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Abstract 

The aim of this systematic review, meta-analysis and meta-regression was to examine the 

relationship between type 2 diabetes mellitus (T2DM) and concentration of zinc in whole 

blood, as well as dietary zinc intake. Searches were performed using Ovid MEDLINE, 
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Embase (Ovid) and The Cochrane Library (CENTRAL). Observational studies conducted on 

diabetic and healthy adults, with data on dietary zinc intake and/or concentration of zinc in 

whole blood, were selected. The search strategy yielded 11,150 publications and the manual 

search 6, of which 11 were included in the meta-analyses. Mean difference (MD) and 95% 

confidence interval (CI), were calculated using the generic inverse-variance method with 

random-effects models. Heterogeneity was assessed by the Cochran Q-statistic and 

quantified by the I2 statistic. Meta-regressions and stratified analysis were used to examine 

whether any covariate had influence on the results. The pooled MD for the dietary zinc 

intake meta-analysis was -0.40 (95% CI: -1.59 to 0.79; I2 = 61.0%). Differences between 

diabetic and non-diabetic subjects became significant in the presence of complications 

associated with diabetes (MD = -2.26; 95% CI: -3.49 to -1.02; I2 = 11.9%). Meta-regression 

showed that for each year since the diagnosis of diabetes the concentration of zinc in whole 

blood decreased in diabetic patients regarding healthy controls [MD (concentration of zinc in 

blood) = 732.61 + (-77.88303) x (duration of diabetes in years)], which is not generally 

explained by a lower intake of zinc. 

Highlights 

Duration of T2DM is associated with a reduction in whole blood zinc concentration. 

Dietary zinc intake seems not to explain differences in whole blood zinc concentration. 

Only diabetics with complications seem to consume less zinc than healthy subjects. 

Introduction 

Zinc is an essential trace element that is directly implicated in the physiology of glucose 

metabolism, participating in the synthesis, storage, secretion, action and translocation of 

insulin into the cells [1–3], as well as translocation of GLUT4 to the cell surface for glucose 

transport into the insulin responsive cells [4]. Disturbances in zinc homeostasis may play a 

role in the pathogenesis [5,6], pathophysiology [7–9] and control [10–12] of type 2 diabetes 

mellitus (T2DM). In addition, it has been observed that T2DM patients with a good glycemic 

control had a higher zinc status compared to those with poor glycemic control [13]. T2DM is 

a major global health problem. The prevalence of diabetes worldwide was estimated as 415 

million people aged 20-79 years in 2015, and it has been forecast to increase to 642 million 

in 2040 [14]. 

Several studies [15,16], but not all [17,18], have found a significantly lower concentration of 

zinc in whole blood in patients with T2DM compared with healthy subjects. Although blood 

zinc is not a sensitive biomarker of zinc status, red blood cells are rich in zinc, and changes 

in the concentration of zinc in whole blood may reflect alterations in red blood cell zinc 

transport. It has been proposed that a lower dietary zinc intake in diabetic individuals may 
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explain the reduced plasma and whole blood zinc concentrations observed in some studies 

[19,20]. This seems to  be supported by a dose–response relationship between zinc intake 

and zinc status in adult populations observed in a systematic review and meta-analysis [21]. 

However, differences in dietary zinc intake between patients with T2DM and healthy controls 

have not been confirmed by subsequent studies [22,23]. 

The purpose of this study was to undertake a systematic review, meta-analysis and meta-

regression of the published literature to examine the relationship between T2DM, 

concentration of zinc in whole blood, and dietary zinc intake. 

Material and methods 

This systematic review and meta-analysis was conducted within the framework of the 

EURopean micronutrient RECommendations Aligned (EURRECA) Network of Excellence. It 

has been recorded in PROSPERO (2015: CRD42015020178) and can be consulted here: 

(http://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42015020178). The 

implementation of this systematic review and meta-analysis was performed following the 

MOOSE criteria statement [24]. 

Literature search 

The search strategy was performed as part of a wider review process to identify studies 

assessing the effect of zinc on different outcomes. The searches were performed of 

literature published up to and including March 2016 in Ovid MEDLINE, Embase (Ovid) and 

The Cochrane Library (CENTRAL) using search terms for (‘study designs in humans’) AND 

(Zinc) AND (intake OR status). Manual searches of references supplemented the electronic 

search. 

Study selection 

To be included in the research, studies had to be original publications of observational 

design (prospective cohort, case-control, and cross-sectional), conducted on human adults 

(≥18 years) with type 2 diabetes mellitus (T2DM) patients and healthy individuals as 

controls. In addition, included studies needed to report data on the mean and standard 

deviation of dietary zinc intake and/or concentration of zinc in whole blood in both diabetic 

and non-diabetic subjects. Animal and in vitro studies, studies with diabetic participants other 

than T2DM, and study designs other than prospective cohort, case-control, and cross-

sectional studies, were excluded. 

