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Abstract 21	

Over-usage of antibiotics leads to the widespread induction of antibiotic resistance 22	

genes (ARGs). Developing an approach to allow real-time monitoring and fast 23	

prediction of ARGs dynamics in clinical or environmental samples has become an 24	

urgent matter. Vibrational spectroscopy is potentially an ideal technique towards the 25	

characterization of the microbial composition of microbiota as it is non-destructive, 26	

high-throughput and label-free. Herein, we employed attenuated total reflection 27	

Fourier-transform infrared (ATR-FTIR) spectroscopy and developed a 28	

spectrochemical tool to quantify the static and dynamic composition of kanamycin 29	

resistance in artificial microbiota to evaluate microbial antibiotic resistance. Second 30	

order differentiation was introduced in identifying the spectral biomarkers, and 31	

principal component analysis followed by linear discriminant analysis (PCA-LDA) 32	

was used for the multivariate analysis of the entire spectral features employed. The 33	

calculated results of the mathematical dispersion model coupled with PCA-LDA 34	

showed high similarity to the designed microbiota structure, with no significant 35	

difference (P >0.05) in the static treatments. Moreover, our model successfully 36	

predicted the dynamics of kanamycin resistance within artificial microbiota under 37	

kanamycin pressures. This work lends new insights into the potential role of 38	

spectrochemical analyses in investigating the existence and trends of antibiotic 39	

resistance in microbiota. 40	

 41	

Keywords Antibiotic resistance, Artificial microbiota, ATR-FTIR spectroscopy, 42	

Kanamycin, Multivariate analysis, Spectrochemical 43	

  44	
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Introduction 45	

Antibiotics have played a vital role in modern medicine contributing to a considerable 46	

reduction in childhood mortality and increasing life expectancy1. However, the 47	

increasing number of fatal infections caused by antibiotic-resistant bacteria is 48	

gradually developing into a global threat. The environment has become the primary 49	

“sink” for most applied antibiotics and their residues arising from human or animal 50	

excretion1-3. Since bacteria with antibiotic resistance genes (ARGs) can tolerate 51	

antibiotics, selection pressures from contaminated water or soil will boost the 52	

abundance of ARGs in the environment and increase the possibility of their spread 53	

through microbial species4,5. Therefore, real-time monitoring and quantification of 54	

ARGs or antibiotic-resistant bacteria is urgently required. 55	

Besides measuring the concentration of antibiotics via chemical analysis, various 56	

biological analytical methods have been used to determine the presence, abundance 57	

and diversity of ARGs in the microbiota to capture a “static map” of their existence, 58	

e.g., meta-sequence and quantitative polymerase chain reaction (qPCR)6,7. However, 59	

genetically identical cells from the same population have stochasticity in gene 60	

expression, meaning that there is significant variation in their molecular content and 61	

phenotype, even under similar environmental influences. Moreover, bacterial 62	

resistance to the antibiotics can also be affected and regulated epigenetically8. In 63	

combination, these factors provide an opportunity for phenotypic and cell-type 64	

diversity regardless of genotype9. This questions the reliability of determining ARGs 65	

abundance by molecular biological approaches in real-world situations, leading to the 66	

necessity of developing a phenotypic assay that depicts in situ dynamics of ARGs or 67	

microbial antibiotic resistance in environmental samples. 68	

It is well accepted that genetic and epigenetic factors cannot be studied 69	

independently as a complete phenotype emerges from both together10. The 70	

spectrochemical analysis is an alternative approach to characterize the phenotypic 71	

features of organisms and has already demonstrated its ability to investigate clinical 72	
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samples, as well as to describe and identify bacterial species11,12. Previous studies 73	

indicates that spectroscopic techniques are capable of studying phenotypic features, at 74	

either population13 or single-cell14 level, such as diagnosing the distinct spectral 75	

signatures and metabolomes from isogenic cell lines15. However, the current 76	

techniques have limited application in characterizing ARGs under antibiotic pressures, 77	

mainly due to the lack of appropriate analytical models and well-trained databases. 78	

Recently, some studies using spectroscopic techniques have set out to investigate 79	

biological response to environmental stress, like nanomaterials16,17 and antimicrobial 80	

reagents18,19. The introduction of spectroscopic techniques coupled with a suitable 81	

prediction model to characterize microbial composition may bring new insights in 82	

detecting the presence or even the dynamics of microbial antibiotic resistance in 83	

environmental microbiota in real-time, owing to its non-destructive, high-throughput 84	

and label-free character20,21. It also allows for in situ spectral measurements, helping 85	

in understanding the interactions between microbes and their physical environment. 86	

