsp90α but also results in almost 80% silencing of hTERT. Hence in this study, 

two different approaches regulating telomerase activity was used in order to inhibit 

telomerase activity and to study the downstream effect of this inhibition. Direct silencing 
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of the catalytic subunit hTERT, by siRNA was used as the first regulatory mechanism to 

inhibit telomerase activity. The second approach involved an indirect mechanism of 

telomerase regulation by silencing the hsp90α chaperone. In order to characterize the 

changes caused due to the inhibition of telomerase by the two approaches, a differential 

proteomic analysis was performed to compare wild type U87-MG cells, U87-MG cells 

after silencing hTERT (U87-MG-sihTERT) and U87-MG cells after silencing hsp90α 

(U87-MG-sihsp90α).  

The approach of studying the changes induced at the cellular protein after silencing the 

hTERT gene has never been attempted before. This study, for the first time, elucidates 

relationships between the direct and indirect effect of silencing two telomerase regulatory 

mechanisms. Although the importance of telomerase for tumour proliferation is well 

documented, very little is known about the downstream effect of telomerase on the various 

physiological and signaling pathways. Silencing telomerase at the genetic level with a view 

to identify the potential downstream pathways controlled by telomerase in glioma is novel. 

The aims of this thesis were to: 

1) Establish the best siRNA oligo treatment for the inhibition of telomerase activity by 

targeting two different regulatory mechanism of telomerase. 

2) Perform a differential proteomic ananlysis with a view to study the downstream 

effect of silencing two different, telomerase regulatory mechanisms on the cancer 

proteome. 
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2.1 Cell culture 

2.1.1 Cell Lines 

In this study, three glioma cell lines were primarily used, namely grade I astrocytoma, 

which expressed a mutant p53 (1321N1), grade II/III astrocytoma/ oligodendroglioma 

(GOS-3), grade IV glioblastoma (U87-MG). The cell lines were purchased from the 

European Collection of Cell Cultures (ECACC) and the American Type Culture Collection 

(ATCC) and were from human origin. There was no evidence for the presence of any 

infectious viruses or toxic products (routine mycoplasma testing was performed on the cell 

line). Cells were received in 1 ml plastic cryotubes as frozen ampoules and were present in 

an appropriate freezing medium with 10% (v/v) dimethylsulphoxide (DMSO). The cell 

lines were handled as recommended by the Advisory Committee on Dangerous Pathogens 

(ACDP) for Category 2 containment. 

2.1.2 Media and reagents  

Complete medium for cell growth was aseptically prepared by the addition of supplement 

as recommended by ECACC/ATCC. For U87-MG cell line, Eagle's Minimum Essential 

Medium (EMEM) was used as the cell culture medium with a formula consisting of 2.2 g/l 

sodium bicarbonate, 1 g/l glucose Earle‟s salt and 0.0053 g/l phenol red. EMEM was 

supplemented with 10% Fetal Bovine Serum (FBS), 2 mM L-glutamine and 1% Non 

essential amino acids. Dulbecco's-Modified Eagle's Medium (DMEM) was used as a cell 

culture medium for 1321N1 and GOS-3. It was composed of 25mM Hepes 1.0 g/l glucose 

1.0 mM sodium bicarbonate 0.011 g/l phenol red. DMEM was supplemented with 10% 
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FBS, 2 mM L-glutamine. The completed medium was pre-incubated overnight before cells 

resuscitation.  

 To calculate the volumes of supplements added to the medium the following formula was 

used 

                                         v =  b x c 

                          a 

 

Where                          a = stock concentration 

b= required final concentration 

c= final reaction volume 

v= required volume 

 

 After the addition of the supplements the medium was mixed and labelled with the date of 

preparation. This was stored at 4°C for a maximum of two weeks. Composition of 

supplements and reagents used for cell culture are detailed in Table 2.1. 
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Table 2.1 Reagents and chemicals used in cell culture  

Reagents Supplier Components 

 

Foetal bovine serum 

 

Gibco BRL 

 

Heat inactivated foetal bovine serum 

 

Non essential amino acid 

 

Sigma 

 

100 x Non essential amino acid 

 

L-glutamine 

 

Sigma 

 

200 mM L-glutamine 

 

Phosphate buffer saline 0.1M 

 

Sigma 

 

8 g/l Sodium chloride 

0.2 g/l Potassium chloride 

 

DMSO 

 

Sigma 

 

Dimethyl sulfoxide 99.5% 

 

Trypan blue (0.4%) 

 

Sigma 

0.81% Sodium chloride 

0.06% Potassium phosphate dibasic 

 

2.1.3 Resuscitation of frozen cells 

Each medium was pre-warmed in a water bath at 37°C before the frozen ampoules 

(containing the cells) were thawed. The following protocol was used, as suggested by 

ECACC: 

1. Cell line was thawed at 37°C in a water bath for 1-2 min. 

2. Thawed cells were immediately re-suspended into 2 ml of growth medium to 

remove the freezing medium and centrifuged at 150 x g for 5 min.   

3. The supernatant was discarded and the pellet was resuspended in 2-3 ml of 

medium and was aliquoted into two flasks of 25 cm
2
. 
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4. Appropriate medium (5 ml) was added into each flask then mixed manually by 

rocking the flask backward and forward.  

5. The flasks were labelled with the name of the cell line, passage number and date.  

6. These flasks were then incubated at 37°C with 5% CO2 in filtered air. 

 

2.1.4   Subculture and cell library maintenance 

The cells were observed under the light microscope following overnight incubation. 

When a mono-layer growth of 70-80% confluence was obtained, the cells were scraped 

and subcultured. However, for slow growing cells the medium was changed every 48 

hours of incubation in order to maintain enough nutrients for the cells.    

The cells were scrapped and subcultured as follows: 

1. The culture medium was removed and the cells were washed with 1 x phosphate 

buffer saline (PBS) pH 7.4 to remove any excess medium.  

2. Cells were gently scraped using a disposable scraper. 

3. To ensure that all the cells were detached and floating, they were examined using a 

phase contrast microscope. 

4. The cells were then re-suspended in 8 ml of media and were transferred to a 15 ml 

centrifuge tube and were centrifuged at 1000 rpm for 5 min. A suspension of 20 μl 

of cells was collected in an eppendorf tube for cell quantification. 

5. For passaging, the cell pellet was resuspended in 8 ml of growth medium and an 

appropriate aliquot (approximately 2 x 10
4
 cells/cm

2
) was transferred to a new 

75cm
2
 flask containing 10 ml of growth medium. The flask was suitably labelled 
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with the name of the cell line, passage number and date and then incubated under 

ordinary culture conditions. 

6. Alternatively, for cryopreservation, 1 x 10
6
 cells were re-suspended in a cell 

freezing medium (complete culture medium with 10% DMSO) in 1 ml 

cryoprotective ampoules, labelled with the cell line name, passage number and 

date. 

7. The ampoules were placed into a Mr Frosty passive freezer (Nalgene, UK) filled 

with isopropanol and placed at -80°C overnight.  

8. Following overnight storage, the ampoules were then transferred into -195°C liquid 

nitrogen container.  

9. A data entry log book was maintained which had a record of the position of storage 

in liquid nitrogen, to make it easy to be traced at a later date for further use.  

10.  For mRNA isolation 2  10
6 

cells were frozen. These cells were stored as pellets at 

-80°C without the freezing medium.  Cells required for immunofluorescence were 

cultured in chamber slides, and fixed with paraformaldehyde. Cells required for 

luminescent cell viability assay were seeded in 96 well opaque-walled multiwell 

plates.   
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2.1.5 Quantification of cells and cell viability 

Cells were quantified as follows: 

1. Cell aliquots (20 μl) (section 3.1.4) were diluted 1:1 with trypan blue (Freshney, 

1987) to identify the number of viable cells. 

2. A haemocytometer was prepared by attaching the cover slip with a slight pressure 

to create Newton‟s refraction rings.   

3. Both sides of haemocytometer chamber were filled with the stained cell suspension 

and the cells were counted under a light microscope using x 20 magnification. 

Viable cells were observed as glowing cells, whereas non viable cells were stained 

blue. 

4. Cell viability was calculated as a percentage using the following equation: 

 

Total number of cells counted/ml = total viable cells + total dead cells x 10
4
. 

Percentage of non viable cells =      Non viable cells     x   100 

                                                                    Total number cell 

 

2.1.6 Tumour specimens 

Tissue specimens, which included three control and fifteen tumour tissue specimens, were 

provided by courtesy of Royal Preston Hospital, United Kingdom. All the work on tissues 

was performed after obtaining ethical approval from the North Manchester Research Ethics 

Committee under REC Ref: 06/Q1406/104 as well as the Ethics Committee at the 

University of Central Lancashire. Written consent was also obtained from the donors. 

Control tissues were obtained from patients who required resection of normal brain for 
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purposes other than primary glioma treatment whereas the tumour specimens were 

acquired from glioma cancer patients. 

For each patient, the sample was surgically dissected and frozen immediately in liquid 

nitrogen until required for assay. Biopsy tissues were fixed in 10% Formol Saline for 24 

hours and processed through an automated processor (carried out by neurosurgeons and the 

Pathology Department at the Royal Preston Hospital).  

 

2.2. mRNA isolation 

The mRNA was isolated using the mRNA isolation kit (Roche-Diagnostics, UK) which 

isolates mRNA without preparing total RNA. It is a safe method as no aggressive organic 

reagents are used and the mRNA isolated from this kit was of the highest purity.  

The principle of this kit is that, the (A)
+
 tail of mRNA hybridizes to a biotin-labelled 

oligo(dT)20 probe. These biotinylated hybrids are in turn captured by streptavidin-coated 

magnetic particles. A magnetic separator is then used to capture these magnetic particles. 

Excess fluid is then removed by washing with PBS buffer and finally the mRNA is eluted 

from the particles by incubating with redistilled water (Roche-Diagnostics, Germany). 

 The mRNA was isolated following the manufacturer‟s protocols as shown in the 

schematic diagram (Fig 3.1). The composition of all reagents and buffers used are shown 

in Table 2.2. 



56 

 

 

Figure 2.1 Schematic diagram showing the principle of mRNA isolation (Roche 

diagnostic, UK). 
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Table 2.2 Materials and reagents provided in mRNA isolation kit. 

      Reagents                                     Components 

Lysing Buffer 0.1 M buffer, 0.1 M LiCi, 10 mM EDTA, 1% lithium 

dodecylsulfate and 5mM DTT (dithiothreitol) at pH 7.5 

Streptavidin magnetic 

particles 

(10 mg/ml) in 50 mM Hepes, 0.1% bovine serum albumin,       

0.1% chloracetamide and 0.01% methylisothiazolone at       

pH 7.4 

Oligo(dT)20 probe, biotin 

labelled 

100 pmol biotin labelled oligo (dT)20 per μl redistilled water  

Washing buffer 10 nM Tris buffer, 0.2 M LiCi and 1 mM EDTA at pH 7.5 

Redistilled water RNAse free 

Storage buffer 10 mM Tris buffer, 0.01% methylisothiazolone,  pH 7.5 

 

The isolation procedure was followed according to the number of cells and the 

manufacturer‟s recommendation. In this study 2 x10
6 

cells were used to isolate mRNA 

following the recommended highlighted protocol in Table 2.3. 
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Table 2.3 Materials and reagents adjusted for the number of cells for mRNA isolation. 

Reagents 1 x 10
8
 2 x 10

7
 1 x 10

7
 2 x 10

6
 2 x 10

5 

 

Lysing buffer 

 

15 ml 

 

3 ml 

 

1.5 ml 

 

0.5 ml 

 

0.1 ml 

 

 

Streptavidin magnetic  

Particles 

1.5 ml 

(15 mg) 

300 μl 

(3 mg) 

150 μl 

(1.5 mg) 

50 μl 

(0.5 mg) 

50 μl 

(0.5 mg) 

 

 

Lysing buffer for 

preparation of streptavidin  

magnetic particles 

 

 

2.5 ml 

 

 

500 μl 

 

 

250 μl 

 

 

70 μl 

 

 

70 μl 

 

Oligo (dT)20 biotin 

labelled 

15 μl 

1.5 nmol 

3 μl 

0.3 nmol 

1.5 μl 

150 pmol 

0.5 μl 

50 pmol 

0.5 μl 

50 pmol 

 

 

Washing Buffer 

 

3 x 2.5 ml 

 

3 x 500 μl 

 

3 x 250 μl 

 

3 x 200 μl 

 

3 x 200 μl 

 

 

Redistilled water 

 

250 μl 

 

50 μl 

 

25 μl 

 

10 μl 

 

5 μl 

 

The volume of reagents used in this study is highlighted in the shaded column.
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Procedure: 

1. Cells were washed three times using ice cold PBS to remove excess medium as 

this could interfere with UV spectrophotometric analysis.  

2. Appropriate volume of lysing buffer was then added to the cell pellet as shown 

in Table 3.3 and cells were mechanically sheared six times using 21G needle. 

3. 0.5 µl of biotin-labelled oligo (dT)20 probe was added to the lysate and allowed 

to hybridise with mRNA 37°C for 5 min. 

4. Simultaneously, 50 µl of streptavidin magnetic particles was aliquoted into a 

sterile eppendorf tube. Streptavidin magnetic particles were separated from the 

storage buffer using the magnetic separator. These particles were then washed 

once in 75 μl of lysing buffer to remove any excess storage buffer.  

5. Following magnetic separation and disposal of the supernatant, the prepared 

particles were resuspended in the dT-mRNA hybrid mixture and were incubated 

at 37°C for 5 min to achieve immobilisation. 

6. The hybrid-linked particles were magnetically separated from the fluid and the 

supernatant was discarded.   

7. Magnetic particles were then resuspended thrice in washing buffer (3 × 200 µl) 

which quantitatively removed all contaminants.  

8. After the final wash the supernatant was discarded and the mRNA was eluted 

from the magnetic particles by the addition of 10 μl redistilled water followed 

by incubation at 65°C for 2 min. 

9. mRNA was separated from the magnetic beads using the magnetic separator  

10. The supernatant containing the mRNA was stored at –20°C in RNAse free 

eppendorf tube.   
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2.2.1 Quantification of nucleic acid by UV spectrophotometry 

Optical density (OD) was applied at wavelengths of 260 nm and 280 nm to quantify the 

isolated mRNA using gamma thermo Helios spectrophotometer (Thermospectronics, 

UK).  mRNA was diluted with of 1x TAE buffer (400 mM Tris, 0.01 M EDTA; pH 

8.3) at a ratio of 1:199. The OD of diluted sample was measured and the concentration 

of the mRNA was calculated using the readings at 260 nm. The standard formula used 

was:  

An emission of 1 OD = 40 μg/ml for single-stranded (ss) RNA. 

The purity of isolated nucleic acids was determined using the ratio of 260/280 nm. A 

ratio of   1.9 - 2.1 indicated the presence of pure (ss) RNA. 

The concentration of the isolated mRNA samples were calculated as follows: 

A260 reading × 250 (dilution factor) × 40 (ssRNA) = Concentration (µg/ml) 

 

2.2.2 Analysis of nucleic acid by alkaline gel electrophoresis 

Alkaline gel was used to analyse the isolated mRNA which helped to determine 

whether the isolated mRNA was degraded or intact. 

 

Procedure: 

1. A gel of 2% concentration was prepared by dissolving 0.6 g of agarose powder 

in 30 ml distilled water 

2.  The gel solution was heated in a domestic microwave at maximum power 

(100%) for 1-2 minutes until a transparent molten solution was formed.   
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3. The solution was cooled to 50°C before the addition of NaOH and EDTA (from 

the stock 10 N NaOH and 0.5 M EDTA) to achieve a final concentration of 50 

mM and 1 mM, respectively.  

4. The solution was mixed and poured into the prepared electrophoresis tank set 

with the comb in place and allowed to solidify for 30-45 min.  

5. Upon solidification, the running buffer with a final concentration of 50 mM 

NaOH and 1 mM EDTA in distilled H2O was added in the gel tank. 

6. The comb was removed from the gel and the samples containing loading dye in 

1: 4 dilution were loaded onto the gel. 

7.  The gel was electrophoresed at 50 V for 1-2 h. 

8. A stock solution of ethidium bromide was prepared by dissolving 10 mg 

ethidium bromide tablet in 10 ml of distilled H2O to obtain a final concentration 

of 1 mg/ml.  

9.  After the electrophoresis was complete the gel was stained in fresh 0.4 µg/ml 

ethidium bromide for approximately 10 min and then destained in distilled H2O. 

10. GENE GENIUS bioimaging system (Syngene, UK), a fully automated gel 

documentation and analysis system was used to analyse the gel. 

The Syngene gel analyser or GENE GENIUS (Syngene, UK) with the software 

Genesnap (Syngene, Cambridge UK) is a comprehensive and fully automated system 

for all UV and white light fluorescence applications.  

Safety precautions were adopted while handling ethidium bromide since it is mutagenic 

and is suspected carcinogen.  
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Table 2.4 Materials and reagents used for gel electrophoresis. 

Reagent Supplier Preparation Working concentration 

 

Ultrapure agarose 

 

Gibco BRL 

0.6 g/2 gAgarose 

30/100 ml 1x TBE. 

Solubilized by 

boiling in a 

microwave for 3-4 

minutes 

 

 

2% w/v 

10x TBE 

(Ultrapure 10x Tris 

borate EDTA 

electrophoresis buffer) 

Sigma 1 M Trizma base 

0.9 M  1 Boric acid 

0.01 M EDTA 

Diluted to 1x 

concentration with 

distilled water 

                   1x 

 

Gel loading dye 

 

Sigma 

0.25% w/v 

Bromphenol blue 

0.25% w/v Xylene 

cyanole 

40% w/v Sucrose 

Supplied ready for 

use 4x concentration 

 

                  1:4 

sample:dye 

 

Ethidium bromide 

10 mg/ tablet 

Amresco 10 ml Distilled 

water. Diluted to 0.5 

μg/ml  with distilled 

water 

                  1:20 

Molecular marker 

(100bp) 

Sigma 100 μg supplied 

ready for use 

                1 μg/ml 
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2.3 Complementary DNA Synthesis (cDNA) 

mRNA was reverse transcribed using the First strand cDNA synthesis kit which 

harnesses AMV Reverse Transcriptase enzymes isolated from Avian Myeloblastosis 

Virus (Roche Diagnostic, UK). The cDNA strand was synthesised by the AMV 

Reverse Transcriptase at the 3‟-end of the poly (A) – mRNA. Oligo dT was used as a 

primer. Since cDNA was used for the analysis of various genes, universal oligo (dT)15 

primer rather than gene specific primers was used. 

RNAse inhibitor and AMV reverse transcriptase were thawed on ice; all other solutions 

were thawed at room temperature and kept on ice after thawing. All reagents were 

vortexed and briefly centrifuged before starting the procedure.  

A master mixture was prepared to achieve consistency between samples. The amount 

of mRNA added depended on the concentration of the mRNA isolated. The 

recommended 100 ng of poly (A)
+ 

RNA was used. 