The selection process was carried out in two stages, the first involved filtering studies by 

their title and abstract (Figure 1). In the second stage, potentially relevant studies were 
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explored further using the full text of the article and assessed against the inclusion and 

exclusion criteria. Stages 1 and 2 were carried out by members of the team (JCFC, MWM, 

VHM, CD and NL). A 10% sample was cross checked by a second researcher to ensure 

consistency between reviewers and any discrepancies were resolved by discussion. 

From each article selected for inclusion at stage 2, the following data were extracted into an 

excel spreadsheet: author, publication year, study design, sample size, control matched, 

geographical area, gender, age, BMI (Body Mass Index), complications associated with 

diabetes, duration of T2DM, dietary survey method used to estimate zinc intake, number of 

days of administration of the dietary survey, dietary zinc intake of participants, laboratory 

technique used to determine concentration of zinc in whole blood, and its concentrations 

(Table 1). The extracted data were checked independently by at least two researchers. In 

order to incorporate relevant data from those selected studies that presented results in forms 

other than the mean and standard deviation, such as median and the interquartile range, we 

used the estimation methods proposed by Wan et al. [25]. These methods allowed 

appropriate estimates to be made for both normal data and skewed data. Variables 

expressed as a range, such as age in diabetic and non-diabetic groups, duration of diabetes 

in diabetic subjects, were assigned the midpoint of the range to estimate a mean value. The 

quality of publications (Table S1) was evaluated using the STROBE Statement [26], and the 

score was used in the statistics analyses. If any of the data was missing, the authors were 

contacted for additional data. 

Statistical analysis 

Data were expressed as mean difference (MD) with 95% confidence interval (CI), and 

pooled using the generic inverse-variance method with random-effects models. MD in both 

meta-analyses was calculated as the difference between the values of diabetics and those of 

non-diabetics. Forest plots were created to visualise summary estimates. Heterogeneity was 

assessed by the Cochran Q-statistic and quantified by the I2 statistic, which represents the 

percentage of variation attributable to between‐study heterogeneity [27]. I2 values of 25%, 

50%, and 75% were considered as low, medium, and high heterogeneity, respectively 

[28,29]. Potential sources of heterogeneity in both meta‐analyses were explored by 

univariate meta‐regressions (tables 2 and 3), using covariates such as geographic area, 

eastern (1) vs. western (2); continent, America (1), Asia (2), Oceania (3), and Europe (4); 

gender, men (1) vs. women (2); quality (STROBE Statement [26]), both categorical and 

continuous variables; age of diabetics patients and healthy controls, both categorical and 

continuous variables; BMI category in diabetic and non diabetic subjects, normal weight 

(18.5-24.9 kg/m2) (1) vs. overweight (25.0-29.9 kg/m2) (2), duration of diabetes, both 
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categorical and continuous variables, complications associated with diabetes, without (1) vs. 

with complications (2); sample size, both categorical and continuous variables; matched, yes 

(1) vs. no (2);dietary survey method,  24-hour dietary recall (1) vs. dietary record (2); number 

of days of administration of the dietary survey, 1, 2, 3, 4 and 7 days and laboratory technique 

zinc assessment method to determine the concentration of zinc in whole blood, atomic 

absorption spectrophotometry (AAS) (1), inductively coupled plasma mass spectrometry or 

atomic emission spectrometry (ICP-MS or ICP-AES) (2). 

Multivariate meta‐regressions were used to examine the covariates that had a significant 

influence on heterogeneity in univariate analysis. Covariates showing collinearity were 

removed from the final multivariate model. In addition, to examine how much of the 

heterogeneity was accounted for by the studied covariates, the adjusted R2 was calculated 

by comparing the baseline value of the heterogeneity variance obtained from the empty 

regression model, with the heterogeneity variance from the meta-regression after the 

covariate was added. Finally, stratified analysis was also used in order to assess possible 

causes of heterogeneity. 

Random effects meta-regressions were also used to examine whether any covariate had 

influence on the results. Bubble plots were created to show a relevant influence of a single 

continuous covariate on MDs in a meta-regression model. This graph represents the fitted 

regression line together with circles representing the estimates from each study, sized 

according to the precision of each estimate (the inverse of its within-study variance). 

Publication bias was investigated by visual inspection of funnel plots and quantitatively 

assessed using Egger’s [30] and Begg’s [31] tests.  

To test the influence of each study on the overall effect size, sensitivity analysis was 

conducted using Leave-One-Out method, that is removing one study each time and 

repeating the analysis [32]. All analyses were conducted in STATA statistical software 

(Version 12.0. STATA Corp., College Station, Texas, USA). 