Kanamycin is a subclass of aminoglycoside antibiotics, one of the most widely 87	

applied antibiotics in health and molecular biology22. Because of the well-established 88	

mechanisms of kanamycin resistance and characterized sequence23, it was selected as 89	

the model antibiotic in the present study. Herein, we used attenuated total reflection 90	

Fourier-transform infrared (ATR-FTIR) spectroscopy, coupled with the multivariate 91	

analysis and the dispersion indicator model, to quantify the kanamycin resistance 92	

within artificial microbiota and evaluate their phenotypic change associated with 93	

kanamycin resistance, from both static and dynamic perspectives. This work raises the 94	

potential feasibility of applying spectroscopic techniques to diagnose ARGs 95	

phenotypic dynamics in the microbial community in situ. 96	

 97	

Experimental section 98	

Sample preparation 99	

The present study included two strains without kanamycin-resistant-gene, 100	

Mycobacterium vanbaalenii PYR-1 and Escherichia coli DH5α, and one 101	
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kanamycin-resistant strain Acinetobacter baylyi ADPWH_recA, which has a 102	

continuously expressed kanamycin resistance gene kanR (from Mini-Tn5/Km24, 103	

Genbank accession number: U32991.1) inserted into the recA gene in the 104	

chromosome of A. baylyi ADP125. Before the experiment, they were all cultured in 105	

Luria-Bertani (LB) broth medium for 24 h at 30±2oC. 106	

The three control groups contained pure M. vanbaalenii PYR-1, E. coli DH5α 107	

and A. baylyi ADPWH_recA, respectively. The artificial microbiotas were prepared 108	

for both static (M1 to M5) and dynamic (AM1 and AM2) experiments by gently 109	

mixing the cells in the compositions listed in Table 1. The optical density at 600 nm 110	

(OD600) in each treatment was monitored continuously for 24 h by a multimode plate 111	

reader (FLUOstar Omega, Germany) to evaluate bacterial growth. For static tests, the 112	

cells were directly collected by centrifugation (4000 rpm for 5 min), washed three 113	

times with sterile deionized water to remove the residues of growth media and then 114	

suspended in 70% ethanol to fix the bacterial cells. For dynamic tests, all the artificial 115	

microbiotas were treated with kanamycin (final concentration 10 mg/L). After 116	

exposure for 4, 8, 12 or 24 h, the cells from microbiotas were harvested following the 117	

same procedure as above. 118	

 119	

Table 1. The compositions of artificial microbiotas (volume ratio, v:v:v). 120	

Treatments 

Control Static test Dynamic test 

M. 

vanbaalenii 

E. 

coli 

A. 

baylyi 
M1 M2 M3 M4 M5 AM1 AM2 

M. vanbaalenii 100% - - 40% 30% 30% 15% 5% 40% 25% 

E. coli - 100% - 50% 45% 20% 10% 5% 40% 25% 

A. baylyi - - 100% 10% 25% 50% 75% 90% 20% 50% 

 121	

ATR-FTIR spectroscopy 122	

The washed cell pellets (minimal amount >5 µL) were applied onto Low-E slides for 123	

the interrogation by ATR-FTIR spectroscopy. A TENSOR 27 FTIR spectrometer 124	

(Bruker Optics Ltd., UK) equipped with a Helios ATR attachment (containing a 125	
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diamond internal IRE; incidence angle of the IR beam: 45°) was used. Instrument 126	

parameters were set at 32 scans and spatial resolution of 8 cm-1. Before the 127	

measurement of a new sample, the crystal was cleaned with deionized water and 128	

background readings were retaken. A total of 30 spectra were randomly acquired for 129	

each treatment (3 replicates). 130	

Computational analysis 131	

The primary analysis methods employed in this study involved multivariate analysis 132	

and the dispersion indicator model. The initial data generated from ATR-FTIR 133	

spectroscopy were analyzed within MATLAB R2011a (TheMathsWorks, Natick, MA, 134	

USA) software, coupled with IRootLab toolbox (http://irootlab.googlecode.com)26. 135	

