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Universitat Politècnica de València
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Abstract—Poor Internet performance currently undermines
the efficiency of hyper-responsive mobile apps such as augmented
reality clients and online games, which require low-latency access
to real-time backend services. While edge-assisted execution, i.e.
moving entire services to the edge of an access network, helps
eliminate part of the communication overhead involved, this does
not scale to the number of users that share an edge infrastructure.
This is due to a mismatch between the scarce availability of
resources in access networks and the aggregate demand for
computational power from client applications.

Instead, this paper proposes a hybrid edge-assisted deployment
model in which only part of a service executes on LTE edge
servers. We provide insights about the conditions that must hold
for such a model to be effective by investigating in simulation
different deployment and application scenarios. In particular,
we show that using LTE edge servers with modest capabilities,
performance can improve significantly as long as at most 50%
of client requests are processed at the edge. Moreover, we argue
that edge servers should be installed at the core of a mobile
network, rather than the mobile base station: the difference in
performance is negligible, whereas the latter choice entails high
deployment costs. Finally, we verify that, for the proposed model,
the impact of user mobility on TCP performance is low.

I. INTRODUCTION

Recent technological trends such as the emergence of
wearable devices (e.g. Google Glass), the availability of ubiq-
uitous wireless networks (e.g. 3G, 4G/LTE and WiFi) and new
cognitive algorithms that surpass human abilities in tasks such
as computer vision, speech recognition and natural language
translation, have brought a new class of hyper-responsive
mobile apps to our doorstep. For example, augmented reality
apps [1] retrieve digital information of users’ surroundings,
which is overlaid on a live view of the physical world in real-
time; apps for hyper-local advertising [2] retrieve and display
location-aware adverts promptly; and advanced online gaming
clients [3] interact seamlessly with each other in shared virtual
game worlds. For such applications to work as intended, clients
require ultra low latency access to real-time backend services,
ideally with at most tens of milliseconds of delay [4] in order to
attain the speed of human perceptual and cognitive processing.

The underlying network that interconnects clients and
services is often a major hindrance to achieving the seamless
responsiveness users expect from smartphones and wearable

devices. Backend services are typically hosted at distant cloud-
based machines, which in many cases translates to hundreds
of milliseconds of round trip time (RTT) delay between clients
and services. An alternative is to re-locate entire services to
the edge of the access network, so as to avoid high Internet
delays. However, in light of the increasing number of mobile
clients, it remains unclear to what extent this infrastructure can
replace cloud-scale data centers due to the limited availability
of resources at the network edge [5], [6].

We envision a hybrid edge-assisted service deployment
model, which allows for moving only part of the backend
logic into the access network, as the predominant model for
supporting real-time services. Its advantage is that it can reduce
network transmission delays for multiple mobile clients while
respecting edge resource limitations. This paper explores the
conditions that must hold in order to support hyper-responsive
mobile apps at large scale using edge assistance. We first
quantify the impact of 4G/LTE networks on application per-
formance in terms of end-to-end latency and jitter, considering
different types of networked application workloads. We then
evaluate through simulation how performance can be improved
using our proposed model, taking into account: (a) different
placements of edge servers within the LTE infrastructure;
(b) the number of clients sharing edge resources; (c) the ratio
of user requests served by edge servers over the total requests
made by a particular mobile client; (d) different processing
capabilities of edge servers; and (e) user roaming.

Our key insights from this work are summarised below:
(1) The proposed model can improve collectively the perfor-
mance of mobile clients by avoiding part of the communication
over slow Internet network links and, at the same time, it
relieves edge servers from increased computational load.
(2) The difference in application responsiveness between the
two alternative placements of edge servers, i.e. at the eNodeB
or the Packet Data Network Gateway (PGW), is negligible.
Therefore, in light of the associated deployment costs involved,
the PGW should be preferred.
(3) Due to the limited processing capabilities of edge servers
and the increasing number of clients sharing edge infrastruc-
ture, performance gains are only achieved when up to 50% of
user requests are processed at the network edge.
(4) TCP performance is not affected by user roaming, there-
fore, no adaptation to the transport protocol is required.



The remainder of this paper is organised as follows: §II
describes 4G/LTE networks and discusses previous work on
cloud-assisted execution as well as the current support for
deploying services at the network edge; §III introduces the
hybrid edge-assisted service deployment model; §IV evaluates
the proposed model in simulation; and §V concludes the paper.