Results 

The search strategy initially yielded 11,156 publications (Figure 1), of which 11 were 

included in the meta-analyses [15–20,22,23,33–35]. Nine results were included for the final 

meta-analysis that compared the dietary zinc intake in diabetic and non-diabetic subjects 

[19,20,22,23,33,34]. Meanwhile, six results were included in the meta-analysis that 

compared the concentration of zinc in whole blood in diabetic and non-diabetic subjects [15–

18,35]. The characteristics of the included studies are summarized in Table 1. 
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Meta-analysis of dietary zinc intake and T2DM data: Four studies selected for the dietary 

zinc intake meta-analysis were carried out in western countries (England [33], Brazil [20,22] 

and Australia [23]) and two in eastern countries (Korea [34] and Iraq [19]). All those studies 

had cross-sectional design [20,22,23,33,34], except a clinical trial performed by Al-Maroof 

and Al-Sharbatti in Iraq [19]. However, data extracted for our systematic review and meta-

analysis were collected at one time point, before intervention, so we were able to include 

baseline data from the study of Al-Maroof and Al-Sharbatti. Dietary zinc intake was 

determined using  two different survey methods, 24-hour dietary recall, used by both studies 

from western countries [19,34], and dietary record administered for two [23], three [22], four 

[20] or seven [33] days. Two studies recruited only women [23,34], while the other studies 

collected data in men and women [19,20,22,33]. Known duration of diabetes was 7.20±7.26 

years for diabetic participants, taking into account five of the six selected studies 

[19,20,22,23,34]. 

Meta-analysis of the concentration of zinc in whole blood and T2DM: Two studies selected 

for this meta-analysis (Table 2) were conducted in western countries (Austria [17] and Italy 

[18]), and three in eastern countries (Pakistan [15,35] and China [16]). Their design was 

cross-sectional, and the laboratory method used for tissue zinc analysis was AAS [15,17,35] 

or ICP-MS or ICP-AES [16,18]. The time since diagnosis of T2DM in patients ranged from 8 

to 20 years. The quality of selected studies was moderate, according to the STROBE 

Statement [26]. 

An overall pooled MD of -0.40 (95% CI: -1.59 to 0.79) was observed in the meta-analysis 

that investigated the dietary zinc intake in diabetic cases and healthy controls (Figure S1). 

Differences become significant (MD = -2.26; 95% CI: -3.49 to -1.02) when diabetes was 

associated with complications (Figure 2). Moderate heterogeneity was observed in this 

meta-analysis (I2 = 61.0%, P = 0.009), suggesting that 61% of the variability between studies 

was due to differences in dietary zinc intake and 29% due to sampling variation. To examine 

how much of the heterogeneity was accounted for by the presence of complications 

associated with diabetes, we used the adjusted R2 (Tabla 2), and observed that this 

explained heterogeneity largely (R2 = 92.20%; I2 residual = 0.00%). Thus, when we stratified 

by the presence of complications associated with diabetes, we observed that heterogeneity 

was reduced to 0.0% in the group without complications, and to 11.9% in the group with 

complications (Figure 2). In addition to complications associated with diabetes, duration of 

diabetes contributed significantly to the heterogeneity (R2 = 100.00%; I2 residual = 0.00%). 

Through meta-regression (Figure 3), we found that for each year since the diagnosis of 

diabetes the mean difference in dietary zinc intake between diabetics and non-diabetics 
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subjects seemed to increase [MD (dietary zinc intake) = 1.67 + (-0.37) x (duration of 

diabetes in years)]. 

In the meta-analysis that compared the concentrations of zinc in whole blood in diabetic and 

non-diabetic subjects, a pooled MD of -216.80 (95% CI: -359.42 to -74.19) was found 

(Figure S2). High heterogeneity was found in this meta-analysis (I2 = 97.7%, P < 0.001). 

However, stratified analyses by geographic area, western vs. eastern countries, reduced 

considerably the heterogeneity (I2 = 47.1%, P < 0.129) and (I2 = 69.3%, P < 0.071), 

respectively (Figure 4). Identical results were obtained when we stratified by studies which 

had been matched by age vs. not matched by age (Figure S3), had similar aged groups in 

cases and controls vs. those which had different ages groups (Figure S4), and with sample 

size higher vs. lower than 150 participants (Figure S5). Furthermore, these stratified analysis 

explained 96.24% of heterogeneity R2 = 96.24%; I2 residual = 55.19%). In this meta-

analysis, duration of diabetes had also an important influence on heterogeneity (R2 = 

96.16%; I2 residual = 58.23%). We have also observed that for each year since the 

diagnosis of diabetes, the concentration of zinc in whole blood (1µg/dL = 0.0483µmol/L) is 

reduced in diabetic patients regarding healthy controls. This data is presented as a bubble 

plot (Figure 5), and expressed in the equation of the regression line [MD (concentration of 

zinc in blood) = 732.61 + (-77.88303) x (duration of diabetes in years)]. Finally, sample size 

also had an impact on the results (Figure 6) [MD (concentration of zinc in whole blood) = 

371.84 + (-3.44) x (sample size)]. 