The composition of the reagents provided in the kit and the volume of reagents used are 

shown in Table 2.5 and Table 2.6, respectively. 
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Table 2.5 Reagents provided with the kit for cDNA synthesis. 

 

 

 

 

 

 

 

 

 

Reagent Formula 

 

Reaction Buffer (10 x) 

 

100 mM Tris, 500 mM KCl; pH 8.3 

 

MgCl2 

 

25 mM 

 

Deoxynucleotide mixture 

 

dATP, dCTP, dTTP,dGTP; 10 mM each 

 

Gelatin 

 

0.5 mg/ml (0.05% [w/v]) 

 

Oligo-p(dT)15 Primer 

 

0.02 A260 units/µl (0.8 µg/µl) 

 

Random Primer p(dN)6   

 

0.04 A260 units/µl (2 µg/µl) 

 

RNase inhibitor 

 

50 units/µl 

 

AMV Reverse Transcriptase 
 

≥ 25 units/ µl 

 

Control Neo pa RNA 

 

0.2 µg/µl; 1.0 kb in length with 19-base 3'-Poly(A) 

tail 

 

Sterile Water 
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Table 2.6 Volumes of reagents and their final concentration. 

Reagent   Volume                                               Final concentration 

 

10x Reaction Buffer 

 

2.0 µl 

 

1 mM 

 

25 mM MgCl2 

 

4.0 µl 

 

5 mM 

 

Deoxynucleotide Mix 

 

2.0 µl 

 

1 mM 

 

Primer Oligo-p(dT)15  

 

2.0 µl 

                                                     

0.04 A260 units (1.6 µg) 

 

RNAse inhibitor 

 

1.0 µl 

 

50 units 

 

AMV reverse transcriptase 

 

0.8 µl 

 

≥20 units 

 

Sterile water variable         (depend on the amount of mRNA added) 

 

RNA sample variable (depend on the concentration of isolated mRNA 100 ng mRNA 

was added)  

 

Final volume for one sample =          20.0 µl 

 

Procedure: 

1. The master mixture was briefly vortexed and centrifuged and 11.8 μl of the 

master mixture was aliquotted  into sterile microfuge tube. 

2. Appropriate amount of mRNA was added to achieve a final concentration of 

100 ng. 

3. Sterile water was added to make the final volume of 20 μl. 
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4. The mixture was briefly vortexed, centrifuged and incubated at 25°C for 10 min 

which allowed mRNA and primer annealing. 

5. The mixture was further incubated at 42°C for 60 min where the mRNA 

template was reverse transcribed into single-stranded cDNA. 

6. As the final step, the mixture was then incubated at 99°C for 5 min which 

denatured the AMV Reverse Transcriptase. 

7. The sample was then cooled to 4°C for 5 min and was stored at -20°C until 

required. 

 

2.4. Use of Bioinformatics to establish gene information 

and primers 

 

Bioinformatics is defined as a technique of conceptualising biology in terms of 

molecules (in the sense of physical chemistry) and applying "informatics techniques" 

derived from disciplines such as applied mathematics, computer science and statistics 

to understand and organise the information associated with these molecules, on a large 

scale (Oxford English Dictionary). In short, bioinformatics is management information 

systems for molecular biology and has many practical applications. 

Bioinformatics encompasses a wide range of subject areas from structural biology, 

genomics to gene expression studies and stores, organizes data and provides specialized 

tools to view and analyze the data generated by biological scientists throughout the 

world (Kim, 2007). The ultimate goal of the field is to enable the discovery of new 

biological insights as well as to create a global perspective from which unifying 
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principles in biology can be discerned. The World Wide Web has become an essential 

feature to the world of bioinformatics, as it makes DNA, RNA and protein data 

available to users throughout the world through databases such as National Centre for 

Biotechnology Information (NCBI), GenBank (USA), European molecular biology 

laboratory (EMBL) (Europe) (Fenstermacher, 2005). The present accomplishments of 

bioinformatics hold substantial promise to revolutionize the medical world. 

Various bioinformatics softwares have been used in this study, each of which have been 

listed and described below. 

 

2.4.1 Gene location and gene mRNA sequence using National Centre 

for Biotechnology Information (NCBI) 

The location of each of the genes used in this study was found using public databases 

which are held by GeneCards and from NCBI.  NCBI provides the GenBank DNA 

sequence database. In addition to GenBank, it also provides tools such as online 

mendelian inheritance, molecular modeling database for 3D protein structures, database 

of Single Nucleotide Polymorphisms (dbSNP), gene map of the human genome, human 

gene sequence collection and taxonomy browsers.  

GeneCards is an integrated database of human genes which provides a concise 

integrated summary on various genes, extracted from major public and proprietary 

databases.  With Genecards it is possible to attain a gene annotation from over 40 

mined resources (Shmueli et al., 2003). 

 The nucleotide sequence of the genes of interest was established using the public 

databases (GenBank, EMBL, SwissPort) held by the NCBI. Gene location data 
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obtained from Genecards, along with the diagrammatic representation of each gene 

locus obtained from NCBI was generated for hTERT, hsp90α, vimentin and GAPDH 

(Figures 2.2-2.5).   

These websites can be accessed at: 

GeneCards = http://genome-www.stanford.edu/genecards/index.shtml 

NCBI 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=nucleotide&cmd=search&term 

 

2.4.2 Primer design using Primer 3 

Sequences obtained from the NCBI database were used to design primers using the 

primer 3 software. These primers were then used in the polymerase chain reaction 

(PCR) to amplify the gene of interest.  For designing primers which would give yields 

of the specific amplicon in question the following parameters are generally followed: 

a) The primer should be approximately 20 nucleotides in length. Although long primers 

are more specific, they have higher annealing temperatures but are less efficient, 

because thermodynamically the annealing takes longer.  

b) It should have a G/C and A/T content similar to or higher than that of the sequence 

to be amplified.  For example, a primer, which is 20 nucleotides long, normally 

corresponds to 45-55% GC content. It should have a melting temperature between 55 

and 65
o
C (Dieffenbach et al., 1993).  

Primers with melting temperatures above 65 
o
C have a tendency for secondary 

annealing. Within a primer pair, the GC content and Tm should be well matched. Poorly 

http://genome-www.stanford.edu/genecards/index.shtml
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=nucleotide&cmd=search&term
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matched primer pairs can be less efficient and specific because loss of specificity arises 

with a lower melting temperature (Tm). Thus, PCR primers should maintain a 

reasonable GC content. Oligonucleotides 20 bases long with a 50% G + C content 

generally have a melting Tm values in the range of 52-58 
o
C. This provides a sufficient 

thermal window for efficient annealing (Dieffenbach et al., 1993).  

 Primer 3, can be accessed at:   

http://frodo.wi.mit.edu/cgibin/primer3/primer3_www.cgi 

The output from gene locations and primer designs for hTERT, hsp90α, 

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and vimentin can be found in 

Fig 2.2, 2.3, 2.4, and 2.5 respectively. 

 

 

 

 

 

 

 

 

 

 

 

http://frodo.wi.mit.edu/cgibin/primer3/primer3_www.cgi
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A. 

  

B. 

 

Figure 2.2 Bioinformatic data generated for hTERT  

 A) The gene location for hTERT on its respective human chromosome denoted by the 

red bar (taken from GeneCards database). B) Primer 3 output for hTERT showing 

annealing temperature, GC %, primer sequence and amplicon size (adapted from 

Primer 3). 

 

hTERT Primer3 Output 

 
 

Using 1-based sequence positions 

OLIGO        start len  tm    gc%   any    3'  Primer sequence 

LEFT PRIMER  857   20  60.05  55.00 2.00  1.00 cgtggtttctgtgtggtgtc 

RIGHT PRIMER 1070  20  60.01  60.00 5.00  1.00 ccttgtcgcctgaggagtag 

SEQUENCE SIZE: 3979 

INCLUDED REGION SIZE: 3979 

 

PRODUCT SIZE: 214, PAIR ANY COMPL: 2.00, PAIR 3' COMPL: 1.00 

 

cgtggtttctgtgtggtgtcacctgccagacccgccgaagaagccacctctttggagggtgcgctct 

>>>>>>>>>>>>>>>>>>>>  

 

ctggcacgcgccactcccacccatccgtgggccgccagcaccacgcgggccccccatccacatcgcg 

 

 

gccaccacgtccctgggacacgccttgtcccccggtgtacgccgagaccaagcacttcctctactcc 

                                                            <<<<<<< 

tcaggcgacaagg 

<<<<<<<<<<<<< 

 

Key:       

             >>>>>> - Left / (sense) forward primer binding site  

<<<<<< - Right / (anti-sense) reverse primer binding site 

http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www_results_help.cgi#PRIMER_START
http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www_results_help.cgi#PRIMER_LEN
http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www_results_help.cgi#PRIMER_TM
http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www_results_help.cgi#PRIMER_GC
http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www_results_help.cgi#PRIMER_ANY
http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www_results_help.cgi#PRIMER_REPEAT
http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www_results_help.cgi#PRIMER_OLIGO_SEQ
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A.

 

B. 

 

Figure 2.3 Bioinformatic data generated for hsp90α 

A) The gene location for hsp90α on its respective human chromosome denoted by the 

red bar (taken from GeneCards database) or the blue bar (taken from ensemble 

database). B) Primer 3 output for hsp90α showing annealing temperature, GC %, 

primer sequence and amplicon size (adapted from Primer 3). 

 hsp90α Primer3 Output

 
Using 1-based sequence positions 

OLIGO         start  len   tm     gc%    any    3'  Primer sequence  

LEFT PRIMER   2742   20   60.05   55.00  8.00  0.00 tctggaagatccccagacac 

RIGHT PRIMER  2930   20   59.94   55.00  5.00  3.00 agtcatccctcagccagaga 

SEQUENCE SIZE: 3887 

INCLUDED REGION SIZE: 3887 

 

PRODUCT SIZE: 189, PAIR ANY COMPL: 5.00, PAIR 3' COMPL: 0.00 
 

 

tctggaagatccccagacacatgctaacaggatctacaggatgatcaaacttggtctgggtattgatgaaga 

>>>>>>>>>>>>>>>>>>>> 

 

tgaccctactgctgatgataccagtgctgctgtaactgaagaaatgccaccccttgaaggagatgacgacac 

 

 

atcacgcatggaagaagtagactaatctctggctgagggatgact 

                         <<<<<<<<<<<<<<<<<<<< 

                                                          
 

Key: 

>>>>>> - Left / (sense) forward primer binding site  

<<<<<< - Right / (anti-sense) reverse primer binding site 

http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www_results_help.cgi#PRIMER_START
http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www_results_help.cgi#PRIMER_LEN
http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www_results_help.cgi#PRIMER_TM
http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www_results_help.cgi#PRIMER_GC
http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www_results_help.cgi#PRIMER_ANY
http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www_results_help.cgi#PRIMER_REPEAT
http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www_results_help.cgi#PRIMER_OLIGO_SEQ
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A. 

 

B.  

 

Figure 2.4 Bioinformatic data generated for GAPDH  

A) The gene location for GAPDH on its respective human chromosome denoted by the 

red bar (taken from GeneCards database).  B) Primer 3 outputs for GAPDH showing 

annealing temperature, GC %, primer sequence and amplicon size (adapted from 

Primer 3). 

GAPDH Primer3 Output 

 
No mispriming library specified 

Using 1-based sequence positions 

 

OLIGO        start len  tm    gc%    any   3'  Primer sequence  

LEFT PRIMER  122   20   59.97 50.00 3.00  0.00 gagtcaacggatttggtcgt 

RIGHT PRIMER 359   20   60.01 45.00 4.00  2.00 ttgattttggagggatctcg 

SEQUENCE SIZE: 1310 

INCLUDED REGION SIZE: 1310 

 

PRODUCT SIZE: 238, PAIR ANY COMPL: 4.00, PAIR 3' COMPL: 1.00 

 

gagtcaacggatttggtcgtattgggcgcctggtcaccagggctgcttttaactctggtaaagtgg 

>>>>>>>>>>>>>>>>>>>>  

                                  

atattgttgccatcaatgaccccttcattgacctcaactacatggtttacatgttccaatatgatt 

 

 

ccacccatggcaaattccatggcaccgtcaaggctgagaacgggaagcttgtcatcaatggaaatc 

 

 

ccatcaccatcttccaggagcgagatccctccaaaatcaa 

                    <<<<<<<<<<<<<<<<<<<<       

  Key: 

>>>>>> - Left / (sense) forward primer binding site  

<<<<<< - Right / (anti-sense) reverse primer binding site 

                  

http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www_results_help.cgi#PRIMER_START
http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www_results_help.cgi#PRIMER_LEN
http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www_results_help.cgi#PRIMER_TM
http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www_results_help.cgi#PRIMER_GC
http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www_results_help.cgi#PRIMER_ANY
http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www_results_help.cgi#PRIMER_REPEAT
http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www_results_help.cgi#PRIMER_OLIGO_SEQ
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A.

 

B. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Bioinformatic data generated for vimentin  

A) The gene location for vimentin on its respective human chromosome denoted by the 

red bar (taken from GeneCards database).  B) Primer 3 outputs for vimentin showing 

annealing temperature, GC %, primer sequence and amplicon size (adapted from 

Primer 3). 

 

Vimentin Primer3 Output 
 

Using 1-based sequence positions 

 

 

OLIGO        start len  tm    gc%    any   3'  Primer sequence  

LEFT PRIMER  1458   20   60.00   50.00  3.00  2.00 gagaactttgccgttgaagc 

RIGHT PRIMER 1627   20   60.01   55.00  5.00  2.00 tccagcagcttcctgtaggt 

SEQUENCE SIZE: 2136 

INCLUDED REGION SIZE: 2136 

 

PRODUCT SIZE: 170, PAIR ANY COMPL: 5.00, PAIR 3' COMPL: 1.00 

 

 

gagaactttgccgttgaagctgctaactaccaagacactattggccgcctgcaggatgagattcagaatatga 

>>>>>>>>>>>>>>>>>>>>                        

 

aggaggaaatggctcgtcaccttcgtgaataccaagacctgctcaatgttaagatggcccttgacattgagat 

 

                                                             

tgccacctacaggaagctgctgga 

    <<<<<<<<<<<<<<<<<<<< 

 

                                                                                                                                                          

          Key:         

>>>>>> - Left / (sense) forward primer binding site  

<<<<<< - Right / (anti-sense) reverse primer binding site 

 

 

http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www_results_help.cgi#PRIMER_START
http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www_results_help.cgi#PRIMER_LEN
http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www_results_help.cgi#PRIMER_TM
http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www_results_help.cgi#PRIMER_GC
http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www_results_help.cgi#PRIMER_ANY
http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www_results_help.cgi#PRIMER_REPEAT
http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www_results_help.cgi#PRIMER_OLIGO_SEQ
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2.5 Real time quantitative reverse transcriptase 

polymerase chain reaction (qRT-PCR) 

Polymerase Chain Reaction (PCR) is a process which allows logarithmic amplification 

of short DNA sequences (usually 100-400 bases) within a longer double stranded 

DNA/cDNA molecule. qRT-PCR allows low copy mRNA to be amplified. 

The level of GAPDH, hTERT and hsp90α expressions was calculated by qRT-PCR 

using the LightCycler 2.0 system. (Roche Diagnostics, UK) and LightCycler
®

 FastStart 

DNA Master
PLUS

 SYBR Green I kit following the manufacturer‟s instructions. A 

master mix was prepared using the reagents from the kit. 

 

Table 2.7 The composition and quantity of each reagent provided within the 

LightCycler
®
 FastStart DNA Master

PLUS
 SYBR Green I kit. 

 

 

 

Reagent Reagent Composition Quantity 

LightCycler
®
 FastStart 

Enzyme (1a) 

FastStart Taq DNA Polymerase 1 vial 

LightCycler
®
 FastStart 

Reaction Mix SYBR 

Green (1b) 

Reaction buffer, dNTP mix (with dUTP instead 

of dTTP), SYBR Green I dye and 10 mM MgCl2  

3 vials 

H2O, PCR-grade RNase-free H2O 2 ml 
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Table 2.8 The quantities of reagents required for each RT-PCR reaction using 

those provided within the LightCycler
®
 FastStart DNA Master

PLUS
 SYBR Green I 

kit.  

Reagent Quantity 

Molecular biology-grade H2O 12 µl 

PCR primer mix 2 µl 

Enzyme Master Mix 4 µl 

Single-stranded cDNA template 2 µl 

 

Procedure: 

1. The samples and reagents were kept on ice throughout the experiment. 

2. Each capillary had a 20 µl total reaction volume comprising 12 µl molecular 

biology-grade H2O, 2 µl of 10 µM PCR primer mix, 4 µl of Master Mix and     

2 µl single-stranded cDNA template. 

3. Negative control was prepared by using template-free reaction mixture (20 µl) 

(molecular biology-grade H2O substituted for cDNA).   

The PCR protocol is as follows:  

1. The PCR enzyme reaction mix was prepared by transferring 14 µl of 

LightCycler
®
 FastStart Enzyme (1a) into the LightCycler

®
 FastStart Reaction 

Mix SYBR Green vial (1b) 



76 
 

2. This experiment involves a hot-start induction, wherein FastStart Taq DNA 

polymerase enzyme is activated by pre-incubating the reaction mixture at 95°C 

for 10 min. This was carried out to avoid non specific elongation. 

3. The single-strand cDNA template was then subjected to 35 amplification cycles 

composed of the following parameters:  

 Denaturation of 95°C for 15 sec. 

 Annealing at the primer dependent temperature for 15 sec  

 Extension at 72°C for 25bp/sec (amplicon dependent) 

4. At the end of each cycle, the emitted fluorescence was measured in a single step 

to acquire quantification analysis data. A slope of 20°C/s was maintained for 

heating and cooling purposes. 

5. On completion of the 35
th

 cycle, the produced amplicon was prepared for 

melting curve analysis, and hence, it was heated to 95°C (denaturation) slope of 

0.1°C/s and the emitted fluorescence was constantly measured. It was then 

rapidly cooled to the previously used annealing temperature (+10°C) for 40 s. 

6. The generated amplicon was cooled to 40°C for 30 sec and stored at -20°C until 

required. 

Hot start induction is crucial in this method to prevent non specific elongations and 

thus increases PCR specificity, sensitivity and yield (Dang and Jayasena, 1996).  

The specificity of the amplified PCR product could be assessed via the melting 

curve which discriminates between primer-dimers and specific product. The default 

qRT-PCR conditions used in this study are shown in Table 2.9 and the primer 
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sequence, annealing temperatures and amplicon size for the various genes used in 

this study are listed in Table 2.10. 

 

Table 2.9 qRT-PCR conditions used as default conditions for all amplifications. 