II. BACKGROUND

LTE networks. 4G/LTE networks consist of three main
components: User Entities (UEs), commonly referred to as
mobile devices; eNodeBs, i.e. base stations communicating
directly with UEs; and the Evolved Packet Core (EPC), which
comprises two main components for data transmission: the
Serving Gateway (SGW), which connects eNodeBs to the EPC;
and the Packet Data Network Gateway (PGW), which provides
access to external IP networks. The primary communication
protocol used is the GPRS Tunnelling Protocol (GTP). To
handle user mobility, the two main types of handover events
supported are the X2- and S1-based handovers. This work
considers the latter, which is the most time-consuming of the
two and therefore more likely to degrade TCP performance.

Cloud-assisted execution. Systems that offload CPU-intensive
computation from mobile devices to the cloud are the predom-
inant remedy to work around resource and power limitations of
today’s mobile devices. Existing approaches either treat mobile
devices as thin clients by offloading all of an application’s logic
to the cloud [7], or employ a more fine-grained application
partitioning for increased performance gains [8], [9], [10], [11].

Despite the increasing popularity of code-offloading ap-
proaches, their efficiency remains restricted by network per-
formance. Therefore, it has been proposed to leverage edge
infrastructure, referred to as cloudlets, to replace distant cloud-
based nodes when possible [12]. Besides improving application
responsiveness, the ability to host applications at the network
edge has been exploited in different ways, e.g. to relieve mobile
networks from unused traffic using edge proxies that filter the
data sent to mobile devices [13].

Cloudlet-based approaches presuppose the availability of
enough resources at the edge of the network to accommodate
mobile users that share the edge infrastructure. Especially
in densely populated urban environments, moving backend
services in their entirety to the edge of a mobile network
requires edge resources that are comparable to what data
centres offer today. However, this assumption is impractical
as it requires significant changes to current mobile network
infrastructure and therefore entails high operational costs.

Support for edge-assisted execution. The need for fast access
to real-time backend services has led to re-visiting the concept
of edge computing. This is evidenced by the Mobile Edge
Computing (MEC) initiative [14], a new Industry Specification
Group within the European Telecommunications Standards
Institute (ETSI) that aims at providing application developers
and content providers with cloud-computing capabilities at the
edge of the mobile network.

The release of new edge computing platforms such as
IBM ASPN [15] is a step towards this direction, which allows
for running and managing applications directly within mobile
networks, provided that the required edge infrastructure is in
place. Nevertheless, the capabilities of edge servers installed in
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mobile networks are still limited by form-factor and placement
constraints [16]. An example is the new Radio Applications
Cloud Server (RACS) by Nokia Networks [6], designed explic-
itly to fit in base stations, albeit with limited processing and
storage capabilities. In this paper, we investigate how we can
work around such limitations to take advantage of the available
edge infrastructure to benefit many users collectively.

III. PROPOSED HYBRID DEPLOYMENT MODEL

This section positions the proposed hybrid edge-assisted
service deployment model in relation to extreme approaches
that either deploy services in their entirety at cloud-scale data
centres or at the edge of an access network. A comparison of
all three deployment models is shown in Figure 1.

Currently the prevalent deployment model for real-time
backend services is the cloud-assisted model illustrated in
Figure 1(a). Services execute at distant cloud-based servers
with virtually unlimited resources. Although in terms of com-
putational resources, this model scales well to an increasing
number of mobile clients, it suffers from high Internet delays
during the communication between mobile clients and services.

At the other end of the spectrum, a pure edge-assisted
model, i.e. Figure 1(b), moves entire services closer to users,
thus eliminating the communication overhead over the Internet.
While this model requires no changes to existing services,
it is constrained by the fact that resources at the edge are
significantly less plentiful than what is available in large data
centres. Therefore, this approach cannot scale to the demand of
increasing numbers of clients sharing the edge infrastructure.

The hybrid edge-assisted deployment model, shown in
Figure 1(c), sits between the aforementioned approaches. The
intuition behind this model is that it prioritises client requests
based on latency requirements and splits services accordingly
to execute across a cloud and an edge environment. This
allows for improving app responsiveness for many clients
while reducing the resource burden on edge servers.

We investigate the effectiveness of this hybrid model in
the remainder of this paper. Note that how to realise the actual
split of services into remote and edge components is specific
to each service and thus not the focus of our work. Service
providers, however, can base such decisions on the insights



drawn from this study.