By visual inspection, an overall symmetry of the funnel plots was observed for all meta-

analyses (Figures S6 and S7). This was confirmed by the Egger’s (P=0.553 for meta-

analysis of dietary zinc intake, and P= 0.768 for meta-analysis of the concentration of zinc in 

whole blood) and Begg’s (P=1.000 for both meta-analyses) tests which were not significant, 

indicating the absence of publication bias. In addition, neither of the two meta-analyses 

results were affected substantially after removing one study at a time and repeating the 

analysis. The combined result ranged between -0.70 (95% CI: -1.87 to 0.46), after removing 

the result of Rauscher et al. [33] in men, and -0.08 (95% CI: -1.35 to 1.19), after removing 

the study of Lee et al. [34] for the meta-analysis of dietary zinc intake. Meanwhile, for the 

meta-analysis of the concentration of zinc in whole blood, results ranged between -187.76 

(95% CI: -344.87 to -30.65), after removing the result of Kazi in women, and -264.86 (95% 

CI: -389.79 to -139.93), after removing the study of Ekmekcioglu [17]. 

Discussion and Conclusion 

Data from this systematic review, meta-analysis and meta-regression of observational 

studies suggests that there are significant differences in the concentration of zinc in whole 
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blood between diabetic patients and healthy subjects. In addition, the duration of diabetes 

appears to be associated with the concentration of zinc in whole blood, which is not 

explained by a lower of dietary zinc intake in diabetic patients. Only when T2DM is 

associated with complications, such as diabetic nephropathy in which dietary therapy is 

essential, differences in dietary zinc intake became significant. Changes in the concentration 

of zinc in whole blood may reflect changes in tissue zinc distribution and cellular zinc 

homeostasis in patients with diabetes, as was suggested by Chausmer in 1998 [36]. 

Our results did not show significant differences in dietary zinc intake between diabetic and 

non-diabetic subjects. However, the combined result showed some evidence of 

heterogeneity (I2 = 61.0%). When we stratified by the presence of complications associated 

with diabetes, we found significant differences in the subgroup with complications (MD = -

2.26; 95% CI: -3.49 to -1.02), and low heterogeneity (I2 = 11.9%). Meanwhile, in the 

subgroup without complications no significant differences in dietary zinc intake between 

groups, and an undetectable heterogeneity (I2 = 0.0%) were found (Table 2). Only two 

studies reported complications associated to T2DM in diabetic participants [20,34]. The 

study of Batista et al. was conducted on diabetic subjects with chronic kidney disease due 

mainly to diabetic nephropathy [20]. Meanwhile, Lee et al. reported that only 24.0% of T2DM 

cases did not have associated complications, 36.0% presented diabetic nephropathy, and 

10% coronary heart disease [34]. In patients with diabetic nephropathy, diet therapies, such 

as protein restriction are commonly advised [37,38]. It is well known that zinc intake 

correlates directly with protein intake, as these two nutrients share the same food sources 

[39]. This correlation was also observed in the study carried out by Batista et al. [20], 

supporting the role of advanced kidney disease as a cause of a lower dietary zinc intake in 

this patients. The change from not having to having complications associated with diabetes 

supposes a significant increment in MD of dietary zinc intake of 2.70 mg/day (MD = -2.70; 

95% CI: -4.48 to -0.93; P = 0.009). Thus, diabetic patients consume 2.70 mg/day less zinc 

than healthy controls when they have associated pathologies (Table 2). 

The duration of diabetes seems to have an influence on dietary zinc intake. We observed 

that stratified analysis by duration of diabetes (<8; ≥8 years) and (<5; 5-8; ≥8 years) reduced 

the heterogeneity considerably. In addition, when we conducted a meta-regression, 

introducing duration of diabetes as a continuous variable, we found that for each year since 

the diagnosis of T2DM, diabetics consume less zinc [MD (dietary zinc intake) = 1.67 + (-

0.37) x (duration of diabetes in years)] in their diet (Figure 3). However, this may be due to 

the inclusion of the studies where the diabetic patients had complications as described 

above. When these studies are excluded, no significant relationship or trend between the 
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duration of diabetes and the MD of dietary zinc intake was observed (MD = 0.07; 95% CI: -

2.79 to 2.94, P = 0.924). 