Unless otherwise stated, the acquired spectra were cut to the biochemical-cell 136	

fingerprint region (1800-900 cm-1), rubberband baseline corrected and normalized to 137	

Amide I (1650 cm-1). Second order differentiation baseline correction and vector 138	

normalization was also performed as an alternative mean to process the data (the 139	

number of the filter coefficients of the Savitzky-Golay smoothing/differentiation filter 140	

was 9). Principal component analysis followed by linear discriminant analysis 141	

(PCA-LDA) was subsequently applied to the pre-processed data to reduce the number 142	

of spectra to 10 uncorrelated principal components (PCs), which account for >99% of 143	

the total variance; LDA is a supervised technique coupled with PCA in order to 144	

maximize inter-class and minimize intra-class variance21. In addition, cluster vector 145	

approach was conducted to visualise the discriminating difference21,27. This method 146	

takes input from PCA-LDA to create a loadings vector for each category contributing 147	

to respective data points. The pseudo-spectra allow identifying which variables (or 148	

wavenumber) are responsible for variance in the data set related to the original 149	

spectra21,27. The detailed information of the dispersion indicator model was described 150	

in the Electronic Supplementary Information (ESI).	151	

Biological analysis 152	

The copy numbers of total bacterial 16S rRNA and targeted kanamycin resistance 153	

gene (kanR) were determined by quantitative polymerase chain reaction (qPCR). For 154	

16S rRNA, the primer pair set was 341F (5’-CCTACGGGNGGCWGCAG-3’) and 155	

805R (5’-GACTACHVGGGTATCTAATCC-3’), and the primer pair for kanR was 156	

KanF (5’-TGTCATACCACTTGTCCGCC-3’) and KanR 157	
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(5’-ATCGAGCTGTATGCGGAGTG-3’). The 20 µL qPCR system consisted of 2 µL 158	

of each primer, 1 µL DNA template, 5 µL molecular water and 10 µL iTaq™ 159	

Universal SYBR® Green Supermix (BioRad, USA). The relative abundance of kanR 160	

in each pure strain was calculated as the ratio of kanR copy numbers to 16S rRNA 161	

copy numbers (kanR/16S). The microbial kanamycin resistance within the artificial 162	

microbiota was calculated as the ratio of A. baylyi population to the total bacterial 163	

population. 164	

Statistical analysis 165	

One-way analysis of variance (ANOVA) with Tukey’s post hoc test/or T-test was 166	

employed to examine the discriminating differences. All statistical analysis was 167	

carried out in GraphPad Prism 6. 168	

 169	

Results and Discussion 170	

Growth and kanamycin resistance gene of individual strains 171	

All the three bacterial strains (A. baylyi ADPWH_recA, M. vanbaalenii PYR-1 and E. 172	

coli DH5α) had similar growth curves without kanamycin pressure (see ESI Figure 173	

S1A). Cultivated in 10 mg/L kanamycin, only A. baylyi ADPWH_recA maintained 174	

positive growth because of the expression of kanR gene and resistance to kanamycin 175	

(see ESI, Figure S1B). Neither M. vanbaalenii PYR-1 nor E. coli DH5α grew 176	

post-exposure to 10 mg/L kanamycin. The results of qPCR further confirmed that the 177	

high relative abundance of kanR gene (kanR/16S) were only found in A. baylyi 178	

ADPWH_recA (0.306 in medium without kanamycin and 0.275 in medium with 10 179	

mg/L kanamycin respectively, no significant difference), whereas it was less than 180	

0.001 or below the limit of detection for M. vanbaalenii PYR-1 or E. coli DH5α (see 181	

ESI, Figure S2). It was further proved that kanamycin resistance gene is only 182	

detectable in A. baylyi ADPWH_recA, but neither M. vanbaalenii PYR-1 nor E. coli 183	

DH5α, and the latter two cannot tolerate kanamycin pressure. The active group of 184	

kanamycin, 2-deoxystreptamine, impairs bacterial protein synthesis through binding 185	

to prokaryotic ribosomes 30S subunit 22. The kanR encoding neomycin 186	

phosphotransferase is an aminoglycoside-modifying enzyme, using ATP as donor to 187	

modify the hydroxyl functions of 2-deoxystreptamine and inhibit its binding to 188	
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ribosomes28. The kanR gene is therefore a reliable molecular indicator in detecting the 189	

kanamycin resistance. 190	

IR spectral fingerprints of individual strains and microbiotas 191	

The IR spectral fingerprint region (1800 - 900 cm-1) of the three strains and artificial 192	

microbiotas are shown in Figure 1. The representative peaks of the biochemical 193	

fingerprint include lipids (~1750 cm-1), Amide I (~1650 cm-1), Amide II (~1550 cm-1), 194	