IV. EXPERIMENTAL STUDY

Through experiments in simulation, we evaluate the per-
formance of edge-assisted applications in 4G/LTE networks.
We first describe the simulation set-up and our experimental
methodology. We then analyse the results, highlighting the
benefits and drawbacks of different configurations for the
proposed hybrid deployment model.

A. Simulation setup and methodology

We perform experiments in a simulated 4G/LTE network
using the OMNeT++ framework. We extended three publicly
available models to simulate a complete 4G access network:
INET1 provides the tools for simulating a wired network and
related protocols; SimuLTE2 models the physical wireless link
in a 4G network, as well as the link-level protocols between
mobile devices and eNodeBs; and 4GSim3 implements the
network gateways and the control protocols that allow mobile
devices to interact with control devices.

Simulation scenario. We focus on a 4G/LTE access network
that contains two eNodeBs with several mobile devices at-
tached to them. The eNodeBs are connected with the Evolved
Packet Core (EPC) through a node that allows us to inject
arbitrary delays in the access network, thus modelling the
heterogeneity in current access networks. Edge servers can be
placed at the eNodeB or the EPC, i.e. next to the PGW.

Edge servers have limited processing, disk and memory
resources due to their form-factor limitations compared to
servers located outside of the access network. We model this
by enforcing a maximum number of requests that an edge
server can handle concurrently; additional requests are queued
until a new processing slot becomes available. We model the
probability that a request is served by the edge server (and not
a cloud-based server) according to a variable service rate.

Application network traces. We use network traces to evalu-
ate the performance of the proposed hybrid model that are
based on three distinct app traffic patterns with different
characteristics: (1) the first pattern is characterised by large
response packet sizes and low processing delays. This is com-
mon for apps such as augmented reality clients that perform
image recognition on the mobile device and retrieve increasing
amounts of data from a remote server to be superimposed on
the device’s camera output; (2) the second pattern exhibits
the opposite behaviour: apps receive smaller packets but the
backend logic is more CPU-intensive, thus leading to high
processing delays. A representative example is a role-playing
online game [17] in which users exchange information such as
their location within a shared virtual world and various combat
actions, which need to be processed remotely to determine how
these affect other clients; and (3) the third pattern presents a
balance between the two previous traces, thus representing any
other client app with intermediate delays and packet sizes.

For all traces, we assume non-concurrent request/response
interactions between individual clients and services—only one

1http://inet.omnetpp.org
2http://simulte.com/
3https://github.com/4gsim/4Gsim
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TABLE I. CHARACTERISATION OF WORKLOAD TRACES

Representative Inter-request Request Processing Response
application delay size delay size

Augmented reality 50-100 ms 20-30 B 50-100 ms 700-900 B
Online games 200-250 ms 20-30 B 200-250 ms 100-200 B

Other 100-150 ms 20-30 B 100-150 ms 400-600 B

request per client is pending a response at any point in time.
For mobile client apps, typically the size of a single request is
small (tens of bytes) compared to the size of responses, which
ranges from hundreds to even thousands of bytes. A detailed
analysis of the traces, including packet sizes, processing delays
and inter-request delays (due to application-level delays or user
idle states), is given in Table I. The LTE latency and delays
due to hardware constraints are added by our simulator.

Due to space constraints, and given that the evaluation
results obtained for all three traffic patterns exhibit similar
trends, we only present the results that correspond to the online
gaming use case, which is the most compute-intensive of them
all. However, we highlight any significant differences observed
for the other two patterns when applicable.

B. Results

Next, we evaluate the performance of apps with edge
assistance for different configurations. We consider the average
request/response latency and its 95th percentile as the primary
metrics for performance. This latency includes the transmission
delays for both requests and corresponding responses and the
server-side processing delay.

1) Edge server collocated with PGW: First, we assume that
edge servers are attached to the PGW gateway. To identify
the conditions that must hold for this configuration to achieve
better performance, we vary the ratio of requests that are served



entirely at the network edge and either (i) the number of
concurrent requests that can be processed simultaneously by
the edge server; or (ii) the Internet latency.

Variable edge server capability. Figure 2(a) plots the av-
erage and the 95th percentile of the latency per request for
different fractions of requests processed at the network edge
and different capabilities of the PGW edge server. We assume
500 cooperating clients. The access network and Internet
latencies are set to 25 ms [18] and 120 ms [19], respectively.