Variables, such as gender, geographic area, age or BMI, do not appear to have an impact 

on the results (Table 2), suggesting that dietary zinc intake is similar in diabetic and non-

diabetic subjects in all age ranges, in both genders, in normal weight or overweight, and in 

different populations. 

For all the above, the dietary zinc intake does not seem to explain the observed differences 

in the concentration of zinc in whole blood between diabetic and non-diabetic individuals. 

However, these differences (Figure S2) may not be reliable due to the very high 

heterogeneity observed (I2 = 97.7%). Stratified analysis by geographic area (Figure 4), as 

well as, matched controls (Figure S3), older group (Figure S4) or sample size (Figure S5), 

significantly reduced the heterogeneity to 47.1% and 69.3% in each subgroup (Table 3), 

demonstrating their influence on the differences in the concentration of zinc in whole blood, 

and making the result more plausible. 

We have also observed significant differences in the concentration of zinc in whole blood 

between cases and controls, but only in eastern countries (Figure 4), namely China [16] and 

Pakistan [15,35] (table 3). Studies conducted in  Austria [17] and Italy [18], did not show 

significant differences in the concentration of zinc in whole blood between cases and 

controls. Studies from eastern countries compared diabetic patients with age-matched 

healthy controls, whereas, studies from western countries recruited patients and controls 

with significantly different ages, which may explain differences in results found according to 

the geographic area. 

The influence of the duration of diabetes on the concentration of zinc in whole blood has 

also been examined (Figure 5). The results revealed that for each year since the onset of 

T2DM, the concentration of zinc in whole blood decreases compared to healthy subjects. 

This result is consistent with study conducted by Luo et al., who found that duration of 

diabetes was a key determinant of serum zinc levels [40], suggesting that the duration of 

diabetes may be associated with changes in zinc homeostasis. Drug therapy in diabetic 

patients could play a key role in the relationship between the duration of diabetes and the 

concentration of zinc in whole blood. Thus, it has been proposed that insulin treatment may 

normalised the tissue zinc concentration [9]. Unfortunately, this premise could not be 

assessed in our meta-analysis since data from selected studies was insufficient. Only two 

studies reported the use of insulin therapy in 40% [15] and 100% [35] of diabetic 

participants, and their whole blood zinc concentrations were significantly lower compared to 
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healthy controls. These data do not support the hypothesis, but further studies are needed to 

explore this in more detail. 

Some limitations to our study need to be considered. First, the relatively small number of 

studies included in both meta-analyses, despite the large number of articles obtained from 

the search (11,156). This is because the robust search strategy within the framework of the 

EURRECA Network of Excellence was conducted as part of a wider review process to 

identify studies assessing the effect of zinc on different outcomes, and was designed to 

avoid publication bias. In addition, we included non-English language journals, reducing any 

potential bias. Furthermore, standard tests and visual inspection of funnel plots in both meta-

analyses suggest that there is little evidence for publication bias. Second, the quality of the 

selected studies was moderate, according to the STROBE Statement [26]. After evaluating 

the influence of quality on results through stratified analyses and meta-regression, no 

significant impact on the effect size was observed in any of the meta-analyses. Furthermore, 

when the highest quality studies were combined to obtain a pooled MD, there was no 

detectable heterogeneity in either meta-analysis (0.0%), and the results were similar to the 

respective overall pooled MD (Tables 2 and 3). Third, since the overall analyses did not have 

a large sample size, the stratified analyses might have insufficient power to detect potential 

sources of heterogeneity. In order to correct this, we carried out, not only stratified analysis, 

but also random effects meta-regressions to examine whether any covariate had influence 

on the results. Fourth, the results showed an undetectable to moderate heterogeneity in both 

meta-analyses (Figures 2 and 4), which also contribute to the study validity. Finally, none of 

the selected studies for meta-analysis of zinc concentration reported whether or not the 

samples were collected from fasting participants. This could be a source of bias, however it 

is noteworthy that all the selected studies for this meta-analysis used whole blood samples 

to measure zinc concentration, thus avoiding possible biases caused by using different 

samples. 

The relationship between zinc and glucose metabolism has been evidenced in numerous 

studies. Zinc participates in the synthesis, storage, secretion, action of insulin and 

translocation of insulin into the cells [1–3], as well as translocation of GLUT4 to the cell 

surface for glucose transport into the insulin responsive cells [4]. However, the underlying 

biological mechanism whereby T2DM could have an impact on zinc homeostasis has not 

been elucidated. Recently, the importance of the cellular zinc transport system in T2DM has 

been highlighted [41,42]. A study conducted by Chu et al., found differences in gene 

expressions for most zinc transporters analysed, such as ZnT1, ZnT5, ZnT7, ZIP1, ZIP3, 

ZIP7, ZIP10, metallothionein-1A and metallothionein-2A. A lower gene expression in all 

these transporters was observed in diabetics compared to controls, suggesting disturbances 
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T2DM-associated zinc dyshomeostasis at the cellular level [11]. This alteration on zinc 

metabolism may explain differences in the concentration of zinc in whole blood in diabetic 

subjects observed in the present systematic review, meta-analysis and meta-regression. 