Analysis Mode Cycles Segment 
Target Temperature 

(
o
C) 

Hold Time 

(min) 

- Pre-Incubation - - - 

None 1 - 95 10 

- Amplification - - - 

Quantification 35 Denaturation 95 1 

- - Annealing variable 2 

- - Extension 72 1 

- - - 72 7 

- Cooling - - - 

None 1 - 4 ∞ 
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Table 2.10 Primer sequence, annealing temperatures and amplicon size for 

hTERT, hsp90α, GAPDH and vimentin primers utilised in qRT-PCR [designed 

using Primer3 software and commercially synthesised by TIB MOLBIOL 

syntheselabor (Germany)].  

Gene Primer Sequences 

Annealing 

Temperature 

(
o
C) 

Expected 

amplicon 

size (bp) 

hTERT 
       Sense: 5' -CGTGGTTTCTGTGTGGTGTC- 3' 

Antisense: 5' -CCTTGTCGCCTGAGGAGTAG- 3' 
67 214 

hsp90α 
      Sense: 5' -TCTGGAAGATCCCCAGACAC- 3' 

Antisense: 5' -AGTCATCCCTCAGCCAGAGA- 3' 
63 189 

GAPDH 
       Sense: 5' –GAGTCAACGGATTTGGTCGT- 3' 

Antisense: 5' -TTGATTTTGGAGGGATCTCG- 3' 
56 238 

vimentin 
       Sense: 5' -GAGAACTTTGCCGTTGAAGC- 3' 

Antisense: 5' -TCCAGCAGCTTCCTGTAGGT- 3' 
56 170 

 

2.5.1 Analysis of qRT-PCR product by agarose gel electrophoresis 

The amplicons from the qRT-PCR reaction were run on a 2% (w/v) agarose gel   

(section 3.4.1). Aliquots (10 µl) of each amplicon were mixed with 2 µl of loading dye 

and were loaded onto the gel. A 100 bp molecular weight marker (2 µl) mixed with 5 µl 

loading dye was loaded. The gel was electrophoresed at 70 V.  The banding patterns 

were visualised using a GENE GENIUS Bioimaging system and Gensnap software. 
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2.5.2 Quantification analysis of qRT-PCR 

Copy numbers were used to express the absolute quantification of the target amplicon. 

In real time PCR, a positive reaction is detected by accumulation of a fluorescent 

signal. The number of cycles required for the fluorescent signal to cross the threshold is 

give by the Ct (cycle threshold) value. Genomic DNA can be used as an external 

standard, showing that 1 µg corresponds to 3.4 × 10
5
 copies of a single gene (Wittwer 

et al., 2004).  Previously in our laboratory (Shervington et al., 2007; Mohammed and 

Shervington, 2007) genomic DNA of known concentration was used as a standard to 

amplify GAPDH gene using the LightCycler instrument.  The Ct which serves as a tool 

for calculating the starting template amount was used to plot a standard curve to aid 

with the calculation of copy numbers in unknown samples. A standard curve was 

generated from five concentrations of Genomic DNA in duplicate: 0.005, 0.05, 0.5, 5 

and 50 ng and their corresponding average Ct's (Table 2.11 and Fig 2.6) were used to 

generate the copy number verses concentration. 

  

Table 2.11 Genomic DNA corresponded to its average Ct values and equivalent 

copy number.   

 

 

 

Concentration of Genomic DNA (ng)  Average Ct Copy number  

0.005 30.15 1.7 

0.05 29.10 17 

0.5 26.42 170 

5 22.60 1700 

50 18.30 17000 
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A.       

 

 

B. 

 

Figure 2.6 Standards used to generate the copy numbers for each gene.   

A) LightCycler quantification curve generated when known concentration of genomic 

DNA were amplified, which shows that the higher the concentration of DNA the lower 

the Ct value i.e. earlier the acquisition of florescence.  The negative control shows no 

florescence acquisition until after 30 Ct (straight line).  B) The standard generated from 

the crossing points shows the relationship between Ct values and the copy numbers of 

the amplified genomic DNA using GAPDH reference gene (adapted from Mohammed, 

2007). 
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The equation generated (y = -1.3124Ln(x) + 32.058) from this standard graph was 

rearranged to (=EXP ((Ct value-32.058)/-1.3124)) and used to determine copy numbers 

of the mRNA expression of all the genes used  throughout this project. 

 

2.6 Immunofluorescence 

Procedure: 

1. The cells were washed three times with warm PBS (0.1 M) with gentle 

aspiration. 

2. They were then fixed using freshly made 4% Paraformaldehyde and 

incubated for 10 min on a shaker. 

3. The paraformaldehyde was then removed and permeablized using 0.3% 

Triton X-100 at room temperature for 7 min. 

4. Bovine Serum Albumin (BSA) blocking solution was then added to prevent 

any non-specific binding and incubated for 30 min at room temperature. 

5. BSA was removed and primary monoclonal Hsp90α antibody (Cambridge 

Biosciences, UK) and/or telomerase antibody (Abcam, UK) (diluted in 1% 

BSA in PBS to achieve working dilution of 1:50 and 1:2000) was added to 

each chamber and incubated for 1 h at room temperature. 

6. Primary antibody was removed by washing three times with Triton X-100. 

7. Later, the cells were incubated with secondary antibody for 1 hour at room 

temperature.  The secondary antibodies were diluted in 1% BSA in PBS to 

achieve a working dilution of 1:128. The secondary antibodies were light 

sensitive and were conjugated either with Fluorescein Isothiocyanate (FITC) 
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or Texas red. The primary Hsp90α antibody was detected with IgG FITC 

(Sigma,UK). The primary telomerase antibody was detected with IgM FITC 

(Sigma,UK). For co-localization experiments telomerase was detected with 

IgM Texas Red (Abcam, UK). 

8. Secondary antibody was removed by washing three times with                    

Triton X-100. 

9. Nucleus was counterstained by incubation with 1.5 µg/ml VECTASHIELD 

mounting medium with PI (Vector, USA) for 10 min. 

10. The cells were visualised and scanned using an Axiovert 200 LSM 510 laser 

scanning confocal microscope (Carl Zeiss, UK) (Long et al., 2005).  

11. Negative control cells from each sample received identical preparations for 

immunofluorescence staining, except that the primary antibodies were 

omitted and for quantification purposes 500 cells were analysed per sample. 

 

2.7 Small Interfering RNA 

 

2.7.1 Preperation of siRNA  

Three sets of pre-designed hTERT siRNA duplexes were designed by Ambion (UK).   

Hsp90 α siRNA, control GAPDH siRNA and negative control siRNA were also 

included in this study.  All the siRNA comprised of 21-nt sense and antisense strands. 

Oligonucleotides sequences for all the siRNA used are listed in the Table 2.12.   
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Table 2.12 Oligonucleotides sequences and targeted exons for all the siRNA. 

 

The hsp90α  siRNA used in this study was previously optimised in our laboratory and 

was chosen as the best oligo amongst a set of three pre-designed hsp90α siRNAs 

(Cruickshanks et al., 2010). The control GAPDH siRNA, negative control siRNA and a 

Cy3 labelled control siRNA were part of the siPORT
TM

 siRNA electroporation kit 

(Applied Biosystems, UK). The negative control siRNA is a scrambled siRNA which 

has limited similarity to the human genome. All the siRNA were supplied in a freeze-

dried powdered form and were resuspended in nuclease-free water to achieve a stock 

concentration of 100 μM. This was further diluted in the nuclease-free water to achieve 

a working concentration of 50 μM. Cy3 labelled control siRNA was also resuspended 

in nuclease free water prior to its use. The quantity and composition of each reagent 

provided within the kit is detailed in Table 2.13.   

 

 

 

 siRNA oligo Exon targeted Sequence 

 hTERT Oligo1 11 sense         5'GCACGGCUUUUGUUCAGAUtt3'    

antisense   5'AUCUGAACAAAAGCCGUGCca3' 

 hTERT  Oligo2 4 sense         5'GGCCGAUUGUGAACAUGGAtt3'    

antisense   5'UCCAUGUUCACAAUCGGCCgc3' 

 hTERT  Oligo3 3 sense         5'CGGAGACCACGUUUCAAAAtt3'    

antisense   5'UUUUGAAACGUGGUCUCCGtg3' 

 hsp90α Oligo3 3 sense         5'GCGAUGAUGAGGCUGAAGAtt3' 

antisense   5'UCUUCAGCCUCAUCAUCGCtt3'                

 GAPDH Oligo3 3 sense         5'GGUCAUCCAUGACAACUUUdTdT3'    

antisense  5'AAAGUUGUCAUGGAUGACCdTdT3' 
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Table 2.13 Quantity of reagents provided within the siPORT
TM

 siRNA 

Electroporation Kit. 

Reagent  Quantity 

siRNA electroporation buffer  3 × 1.5 ml 

50 μM GAPDH siRNA 75 µl 

50 μM negative control siRNA 38 µl  

Cy3 labelled control siRNA (requires re-suspension in 42 μl 

nuclease free water) 

2.1 nmol 

Nuclease-free water 1.75  ml 

 

2.7.2 Optimisation of siRNA transfection 

Cells were efficiently transfected with siRNA using electroporation. In electroporation 

an electric field is used to induce the trans-membrane voltage. This leads to pore 

formation via a structural rearrangement of the membrane thereby increasing the 

membrane permeability (Chen et al., 2007). 

Conditions of electroporation vary according to the cell types. Various other factors can 

also affect electroporation efficiency, these include: pulse length, number of pulses, and 

concentration of siRNA. The electroporation conditions supplied by Ambion were 

verified by transfecting U87-MG cells with Cy3 labelled control siRNA. The siRNA 

was delivered to the cells using the siPORT
TM

 siRNA Electroporation Kit according to 

the manufacturer‟s instructions (Ambion, UK).  Bio-Rad gene pulser Xcell was used 

for electroporation.  

The reaction parameters used in this study was:  

3 pulses (square wave type pulse) at 400 V for 100 µS with 0.1 sec intervals between 

the pulses. 
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Procedure: 

1.  U87-MG cells were cultured in 75 cm
2 

tissue culture-treated polystyrene flasks 

as described in section 2.1.4. 

2.  After scraping the cells, 75 × 10
4
 cells per electroporation sample were 

centrifuged at 200 x g for 7 min at room temperature.  

3. The medium was removed and the cells were resuspended in 75 µl of siRNA 

electroporation buffer.   

4. The cell suspension was transferred to a 1 mm electroporation cuvette and prior 

to electroporation 2.25 μl of Cy3 labelled control siRNA was added to the 

cuvette and mixed gently.  

5.  These cells were then electroporated using the conditions mentioned above. 

6. The sample cuvette was incubated for 10 min at 37°C after which the cells were 

transferred to chamber slides containing an appropriate volume of medium. 

7. The chamber slides were incubated for 24 hrs under normal cell culture 

conditions. 

8.  The integration of Cy3 in the cell (Fig 2.7) was visualised using the Axiovert 

200 LSM 510 laser scanning confocal microscope (Carl Zeiss, UK) which 

showed that the siRNA was efficiently delivered to the cells. 

                

Figure 2.7 Uptake of Cy3 labelled siRNA in U87-MG cells. 

A) phase contrast image B) Cy3 fluorescence (550 nm, Em 570 nm) C) Overlay of A 

and B to confirm Cy3 uptake. 
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2.7.3 siRNA treatment 

Procedure: 

1. Similar to the optimization procedure, U87-MG cells were cultured in 75 cm
2 

tissue culture-treated polystyrene flasks and after scraping 75 × 10
4
 cells per 

electroporation sample were centrifuged at 200 x g for 7 min at room 

temperature.   

2. The medium was removed and the cells were resuspended in 75 µl of siRNA 

electroporation buffer and the cells were transferred to a 1 mm electroporation 

cuvette.  

3. Prior to electroporation, 1.5 µg of diluted experimental hTERT siRNA oligos   

1-3, hsp90α siRNA oligos 1-3, GAPDH siRNA or negative control siRNA was 

added to the cuvette and mixed gently.   

4. The cells were electroporated using the above mentioned parameters.  

5. After the electroporation, the sample cuvette was incubated for 10 min at 37°C 

6. Cells were transferred either to a 25 cm
2 

tissue culture-treated polystyrene flasks 

(qRT-PCR), or chamber slides (section 3.5) containing an appropriate volume 

of prewarmed medium.   

7. These cells were either incubated for 24 or 48 hr, after which the cells were 

harvested for mRNA isolation (Chi et al., 2003) to measure hTERT and hsp90α 

expressions.  

8. PCR products were analysed using gel electrophoresis, stained and visualised 

using the gel analyser (SynGene, UK) as previously explained in section 3.4.1. 

9. Chamber slides were fixed with 4% paraformaldehyde for subsequent detection 

of telomerase or Hsp90α protein.   
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2.8 Proteomics 

2.8.1 Protein extraction 

Procedure: 

1. The cell pellets were freshly collected and washed three times with Washing 

Buffer (10 mM Tris-HCl, 5 mM magnesium acetate, pH 8.0) to remove culture 

medium. 

2. For 10 mg of cultured cell pellet, 200 µl of 2-D cell lysis buffer (400 mM Tris, 

0.01 M EDTA; pH 8.3) was added.    

3. The mixture was sonicated at 4°C followed by shaking for 30 min at room 

temperature.  

4. The samples were then centrifuged for 30 min at 14,000 rpm and the 

supernatant was collected.  

5. Protein concentration was measured using Bio-Rad protein assay method. 

 

2.8.2 Protein quantification 

The Bio-Rad Protein Assay is based on the Bradford method of protein quantification. 

It is a dye-binding assay which produces differential color change in response to 

various concentrations of protein (Bradford, 1976). The dye reagent concentrate was 

purchased in a kit with BSA (Biorad, UK) which was used as a standard. 

Procedure: 

1. Lyophilized BSA standards were reconstituted by adding 20 ml of deionized 

water and were mixed thoroughly until dissolved. 
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2. The standard was aliquoted and stored at -20°C when not used. 

3. The dye reagent was prepared by diluting 1 part Dye Reagent Concentrate with 

4 parts of distilled deionized water and this was then filtered through Whatman 

#1 filter. 

4. Protein solution to be tested was prepared by pipetting 100 µl of each standard 

and sample solution into a clean and dry test tube.  

5. Diluted dye reagent (5 ml) was added to each tube. 

6. The tubes were vortexed and incubated at room temperature for at least 5 min. 

7. Absorbance was measured at 595 nm using gamma thermo Helios 

spectrophotometer (Thermospectronics, UK). 

8. A standard curve was plotted and the value of the unknown protein was 

extrapolated. 

9. Each protein was assayed at least 2-3 times. 

 

In this thesis 2D-DIGE was used for protein separation and MALDI-TOF was used for 

protein identification. Gel separation (section 2.8.3 –section 2.8.7) and Protein ID 

(section 2.8.8 – section 2.8.9) were performed by Applied Biomics, Inc (Hayward, 

CA).  

 

2.8.3 2D-DIGE 

2D-DIGE involves tagging the protein solutions with different fluorescent dyes (Cy2, 

Cy3 or Cy5) prior to performing the 2D gel electrophoresis wherein the samples are 

separated based on their isoelectric point and molecular weight. Computer software 

such as the DeCyder allows comparison of these protein mixtures and, by using a 
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pooled standard labelled with the third dye, the software can reliably compare 

differences in protein levels across multiple gels (Srinivas et al., 2002). 
 
Table 2.14 

shows the composition of each reagent used for 2D-DIGE.  

 

Table 2.14. Composition of reagents used for 2D-DIGE.  

Reagent Composition 

Washing Buffer 

 

10 mM Tris-HCl, 5 mM magnesium acetate,   

pH 8.0 

 

2-D cell lysis buffer 
30 mM Tris-HCl, pH 8.8, containing 7 M urea,       

2 M thiourea and 4% CHAPS 

2-D Sample buffer 

8 M urea, 4% CHAPS, 20 mg/ml DTT, 2% 

pharmalytes and trace amount of bromophenol 

blue 

Rehydration buffer 

7 M urea, 2 M thiourea, 4% CHAPS, 20 mg/ml 

DTT, 1% pharmalytes and a trace amount of 

bromophenol blue 

Equilibration buffer-1 

50 mM Tris-HCl, pH 8.8, containing 6 M urea, 

30% glycerol, 2% SDS, trace amount of 

bromophenol blue and 10 mg/ml DTT 

Equilibration buffer-2 

50 mM Tris-HCl, pH 8.8, containing 6 M urea, 

30% glycerol, 2% SDS, trace amount of 

bromophenol blue and 45 mg/ml Iodacetamide 

SDS-gel running buffer 0.1% w/v SDS, 25 mM Tris, 198 mM  Glycine 

Matrix solution 

0.01g α-cyano-4-hydroxycinnamic acid, 5 mg/ml 

in 50% acetonitrile, 0.1% trifluoroacetic acid,       

25 mM ammonium bicarbonate 
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2.8.4 CyDye labelling 

Procedure: 

1. For each sample, 30 µg of protein was mixed with 1.0 µl of diluted CyDye, and 

kept in the dark on ice for 30 min. 

2. Cells treated with hTERT siRNA and hsp90α siRNA were labelled with Cy2 

and Cy5, respectively. Control sample was labelled with Cy3.  

3. The labelling reaction was stopped by adding 1.0 µl of 10 mM lysine to each 

sample, and incubating in the dark on ice for an additional 15 min. 

4.  The labelled samples were then mixed together.  

5. The 2-D Sample buffer, 100 ul destreak solution and Rehydration buffer were 

added to the labelled mix to give the total volume of 250 µl.  

6. The samples were vortexed before loading them into the strip holder for 2D 

electrophoresis. 

 

2.8.5 Isoelectric Focusing (IEF) and Sodium Dodecyl Sulphate 

Polyacrylamide Gel Electrophoresis (SDS-PAGE)   

The DIGE gel is a low fluorescent 12 % polyacrylamide gel and is precast in a glass 

cassette with a buffer for increasing its shelf-life. IEF was performed using the protocol 

developed by Amersham Biosciences (USA). 

Procedure: 

1. Labelled samples were loaded onto a pH 3-10 linear IPG strips (GE healthcare) 

2. IEF was performed using the following parameters 

 Rehydration at 20°C for 12 hours 
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 Step 1: 500 V for 1000 VHr  

 Step 2: 1000 V for 2000 VHr  

 Step 3: 8000 V for 24000 VHr 

3. Upon completing the IEF, the IPG strips were incubated in the freshly made 

equilibration buffer-1 for 15 min with gentle shaking.  

4. This was followed by rinsing the strips in the freshly made equilibration   

buffer-2 for 10 min with gentle shaking.  

5. The IPG strips were then rinsed in the SDS-gel running buffer and immediately 

transferred into a 12% SDS-gels (18 cm x 16 cm). 

6. The gel was then sealed with 0.5% agarose (Bio-Rad, USA) in SDS-PAGE 

running buffer.  