When most requests are directed to the backend server, the
average application latency is above 500 ms and dominated by
the request/response transmission delays. By allowing more
requests to be served by the edge server, high Internet delays
are avoided and latency gradually decreases. However, when
the processing capacity of the edge server saturates (at around
50% of requests), due to server queuing, latency increases to
a point where edge-assisted execution is outperformed by the
original configuration. The 95th percentile curves show that by
increasing the number of requests processed at the edge server,
jitter (inferred by the difference between the average and 95th
percentile values) also increases due to CPU contention.

Similar trends are observed for the other types of traces.
However, the time to process a request is less, therefore queues
are less congested, which reduces queuing delays.

Variable Internet latency. Next, we focus on the impact of
Internet latency on the performance of client apps. We consider
three distinct Internet latency values: 120 ms, 220 ms and
300 ms, which correspond to the latency between a client in
Spain and a server in the UK, the USA and Japan, respectively.
These values were empirically obtained using ICMP Echo
messages, which were sent at random times during the day.
As before, we set the access network latency to 25 ms, while
the processing capability of the edge server is now fixed to
100 concurrent requests, with a total load of 500.

Figure 2(b) shows that the performance degrades signifi-
cantly when more requests are sent to the backend server for
processing. With edge-assisted execution, however, savings in
latency of approximately 300 ms for the worst of conditions
are possible. In summary, the higher the Internet latency, the
more beneficial edge-assisted execution becomes. This trend
is common for all configurations until the processing capacity
of the edge server becomes a bottleneck, i.e. when more than
50% of client requests are handled by the edge server.

2) Edge server collocated with eNodeB: We repeat the
same experiments and now assume that the edge server is
collocated with the eNodeB rather than the PGW gateway.

Variable edge server capabilities. Figure 3(a) shows the
application latency when the processing capacity of the edge
server is limited to 100, 250 and 500 concurrent requests. As
before, edge-assisted execution improves application respon-
siveness up to the point at which queuing at the edge server is
a major source of delay, i.e. when more than 50% of requests
are processed at the edge.

Variable Internet latency. Figure 3(b) shows the achievable
performance when varying the Internet latency for this configu-
ration. The results obtained are almost identical to the previous
results from Figure 2(b)—moving the edge server from the
PGW gateway to the eNodeB base station reduces network
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delays by a negligible amount, thus improving performance
only marginally.

In general, there are few differences between the two
alternative choices for placing the edge server, i.e. the eNodeB
or the PGW. For traffic patterns that cause less congestion
at the edge server, a reduction in latency by at most 50 ms
(approximately 18% using the online gaming app as reference)
is possible by moving the edge server from the PGW to the eN-
odeB. However, compared to other sources of delay such as the
300 ms Internet latency, the 200 ms average processing delay
and queuing delays when the edge server has limited resources,
a 50 ms latency reduction is negligible. In addition, one needs
to take into account the cost of deploying edge servers at base
stations. In any case, this marginal performance gain can be
negated during handover events (see Section IV-B4).

3) Inter-user delay: We also investigate the effect of the
hybrid model on cooperating clients that share a particular
service. For example, in online games such as first-person
shooter games, multiple clients interact with each other in a
shared virtual game world. Each client request thus leads to a
broadcast of the corresponding response to all clients. For this
experiment, we measure the inter-user delay, i.e. the time for a
request to be sent and processed plus the time to propagate any
state changes to all other affected users. We set the number
of cooperating clients to 25 in order to avoid extra delays due
to network saturation. The remaining configuration parameters
are set according to the values used in the previous section.

Figure 4(a) shows the average time for clients to receive
updates due to a request made by others, when the server is
placed at the PGW. As before, we vary (1) the number of
concurrent requests that can be processed by the edge server;
and (2) the ratio of requests served entirely at the network
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edge. The results follow closely those described in the previous
experiments, suggesting that this scenario does not create
any asymmetries that change the average delay drastically.
The error bars indicate the maximum and minimum delays
experienced, showing that variability in inter-user delay is low.

A similar trend is observed in Figure 4(b). We assume that
the edge server is capable of processing only a maximum of
20% of the overall concurrent requests issued by the clients.
In Figure 4(c), we repeat the same experiment but for varying
Internet latencies (the access network latency is set to 25 ms).
The results indicate that the higher the Internet latency, the
more beneficial edge-assisted execution becomes.