Nevertheless, the preliminary results of another systematic review and meta-analysis of 

more than 73 papers conducted by our group reveals a lack of significant difference in zinc 

status, measured using serum or plasma zinc concentration, between diabetic patients and 

healthy controls. A possible explanation to both results could be that T2DM may not induce a 

lower zinc status compared with non-diabetic subjects, but has a negative impact on zinc 

homeostasis that would lead to differences in tissue zinc concentrations, such as blood. 

In conclusion, data from this systematic review, meta-analysis and meta-regression of 

observational studies suggests that there are significantly lower concentration of zinc in 

whole blood of diabetic patients compared with non-diabetic subjects, which is not explained 

by lower dietary zinc intakes. Only when T2DM is associated with complications, such as 

diabetic nephropathy, in which dietary therapy is essential, a lower dietary zinc intake is 

observed. However, the duration of diabetes could have a significant impact on whole blood 

zinc concentration. Additional research is required to elucidate the possible underpinning 

mechanisms. 
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Figure 1. Flowchart of the search for studies and the selection process. 

Figure 2. Forest plot of pooled mean difference of dietary zinc intake according to the 

presence of complications associated to diabetes. Squares represent the mean difference 

(MD) for each study and the size of the square reflects the study-specific statistical weight. 

Horizontal lines indicate the 95% CI of each study. Diamond represents the combined MD 

estimate with corresponding 95 % CI. I-squared and p-value inform about heterogeneity 

among studies. 

Figure 3. Bubble plot with a fitted meta-regression line of the mean difference in dietary zinc 

intake and duration of diabetes. Circles are sized according to the precision of each estimate 

(the inverse of its within-study variance) with larger bubbles for more precise estimates. 

Figure 4. Forest plot of pooled mean difference of concentration of zinc in whole blood 

according to geographic area. Squares represent the mean difference (MD) for each study 

and the size of the square reflects the study-specific statistical weight. Horizontal lines 

indicate the 95% CI of each study. Diamond represents the combined MD estimate with 

corresponding 95 % CI. I-squared and p-value inform about heterogeneity among studies. 

Figure 5.Bubble plot with a fitted meta-regression line of the mean difference in 

concentration of zinc in whole blood and duration of diabetes. Circles are sized according to 

the precision of each estimate (the inverse of its within-study variance) with larger bubbles 

for more precise estimates. 

Figure 6. Bubble plot with a fitted meta-regression line of the mean difference in 

concentration of zinc in whole blood and sample size of the studies. Circles are sized 

according to the precision of each estimate (the inverse of its within-study variance) with 

larger bubbles for more precise estimates. 
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Appendix A. Supplementary data 

Table S1. Evaluation of the quality based on the STROBE Statement. 

Figure S1. Forest plot of pooled mean difference of dietary zinc intake. Squares represent 

the mean difference (MD) for each study and the size of the square reflects the study-

specific statistical weight. Horizontal lines indicate the 95% CI of each study. Diamond 

represents the combined MD estimate with corresponding 95 % CI. I-squared and p-value 

inform about heterogeneity among studies. 

Figure S2. Forest plot of pooled mean difference of concentration of zinc in whole blood. 

Squares represent the mean difference (MD) for each study and the size of the square 

reflects the study-specific statistical weight. Horizontal lines indicate the 95% CI of each 

study. Diamond represents the combined MD estimate with corresponding 95 % CI. I-

squared and p-value inform about heterogeneity among studies. 

Figure S3. Forest plot of pooled mean difference of concentration of zinc in whole blood 

according to control matched (No matched, matched by age). Squares represent the mean 

difference (MD) for each study and the size of the square reflects the study-specific 

statistical weight. Horizontal lines indicate the 95% CI of each study. Diamond represents 

the combined MD estimate with corresponding 95 % CI. I-squared and p-value inform about 

heterogeneity among studies. 

Figure S4. Forest plot of pooled mean difference of concentration of zinc in whole blood 

according to age in diabetic and non-diabetic groups (same age, different age). Squares 

represent the mean difference (MD) for each study and the size of the square reflects the 

study-specific statistical weight. Horizontal lines indicate the 95% CI of each study. Diamond 

represents the combined MD estimate with corresponding 95 % CI. I-squared and p-value 

inform about heterogeneity among studies. 