Amide III (~1260 cm-1), carbohydrate (~1155 cm-1), asymmetric phosphate stretching 195	

vibrations (vasPO2
-; ~1225 cm-1), symmetric phosphate stretching vibrations (vsPO2

-; 196	

~1080 cm-1), glycogen (~1030 cm-1) and protein phosphorylation (~970 cm-1)20 21. 197	

Past literatures12,20,29,30 suggest the characteristic peaks given by the region can be 198	

used as biomarkers to characterize microbial cell types (even at subspecies level) and 199	

diagnose microbe-induced diseases. 200	

However, the visual spectral differences with the mean spectra are almost 201	

identical regardless of the bacterial species or community composition. For this 202	

reason, we applied the cluster vectors after multivariate analysis (PCA-LDA) and the 203	

second order differentiation baseline correction to further reveal the underlying 204	

biochemical differences between each strain or microbiota. Based on the derived 205	

spectral biomarkers from PCA-LDA (Figure 1B), all the microbiota samples showed 206	

marked segregation (see ESI, Table S1). Characteristics associated with microbial 207	

composition were observed in particular wavenumber-absorbance intensities. For 208	

instance, the intensities at 980 cm-1 and 1740 cm-1 were increased with increasing 209	

ratio of ARGs but fluctuated in some artificial microbiotas, particularly for microbiota 210	

M3 (M. vanbaalenii PYR-1: E. coli DH5α: A. baylyi ADPWH_recA = 211	

30%:20%:50%). Additionally, IR spectral analysis (Figure 2A) based on the second 212	

order differentiation baseline correction and vector normalization highlighted several 213	

key biomarkers. Two apparent shifts from ~1630 cm-1 to ~1640 cm-1 (Amide I) and 214	

from ~1222 cm-1 to ~1235 cm-1 (vasPO2
-) associated with A. baylyi were regarded as 215	

biomarkers for the presence of kanamycin resistance. These spectral alterations might 216	

be attributed to the upregulated activities of the kanR encoding aminoglycoside 217	

O-phosphotransferase, which contributes to microbial resistance by inactivating 218	

kanamycin molecular via catalyzing ATP-dependent phosphorylation of specific 219	

aminoglycoside hydroxyl groups31. Some other weaker discriminations included the 220	
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polysaccharide fingerprint region (1000-1150 cm-1) and the protein absorbance region 221	

(1500-1700 cm-1)27. These alterations were probably induced by the interference of 222	

extracellular polymeric substances (EPS) produced by different species32-34 and 223	

resulted in the difficulties in distinguishing biomarkers from the PCA-LDA extracted 224	

peaks. Based on the previous studies32,35,36, we speculate that these extracellular 225	

materials may interact with each other and generate new biochemical compositions 226	

within the communities, influencing the discriminating peaks obtained with 227	

spectrochemical interrogation. 228	

 229	

 230	

Figure 1. (A) Infrared spectra of A. baylyi, M. vanbaalenii, E. coli and five artificial 231	

microbiotas (M1-M5). (B) Cluster vector plots after PCA-LDA, indicating significant 232	

wavenumbers for the segregation between bacterial species and artificial microbiotas. 233	
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 234	

Figure 2. Class means spectra of pre-processed data based on second order 235	

differentiation baseline correction and vector normalization. (A) Processed spectra of 236	

A. baylyi, M. vanbaalenii, E. coli and five artificial microbiotas (M1-M5). (B) 237	

Processed spectra of AM1 at different time point in dynamic experiment. (C) 238	

Processed spectra of AM1 at different time point in dynamic experiment. 239	

 240	

Predicting community composition in artificial microbiotas 241	

Comparing to the IR spectra in the static tests, we observed identical spectral 242	

biomarkers in artificial community dynamics (Figure 2B and 2C) that the same shifts 243	

from ~1630 cm-1 to ~1640 cm-1 (Amide I) and from ~1222 cm-1 to ~1235 cm-1 244	

(vasPO2
-) developed along with the time. The results indicated the consistent spectral 245	

biomarkers in both static and dynamic microbiotas in analyzing the phenotypic 246	

presence and abundance of kanamycin resistance gene in the targeted microbiota. 247	