4) Inter-cell mobility and handover events: Next we in-
vestigate the impact of mobility on application latency under
the hybrid deployment model. We run a set of experiments
that simulate a single handover event to understand how the
additional delays introduced affect performance.

We assume that a mobile client roams between adjacent
cells at 20 m/s and waits for 20 s in each cell before moving
again. We assume a total of 500 mobile clients, initially split
equally among two cells. A client can be in either of two states
during simulation: (1) the pre-handover state in which a client
is connected to the originating cell before the handover event
takes place; and (2) the post-handover state in which the client
is connected to an adjacent cell after the handover finishes. We
set the access network latency to 25 ms and the Internet latency
to 120 ms. We vary both the number of concurrent requests
that an edge server can handle in parallel and the percentage
of requests that are processed at the edge server.

Figure 5 shows the TCP behavior when simulating multiple
handover events. Figure 5(a) displays handover events as
vertical lines and RTO timeouts as distinct points in the graph.
Several retransmissions occur close to most handover events.
These are mostly due to the bad quality of the channel at the
boundaries of a cell, with many of them occurring before the
handover initiates. Figure 5(b) shows the TCP window during
a handover event, which is initiated 72.5 s in the experiment.
The vertical lines illustrate the handover’s start and end times.
As shown in the figure, the server’s TCP window increases
for almost half a second after the handover starts, therefore,
it is unlikely that this is what causes the subsequent timeout.
We infer that the impact of handovers on TCP performance is
small, with the impact of packet losses due to bad reception
at the boundaries of a cell being far more important.

Figure 5(c) shows the latency before and after a handover

event for the online game traces. We observe a smooth
transition between the two base cases, i.e. when all requests are
either processed at the edge server or they are directed to the
backend server for processing. For the latter, both edge server
placements yield similar results in the pre-handover state.
In the post-handover state, however, the eNodeB placement
exhibits a larger degradation in performance, which is due to
the fact that each request must traverse the access network
three times: once for the request to reach the SGW; once to
be forwarded to the original eNodeB; and one last time to reach
the backend server. In contrast, when the server is placed at
the EPC, packets go through the access network only once.

As shown in previous sections, when all requests are
handled at the network edge, better performance is achieved in
pre-handover conditions for the eNodeB placement. However,
in post-handover conditions, performance is worse for some
applications because packets must traverse the access network
twice to reach the edge server on the other eNodeB.

The above results reinforce the observation that there is
no significant gain in placing the edge server at the eNodeB
instead of the PGW. In fact, the marginal performance im-
provement comes at the cost of degraded performance when
handovers occur.

5) Latency breakdown: Figure 6 shows the breakdown of
end-to-end application latency for the online gaming traces,
when the edge server is able to process 100 concurrent requests
in parallel and 50% of the client requests are processed at the
network edge. The backhaul and Internet latencies are set to
25 ms and 120 ms, respectively.

When requests are processed at the edge server, the eN-
odeB placement slightly outperforms the PGW placement be-
cause it avoids sending data through the access network. When
requests are processed by the backend server, the application
latency is significantly higher because requests and responses
are sent to/from the distant backend server.

Figure 6 shows that with a hybrid edge-assisted deploy-
ment model, processing delays become by far the largest
contributors to application latency. This is not the case for
the cloud-assisted model, for which network delays due to re-
quest/response delivery times dominate performance. Overall,
an improvement of 40-45% in performance is possible when
approximately 50% of client requests are served at the network
edge, despite multiple users competing for the comparatively
limited computational resources available there.
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V. CONCLUSIONS

In this paper, we investigated the feasibility of a hybrid
edge-assisted service deployment model, which supports the
hosting of real-time services jointly on cloud- and edge-based
servers. This model can help reduce application latencies over
LTE for many mobile clients that share an edge infrastruc-
ture, despite the comparatively limited resources available at
the edge. Our simulation-based experiments provide insights
regarding the conditions that must hold for this model to yield
performance gains with many mobile clients.

Contrary to existing wisdom in mobile edge cloud propos-
als, we showed that there is no advantage in hosting services
at servers collocated with the eNodeB as opposed to the PGW
because the performance gain is not enough to compensate for
additional deployment costs involved. Moreover, we showed
that a combination of both locally and remotely served requests
is required in order to realise benefits in performance—to avoid
contention on resource-constrained edge servers, up to 50% of
the total requests should be processed at the network edge.
Finally, we confirmed that the impact of user mobility on TCP
is negligible in such a scenario.
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