Figure S5. Forest plot of pooled mean difference of concentration of zinc in whole blood 

according to sample size (<150, >150). Squares represent the mean difference (MD) for 
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each study and the size of the square reflects the study-specific statistical weight. Horizontal 

lines indicate the 95% CI of each study. Diamond represents the combined MD estimate with 

corresponding 95 % CI. I-squared and p-value inform about heterogeneity among studies. 

Figure S6. Funnel plots of publication biases of studies included in the meta-analysis of 

dietary zinc intake. Y-axis stands for the standard error of the mean difference of dietary zinc 

intake and X-axis stands for the mean difference of dietary zinc intake. Each dot stands for 

an individual study. Asymmetric funnel plot indicates a publication bias. 

Figure S7. Funnel plots of publication biases of studies included in the meta-analysis of 

concentration of zinc in whole blood. Y-axis stands for the standard error of the mean 

difference of concentration of zinc in whole blood and X-axis stands for the mean difference 

of concentration of zinc in whole blood. Each dot stands for an individual study. Asymmetric 

funnel plot indicates a publication bias.  
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Table 1. Characteristics of studies included in the meta-analyses and meta-regressions on dietary zinc intake and whole blood zinc concentration in diabetic and non-diabetic subjects. 

Author, year Location Gender 
Age (years) in 

diabetic subjects 
(Mean±SD) 

Age (years) in non-
diabetic subjects 

(Mean±SD) 

Sample 
size 

T2DM 
(n) 

Control 
Matched 

T2DM duration in 
years (Mean±SD) 

Zinc assessment 
method 

Dietary (mg/day) 
or whole blood 
(µmol/L) zinc in 

diabetics 
(Mean±SD) 

Dietary (mg/day) 
or whole blood 
(µmol/L) zinc in 
non-diabetics 

(Mean±SD) 

Studies of dietary zinc intake 

Rauscher, 1997 England 

Women 
/ Men 

Range: 49-72                           
63.0  

Range: 50-77         61.5  20 10 

Age, sex & 
weight 

Not Showed 7-day dietary record 

11.8±2.2 10.3±2.6 

Men 
Range: 49-71                    

61.0  
Range: 50-71          58.0  10 5 13.2±1.5 11.1±2.5 

Women 
Range: 60-72                     

65.0  
Range: 60-77              

65.0  
10 5 10.3±1.8 9.5±2.5 

Lee, 2005 Korea Women 57.9±6.9 56.3±7.9 119 50 No 8.0±6.5 24h-hour recall 6.2±2.7 8.0±3.2 

Al-Maroof, 2006 Iraq 
Women 
/ Men 

54.6±9.2 39.0±9.3 234 101 No 5.1±6.0 24h-hour recall 12.2±4.6 12.4±4.4 

Batista, 2006 Brazil 

Women 
/ Men 

61.1±8.1 52.9±9.7 

53 33 

No 16.3±8.8 4-day dietary record 

6.5±4.2 9.4±5.0 

Men 24 16 7.5±3.8 11.6±4.5 

Women 29 17 4.6±2.7 8.1±5.2 

de Sousa Lima, 
2011 

Brazil 

Women 
/ Men 

Range: 25-59 46.0±7.4 37.2±8.6 

73 36 

No 4.0±2.4 3-day dietary record 

12.9±5.8 11.7±4.7 

Men 22 12 16.9±7.3 14.9±6.5 

Women 51 24 10.9±3.5 10.5±3.4 

Foster, 2012 Australia Women 
Range: 48.3-79 

63.8±8.8 
Range: 21.4-65.6 

39.4±13.8 
40 20 No 6.5±5.2 2-day dietary record 12.8±5.3 11.6±3.8 

Studies of concentrations of zinc in blood 

Ekmekcioglu, 2001 Austria 
Not 

Showed 
63.8±11.0 70.5±12.4 103 53 No Not Showed EAAS 25.7±4.7 24.9±5.8 

Kazi, 2008 Pakistan 

Women 
/ Men 

Range: 45-75 Range: 45-75 

423 257 

Age Range: 8-20 AAS 

31.3±10.6 47.9±7.5 

Men 217 137 29.9±10.7 46.9±7.2 

Women 206 120 32.7±10.4 48.9±7.7 

Afridi, 2009 Pakistan Women Range: 30-40 Range: 30-40 182 89 Age Range: 10-15 F/EAAS 46.9±6.3 60.4±7.2 

Chen, 2012 China 
Not 

Showed 
Range: 25- >50 Range: 25- >50 158 53 Age Not Showed ICP- AES 43.1±31.4 60.4±48.3 

Forte, 2013 Italy 
Women 
/ Men 

Mean±SD: 68.4±11.2 Mean±SD: 57.2±18.0 127 68 No 
Mean±SD: 
10.2±8.6 

ICP-MS 30.5±4.8 32.6±8.2 

T2DM (Type 2 Diabetes Mellitus), SD (Standard deviation), AAS (Atomic Absorption Spectrophotometry), F/EAAS (Flame/Electrothermal Atomic Absorption Spectroscopy),  EAAS (Electrothermal Atomic Absorption Spectroscopy), ICP- AES 
(Inductively Coupled Plasma Atomic Emission Spectrometry), ICP- MS (Inductively Coupled Plasma Mass Spectrometry). 
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Table 2. Stratified analysis and meta-regression for mean difference of dietary zinc intake in diabetic and non-diabetic subjects. 
 