The PCA-LDA scores plot (Figure 3A) also illustrates a significant segregation of 248	

the different groups, associated with differing microbiota compositions. The control 249	

groups (M. vanbaalenii, E. coli, and A. baylyi) are clearly separated from each other. 250	

In contrast to M. vanbaalenii and E. coli, all the converted spectral values of A. baylyi 251	

are aligned as negative along linear discriminant one (LD1), likely attributed to its 252	

kanamycin resistance. Meanwhile, along with linear discriminant two (LD2), the 253	

group of M. vanbaalenii (Gram-positive bacteria) is located on the negative axis alone, 254	

separated from the other two groups (E. coli and A. baylyi), which are Gram-negative. 255	
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The five artificial microbiota samples (M1 to M5) are located inbetween, and their 256	

distances to the control groups are correlated with their community compositions. 257	

 258	

 259	

Figure 3. (A) Two-dimensional (LD1, LD2) scores plot after PCA-LDA of pure 260	

microbial strains and artificial microbiotas with different composition. (B) Correlation 261	

between kanamycin resistance gene abundance and group distance dispersion (𝐷!). (C) 262	

Comparison of artificial microbiota composition between experimental data and 263	

model prediction. 264	

 265	

In order to predict the composition of artificial microbiota, the dispersion indicator 266	

model37 was carried out by transferring the dispersion analysis from the IR spectral 267	

variables to the vectors (LD1 and LD2) and using 𝐷! as the indicator, comparing to 268	

the ARGs gene copy numbers quantified by qPCR as reference. This method used the 269	

summarized spectral information from PCA-LDA which accounts for over 90% of 270	

spectral variations in the present study, and was more conclusive than the limited 271	

biomarkers from second order differentiation. Here, microbiotas with less abundance 272	

of A. baylyi were further separated from the A. baylyi group, but closer to those of E. 273	

coli and M. vanbaalenii, leading to an increasing 𝐷! against the decreasing 274	

kanamycin resistance (kanamycin resistance genes in A. baylyi). Figure 3B illustrates 275	

the negative linear correlation between 𝐷! and the abundance of A. baylyi 276	

(kanamycin resistance gene abundance) within the artificial microbiotas (𝐷! =277	

−0.8482×[𝑘𝑎𝑛𝑎𝑚𝑦𝑐𝑖𝑛 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑔𝑒𝑛𝑒]+ 0.7705). The high coefficient 278	

(R2=0.9779) suggests a good linear regression of 𝐷! against kanamycin resistance. 279	

The composition of each microbiota was, therefore, calculated from the 𝐷! linear 280	
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regression based on PCA-LDA, as shown in Figure 3C. The results indicated that the 281	

predicted microbial compositions had high similarity to their theoretical structure with 282	

no significant differences found (P >0.05). The standard deviation of microbiota M3 283	

(middle point in Figure 3B) was greater than the others, possibly attributing to their 284	

higher Shannon-Wiener index (1.02) than other microbiotas (0.35 to 0.94 for M1, M2, 285	

M4 and M5). Shannon-Wiener index represents the diversity of microbial community, 286	

and higher microbial diversity has been reported to increase complicated 287	

intracommunity interaction32. It might cause huge variation of microbial chemical 288	

composition, consequently leading to the difficulties in interrogating spectral 289	

biomarkers and significant standard deviation in data prediction. 290	

Quantification of kanamycin resistance dynamics within microbiota 291	

Figure 4A illustrates the PCA-LDA scores plot of microbiotas post-exposure to 292	

kanamycin, derived from the spectral dynamics of the artificial microbiotas (see ESI 293	