7. The SDS-gels were run at 15°C at 200 V until the dye front ran off the gels.  

 

2.8.6 Image scan and data analysis 

Gel images were scanned immediately following the SDS-PAGE using Typhoon TRIO 

(Amersham BioSciences, USA). The scanned images were analyzed by Image Quant 

software (version 6.0, Amersham BioSciences, USA), followed by in-gel analysis using 

DeCyder software version 6.0 (Amersham BioSciences, USA). The fold change of the 

protein expression levels was obtained from in-gel DeCyder analysis.  
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2.8.7 Spot picking and trypsin digestion 

1. The spots of interest were picked up by Ettan Spot Picker (Amersham 

BioSciences, USA) based on the in-gel analysis and spot picking design by 

DeCyder software.  

2. The gel spots were washed a few times with 100% acetonitrile and were 

digested in-gel with modified porcine trypsin protease (Trypsin Gold, Promega, 

USA). 

3.  The digested tryptic peptides were desalted by Zip-tip C18 (Millipore, USA). 

(Zip-tips are pipette tips with small amount of chromatography media bedded at 

the end which helps in eluting peptides after desalting it). 

4.  Peptides were eluted from the Zip-tip with 0.5 µl of matrix and spotted on the 

MALDI plate (model ABI 01-192-6-AB). 

 

2.8.8 MALDI-TOF 

MALDI-TOF MS and TOF/TOF tandem MS/MS were performed on an ABI 4700 

mass spectrometer (Applied Biosystems, USA). MALDI-TOF mass spectra were 

acquired in reflectron positive ion mode, averaging 4000 laser shots per spectrum. 

TOF/TOF tandem MS fragmentation spectra were acquired for each sample, averaging 

4000 laser shots per fragmentation spectrum on each of the 10 most abundant ions 

present in each sample (excluding trypsin autolytic peptides and other known 

background ions). 
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2.8.9 Database search 

Both of the resulting peptide mass and the associated fragmentation spectra were 

submitted to GPS Explorer workstation equipped with MASCOT search engine (Matrix 

science, US) to search the database of the National Center for Biotechnology 

Information non-redundant (NCBInr).  Searches were performed without constraining 

protein molecular weights or isoelectric points, with variable carbamidomethylation of 

cysteine and oxidation of methionine residues, and with one missed cleavage also 

allowed in the search parameters. Candidates with either protein score C.I.% or Ion 

C.I.%  greater than 95 were considered significant. 

 

2.8.10 Ingenuity Pathway Analysis (IPA) 

Data mining and knowledge base software like IPA (Ingenuity® Systems) was used to 

identify molecular functions and pathways which correlate with the dataset generated 

by the proteomic analysis.  

The Ingenuity pathway analysis program uses a knowledgebase derived from the 

literature to relate gene products with each other based on their interaction and 

function. IPA helps to gain insights into experimental data by quickly identifying 

relationships, mechanisms, interaction networks, functions, and global pathways. This 

software allows profiling data to be analyzed in a systematic way using known protein–

protein interactions published in the literature (Jimenez-Marin et al., 2009). IPA 

provides a platform which enables one to access information on genes and proteins 

implicated in cancer-related processes and pathways, generate testable hypotheses and 

discover new cancer targets. 
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 In IPA biofunctions are grouped into three categories i) disease and disorders ii) 

molecular and cellular functions and iii) physiological system development and 

functions, whereas canonical pathways are grouped in metabolic pathways and 

signaling pathways. Functional pathways and networks most significant to the data set 

are identified from the IPA library of canonical pathways. The identified proteins are 

mapped to networks available in the Ingenuity database and ranked by score. The 

scores take into account the number of focus proteins and the size of the network to 

approximate the relevance of the network to the original list of focus proteins. The 

results generated by IPA are shown in Figure 4.5. and 4.6 and Table 4.5. 
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3.1 Introduction 

Ribonucleic acid interference (RNAi) is a process that along with sequencing 

specifically destroys mRNA, resulting in hypomorphic phenotypes (Elbashir et al., 

2001). It is a gene silencing process whose role is vital for development as well as 

preservation of the genome (Tomari and Zamore 2005). RNA interference uses short 

double-stranded RNA to selectively prevent gene expression of complementary RNA 

nucleotide sequences after transcription but before translation (Pellish et al., 2008). 

RNAi offers an effective technology base, on which gene expression as well as gene 

functions researches can be carried out. RNAi makes it easy for researchers to partly or 

fully suppress the expression of specific genes thereby resulting in targeted gene 

knockout and gene knockdown (Martinez, 2010). Due to the potent and specific RNAi 

triggering activity, the development of siRNA-based therapeutics has advanced rapidly 

(Zhou and Rossi, 2010). 

RNAi mechanisms results either in the degradation of target RNA, (e.g. short 

interfering RNA), or translation arrest of the target RNA, (e.g. in the case of micro 

RNA). There are two types of RNAi-based therapies i) DNA-based RNAi in which 

plasmid DNA encodes for a short hairpin RNA (shRNA) and ii) RNA-based RNAi in 

which a siRNA duplex is chemically synthesized without a DNA intermediate 

(Pardridge, 2007). 

Small interfering RNAs (siRNA) are short RNA molecules with a length of twenty to 

twenty five nucleotides (Elbashir et al., 2001). RNAi technology harnesses a 

straightforward mechanism of interrelating complementary RNA sequences. Initially 

the RNase enzyme, processes the long dsRNA segments (Dicer), into small dsRNA 

duplexes of 21–23 nucleotides; called as siRNA. The small interfering RNAs are then 
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integrated into an RNA-induced silencing complex (RISC) and then unwound into 

single-stranded small interfering RNA (Koller 2006). One strand is discarded by the 

RISC which leaves a „processed‟ strand of siRNA that is integrated in the protein 

complex. For the recognition of target mRNA this „processed‟ strand of siRNA 

functions as a guiding sequence. Complementary mRNAs are degraded by 

endonuclease argonaute, which is the catalytic component of RISC (Tuschl et al., 

1999). This results in post-transcriptional gene silencing (Tuschl et al., 1999; Pellish et 

al., 2008). Figure 3.1 shows a basic working model of siRNA mechanism. 

siRNA

RISC unwinds duplex 

and dissociates sense 

strand. 

Activated RISC 

containing the   

anti sense strand

siRNA assembly 

with RISC

Activated 

RISC 

recognizes 

target mRNA 

sequence, 

binds and 

cleaves

mRNA 

degradation

mRNA 

cleavage 

Figure 3.1 Diagrammatic representation of siRNA at working mechanism  

(adapted in part from - Sigma, 2006 and Ambion Technotes 2004).  

The role of RNAi as a therapy in cancer is to knockout the cell cycle gene expression 

and/or the anti-apoptotic gene in the cancer cells thereby stopping the tumor growth 

and terminating cancer. RNAi technology and the use of siRNAs has been used at 

length in target validation experiments (Behlke, 2006; Novobrantseva et al., 2008). Of 
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late many siRNAs have been assessed in clinical trials with encouraging proposals for 

enhancing its efficacy and safety profiles (de Fougerolles et al., 2007). Till date, only 

one antisense drug, Vitravene, has managed to receive FDA approval. Vitravene, which 

is a DNA antisense drug from Isis Pharmaceuticals in Carlsbad, California, is used to 

treat cytomegalovirus infections in the eye for patients with HIV. The powerful and 

precise suppression of gene expression by siRNA is presently being evaluated as a 

promising functional method for advancing gene-silencing therapies for cancer 

(Robinson, 2004).  

RNA interference (RNAi) has been instrumental for specific inhibition of telomerase. 

Reports have shown that RNAi against hTERT could effectively restrain telomerase 

activity in many cancer cell lines. Successful attempts have been made to silence 

telomerase by direct transfection via lipofection and also by plasmid transfection via 

pZeoSV2-hTR construct in colon carcinoma cells (Kosciolek et al., 2003).  Also 

studies in human colon carcinoma cells, HCT-15, involving siRNA targeted towards 

hTR as well as hTERT have shown to suppress telomerase activity in a dose-dependent 

manner.  The transfection of HeLa cells utilizing a plasmid consisting the hTR gene 

have resulted in decreased telomerase RNA content, telomerase activity and telomeric 

DNA (Kosciolek et al., 2003). Attempts have been made to use siRNA targeted 

telomerase as an effective anti-cancer agent, especially in adjuvant therapies. siRNA 

based strategy have been used  to enhance the effect of ionizing radiation and 

chemotherapy (Nakamura et al., 2005).  

RNAi technology has also been successfully used in cancer cells to inhibit telomerase 

activity and to increase cell death through suppression of the hTERT expression in 

cancer cells with no side effect on normal cells (Chen et al., 2007). RNA interference 
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was harnessed in this study as it offers
 
a new mode for efficient and selective inhibition 

of specific
 
gene expressions in cancer with few side effects. Also, inhibiting telomerase 

activity in glioma cell lines, using siRNA, targeted towards two different telomerase 

regulatory mechanisms is novel. 

 

3.2 Results 

3.2.1 Optimization 

In order to ensure that optimum conditions were used throughout the project, validation 

experiments were performed to verify the efficiency of the protocol used for mRNA 

isolation, cDNA conversion as well as siRNA transfection. 

3.2.1 Spectrophotometry for the cell lines extracted mRNA 

After the extraction of mRNA from the cell lines, they were checked for purity using 

spectrophotometry. The absorbance was measured at 260 and 280 nm and the 

concentration of RNA present in each cell line was calculated. These isolated mRNA 

samples were further run on a denaturing alkaline agarose gel (Figure 3.2). An example 

of the spectrophotometry results obtained for 1321NI, U87-MG and GOS-3 were 

represented Table 3.1. 

 

Figure 3.2 Agarose gel electrophoresis showing mRNA extracted from different 

grades of glioma cell lines.  

Lanes 1-3 represent 2μl of mRNA isolated from 1321N1, U87-MG, GOS-3, 

respectively, run on a denaturing alkaline agarose gel (2 %). 
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Table 3.1 An example of the determined spectrophotometric readings for mRNA 

extracted from untreated 1321N1, GOS-3 and U87-MG cell lines. 

Cell line  A260 reading A280 reading A260 / A280 ratio 

1321N1 0.013 0.006 2.1 

U87- MG 0.008 0.004 2.0 

GOS-3 0.062 0.032 1.9 

 

The mRNA band obtained was intact showing no running streak, which suggests that 

there was no degradation of the extracted mRNA.  The purity of all the mRNA samples 

used in this study was found to be within the range of 1.9 and 2.1. A ratio of 1.9 - 2.1 

indicates the presence of pure single-stranded (ss) RNA suggesting that the mRNA 

used in this study was of an optimum quality ((Roche diagnostic, UK).  

 

3.2.2 Expression of hTERT, hsp90α and GAPDH genes 

RT-PCR was carried out using the optimum annealing temperature (section 2.1.2) for 

hTERT, hsp90α and GAPDH in each of the three cell lines. This study was aimed at 

silencing the mRNA transcripts of hTERT and hsp90α as a mean of directly and 

indirectly shutting down the telomerase regulatory mechanisms with a view of studying 

its effect on the cancer proteomes. Hence, it was extremely important to check the 

expression levels of hTERT and hsp90α in different grades of glioma cell lines. 

In order to ensure that the mRNA level was a true reflection of the expression of the 

gene studied, qRT-PCR was carried out for GAPDH in each of the three cell lines. 

GAPDH is a known endogenous reference gene used in several studies (Herms et al., 
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2005). GAPDH expression was consistent throughout the results. Copy numbers of the 

gene was calculated as described earlier (section 2.5.2) and the results have been 

summarized in Fig. 3.3 and Table 3.2.   

 

 

 

Figure 3.3 Expression levels of hTERT, hsp90α and GAPDH in cell lines.  

Assessed by: (A) Agarose gel electrophoresis: Lane 1 represents a 100 bp molecular 

weight marker, Lanes 2, 3 and 4 represent the qRT-PCR amplicons from 1321N1, 

GOS-3, U87-MG cell lines respectively, (B) Graph showing copy number of hTERT, 

hsp90α and GAPDH in 1321N1, GOS-3 and U87-MG (data values are mean ± standard 

deviation of three independent experiments).  
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Table 3.2  hTERT,  hsp90α and GAPDH transcription level.  

Quantification of hTERT, hsp90α and GAPDH mRNA copy numbers in 1321N1,    

GOS-3 and U87-MG cell lines using qRT-PCR. 

 

Cell line mRNA/100 ηg cells extract (1 × 10
6 
cells) 

hTERT hsp90α GAPDH 

1321N1 264.02 1914.38 21629.37 

GOS-3 464.00 21106.39 25059.31 

U87-MG 1075.18 15209.66 22106.36 

 

The observed transcription of hTERT was consistent with the literature where the 

expression of hTERT is related to the grade of glioma; with U87-MG showing the 

maximum level of hTERT expression while 1321N1 showed the least. The expression 

levels hsp90α was also very high in all three cell lines. These results were in agreement 

with various reports suggesting hsp90α playing a crucial role in glioma as well as 

telomerase regulation. GAPDH was expressed in all three cell lines in approximately 

equal amounts.   

Since the endogenous control was unaffected and stable in all the cell lines, it was 

confirmed that the methods used for the acquisition of the cDNA correctly followed 

and they did not induce any foreign alterations in the cellular gene expression and thus, 

results generated from these samples were a true reflection of the gene expression after 

the amplification protocol. 
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3.2.3 siRNA downregulation  

Quantitative Real Time PCR was used to measure the mRNA levels of hTERT and 

hsp90α in 1321N1, GOS-3 and U87-MG glioma cells treated with experimental hTERT 

and hsp90α siRNAs, GAPDH siRNA and negative control siRNA (scrambled RNA). 

 

3.2.3.1 Silencing hsp90α 

hsp90α was silenced using siRNA oligo optimised previously in our laboratory. siRNA 

oligo 3 directed towards exon 9 was reported as the most efficient oligo for silencing 

hsp90α after 24 hr (Cruickshanks et al., 2010). It was also shown that silencing hsp90α 

resulted over 80% silencing of hTERT (unpublished). The experiment was repeated for 

confirmation (Table 3.3 and Figure 3.4). 
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Figure 3.4 Expression levels of hsp90α and hTERT in U87-MG assessed after treatment with sihsp90α oligos 1-3 assessed after 24 hr 

using qRT-PCR. 

 Agarose gel electrophoresis and copy numbers of gene expression (data values are mean ± standard error, n = 3).  hours: lane 1 represents 

molecular marker,  lanes 2-4 represent hsp90α siRNAs 1-3, respectively; lane 5 control untreated cells; lane 6 represents  GAPDH siRNA and 

lane 7 negative control siRNA .  
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Table 3.3 Expression levels of hsp90α and hTERT in U87-MG MG after treatment 

with sihsp90α oligos 1-3 assessed after 24 hr using qRT-PCR. 

 

The results obtained were consistent with the previous work carried out in the 

laboratory where in siRNA oligo 3 directed towards exon 9 is the most efficient oligo 

for silencing hsp90α after 24 hr. Also treating the cell lines siRNA directed towards 

hsp90α resulted in decrease in the the expression of hTERT. 

Immunofluorescence was also used to confirm the detected decrease in the Hsp90α and 

telomerase proteins after silencing the cells under the same conditions as qRT-PCR 

using siRNA 3 targeted against hsp90α. Using confocal microscopy, Hsp90α and 

telomerase protein levels were simultaneously checked in the cells using co-localization 

technique. Protein levels were quantified as a percentage of Hsp90α and telomerase 

positive expressing cells per tissue sample (a total of 250 cells were counted per 

sample). An example of co-localization of Hsp90α and telomerase proteins in U87-MG 

cells with and without siRNA are shown in Fig 3.5and summarized in Table 3.4. 

 

mRNA/100 ηg cells extract (1 × 10
6 

cells) 

hsp90α 

siRNA  1 

hsp90α 

siRNA  2 

hsp90α  

siRNA  3 

No 

siRNA 

GAPDH 

siRNA 

Negative 

siRNA 

hsp90α 98.05 13.01 2.23 15068 15191 15189 

hTERT 11.30 2.23 

 

1.04 987 1003 

 

970 
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Figure 3.5 Example of Hsp90α and telomerase protein levels assessed using 

immunofluorescence in siRNA-treated and untreated U87-MG cells.  

(A) Cells stained with FITC conjugate secondary antibody bound to Hsp90α (green) 

fantigens the (B) Cells stained with texas red conjugate secondary antibody 

bound to hTERT (red) antigens the (C) Overlay of A and B showing co-

localization of Hsp90α and telomerase proteins.  

 

Table 3.4 Protein levels of Hsp90α and telomerase.    

Quantification of protein levels in U87-MG cell lines after 24 hr of siRNA treatment 

using oligo 3 targetted towards hsp90α.  

 

 

% Cell expressing 

Hsp90α 

% Cell expressing  

telomerase 

% of                            

co-localized cells 

Control 86 64 77 

sihsp90α 3 0 0 

 

Co-localization experiments confirmed that silencing hsp90 results in a decrease of 

telomerase expression only at the transcriptional level but also at the protein level. As a 
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result silencing hsp90α was used as the indirect regulatory mechanisms for inhibiting 

telomerase activity. 

 

3.2.3.2 Silencing hTERT 

 Predesigned siRNAs were used to inhibit hTERT and hsp90α at the post transcriptional 

level. Three different oligos of siRNA targeted towards hTERT were designed by 

Ambion (UK) targeting exon 11; exon 4 and exon 3, respectively.  qRT-PCR was used 

to examine mRNA levels of hTERT after siRNA treatment in all three cell lines after  

24 and 48 hr incubation.  

siRNA oligo 1 was unable to completely silence telomerase in all three cell lines after 

24 hr though it did show silencing in U87-MG cells. However, after 48 hr it was very 

effective. The results showed that treatment with oligo 2 significantly reduced the 

expression of hTERT in the all three cell lines after 24 as well as 48 hr. siRNA oligo 3 

was unable to downregulate hTERT expression after 24 hr and only showed silencing in 

U87-MG cell line after 48hr. Thus, siRNA oligo 2 was selected as the most effective 

siRNA against hTERT. U87-MG cell line showed silencing of hTERT expression by all 

the three oligos and was selected as the most suitable cell line (Fig 3.6 and Table 3.5)
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Figure 3.6 Expression levels of hTERT in 1321N1, GOS-3 and U87-MG siRNA treated cells assessed after 24 and 48 hours. Agarose gel electrophoresis 

and copy numbers of gene expression (data values are mean ± standard error, n = 3).  (A) after 24 hr (B) after 48 hours: lane 1 represents molecular marker,  

lanes 2-4 represent hTERT siRNAs 1-3, respectively; lane 5 control untreated cells; lane 6 represents  GAPDH siRNA and lane 7 negative control siRNA  in 

1321N1 cell lines. Similarly lanes 8-10 represent hTERT siRNAs 1-3, respectively; lane 11 control untreated cells; lane 12 represents  GAPDH siRNA and lane 

13  negative control siRNA  in GOS-3 cell lines, lanes 14-16 represent hTERT siRNAs 1-3, respectively; lane 17 control untreated cells; lane 18 represents  

GAPDH siRNA and lane 19 negative control siRNA  in U87-MG cell lines.  
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Table 3.5 Expression levels of hTERT in 1321N1, GOS-3 and U87-MG siRNA 

treated cells along with untreated GAPDH siRNA and negative control siRNA 

assessed after 24 and 48 hr  using qRT-PCR. 

 

Immunofluorescence was performed in order to correlate transcription to protein levels 

after silencing hTERT in U87-MG cell line. Telomerase protein levels were quantified 

as a percentage of telomerase positive expressing cells per tissue sample (a total of 250 

cells were counted per sample). Only 3 % and 15% cells were positive for telomerase 

with oligos 1 and 3 respectively. siRNA oligo 2 completely downregulated telomerase 

protein.  No telomerase protein was detected after 48 hr of siRNA treatment with all 

three oligos (Fig. 3.7 and Table 3.6). 

Cell line 

mRNA/100 ηg cells extract (1 × 10
6 

cells) 

hTERT 

siRNA  1 

hTERT 

siRNA  2 

hTERT 

siRNA  3 

No 

siRNA 

GAPDH 

siRNA 

Negative 

siRNA 

After 24 hr 

1321NI 10.98 1.04 13.52 264 260 245 

GOS-3 64.47 1.04 18.69 464 467 460 

U87-MG 1.04 1.04 11.52 942 966 970 

After 48 hr 

1321NI 1.04 1.04 141.04 260 257 248 

GOS-3 1.04 1.04 101.08 472 457 466 

U87-MG 1.04 1.04 1.04 962 957 944 
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Figure 3.7 Telomerase protein levels assessed using immunofluorescence in U87-MG cells treated siRNA  

Image 1–6 represent siRNA 1-3 targeted towards hTERT, GAPDH siRNA, negative siRNA, and control cells, respectively, after 24 and 48 hr of 

treatment. Cells are stained with FITC conjugate secondary antibody, bound to telomerase (green) antigens and the nuclei is labelled with 

propidium iodide (red) × 40 objective magnifications.
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Table 3.6 Telomerase protein level levels assessed using immunofluorescence in 

U87-MG cells .                                                               

 Quantification of protein levels in the U87-MG cell line after 24 and 48 hr of siRNA 

treatment with hTERT siRNA and GAPDH siRNA.  

 Treatment 

  % Cell expressing telomerase 

  24 hr  48 hr 

siRNA 1 3     0 

siRNA 2 0     0 

siRNA 3 15     0 

No siRNA 60     63 

GAPDH siRNA 54     54 

Negative 58     53 

 

3.2.4 Effect of cytotoxic drug cisplatin and a green tea derivative 

epigallocatechin-3-gallate (ECGC) in combination with siRNA on cell 

viability. 

To study the effect of combination treatment in inhibiting telomerase activity together 

with the chemotherapeutic drug cisplatin or the natural product ECGC (Shervington et 

al., 2009), cells were first treated with siRNA targeted towards either hTERT or 

hsp90α. The treated and untreated cells were further treated with 100 µM ECGC and 
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20 μM of cisplatin. These concentrations were previously optimised as the IC50 values 

for cisplatin and ECGC in our laboratory (Shervington et al., 2009).  

Treatment with cisplatin or ECGC in the absence of siRNA demonstrated 

approximately 40 % decrease in cell viability. However, treating the cells with siRNA 

targeted towards either hTERT or hsp90α achieved over 50 % reduction in cell viability 

in comparison to using the chemotherapeutic drug cisplatin or the natural product 

ECGC. siRNA treatment in combination with either cisplatin or ECGC showed the best 

results reducing cell viability of over 60% (Fig. 3.8).  

 

 

Figure 3.8 Cell viability U87-MG glioma cell line treated with IC50 Cisplatin or 

ECGC for 24 hr with and without siRNA (Data Values are Mean, n =3). 
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3.3 Discussion 

Preliminary experiments undertaken for optimization of the experimental conditions 

confirmed that hTERT and hsp90α were upregulated in the different grades of glioma 

cell lines and hence are effective targets against glioma. Previous studies in our 

laboratory showed that, targeting hsp90α via siRNA also leads to a reduction in the 

hTERT expression (unpublished). hsp90α was silenced using siRNA oligo 3 targeting 

exon 9, which was previously optimized in our laboratory and reported as the most 

suitable oligo for silencing hsp90α after 24 hr (Cruickshanks et al., 2010). The 

experiment was repeated and similar results were obtained wherein treating U87-MG 

cell line with siRNA oligo 3 directed towards hsp90α for 24 hr resulted in decrease in 

the expression of hTERT along with hsp90α. Also, co-localization experiments using 

confocal microscopy was undertaken to visualize the simultaneous redetection of both 

the proteins (telomerase as well as Hsp90α) in the cell after inhibiting the expression of 

hsp90α. Co-localization experiments confirmed that along with the reduction of 

Hsp90α proteins, the levels of telomerase also decreased when treated with siRNA 

targeted towards hsp90α. Hence, hsp90α was used as an effective indirect regulatory 

mechanism for silencing telomerase. 

Thus, telomerase activity was inhibited using two different approaches that play an 

important role in the regulation of telomerase. The first approach involved direct 

silencing of hTERT by using siRNA. For the second approach, hsp90α was silenced 

using siRNA targeted towards it. RNA interference is an ancient defence mechanism 

that guards against foreign dsRNA. Introduced foreign dsRNA is diced into siRNA that 

binds to RNA induced silencing complex (RISC) leading to the degradation of targeted 

mRNA (Agarway et al., 2003). The manufactures of the siRNA provided a set three 
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different siRNAs oligos which targets different locations of the same gene. The 

company guarantees that atleast two oligos, from the set of three provided, would result 

in at least 70% reduction of the gene expression (Ambion, UK).  

For hTERT silencing, the three siRNA oligos used, were directed towards exon 11, 4 

and 3, respectively. siRNA oligo 2 showed a successful downregulation of hTERT after 

24 as well as 48 hr in 1321NI, GOS-3 and U87-MG cell lines. siRNA 1 did not 

completely silence hTERT after 24 hr in 1321N1 and GOS-3, however, the expression 

was dramatically reduced after 48 hr in all the three cell lines. siRNA oligo 3 was only 

effective in the U87-MG cell line.  The expression of hTERT was unaffected by either 

the negative control or GAPDH siRNAs. siRNA 2 directed towards exon 4 was 

selected as the most efficient oligo for siRNA treatment. The U87-MG cell line showed 

maximum reduction in hTERT expression with all the three siRNA oligos after 24 as 

well as 48 hr. The U87-MG cell line, which is a grade IV glioblastoma cell line with 

the highest expression levels of hTERT, was used for the proteomic study. The result 

from this study showed that after 24 hr of siRNA treatment with oligo 2, hTERT 

expression significantly decreases in the U87-MG cell lines. 

A cell viability assay was performed on glioma cell lines combining sihTERT and 

sihsp90α, along with cisplatin or ECGC. It was observed that by inhibiting telomerase 

by either sihTERT or sihsp90α alone resulted in more than a 50% decrease in cell 

viability. This was comparable to the cell death caused by chemotherapeutic agent 

cisplatin alone. Moreover, combining RNAi treatment with ECGC, decreased cell 

viability by over 60%. Hence, these results support our hypothesis, that siRNA targeted 

towards telomerase along with the natural product ECGC or chemotherapeutic agent 

cisplatin, helps to sensitize glioma cells. Both ECGC and RNAi treatment have no 
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known toxic effect to the cells and thus, could possibly be used to replace certain 

harmful chemotherapeutic agents which are toxic. 

This study authenticates that the antisense oligodeoxynucleotides directed against 

hsp90α can inhibit hsp90α directly and hTERT mRNA
 

expression indirectly in                  

U87-MG cell lines, ultimately leading to reduced telomerase protein levels and activity.  

Combination treatments with siRNA and natural products like ECGC would potentially 

be the most effective therapy regime as it produces results comparable to those of 

chemotherapeutic agents like ciplatin with no known side effects. Multi drug resistance 

is one of the leading causes for the failure of chemotherapy in glioma (Ohgaki and 

Kleihues, 2005; Komata et al., 2000). Using a non toxic approach such as RNAi 

treatment targeted against telomerase and natural products like ECGC can be very 

useful in solving the problems of drug resistace in chemotherapy. 
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4.1. Introduction 

The term proteomics describes the study and characterization of complete set of 

proteins present in a cell, organ, or organism at a given time (Wilkins et al., 1995). The 

human genome harbors 26000–31000 protein encoding genes (Baltimore et al., 2001); 

whereas the total number of human protein products, including splice variants and 

essential  post-translational modifications, has been estimated to be close to one million 

(Zimmermann and Brown, 2001). Contrary to the single protein analysis by techniques 

like western blotting or immunohistochemistry, proteomics display patterns of 

hundreds of thousands of proteins being differentially regulated at one time point being 

dynamically modified by different treatments (Whiteley G, 2006). Proteomic analysis 

includes a combination of complex and sophisticated analytical techniques such as 2D 

Gel electrophoresis for protein separation, image analysis, mass spectrophotometry and 

bioinformatics tools for quantification and characterization of the complex proteins. 

Proteomic studies have its applications in proteome profiling, comparative protein 

expression analysis under different conditions, monitoring post-translational 

modifications, in addition to studying protein–protein interactions. There is a wide 

range of proteomic approaches ranging from the gel based polyacrylamide gel 

electrophoresis (2DE and 2D-DIGE), to gel free technologies like the multidimensional 

protein identification technology MudPIT (Florens and Washburn et al., 2006), 

isotope-coded affinity tag ICAT (Gygi et al., 1999), stable isotope labelling with amino 

acids in cell culture (SILAC) (Ong et al., 2002); isobaric tagging for relative and 

absolute quantitation (iTRAQ) (Ross et al., 2004). Table 4.1 gives a brief overview of 

these techniques. 
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Table 4.1 Comparisions of the wide range of proteomic approaches available 

(Chandramouli and Quian, 2009). 

Technology Application Strengths Limitations 

2D 

Protein separation 

 

Protein expression 

profiling 

Relative 

quantification 

 

Detects post 

translation 

modification  

Poor separation of 

hydrophobic, acidic, 

basis, and low 

abundant proteins 

DIGE 

 

Protein separation 

 

Protein expression 

profiling 

 

Relative 

quantification 

 

Detects post 

translation 

modification  

 

High sensitivity 

 

Reduces intergel 

variability 

 

Proteins without 

lysine cannot be 

labelled. 

 

 Requires special 

equipment for 

visualization and 

fluorophores 

 

 Very expensive 

ICAT 

 

Chemical isotope 

labelling for  

quantitative 

proteomics 

 

Sensitive and 

reproducible 

 

Detect peptides with 

low expression 

levels.  

 

Proteins without 

cysteine residues 

and acidic proteins 

are not detected 

iTRAQ 

 

Isobaric tagging of 

peptides 

 

Relative 

quantification 

 

Sample multiplexing  

 

 

Increases sample 

complexity 

 

Require 

fractionation of 

peptides before MS 

MUDPIT 

 

Identification of  

protein-protein 

interactions 

 

Deconvolve complex 

sets of proteins 

 

High degree of 

separation 

 

Identifies large 

protein complexes  

 

Not quantitative 

 

Difficulty in 

analyzing huge data 

set 

 

Isoforms cannot be 

identidied easily 

 

http://www.sage-hindawi.com/60723512.html
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Thus, a wide range of techniques are available for proteomic analysis. Each technique 

has its own pros and cons. Proteomic analysis of this study was performed by Applied 

Biomics (Hayward, CA). Fig 4.1 shows an overview of different proteomic statergies 

and their workflow has been summarised. Also the proteomic methodologies used in 

this study have been highlighted. 

Figure 4.1 A summary of the methods used from of the wide range of proteomic 

strategies available (adapted from Chandramouli and Quian, 2009). Methods used in 

this project are highlighted.  

http://www.sage-hindawi.com/60723512.html
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4.1.1 Two-Dimensional Polyacrylamide Gel Electrophoresis (2D-

PAGE) 

Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) has been the 

workhorse of proteomics for many decades. This technique used for protein separation 

under denaturing conditions was introduced by the Italian biochemist, O‟Farrell in 

1975 and is based on the principle, first acknowledged in 1956 by Smithies and Poulik, 

that a combination of two orthogonal electrophoretic processes on a gel yields a greater 

degree of resolution than obtained by a single process. These two electrophoretic 

processes are molecular size and isoelectric focusing (IEF).  The proteins are separated 

according to their iso-electric point (pI) in the first dimension and apparent molecular 

weight in the second dimension (O‟ Farrell, 1975; Klose, 1975). Each spot resulting on 

the two dimensional array corresponds to a single protein species in the sample.  

 

Following separation the gels are stained to visualize separated protein spots using 

various dyes like dyes such as colloidal Coomassie brilliant blue G, silver stain and 

fluorescent stain SYPRO Ruby (Gygi et al., 2000). The different staining methods 

available have their own advantages and vary in limit of detection, dynamic range, and 

compatibility with analysis by masss spectrometry and have been summarized in Table 

4.2. 
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Table 4.2 Different staining methods available for protein detection in gel-based 

proteomics (adapted from Cristea et al., 2004). 

Visualization 

method 
 

Limit of 

detection  

(ng) 

 

Dynamic range 
 

Comments 
 

Colloidal 

Coomassie  

blue 
 
 

  
 

 
 8-10 

 
 

  
 

 
 20 fold 

 
 

  

This method, results in 

esterification of aspartic and 

glutamic side chain carboxyl groups 

which complicates the interpretation 

of the mass spectra. 
 
 

 
 Silver 

 
 

  
 

 
 2-10 

 
 

  
 

 
 8 to 10 fold 

 
 

 

 
Staining times and reaction 

temperatures are critical for 

reproducibility. 
 
 

 

 
 Cy3, Cy5 

 
 

  
 

 
 5-10 

 
 

  
 

 
1000 fold 

 
 

 
 

Intragel as well as intergel relative 

quantification of protein spots can 

be achieved.
 

 
 
 SYPRO Ruby 

 
 

  
 

  
 

 

 
 1-8 

 
 

  
 

  
 

 

 
 1000 fold 

 
 

 
 

It is a rapid method wherein the 
 
staining time is not critical and can 

be varied between experiments  

 

2D-PAGE proteomics have certain shortcomings such as reproducibility, inability to 

resolve proteins that are too basic or too acidic, too large or too small. However, this 

problem has now been resolved by the introduction of, immobilized pH gradients strips 

(IPGs) which have replaced the traditional capillary tubes with pH gradients generated 

by carrier ampholytes. This has significantly enhanced the resolution of 2D gels and it 

is now possible to resolve basic proteins using IPGs in the pH range of 4–12 (Essader 

et al., 2005). The problems of reproducibility and quantitation have been solved to a 

great extent by the introduction of 2D-DIGE. 
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4.1.2 2D Fluorescence Difference gel electrophoresis (2D-DIGE) 

 The 2D-DIGE technique was first described by Jon Minden‟s laboratory in 1997 (Unlu 

et al., 1997). Samples are labelled with one of three spectrally different succinimidyl 

esters of the fluorescent cyanide (Cy) dyes: Cy2, Cy 3 or Cy 5 before the first 

dimension IEF separation. These fluorophores are similar in their charge and molecular 

weight however they have distinct fluorescent properties which allows them to be 

discriminated when scanned using appropriate optical filters (Marouga et al., 2005; 

Timms and Cramer, 2008; Minden, 2007).  There are currently two forms of CyDye 

labelling chemistries available: CyDye™ DIGE Fluor (GE Healthcare, Uppsala, 

Sweden) minimal dye and CyDye DIGE Fluor saturation dye. The minimal dye causes 

a minimuml change in the electrophoretic mobility of the protein because it labels only 

a small percentage of available lysine residues. The saturation dye is more sensitive 

because it labels all available cystein residues however it causes electrophoretic 

mobility shift of labelled proteins (Kondo and Hirohashi, 2007; Shaw et al., 2003; 

Wheeler et al., 2003). The CyDye™ DIGE Fluor minimal dye chemistry is the most 

established. In this chemistry CyDye DIGE Fluors react with primary amino groups, 

typically the terminal amino group of lysine side chains (Tonge et al., 2001; Alban et 

al., 2003).  

In a 2D-DIGE experiment, three different samples are covalently labelled, with a 

different Cy dye. One of the samples is a control sample which can either be an 

untreated sample or a mixture of all samples pooled together thus forming a control. 

The samples are migration matched, so that the same protein labelled with any of the 

dyes will migrate to the same position on the gel. This control sample serves as an 

internal standard which is used for normalization and spot matching (Minden, 2007; 
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Loeffler-Ragg et al., 2008) and enables inter as well as intra gel analysis. The gel is 

scanned using a fluorescence imager at specific wavelengths for Cy2 (488 nm), Cy3 

(532 nm) and Cy5 (633 nm), and a gel image for each of the different samples is 

obtained. The images are then merged and analyzed using imaging software to check 

the differential regulation amongst the proteins (Minden, 2007).  

 

By using 2D-DIGE three different samples can be separated within the same 2D gel. 

As a result more samples can be compared within the same gel considerably enhancing 

the accuracy by totally avoiding gel to gel variation. The use of an internal control in 

DIGE eliminates any error related to gel misalignment and ensures accurate 

quantitation (Bergh and Arckens, 2005). Other advantages of the DIGE technology 

include easy comparison and accurate imaging (since a single gel plate is used) and 

compatiblility with MS. 

 

Visualization is followed by proteolytic digestion and spot excision which can be done 

directly on the gel itself. Trypsin is the most commonly used proteolytic enzyme which 

cleaves the proteolytic digestion (Olsen, 2004). 

To capitalize on the increasing accuracy of DIGE and its ability to multiplex samples, 

fully automated software such as DeCyder which are specifically designed for 2D-

DIGE analysis (Marouga et al., 2005). DeCyder, is the only software to contain 

proprietary algorithms to perform co-detection of differently labelled samples within 

the same gel. DeCyder permits automated detection, background subtraction, 

quantitation, normalization and inter-gel matching and spot picking. This results in 

high throughput, minimum introduction of human error and greatly increases the 
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reproducibility. A typical workflow of 2D-DIGE using DeCyder software is shown in 

Fig 4.2. 

Figure 4.2 Typical workflow of 2D-DIGE via DeCyder (adapted from Ettan DIGE 

User Manual, 2002). 
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4.1.3 Mass spectrometry analysis 

Irrespective of the method used for protein separation, protein identification is 

primarily achieved by mass spectrophotometry. Mass spectrophotometry consists 

mainly of three fundamental units a) an ion source where protein ionization takes place 

and gas-phase ions are generated, b) a mass analyzer which separates ions according to 

their mass to charge ratio on the basis of their motion in a vacuum under the influence 

of electric or magnetic fields, and c) an ion detection system (Domon and Aebersold, 

2006). Fig 4.3 shows a typical workflow of a mass spectrometer analysis. 