Figure S3). All the interrogated communities exhibit a dramatic shift from the original 294	

location as the exposure time increases. The M. vanbaalenii category moves towards a 295	

different direction when compared to A. baylyi and E. coli, which might be attributed 296	

to distinct cell structures between Gram-positive (M. vanbaalenii) and Gram-negative 297	

bacteria (A. baylyi and E. coli). Specifically, there is only one lipid bilayer in the 298	

membrane of Gram-positive bacteria, with a thick ring of peptidoglycan and teichoic 299	

acid38,39. On the other hand, the cell membrane of Gram-negative bacteria contains 300	

two lipid associated bilayers, which appear to increase the chance that the applied 301	

treatments influence their structure38,39. The artificial microbiotas, AM1 and AM2, 302	

follow similar trends as the A. baylyi and they come even closer to A. baylyi after 303	

extended exposure to the kanamycin antibiotic. After PCA-LDA, the most 304	

discriminating peaks were observed in Gram-negative bacteria and were attributed to 305	

lipids (~1750 cm-1), vasPO2
- (~1225 cm-1) and vsPO2

- (~1080 cm-1). Kanamycin’s 306	

antimicrobial mechanism is associated with aminoglycosides, interfering with 307	

aminoacyl-tRNA recognition at the ribosomal A site and disrupting protein 308	

expression40. Such a mechanism causes series of secondary effects, e.g., membrane 309	

damage. Our results are consistent with previous findings showing that the damage is 310	

mainly linked to a broad range of alterations associated with the elements of 311	

membranes, e.g., proteins, supported by derived peaks the protein absorbance region 312	

from 1500 to 1700 cm-1, such as Amide II (~1517 cm-1, ~1543 cm-1) and Amide I 313	
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(~1650 cm-1, ~1680 cm-1)16,21,41,42. 314	

Applying the linear 𝐷! regression model, we successfully predicted the dynamic 315	

abundance of A. baylyi and kanamycin resistance within the microbiotas under 316	

kanamycin antibiotic pressures. Both artificial microbiotas, AM1 (Figure 4B) and 317	

AM2 (Figure 4C), had defined community composition at 0 h, with A. baylyi 318	

(kanamycin resistance gene) accounting for 10% and 40% of the total population, 319	

respectively. Post-exposure to kanamycin, the ARGs abundance from qPCR results 320	

gradually increased to 85.0% in AM1 and 92.2% in AM2 after 12 h, which is 321	

explained by the competitive advantages of bacteria with kanamycin resistance gene 322	

in the community43. It therefore led to a faster growth of A. baylyi compared to other 323	

strains and subsequent dominancy of A. baylyi within the microbiota. From the 324	

dynamics of discriminant functions, the predicted ARGs abundance in both 325	

microbiotas fitted efficiently with experimental data (Figure 4B and 4C). The linear 326	

correlation at each time point did not show significant difference between predicted 327	

and experimental ARGs abundance (Figure 4D), with a Pearson correlation 328	

coefficient of 0.9487. The prediction via infrared spectroscopy coupled and 329	

multivariate analysis fitted the experimental data better at higher ARGs abundance, 330	

but was slightly lower than the qPCR results at low ARGs abundance, e.g., 33% in 331	

Figure 4D, which might underestimate the ARGs abundance to some extent. These 332	

results not only prove that our model can be used for static community composition 333	

and abundance/dynamics of kanamycin resistance gene, but they also evaluate the 334	

impact of antibiotic pressure on kanamycin resistance gene transfer or dominancy. 335	

 336	

 337	

Figure 4. (A) Two-dimensional (LD1, LD2) scores plot after PCA-LDA of IR 338	

dynamics of artificial microbiotas. Dots along with the arrow point in each colour 339	
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refer to the measurement at 0, 4, 8, 12 and 24 h, respectively. The prediction of 340	

kanamycin resistance gene abundance is based on the dispersion among the 341	

classification groups in PCA-LDA for artificial microbiotas AM1 (B) and AM2 (C). 342	

(D) Regression correlation of kanamycin resistance gene abundance between 343	

experimental data via qPCR and model prediction. 344	

 345	

It is worth mentioning that less dispersion is observed for A. baylyi after exposure 346	

because A. baylyi ADPWH_recA contains the kanR kanamycin resistance gene, which 347	

is capable of tolerating kanamycin pressure. In the present study, the kanR kanamycin 348	

resistance gene belongs to npt encoding neomycin phosphotransferase and shows high 349	

similarity to addA encoding aminoglycoside phosphotransferase (aminoglycoside 350	

kinase), which modifies the aminoglycosides by phosphoryl transfer, catalysing the 351	

phosphate addition from ATP to 3'-hydroxyl group40. By expressing kanR, A. baylyi 352	

ADPWH_recA inactivates the interference of protein expression by kanamycin, 353	

achieves fast recovery from suppression, and minimizes spectral alterations as 354	

compared to others. It is confirmed by the presence of consistent shifts and 355	

discriminating biomarkers in A. baylyi postexposure to kanamycin, including Amide I 356	

(~1630 cm-1, ~1640 cm-1) and vasPO2
- (~1222 cm-1, ~1235 cm-1)42. 357	

An unexpected decline of kanamycin resistance gene was observed for AM2 358	

artificial microbiota after 24 h exposure to kanamycin (42%, Figure 4C), but the 359	

predicted kanamycin resistance by 𝐷! regression model remained close to 100%. It 360	

might be explained by the dramatically decreasing kanamycin concentration via the 361	

metabolism of aminoglycoside modifying enzyme and the change in microbial 362	

community structure. The functions of kanR encoding aminoglycoside kinase are 363	

stabilizing a metaphosphate transition state and inactivating kanamycin31, and the 364	

spectral alterations represent the alignment disruption of ß-phosphate and γ-phosphate 365	

by amide backbone. The declining kanamycin results in less inhibition on bacteria 366	

without kanamycin resistance gene (M. vanbaalenii and E. coli), and their growth and 367	

regeneration consequently reduce the abundance of A. baylyi and kanR gene. 368	

Alternatively, the FTIR spectral alteration reflects such phenotypic changes of the 369	

whole microbiota under the low kanamycin exposure, illustrating the fact that the 370	

majority of microbial cells within the microbiota have the pseudo-resistance to 371	
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kanamycin. The spectrochemical interrogation therefore actually quantifies the 372	

microbial phenotypic antibiotic resistance rather than the ARGs abundance only. 373	

Infrared spectroscopy has demonstrated the ability to diagnose the phenotypic 374	

alteration of the cellular components induced by kanamycin, hinting its potential 375	

possibility for the application to other members of the aminoglycoside family. Our 376	

findings indicate that this dispersion model coupled with PCA-LDA is a potential 377	

approach for monitoring the population dynamics within a microbiota in real-time. 378	

Additionally, the model applied in the present study summarizes the whole spectral 379	

information derived from the multivariate analysis, rather than only several 380	

biomarkers, showing its potential as a universal predicting tool for a broad spectrum 381	

of antibiotics based on well-trained databases. Though only successfully applied in 382	

the case of kanamycin through phosphotransferase resistance pathway, this technique 383	

is also feasible for detecting N-acetyltransferases and O-nucleotidyltransferases, 384	

which also belong to aminoglycoside-modifying enzymes assisted by 385	

acetyl-coenzyme A and ATP respectively22, attributing to their similar anti-kanamycin 386	

mechanisms as kanR encoding neomycin phosphotransferase. Future work should 387	

refer to more comprehensive range of antibiotics and their mechanisms including 388	

penicillin-class (e.g., ampicillin and amoxicillin), which disrupts the synthesis of 389	

peptidoglycan layer and inhibits bacterial cell wall synthesis 44, and tetracycline, 390	

which inhibits the binding of aminoacyl-tRNA and suppresses protein expression45. 391	

For the urgent need to characterize antibiotic resistance in complex environmental 392	

microbiota with spectroscopy, the primary challenges are raised as the lack of routine 393	

protocols, reproducible computational analysis, and reliable database10. Validated in 394	

the artificial microbiota, our work provides the solutions for the first two barriers by 395	

distinguishing biomarkers representing antibiotic resistance from the numerous 396	

biological fingerprints. A well-built dataset along with robust analytical models 397	

coupled with spectroscopic methods are suggested to address the antibiotic resistance 398	

dynamics in real environmental samples. 399	

The present study indicates that infrared spectroscopy, in conjunction with 400	

multivariate analysis, is a potential tool for diagnosing the phenotypic existence and 401	

dynamics of ARGs within microbial communities. Our work employed ATR-FTIR 402	

spectroscopy coupled with a dispersion model to quantify microbial kanamycin 403	

resistance, based on secondary derivative and PCA-LDA. This method not only 404	
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quantified the static community composition of the artificial microbiotas but also 405	

successfully predicted the population dynamics of microbial communities and 406	

kanamycin resistance under antibiotic pressure. We also suggest that spectroscopic 407	

techniques have great potential in real-time monitoring of microbiota of interest in 408	

medical or environmental fields; this would provide an excellent opportunity to 409	

visualize the vivid phenotypic transformation during a biological and biochemical 410	

process rather than only intermittent snap-shots. 411	
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