Figure 4.3 Typical workflow of a mass spectrometer analysis. 
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There are two main types of ion source first, the matrix assisted laser 

desorption/ionization (MALDI) and second, the electrospray ionization (ESI). Mass 

analysers can be characterised by four major types which include time-of-flight (TOF), 

ion trap, quadrupole, and fourier transform ion cyclotron (FTIC). A TOF analyzer 

employs a long tube with the inlet from the ion source at one end and a detector at the 

other. The ions generated in the source are exposed to an electrical field which transfers 

kinetic energy to the ions. The ions are then allowed to fly through a field-free tube of 

known length. Since the length of the TOF tube and the voltage applied are known and 

the actual flight time can be determined and it is possible to resolve mass over charge 

(Mann et al., 2001; Mann and Pandey, 2001).  

 

Simple mass spectrometers such as MALDI-TOF are used for only measurements of 

mass, whereas tandem mass spectrometers are used for amino acid sequence 

determination. In tandem mass spectrophotometry techniques, one mass spectrometer 

isolates a peptide of a particular m/z while a second mass spectrometer is used to 

catalogue fragment ions resulting after induced or spontaneous fragmentation (Dubey 

and Grover, 2001).  

In MALDI-TOF-MS the sample of interest is crystallized with a chemical matrix like 

alpha-cyano-4-hydroxy cinnamic acid, which is mixed with the analyte and spotted on 

the MALDI plate reader. Hydrophobic and hydrophilic molecules dissolve in their 

respective solvents. The solvents vaporize to leave a spreaded analyte in the 

recrystallized matrix. The sample is ionized by bombarding the sample with laser light. 

A nitrogen laser beam is usually used to trigger the ionization process. Light 

wavelength matches that of absorbance maximum of matrix so that the matrix transfers 
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some of its energy to the analyte which are then released into the gas phase. MALDI 

measures the mass of peptides derived from a trypsinized parent protein and generates 

a list of experimental peptide masses, often referred to as “mass fingerprints” (Vestling 

and Fenselau, 1994; Medzihradszky et al., 2000). The TOF measurement is a 

procedure where instead of operating continuously, the pulsed laser takes individual 

shots (Duncan and Hunsucker, 2008). 

In ESI, the analyte is ionized from a solution and transferred into the gas phase by 

generating a fine spray from a high voltage needle which results in multiple charging of 

the analyte and generation of multiple consecutive ions (Chalmers and Gaskell, 2000; 

Yates et al., 1999; Yates et al., 1997). 

 

4.1.4 Database search 

The peptide masses derived from the mass spectrometer analysis is correlated with 

peptide fingerprints of known proteins in a protein sequence database using search 

engines like Sequest, MASCOT, Comet, X!tandem, MOWSE , PeptIdent-2 and 

Profound (Pappin. 1993, Mann, 1993; Yates, 1993; Colinge, 2003; Geer, 2004). 

Results are scored based to a scheme which is specific to each search engine which also 

depends on the database searched (Domon, 2006). The various search engines do not 

yield identical results as different algorithms and scoring functions are used (Carr et al., 

2004; Bradshaw et al., 2005). Typically, these search engines provide a list of the best 

matching peptide sequences for an individual tandem mass spectrum. In addition, they 

provide scores that are related to the confidence level in the match. In this project 

MASCOT search engine developed by Matric science was used. 
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High resolution proteomic methods such as the 2D-DIGE and MALDI-TOF were used 

to study the downstream effect of targeting two different regulatory mechanisms of 

telomerase. Proteomics has the inherent advantage of the identified proteins themselves 

being the endpoint of various biological processes. Furthermore, very few proteomic 

based studies have been undertaken so far that target telomerase with no studies being 

reported in glioma. Hence, this thesis aimed to collate the genomic and proteomic data 

in order to bridge the gap between telomerase regulation and its crucial role in 

carcinogenesis. 

 

4.2 Result 

4.2.1 2D-DIGE and MALDI-TOF 

A comprehensive proteomic study was performed on untreated U87-MG (as control) 

and treated U87-MG-sihTERT and U87-MG-sihsp90α cells using 2D-DIGE and 

MALDI-TOF. 2D-DIGE revealed 54 spots that were found to be differentially 

expressed across the three samples tested. The gel images have circled and numbered 

spots which represent a change in the volume ratio, by 1.5 fold or greater, in at least 

one of the pair of comparisons (Fig. 4.4). These spots were selected by the software 

and confirmed visually. A few spots that shifted between samples were circled and 

numbered and may be differentially modified between the 3 treated groups. Slight 

shifts in molecular weights between spots can be attributed to modifications such as 

glycosylation. 

Mass spectrophotometry analysis was performed using MALDI-TOF. For protein 

identification, a subset 26 spots which showed over 2 fold change from a total of 54 
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spots were selected. Protein identification was based on peptide fingerprint mass 

mapping (using MS data) and peptide fragmentation mapping (using MS/MS data). 

MASCOT search engine was used to identify proteins from primary sequence 

databases. 20 of 26 spots were confidently identified as human proteins. “Protein ID” 

numbers correspond to the assigned numbers on the overlay gel images and are 

summarized in Table 4.3. Protein identification identified more than one spots as the 

same protein. This could either be because of the presence of different isoforms of the 

same proteins due to post-translational modifications such as phosphorylation or 

methylation that change the protein's pI and/or molecular weight, causing the spots to 

shift in addition to protein fragmentation. Publically available database Human protein 

research database (HPRD) was used to analyse the biological significance of these 

proteins and are summarized in Table 4.4. 
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Figure 4.4 2D-DIGE protein profile obtained by overlaying untreated cells with A) U87-MG-sihTERT and B) U87-MG-sihsp90α.  

Spots with Vol Ratio ≥ 1.5 were picked automatically by Ettan Spot Picker.  
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Table 4.3 Proteins identified by Mass spectrophotometry analysis along with their differential expression after 2D-DIGE seperation.   

Identified peptides of over 1.5-fold over-and under expressed were searched against the Mascot database. Proteins were categorized according to the change in 

its expression after siRNA treatment. Protein name,  NCBI GI number, protein molecular weight, ion charge, peptide count, protein score protein score C. I. %, 

total ion score and total ion  C.I. % score and fold change as generated by MASCOT are  summarized. 

Top Ranked Protein Name(Species) Accession No. Protein MW 
Protein 

PI 

Peptide 

Count 

Protein 

Score 

Protein 

Score C. I. 

% 

Total Ion 

Score 

Total Ion 

C. I. % 

Fold change 

U87-MG-

sihTERT/ 

U87-MG  

U87-MG-       

si Hsp90α/     

U87-MG 

Proteins upregulated by inhibition of telomerase by siRNA targeted towards hTERT and hsp90α 

eukaryotic translation elongation factor 2  gi|4503483 95277 6.41 24 289 100 111 100 2.83 1.61 

eukaryotic translation elongation factor 2  gi|4503483 95277 6.41 34 566 100 280 100 2.81 2 

albumin  gi|763431 52047.8 5.69 7 78 99.7 56 99.8 2.1 2.34 

vimentin variant 3  gi|167887751 49623.1 5.19 35 709 100 277 100 4.25 1.81 

67 kda laminin receptor  gi|250127 32746.4 4.83 11 322 100 207 100 2.87 1.13 

ribosomal protein P0 variant  gi|62896495 34279.8 5.71 14 267 100 156 100 2.01 1.83 

ribosomal protein P0  gi|4506667 34251.8 5.71 14 329 100 181 100 2.54 2.14 

annexin I  gi|4502101 38690 6.57 25 383 100 101 100 5.26 1.17 

glyceraldehyde-3-phosphate dehydrogenase  gi|31645 36031.4 8.26 18 296 100 99 100 3.1 1.78 

 

 



132 
 

Table 4.3 (contd) 

Top Ranked Protein Name(Species) Accession No. Protein MW 
Protein 

PI 

Peptide 

Count 

Protein 

Score 

Protein 

Score C. I. 

% 

Total Ion 

Score 

Total Ion 

C. I. % 

Fold change 

U87-MG-

sihTERT/ 

U87-MG  

U87-MG-       

siHsp90α/     

U87-MG 

Proteins differentially regulated  on treatment with sihTERT and sihsp90α  

myosin regulatory light chain MRCL3 variant  gi|62896697 19780.5 4.72 8 246 100 159 100 -3.22 1.31 

RAN, member RAS oncogene family gi|48734884 24437.6 7.01 18 467 100 264 100 2.09 -2.44 

Proteins downregulated by inhibition of telomerase using siRNA targeted towards hTERT and hsp90α 

RNH1 protein  gi|15029922 48336.4 4.83 26 547 100 270 100 -2.45 -1.65 

vimentin gi|340219 53681.1 5.03 31 526 100 176 100 -2.85 -1.89 

vimentin gi|340219 53681.1 5.03 35 704 100 306 100 -2.35 -1.6 

vimentin gi|340219 53681.1 5.03 31 662 100 309 100 -2.29 -1.57 

vimentin gi|340219 53681.1 5.03 35 723 100 296 100 -3.1 -1.71 

beta actin variant  gi|62897409 41695.7 5.29 15 156 100 49 99.4 -1.92 -2.64 

ACTB protein  gi|15277503 40194.1 5.55 15 283 100 168 100 -1.5 -2.52 

Chain A, Cyclophilin A complexed with dipeptide Gly-Pro gi|1633054 17869.8 7.82 4 125 100 93 100 -1.78 -2.14 

cofilin 1 (non-muscle)  gi|5031635 18490.7 8.22 10 149 100 48 98.9 -2.35 -2.2 
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Table 4.4 Molecular function, biological process and location of proteins identified by mass spectrophotometry using Human Protein Research 

Database. 

Protein Molecular function Biological process Location 

Proteins upregulated by inhibition of telomerase by siRNA targeted towards hTERT and hsp90α 

eukaryotic translation elongation factor 2 Translation regulator activity  Protein metabolism ; Translation  Cytoplasm 

albumin Transporter activity Transport Extracellular 

vimentin variant 3  Structural constituent of cytoskeleton Cell growth and/or maintenance Intermediate filament 

67 kda laminin receptor  Cell adhesion molecule activity  Cell communication ; Signal transduction ; Cell adhesion  Cytoplasm  

ribosomal protein P0  Structural constituent of ribosome  Protein metabolism  Ribosome 

annexin I  Calcium ion binding  Cell communication ; Signal transduction Plasma membrane 

glyceraldehyde-3-phosphate dehydrogenase  Catalytic activity Metabolism ; Energy pathways  Cytoplasm 
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Table 4.4 (contd) 

Proteins differentially regulated on treatment with sihTERT and sihsp90α 

myosin regulatory light chain MRCL3  Cytoskeletal protein binding  Cell growth and/or maintenance Cytoplasm  

RAN, member RAS oncogene family  GTPase activity  Cell communication ; Signal transduction  Nucleus  

Proteins downregulated by inhibition of telomerase using siRNA targeted towards hTERT and hsp90α 

RNH1 protein  Translation regulator activity Regulation of nucleobase, and nucleic acid metabolism Cytoplasm 

vimentin Structural constituent of cytoskeleton Cell growth and/or maintenance Intermediate filament 

ACTB protein  Structural constituent of cytoskeleton  Cell growth and/or maintenance  Cytoplasm  

Chain A, Cyclophilin A complexed with dipeptide Gly-Pro Isomerase activity  Protein folding ; Peptide metabolism   Cytoplasm  

cofilin 1  Cytoskeletal protein binding  Cell growth and/or maintenance Cytoplasm  
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4.2.2 Ingenuity Pathways Analysis 

Data mining and knowledgebase softwares like Ingenuity Pathways Analysis (IPA) 

(Ingenuity® Systems) were used to identify molecular functions and pathways which 

correlate with the proteins identified by mass spectrophotometry after the direct and 

indirect inhibition of telomerase. Two parameters were taken into consideration for the 

identification of the most significant pathways. Firstly, the ratio of the number of 

proteins that map to the pathway divided by the total number of proteins that map to 

the canonical pathway; secondly, Fisher‟s exact test is used to calculate a p-value 

determining the probability that the association between the protein in the dataset and 

the canonical pathway be explained by chance alone. Each of these networks was 

ranked by a score based on negative log of p-value. These scores ranked different 

networks based on its statistical significance.  

Top five i) disease and disorders ii) molecular and cellular functions and iii) 

Physiological System Development and Function and iv) canonical pathways are 

shown (Fig 4.5). 
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Figure-4.5-Functional-network-analysis-by-IPA.                                                                                                                                                                                               

Top 5 A)  diseases and disorders;  B) molecular and cellular functions  and C) Physiological System Development and Function and D) 

pathways selected from total 96 canonical pathways relevant to the dataset  defined by Ingenuity Pathway Analysis program.
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Each of these networks are ranked by a score based on negative log of p-value 

computed using a right tailed Fisher's exact test and has been summarized in Table 4.5 

Table 4.5 Top biofunction as generated by IPA.   

Values are based on negative log of p-value computed using a right tailed Fisher's exact 

test. 

Top Bio Functions 

Diseases and Disorders                                                                   p-value 

1 Cancer 2.58 x 10
-6

 - 4.94 x 10
-2

 

2 Gastrointestinal Disease 2.58 x 10
-6

 - 2.58 x 10
-6

 

3 Developmental Disorder 7.90 x 10
-4

 - 7.90 x 10
-4

 

4 Genetic Disorder 1.37 x 10
-3 

- 3.67 x 10
-2

 

5 Neurological Disease 1.01 x 10
-3

 - 4.55 x 10
-2

 

Molecular and Cellular Functions 

1 Cellular Assembly and Organization 2.47 x 10
-4

 - 4.57 x 10
-2

 

2 Molecular Transport 7.65 x 10
-4

 - 2.50 x 10
-2

 

3 Protein Trafficking 7.65 x 10
-4 

- 2.50 x 10
-2

 

4 Cell Morphology 7.90 x 10
-4

 - 4.57 x 10
-2

 

5 Cell-To-Cell Signaling and Interaction 7.90 x 10
-4

 - 4.34 x 10
-2

 

Physiological System Development and Function 

1 Cardiovascular System Development and Function 7.90 x 10
-4

 - 1.26 x 10
-2

 

2 Embryonic Development 7.90 x 10
-4

 - 4.11 x 10
-2

 

3 Nervous System Development 7.90 x 10
-4

 - 8.66 x 10
-3

 

4 Tissue Morphology 7.90 x 10
-4

 - 3.50 x 10
-2

 

5 Tumour Morphology 7.90 x 10
-4

 - 3.04 x 10
-2

 

Top Cannonical Pathways 

1 Regulation of Actin-based Motility by Rho 3.38 x 10
-5

 

2 RhoA Signaling 6.58 x 10
-5

 

3 ILK Signaling 2.84 x 10
-4

 

4 Actin Cytoskeleton Signaling 4.62 x 10
-4

 

5 PAK Signaling 1.96 x 10
-3
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The ingenuity analysis did not generate any pathways from among the proteins 

identified in our database. A possible reason for this could have been attributed to the 

small number of proteins identified by mass spectrophotometery. IPA generated a 

network of cellular assembly and organization with a score of 42. Applying filters for 

human species and only cancer relationships, a network of 7 proteins from our database 

was obtained. This network was then overlayed with the ingenuity knowledgebase 

biomarkers with a view of identifying potential biomarkers in our database; the results 

reiterated the importance of targeting hTERT as well as Hsp90α as biomarkers in 

various cancers. Besides these vimentin was recognised as a potential biomarker from-

our-database-(Fig-4.6). 
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Figure 4.6 Overlay of Cellular assembly and organization network with cancer biomarkers database generated by IPA path designer. 

Cellular assembly and organization network was generated using the proteomic data obtained by MALDI-TOF analysis whereas the cancer biomarkers 

dataset was obtained from ingenuity knowledge database. BM= Biomarker. Filters were used to select onlt those molecules which were of and human 

origin and were specific for cancer  



140 
 

4.2.3 Vimentin transcription levels in glioma tissues 

and cell lines 

The proteomic analysis revealed that 5 diffrent spots as vimentin all of which were 

downregulated. To verify whether the expression of vimentin was affected by 

telomerase inhibition, its expression level was studied in different grades of glioma 

cell lines before and after treatment with siRNA directed towards hTERT. The cell 

lines used included 1321N1 (Grade 1), GOS-3 (Grade II/III) and U87-MG (Grade 

IV). 

The expression of vimentin was related to the grade of glioma, with the U87-MG 

cell line showing maximum expression. It was also found that silencing hTERT 

significantly reduced the expression of vimentin in a grade specific manner                     

(Fig. 4.9).   

Figure 4.7 Transcription level of vimentin in different grades of glioma cell lines 

before and after treatment with sihTERT .  
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The expression of vimentin was further evaluated in 15 different glioma tissues and 

3 normal brain tissues. Vimentin was found to be significantly expressed in 9 of 12 

glioblastoma tissues. The expression of vimentin was not detected in the normal 

tissue samples and the low grade glioma cell lines (Fig. 4.10 A). The high grade 

glioblastoma tissues showed that vimentin transcription level was 10
4
 fold higher 

than the lower grade glioma and the normal brain tissues (Fig. 4.9 B). However, 

unlinke the cell lines, the expression level of vimemtin didnot correlate with the 

grade of the tissue specimens used.  

 

Figure 4.8 Transcription level of vimentin in tissue samples.  
A) Transcription levels of vimemtin in tissue samples B) Average expression of 

vimentin in glioblastoma, lower grade glioma and normal tissues. 
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4.3 Discussion 

The standard protocol for proteomics includes extraction of cell proteins from 

samples, digestion with proteases for example trypsin, separation of the resulting 

mixture by two-dimensional (2D) electrophoresis or liquid chromatography (LC) 

digestion and excision of the gel spots followed by mass spectrophotometry for 

protein identification and/or quantification. In this thesis, 2D-DIGE was used for 

protein separation and MALDI-TOF was used for protein identification. 

To characterize the changes caused at the cellular protein levels by inhibition of 

telomerase, a differential proteomic analysis was performed to compare wild type 

U87-MG cells, U87-MG cells after silencing hTERT gene (U87-MG-sihTERT) and 

U87-MG cells after silencing hsp90α gene (U87-MG-sihsp90α). 2D-DIGE was used 

for protein separation and MALDI-TOF was used for protein identification. 2D-

DIGE was used in order to minimize inter-gel variation,. 2D-DIGE allows 

comparison of over two samples on the same gel as three different fluorescent dyes, 

Cy2, Cy3 and Cy5 can be used on the same gel. Only those spots which showed over 

2 fold change when compared in either U87-MG, U87-MG-sihTERT or U87-MG-

sihsp90α were selected for protein identification. This study, from a unique angle, 

elucidates relationships between the direct and indirect effect of silencing different 

telomerase regulatory mechanisms. 

2D-DIGE revealed 54 spots that were found to be differentially expressed across the 

gels. Due to financial constraints only a subset of the spots which showed over 2 fold 

changes were selected for further analysis. Out of the 54 spots, 26 spots showed over 

2 fold change across the samples and were selected for protein ID using                   

MALDI-TOF. 20 spots could be successfully identified with a high confidence level 

of over 95%. 
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The IPA software identified dynamically regulated biological networks, global 

canonical pathways and global functions which correlated with cellular responses to 

telomerase inhibition. The top networks significantly modulated by the inhibition of 

telomerase providing a score of 42 were categorized by IPA as those involving 

cancer and cellular assembly and organization. The top diseases and disorders 

modulated in response telomerase inhibition were cancer, genetic disorders and 

neurological diseases. IPA analysis thus, added confirmation that alteration in the 

hTERT levels significantly alters the cancer proteome including brain disorders. IPA 

also showed that alteration in telomerase regulation has its effect on physiological 

systems like the cardiovascular function and development, tissue and tumour 

morphology. IPA also showed that inhibition of telomerase affects cellular and 

molecular functions like cellular assembly and organization, molecular transport, 

protein trafficking cell morphology, cell-to-cell signaling and interaction. The IPA 

library of canonical pathways indicated that proteins identified in this study are 

participants in regulation of actin-based motility by Rho, glycolysis, Integrin linked 

kinase (Ilk) signaling and actin cytoskeleton signaling. Several potential targets 

along this pathway might be useful for therapeutic intervention in the future. These 

results highlight the significant downstream effect of telomerase in different cellular 

functions besides its role in maintaining telomere length.  

A functional protein association network for proteins that were differentially 

expressed due to silencing of hTERT was generated using IPA. Filters were adjusted 

to select molecules belonging to human species and affecting cancer. This network 

was overlayed to an inbuilt biomarker library generated in the IPA knowledgebase. 

A network was generated which involved Hsp90, telomerase, annexin 1, beta actin, 

vimentin, RAN and myosin regulatory light chain. The IPA analysis demonstrated 

that besides Hsp90 and hTERT, vimentin which is differentially regulated by 
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silencing regulatory mechanisms of telomerase is used as a biomarker in several 

cancers and hence, can be a potential biomarker in glioma cell lines whose activity 

can be modulated by telomerase.  

Upregulation of proteins via telomerase inhibition  

Inhibition of telomerase activity resulted in the upregulation of various proteins such 

as the eukaryotic elongation factor 2, albumin, annexin 1, ribosomal protein P0 

variant (RRP0), GAPDH, 67kDA laminin receptor, and ras-related nuclear protein. 

These proteins are involved in various physiological and pathological pathways such 

as cell growth, membrane trafficking, phagocytosis, proliferation, inflammation, 

tumour suppression and apoptosis differentiation. Two differentially expressed spots 

were identified as EF2. EF2 plays a role in the polypeptide chain elongation step in 

the tumourigenesis.  A high level protein synthesis is one of the characteristics of 

cancer cells. EF-2 is a 93 kDa monomeric guanine nucleotide-binding protein and is 

solely responsible for the translocation of codons from the A to P ribosomal 

positions and hence is an essential mediator of the ribosomal elongation step during 

mRNA translation (Py et al., 2009; Sivan et al., 2007). The phosphorylation of EF2 

via EF2 kinase in response to elevation in intracellular calcium leads to the 

inactivation of this translation factor and protein synthesis is halted with mRNA-

loaded ribosomes (Yang et al., 2001; Sivan et al., 2007). EF2 and EF2 kinase are 

thus, inversely related. EF2 protein is overexpressed in 92.9% of gastric and 91.7% 

of colorectal cancers with a knockdown of EF2 showing inhibition in cancer cells 

and activation of EF2 kinase in these cancer cells (Nakamura et al., 2009). EF2 

kinase is markedly increased in
 
human glioblastoma and is chaperoned by Hsp90α. 

EF2 kinase
 
inhibitor, antisense RNA to calmodulin (Nairn et al., 1985) and EF2 

kinase (Libermann et al., 1985) have been shown to be
 
effective against cancer cells 
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in glioma. Glendamycin, an Hsp90α inhibitor, has been shown to disturb the 

chaperone pathway between the EF2 kinase and Hsp90α and thus inhibits EF2 

kinase activity (Yang et al., 2001). These results are consistent with our data 

showing the use of sihsp90α results in upregulation of EF2 due to inhibition of EF2 

kinase activity. 

Albumin (ALB) is the most abundant plasma protein accounting for over 50% 

protein of the serum proteins. Its primary functions include transportation and 

maintenance of osmotic pressure cell metabolism (Nicholson et al., 2000). Albumin 

has been known to demonstrate an inverse relationship with mortality of cancer 

patients. Serum albumin has been described as an independent prognosticator of 

survival in lung cancer, pancreatic cancer, gastric cancer, colorectal cancer and 

breast cancer (Gupta et al., 2009). A clinical study on GBM tissues showed that 

serum albumin levels can be used as a prognostic marker for predicting patient 

survivals with higher serum albumin levels showing better survival rates 

(Schwartzbaum et al., 1999).  However the mechanism still remains unknown.  

Annexin 1 (ANXA1) belongs to the family of annexins which have calcium and 

phospholipid binding properties. It is involved in various physiological and 

pathological pathways like cell growth, membrane trafficking, phagocytosis, 

chaperone activity, proliferation, inflammation, tumour suppression and apoptosis 

differentiation (Lim et al., 2007).  ANXA1 possesses phophorylation sites which 

play a vital role in proliferation of certain signaling molecules. It is strongly involved 

in the modulation of intracellular
 
calcium release and by that mechanism interferes 

with processes
 
that are calcium-dependent. ANXA1, N-terminal domain includes 

sites for protein kinase C (PKC) and tyrosine kinase phosphorylation, and for 

glycosylation, acetylation and proteolysis (John et al., 2004). ANXA1, thus, plays a 
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key role in certain signaling pathways important in cancer, however, the exact 

mechanism is not known.  

ANXA1 may have important regulatory roles in tumour development and 

progression. Evidence for this lies in the clear observations that the expression of 

ANXA1 is reduced in certain cancers like esophageal cancers and prostate cancer. 

While it is increased in other cancers like head, neck and breast cancers (Lim and 

Parvaiz, 2007). Previous studies have reported over-expression of ANXA1 in some 

central nervous system (CNS) tumours (GBM, anaplastic astrocytoma and 

astrocytoma) wherein primary glioblastomas have a higher ANXA1 expression level 

compared with secondary glioblastomas (Schittenhelm et al., 2009). ANXA1 serves 

as a substrate for the epidermal growth factor receptor (EGFR), which is frequently 

amplified in primary gliomas and its expression profile is similar to its substrate, 

EGFR.  

However, our results show that in glioma cell lines decreasing telomerase activity 

results in 5 fold increase in ANXA1 level. A possible explanation for this could be 

the antiproliferative and/or proapoptotic function of ANXA1. Reduction in 

telomerase results in an increase in cellular apoptosis as seen by the cell viability 

results. Also loss of ANXA1 has been shown to make cancer cell resistant to 

apoptosis via chemotherapeutic agents in several cancers (Zhang and Liu, 2007). 

However, no relationship between telomerase activity and ANXA1 has been 

reported so far and more detailed analysis is required to understand the role of 

ANXA1 in glioma development and progression. 

The 67-kDa laminin receptor (67LR) is a nonintegrin cell surface receptor that binds 

laminin with high affinity. It is widely expressed in mammalian cells and is 

overexpressed in a variety of tumour cells and plays a significant role in tumour 
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invasion and metastasis (Sobel, 1993; Castronovo, 1993; Martignone et al., 1993). 

Though the exact mechanism of how this receptor plays a role in invasion is unclear. 

67LR is known to promote adhesions of molecules which play a key role in the 

rearrangement of the extracellular matrix (ECM) around the tumour (Berno et al., 

2005). It also facilitates the attachment and migration of endothelial cells. This 

receptor has been shown to be over expressed in glioma with down-regulation of 

67LR by RNAi resulting in a decrease in its migratory and invasion activity. 

While these studies showed the expression of these proteins in different cancer cell 

lines, namely, ovarian (67LR) and mesenchymal (ANXA1), using different methods 

and treatments, our studies utilised proteomic analysis and a high grade glioblastoma 

cell line after inhibiting the activity of telomerase.  

However, our studies showed that inhibition of telomerase resulted in upregulation 

of this receptor. This contradicts the role of telomerase as a target to reduce glioma 

metastasis. The cause of the increase of the expression of this receptor remains 

unknown. This could be the reason why targeting telomerase alone is insufficient to 

kill tumour cells completely. Hence, though it is clear that telomerase plays a role in 

cellular apoptosis and tumour metastasis, the net effect of telomerase on the 

metastatic potential still remains unclear and more mechanistic insights are required 

to gain a complete understanding of the effect telomerase on tumour cell metastasis.  

RAN (ras-related nuclear protein) is a small GTP binding protein belonging to the 

RAS superfamily. It plays a key role in the nucleus-cytosol exchange through the 

nuclear pore complex. It is involved in many other processes such as regulation of 

microtubule network during mitosis, cycle regulation, apoptotic response to a variety 

of conditions (Wong et al., 2009) as well as RNA and DNA synthesis. RAN has 

been found to be occasionally amplified in tumours and also in certain resistant cell 
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lines (Zhang and Liu, 2007). It has been suggested that its over-expression may 

cause drug resistance possibly by enhancing the survival of cells under drug attack. 

RAN over expression resulted in a decrease of paclitaxel-induced apoptosis and was 

hypothesized to act via downregulation of JNK-dependent signaling pathways in this 

glioblastoma cell line (Woo et al., 2008). Our data shows that siRNA targeted 

towards hTERT results in a 2 fold increase in the RAN protein, however sihsp90α 

resulted in 2 fold decrease. Hsp90α is a chaperone and assists in the maturation of 

diverse groups of proteins. Inhibiting the activity of Hsp90 affects various signaling 

pathways and hence, the decrease in the expression of RAN could be a result of 

diverse and complex regulatory mechanism affected by Hsp90. However, more 

research needs to be carried out in order to help explain how silencing hTERT gene 

results in an increased protein level of RAN. 

An important consideration in cancer chemotherapy is the onset of cellular resistance 

to certain chemotherapies. For example, ribosomal activity has been shown to be 

increased in cells treated with antitumour agents (Grabowski et al., 1992).  

Alteration of ribosomal proteins influence protein translation processes, via 

upregulation of 37 kDA laminin receptor precursor which increases the quantity of 

67LR molecules which consequently increases cell adhesion to extracellular matrix 

and enhances the survival of tumour cells during drug attack affecting the response 

of tumour cells to anticancer agents (Shi et al., 2002). In addition ANXA1 (Sinha et 

al., 1998; Zhang  and  Liu, 2007), RAN (Rush et al., 1996) and GAPDH (Shi et al., 

2002) have been reported to be upregulated in various drug resistant cell lines. It is 

speculated that ANXA1 plays a role in drug resistance due to it being a stress 

protein, thereby protecting cells under therapeutic attack (Zhang  and  Liu, 2007). 

Thus, it can be inferred that inhibition of telomerase is sub-lethal and is not capable 

of solely inhibiting tumour progression and further research is necessary in order to 



149 
 

understand the complex regulation of the dynamic changes caused in cancer 

proteome due to the altered levels of telomerase. There are numerous established 

mechanisms that are responsible for acquired resistance of tumour cells to anticancer 

treatments (Shi et al., 2002). These include increased DNA repair mechanisms, drug 

efflux, altered survival and apoptotic signaling pathways.  Hence, though it is clear 

that telomerase plays a role in cellular apoptosis and tumour metastasis, the net effect 

of telomerase on tumour formation and metastatic potential still remains unclear and 

more mechanistic insights are required to gain a complete understanding of the effect 

telomerase on tumour cells and its metastasis.  

Besides these, other proteins such as cyclophilin and ribonuclease inhibitor (RNH1) 

exhibit downregulation when telomerase was inhibited. Cyclophilins are known as 

the target binding proteins for the immunosuppressive agent cyclosporin A 

(Handschumacher et al, 1984). Cyclophilin A has enzymatic peptidyl-prolyl                    

cis–trans-isomerase
 
(PPIase) activity necessary for protein binding in vivo. The 

enzymatic activity in cyclophilins is also involved in protein transport, mitochondrial 

function and pre-mRNA processing (Andreeva et al., 1999; Bourquin et al., 1997). 

Cyclophilin A has been reported to be overexpressed in many cancer cells. Its role in 

cancer cells remains unclear although a study showed that over expression of 

cyclophilin A renders cancer cells resistant to hypoxia and cisplatin-induced 

apoptosis (Choi et al., 2007). Over expression of cyclophilin A directly stimulates 

pancreatic cancer cell proliferation through its receptor CD147 (Li et al, 2006). The 

role of cyclophilin A in glioma cancer cells is not known although a has study shown 

that cyclophilins were among the up-regulated proteins found in human glioma cell 

lines treated with an experimental antiglioma agent suggesting that cyclophilin may 

also play a role in the resistance of glioma cancer cells to drug-induced apoptosis 

(Bian et al., 2008).  
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Telomerase inhibition also resulted in the down regulation of RNH1 which 

demonstrated several tumour suppressor properties by inhibiting tumour-induced 

angiogenesis tumour growth (Chen et al., 2005). It is unclear as to why telomerase 

inhibition would result in the down regulation of a protein with such properties and 

further investigations are necessary to address this issue. 

Downregulation of cytoskeleton associated proteins 

Inhibition of telomerase has led to a significant down regulation in the level of 

vimentin, cofilin 1 (CFL1), ACTB proteins and myosin regulatory light chain variant 

3 (MRCL3). These proteins directly or indirectly affect the actin cytoskeleton 

regulation and are mainly upregulated in cancers (Condeelis et al., 2005). Changes in 

the regulation and expression of key molecules of the actin cytoskeleton contribute 

dramatically to the differences between metastatic and non-metastatic cancer cells 

(Dizhoor, 2002; Condeelis et al., 2005). 

Myosin regulatory light chain 3 (MRCL3) is a subunit of the myosin regulatory light 

chain which is thought to play a specific role myosin regulation (Dizhoor, 2002).  

The literature suggests that MRCL3 may play a role in the regulation of the muscle 

filament assembly and reorganization in muscle cells (Tohtong et al., 2003). A study 

proposed that diphosphorylated MRCL3 is necessary for the organization of stress 

fibers and contractile rings during cell division (Iwasaki et al., 2001). The role of 

MRLC3 in cancer is not clear although studies suggest that the function of MRCL3 

in cell migration may be involved in cell invasion in metastatic cancer (Nguyen et 

al., 1998; Tohtong et al., 2003). Cancer cell lines treated with inhibitors of myosin 

light chain kinase (MLCK), which regulates the phosphorylation of MRLC3, showed 

marked reduction of invasiveness in in vitro invasion assays (Tohtong et al., 2003). 

The reduction in tumour cell invasion was mainly due to impaired cellular motility. 
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This result is consistent with our results showing a 3 fold decrease in MRCL3 levels 

after targeting sihTERT, thereby leading to a decrease in the metastatic potential of 

cancer cells. However, this protein was upregulated by 1 fold when hsp90α was 

silenced. 

Cofilin
 
1 is a small ubiquitous protein of approximately 19 kD and is one of the key 

regulators of actin dynamics of migrating cells, both in vivo and in vitro (Yamaguchi 

et al., 2007). Inhibition of cofilin 1 (CFL1) activity in carcinoma cells have shown to 

inhibit cell motility and invasiveness via actin depolymerisation resulting in an 

increase in disorganized actin microfilaments (Feldner and Brandt, 2002). Cofilin 

plays a key role in epithelial-mesenchymal transition (EMT), however, its net effect 

on EMT is yet to be determined (Keshamouni and Schiemann, 2009). In 

glioblastoma cells, cofilin 1 has been shown to be up regulated resulting in an 

increase in the velocity of cell migration (Yamaguchi et al., 2007).  

Cytoplasmic isoactins β was also downregulated. β-actin plays a role in the 

“ameboidal” type of movement, which is a characteristic of intravassation of cancer 

cells through the vessel wall (Khatilina, 2001; Peckham et al., 2001). The increased 

expression of cytoplasmic β-actin is found in some tumour cells (Le et al., 1998; 

Nowak et al., 2005; Nguyen et al., 2000).  The level of β-actin is higher in invasive 

cell lines of sarcoma compared with non-invasive ones. There is a distinct 

correlation between the metastatic capacity of cancer cells and the state of actin 

polymerization, actin cytoskeleton organization and the β-actin expression. 

Four different proteins down regulated by a magnitude of 2.4-3.1 and 1.6-1.9 fold 

with sihTERT and sihsp90α, respectively, were identified as vimentin. These spots 

had the same theoretical molecular weights and pI values suggesting that there may 

be post translational modifications, degradation or cross-linking to other proteins. 
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Post translational modifications play an important role in regulating the expression 

of vimentin. Vimentin can exist in multiple phosphorylated and non-phosphorylated 

forms (Ando et al., 1989; Chou et al., 1991; Huang et al., 1994). Phosphorylated 

vimentin is suggested to be an indicator of non-aggressiveness and/or non-

invasiveness in certain tumours. Studies on colorectal cancers have shown that 

vimentin proteins are present in highly methylated forms (Shirahata et al., 2009). In 

addition to the four identified vimentin, a fifth spot was identified as vimentin 

variant 3 which was significantly up regulated by a magnitude of 4 in U87-MG-

sihTERT cell lines.  Thus, these results open up new avenues for a possible 

involvement of telomerase in the regulation of the phosphorylated/ methylation 

status of these intermediatory filaments.  

Vimentin is the major intermediate filament cytoskeletal protein and is involved in a 

wide range of cellular activities. Intermediate filaments play an important role in cell 

motility and movement (Katsumoto et al., 1990), responding to mechanical stresses 

(Thoumine et al., 1995) stabilising cytoskeletal interactions and maintaining the 

integrity of the cytoplasm. It also plays a role in mechanosensitive signaling, 

apoptosis, immune defence and regulation of genomic DNA (Wang et al., 1993; 

Ingber, 1997). Vimentin plays a role in tumour development, progression, and 

chemosensitivity (Ngan et al., 2007; Zajchowski et al., 2001; Penuelas et al., 2005). 

Vimentin belongs to glioma specific extracellular matrix components and is involved 

in both neo-vascularization and invasion of malignant glial cells (Zhang et al., 2006).  

Interestingly, vimentin is a novel client protein of Hsp90α and inhibition of Hsp90α-

vimentin binding results in an increase in apoptosis-induced stimulus making the 

cells more chemosensitive (Trog et al., 2006). Vimentin distribution is specific for 

mesenchymal tissue, however, in epithelial cancer cells, there is an aberrant 

expression of vimentin. This phenomenon is referred, as EMT, which results in the 
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acquisition of migratory and/or invasive properties. In several cancers, increase in its 

expression has been associated with increased invasiveness and metastasis (Hendrix 

et al., 1996; Hu et al., 2004). However, the use of vimentin as a tumour marker is 

controversial since the expression of vimentin is not always proportional to 

invasiveness and it depends on the cell lines being tested.  

The expression of vimentin in different grades of glioma cell lines was investigated. 

The results indicated that the expression of vimentin in glioma cell lines was directly 

proportional to its grade. Furthermore, sihTERT decreased vimentin expression in a 

grade specific manner. These results complement the bioinformatics‟ prediction for 

vimentin as a potential tumour marker in glioma.  Thus, silencing telomerase, could 

results in a decreased metastatic potential of the cells via vimentin. To confirm this 

hypothesis the expression of vimentin in tissue samples was investigated and our 

results showed that 9/12 glioblastoma tissues were positive for its expression, while 

vimentin was absent in normal cells or lower grade gliomas. However, unlike the 

cell lines, the expression of vimentin in the tissue samples did not show any 

correlation with the grade of the tissue specimens used. Vimentin has been shown to 

be upregulated in glioma cells under irradiation and temozolomide treatment and has 

been associated with clinical tumour relapse and drug resistance (Trog et al., 2008). 

Hence, inhibition of telomerase could help to overcome the problem of drug 

resistance to some extent by decreasing the expression of vimentin and cyclophilins.  

The expression of vimentin was checked in 15 tumour samples and 3 normal brain 

tisuue samples and with a view of establishing vimentin as a potential indicator of 

tumourogenesis in glioma its expression should be checked in a larger cohort of 

glioma tissue samples as well as normal brain samples.  
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Multidrug resistance and tumour reoccurrence is very common in glioma in spite of the 

advances made in radiation therapy and chemotherapy.  Advancement of telomerase as 

a therapeutic target has paved the way for taking this enzyme from in vivo and in vitro 

experiments to well designed clinical trials. Telomerase is an important molecular 

target of glioma due to its preferential expression in tumour cells. Although the 

importance of telomerase for tumour proliferation is well documented, very little is 

known about the downstream effect of telomerase on the various physiological and 

signaling pathways.  The aim of this thesis was to silence telomerase at the genetic 

level with a view to highlight the changes caused in the cancer proteome and identify 

the potential downstream pathways controlled by telomerase in tumour progression and 

maintenance.  

Human telomerase is a ribonucleoprotein complex composed of the catalytic subunit 

hTERT and the RNA component-hTR. Since hTERT is only found in telomerase 

positive cells, it is a precise measure of telomerase activity. The activity of telomerase 

can be regulated at multiple levels. One such aspect is the regulation of telomerase by 

various telomerase and/or telomere associated proteins which either mediate or regulate 

the association of telomerase with the telomere.  Hsp90 is a key component of a multi 

chaperone complex. It is a significant target in the development of rational cancer 

therapy due to its role at the crossroads of multiple signaling pathways associated with 

cell proliferation and cell viability. Over-expression of Hsp90 is an important factor in 

the activation of telomerase via hTERT. Results from our laboratory have also shown 

that siRNA directed towards hsp90α not only completely silences hsp90α but results in 

almost 80% silencing of hTERT.  

Hence, in this study two different approaches regulating telomerase activity were used 

in order to inhibit telomerase activity and to study the downstream effect of this 
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inhibition. Direct silencing of the catalytic subunit hTERT, by siRNA was used as the 

first regulatory mechanism to inhibit telomerase activity. The second approach 

involved an indirect mechanism of telomerase regulation by silencing the Hsp90α 

chaperone.  

For over a decade genetic analysis has been an important tool in cancer research. The 

advent of proteomics can complement and contribute to the existing knowledge gained 

via these extensive genomic studies.  Besides accurately identifying the cellular protein 

content in normal as well as diseased conditions, proteomics has the inherent advantage 

of identifying proteins that are the endpoints of various biological processes. This 

further emphasizes the importance of adapting high resolution proteomic studies to 

complement existing genomic data.  

This is the first study which assessed the effect of inhibition of telomerase transcription 

(through RNAi) in glioma cell lines to understand its effect on the cancer proteome.  It 

is evident from the results of this study that telomerase is involved in numerous cellular 

functions besides telomere maintenance. It is known that telomerase plays a role in 

tumour metastasis but the precise mechanism has still not been fully elucidated. Our 

study sheds a light on key role played by telomerase in glioma metastasis by affecting 

cytoskeletal molecules such as vimentin, CFL1, MRCL3 and ATCB. Novel data from 

this study suggest the potential involvement of telomerase in regulating the expression 

of vimentin at proteomic as well as genomic levels. This study reveals that telomerase 

plays a role in cellular metabolism as observed by the changes in the GAPDH, it is 

closely involved in post transcriptional mechanisms as observed by the change in the 

levels of elongation factors, ribosomal proteins and various other receptor proteins and 

hence plays a role in cellular fate making decisions. Telomerase also assists in 

decreasing the protein levels of vimentin and cyclophilins which contributes to cell 
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tumorigenicity. These findings also suggest that caution should be exercised regarding 

the use of GAPDH as a housekeeping gene. Proteomics is an important tool to study the 

downstream effect of telomerase and it will be interesting to further investigate the 

effect of telomerase on the cytoskeletal associated proteins reported in this study with a 

view to substantiate direct evidence. 

Despite the upregulation of various proteins that might make the glioma cells 

chemoresistant, such as ANXA1, RAN and laminin receptor, the inhibition of 

telomerase could emerge as an effective anti-cancer therapy. Interestingly, green tea 

polyphenol, Epigallocatechin-3-gallate, has been shown to induce its anticancer activity 

via 67LR and vimentin (Higashi et al., 2005; Umeda et al., 2008). ECGC is known to 

reduce telomerase activity and increase cell viability in glioma cells (Shervington et al., 

2009).  ECGC can thus, chemosensitize glioma cells more effectively by affecting the 

67LR and phosphorylating vimentin. This can be used as an adjuvant therapy along 

with silencing telomerase with a view of overcoming the side effects of inhibiting 

telomerase. Combining telomerase inhibition with natural products such ECGC or 

chemotherapeutic drugs like cisplatin, could help to overcome the shortcomings of 

telomerase inhibition and significantly decrease cell viability. Glioma is one of the 

most intricate cancers and it does not follow predictable and repeatable pathways. 

There is no single treatment effective against glioma. Phenomena like adeptness at 

rewiring molecular circuitry and development of multi-drug resistance, a deficiency of 

preclinical models and difficulties posed by the blood brain barrier, makes glioma one 

of the most complex cancers. Although, combination therapy has been proven to be 

successful for a number of cases, the quality of the patient‟s life may be compromised 

due to the high dose of toxic drugs. Thus, the enthusiasm for applying non toxic 

regimes like the inhibition of telomerase via RNAi technology and use of natural drugs 
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can be justified, especially when they can produce comparable results to those obtained 

by chemotherapeutic drugs.  

This approach of of silencing telomerase at the genetic level, using two different 

regulatory mechanisms and studying its subsequent effect on the cancer proteome was 

novel and shed light on potentially new roles of telomerase in the regulation of tumour 

metastasis via cystoskeletal proteins. Progressing knowledge of the downstream 

pathways regulated by telomerase will be instrumental in building a network of 

complementary targets for intervention, biomarker discovery, patient selection and 

prognosis of glioma. 

Future Work 

It will be advantageous to study the relationship between telomerase and the 

cytoskeletal proteins identified in this study, especially vimentin. Morphological 

studies should be carried out on different grades of glioma cell lines after silencing 

hTERT individually as well as in combination with the silencing of vimentin.  

With a view of establishing vimentin as a potential biomarker for glioma, the 

expression of vimentin should be checked in a larger cohort of glioma tissue samples as 

well as normal brain samples. The efforts of Brain Tumour Northwest (BTNW) in 

setting up a brain bank should enhance the availability of sample size and thus reduce 

these limitations.                                                                                                   

The results obtained from this study have shown that the inhibition of telomerase via 

RNAi technology and natural drugs such as ECGC, produce comparable results to 

those obtained by chemotherapeutic drugs. To enhance the therapeutic potential of 

telomerase, a combinational approach of telomerase inhibition and natural drugs should 
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be studied in more detail. The possible implication of such methods as adjuvant therapy 

to overcome drug resistance in glioma will reduce the therapeutic side-effects in glioma 

and greatly improve the quality of life of the patient. 

While studying the downstream effect of telomerase inhibition, a new mode of action 

of ECGC via hTERT and hsp90α was discovered. The alteration in the expression of 

67LR and vimentin that are the key targets of ECGC as well as the effect of EGCG on 

the cell viability, telomerase expression and chemosensitivity in glioma led us to 

investigate the possible relationship between ECGC, hTERT and hsp90α. A preliminary 

bioinformatics analysis was carried out to confirm to this speculation. The promoter 

sequences of hTERT and hsp90α were retrieved using Transcriptional Regulatory 

Element Database (TRED). Using publically available signal scan program, AliBaba 

2.1, these promoter sequences were analysed to identify the potential transcription 

factor binding sites present. The results indicated the presence of early growth response 

1 (Egr-1) on both the promoter sequence (Fig 5.1).  Egr-1, tumour suppressor protein 

has been reported to substantiate the effect of ECGC (Moon et al., 2007; Cho et al., 

2007; Fu and Chen, 2006). However, the exact mechanism is unknown. 
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A. 

 

B. 

 

Figure 5.1. Potential transcription factor binding sites for Egr-1 present on the 

promoters of A) hTERT and B) hsp90α as generated by AliBaba 2.1. 

 

These preliminary results have shed light on the mode of action of ECGC via the 

ribonucleoprotein enzyme telomerase and the molecular chaperone Hsp90α. However, 

a more thorough investigation is required to establish the concrete relationship between 

ECGC, hTERT, Hsp90α, vimentin, 67LR and Egr-1. Studying the interconnection 

between these molecules can lead to the development of a novel mechanistic pathway 

for the action of ECGC. 
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1. 2D-DIGE spot Analysis report for U87-MG-sihTERT/U87-MG 
 
Protein 

ID 

 

Abundance 
Volume 

Ratio 

Max 

Slope 

 
Area 

Max Peak 

Height 

Max Volume 

 

1 Decreased -1.66 0.74  408 3746 3.64E+05 
2 Similar 1.49 0.69  467 2931 3.77E+05 

3 Increased 2.83 0.82  522 4416 7.42E+05 
4 Increased 2.81 0.70  554 10749 1.96E+06 

5 Decreased -1.52 0.89  198 1709 9.99E+04 
6 Similar 1.34 0.70  342 2397 2.31E+05 

7 Decreased -1.57 0.48  418 1876 3.68E+05 

8 Increased 1.55 0.50  286 868 6.70E+04 
9 Increased 1.79 0.30  422 4309 6.52E+05 

10 Increased 2.10 0.37  523 5376 9.24E+05 
11 Increased 1.53 0.57  702 4909 7.51E+05 

12 Increased 1.66 0.23  437 1496 3.30E+05 
13 Decreased -2.85 0.40  491 2342 4.91E+05 

14 Decreased -2.35 0.57  740 10020 2.60E+06 

15 Increased 2.02 0.71  596 12676 2.77E+06 
16 Increased 4.25 0.92  436 34704 3.39E+06 

17 Decreased -2.45 0.66  431 1576 2.00E+05 
18 Decreased -2.29 0.31  871 9284 2.47E+06 

19 Decreased -3.10 0.37  812 10228 2.71E+06 

20 Increased 1.93 0.17  903 1586 4.59E+05 
21 Decreased -1.92 0.35  614 1472 3.74E+05 

22 Similar -1.50 0.22  491 746 3.77E+05 
23 Decreased -1.76 0.26  712 2634 6.94E+05 

24 Increased 2.87 0.22  185 1119 1.18E+05 
25 Increased 1.54 0.31  344 2109 3.47E+05 

26 Decreased -1.96 0.43  464 4277 5.02E+05 

27 Decreased -1.50 0.28  466 705 1.00E+05 
28 Increased 1.53 0.45  471 1202 2.36E+05 

29 Similar -1.41 0.34  652 10801 2.31E+06 
30 Similar -1.38 0.19  813 2095 7.34E+05 

31 Increased 2.01 0.18  335 1216 1.93E+05 

32 Increased 2.54 0.28  557 728 1.28E+05 
33 Increased 1.51 0.44  643 4720 1.34E+06 

34 Decreased -1.57 0.19  500 2429 5.44E+05 
35 Increased 5.26 0.34  491 1198 2.15E+05 

36 Increased 3.10 0.36  386 1222 2.35E+05 

37 Similar -1.46 0.16  672 1632 5.45E+05 
38 Increased 2.74 0.20  492 391 8.73E+04 

39 Decreased -1.88 0.18  663 527 1.32E+05 
40 Similar 1.21 0.14  771 517 1.15E+05 

41 Increased 1.71 0.32  1302 5184 1.73E+06 
42 Decreased -1.51 0.17  984 1390 4.98E+05 

43 Decreased -3.22 0.17  518 754 1.60E+05 

44 Decreased -1.50 0.09  1057 480 1.84E+05 
45 Decreased -1.78 0.11  1100 700 2.63E+05 

46 Decreased -2.35 0.09  1117 375 1.91E+05 
47 Increased 1.88 0.16  570 777 2.05E+05 

48 Increased 1.70 0.12  697 422 9.68E+04 

49 Decreased -1.75 0.08  659 136 3.28E+04 
50 Increased 1.54 0.19  1720 4546 1.73E+06 

51 Similar -1.17 0.36  549 17967 3.19E+06 
52 Similar -1.24 0.41  585 8516 2.29E+06 

53 Decreased -1.51 0.30  772 21263 4.49E+06 
54 Increased 2.09 0.29  516 2793 5.66E+05 
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2. 2D-DIGE spot Analysis report for U87-MG- si Hsp90α/ U87-MG 

 
Protein 

ID 

 

Abundance 
Volume 

Ratio 

Max 

Slope 

 
Area 

Max Peak 

Height 

Max Volume 

 

1 Similar 1.22 0.74  408 3746 3.64E+05 
2 Similar 1.29 0.69  467 2931 3.77E+05 
3 Increased 1.61 0.82  522 4416 7.42E+05 

4 Increased 2.00 0.70  554 10749 1.96E+06 

5 Similar -1.15 0.89  198 1709 9.99E+04 
6 Increased 1.65 0.70  342 2397 2.31E+05 

7 Decreased -1.50 0.48  418 1876 3.68E+05 
8 Similar 1.19 0.50  286 868 6.70E+04 

9 Increased 1.90 0.30  422 4309 6.52E+05 
10 Increased 2.34 0.37  523 5376 9.24E+05 

11 Similar -1.26 0.57  702 4909 7.51E+05 

12 Increased 1.67 0.23  437 1496 3.30E+05 
13 Decreased -1.89 0.40  491 2342 4.91E+05 

14 Decreased -1.60 0.57  740 10020 2.60E+06 
15 Similar 1.34 0.71  596 12676 2.77E+06 

16 Increased 1.81 0.92  436 34704 3.39E+06 

17 Decreased -1.65 0.66  431 1576 2.00E+05 
18 Decreased -1.57 0.31  871 9284 2.47E+06 

19 Decreased -1.71 0.37  812 10228 2.71E+06 
20 Similar -1.06 0.17  903 1586 4.59E+05 

21 Decreased -2.64 0.35  614 1472 3.74E+05 
22 Decreased -2.52 0.22  491 746 3.77E+05 

23 Similar -1.26 0.26  712 2634 6.94E+05 

24 Similar 1.13 0.22  185 1119 1.18E+05 
25 Similar 1.07 0.31  344 2109 3.47E+05 

26 Similar -1.37 0.43  464 4277 5.02E+05 
27 Similar -1.30 0.28  466 705 1.00E+05 

28 Similar 1.00 0.45  471 1202 2.36E+05 

29 Decreased -1.62 0.34  652 10801 2.31E+06 
30 Decreased -1.67 0.19  813 2095 7.34E+05 

31 Increased 1.83 0.18  335 1216 1.93E+05 
32 Increased 2.14 0.28  557 728 1.28E+05 

33 Similar 1.02 0.44  643 4720 1.34E+06 
34 Similar -1.47 0.19  500 2429 5.44E+05 

35 Similar 1.17 0.34  491 1198 2.15E+05 

36 Increased 1.78 0.36  386 1222 2.35E+05 
37 Decreased -1.62 0.16  672 1632 5.45E+05 

38 Increased 2.25 0.20  492 391 8.73E+04 
39 Similar -1.45 0.18  663 527 1.32E+05 

40 Increased 1.56 0.14  771 517 1.15E+05 

41 Increased 1.67 0.32  1302 5184 1.73E+06 
42 Similar 1.00 0.17  984 1390 4.98E+05 

43 Similar 1.31 0.17  518 754 1.60E+05 
44 Decreased -1.92 0.09  1057 480 1.84E+05 

45 Decreased -2.14 0.11  1100 700 2.63E+05 

46 Decreased -2.20 0.09  1117 375 1.91E+05 
47 Increased 1.97 0.16  570 777 2.05E+05 

48 Similar 1.25 0.12  697 422 9.68E+04 
49 Similar -1.44 0.08  659 136 3.28E+04 

50 Similar 1.10 0.19  1720 4546 1.73E+06 
51 Similar 1.06 0.36  549 17967 3.19E+06 

52 Similar -1.22 0.41  585 8516 2.29E+06 

53 Similar -1.10 0.30  772 21263 4.49E+06 
54 Decreased -2.44 0.29  516 2793 5.66E+05 
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3. 2D-DIGE spot Analysis report volume/ratio summary 
 

 

 

 

 

 

                                                                

 

 

 

 

 

 

 

 

 

 

 

 

Spot No. 
U87-MG-sihTERT/ 

U87-MG 

U87-MG- si Hsp90α/ 

 U87-MG 

1 -1.66 1.22   

3 2.83 1.61   

4 2.81 2.00   

5 -1.52 -1.15   

6 1.34 1.65   

7 -1.57 -1.50   

8 1.55 1.19   

9 1.79 1.90   

10 2.10 2.34   

11 1.53 -1.26   

13 -2.85 -1.89   

14 -2.35 -1.60   

15 2.02 1.34   

16 4.25 1.81   

17 -2.45 -1.65   

18 -2.29 -1.57   

19 -3.10 -1.71   

20 1.93 -1.06   

21 -1.92 -2.64   

22 -1.50 -2.52   

24 2.87 1.13   

25 1.54 1.07   

26 -1.96 -1.37   

27 -1.50 -1.30   

28 1.53 1.00   

29 -1.41 -1.62   

30 -1.38 -1.67   

31 2.01 1.83   

32 2.54 2.14   

33 1.51 1.02   

34 -1.57 -1.47   

35 5.26 1.17   

36 3.10 1.78   

37 -1.46 -1.62   

38 2.74 2.25   

39 -1.88 -1.45   

40 1.21 1.56   

41 1.71 1.67   

42 -1.51 1.00   

43 -3.22 1.31   

44 -1.50 -1.92   

45 -1.78 -2.14   

46 -2.35 -2.20   

47 1.88 1.97   

48 1.70 1.25   

49 -1.75 -1.44   

50 1.54 1.10   

51 -1.17 1.06   

52 -1.24 -1.22   

53 -1.51 -1.10   

54 2.09 -2.44   
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