Subgroup 
Studies 

(n) 
Mean difference 

(95% CI) 

Heterogeneity Meta-regression 
 

I2 (%) P-value 
Regression coefficients 

(95% CI) 
P-value Tau2 

I2 residual 
(%) 

Adjusted R2  
(%)  

Geographic area 
 

     Eastern 2  -1.01 (-2.54; 0.53) 73.8% 0.051 
 -0.91 (-4.43; 2.60) 0.559 2.25 59.95% -19.37%  

     Western 7  -0.10 (-1.79; 1.59) 56.1% 0.034 
 

Continent 
 

     America (1) 4  -1.48 (-4.24; 1.27) 63.7% 0.041 

1.01 (-0.18; 2.20) 0.085 1.06 52.24% 43.60% 

 
     Asia (2) 2  -1.01 (-2.54; 0.53) 73.8% 0.051 

 
     Oceania (3) 1 1.20 (-1.66; 4.06)  -  - 

 
     Europe (4) 2 1.49 (-0.37; 3.34) 0.0% 0.493 

 
Quality 65 

 
     <65 5  -1.53 (-3.21; 0.15) 55.4% 0.062 

2.21 (-0.28; 4.70) 0.074 0.91 41.99% 51.73%  
     ≥65 4 0.41 (-0.56; 1.38) 3.1% 0.377 

 
Quality 70 

 
     <70 7  -0.65 (-2.27; 0.96) 66.0% 0.007 

0.99 (-2.80; 4.77) 0.558 2.43 62.04% -28.84%  
     ≥70 2 0.00 (-1.08; 1.08) 0.0% 0.374 

 
Gender 

 
     Men (1) 3  -0.09 (-4.44; 4.27) 74.6% 0.019 

 -0.52 (-5.19; 4.16) 0.796 3.55 67.24% -25.67%  
     Women (2) 5  -0.60 (-2.16; 0.95) 61.7% 0.034 

 
     Both genders 1  -0.20 (-1.37; 0.97)  -  -  -  -  -  -  - 

 
Age of diabetics (years) 

 
     40-50 2 0.56 (-1.25; 2.36) 0.0% 0.606 

 -0.39 (-2.64; 1.87) 0.698 2.60 65.87% -37.75% 
 

     50-60 2  -1.01 (-2.54; 0.53) 73.8% 0.051 
 

     60-70 5  -0.51 (-2.89; 1.88) 69.3% 0.011 
 

Age of diabetics 50 (years) 
 

     <50 2 0.56 (-1.25; 2.36) 0.0% 0.606 
 -1.41 (-5.70; 2.89) 0.465 2.27 62.33% -20.55%  

     ≥50 7  -0.64 (-2.02; 0.74) 67.2% 0.005 
 

Age of diabetics 60 (years) 
 

     <60 4  -0.55 (-1.80; 0.70) 55.2% 0.082 
 -0.05 (-3.51; 3.41) 0.974 2.64 64.51% -39.68%  

     ≥60 5  -0.51 (-2.89; 1.88) 69.3% 0.011 
 

Age of non-diabetics (years) 
 

     30-40 4 0.15 (-0.78; 1.07) 0.0% 0.723 

 -0.52 (-1.96; 0.92) 0.418 2.17 58.60% -15.08% 
 

     50-60 4  -1.62 (-3.98; 0.75) 73.5% 0.010 
 

     60-70 1 0.80 (-1.90; 3.50)  -  - 
 

Age of non-diabetics 50 (years) 
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     <50 4 0.15 (-0.78; 1.07) 0.0% 0.723 
 -1.57 (-4.65; 1.51) 0.267 1.86 54.22% 1.61%  

     ≥50 5  -1.13 (-3.16; 0.89) 71.4% 0.007 
 

Age difference between diabetics and non-diabetics  (years) 
 

     <5 3 0.16 (-2.43; 2.76) 78.7% 0.009 

0.02 (-2.15; 2.20) 0.982 2.70 62.83% -43.24% 
 

     5-15 4  -1.48 (-4.24; 1.27) 63.7% 0.041 
 

     ≥15 2 0.00 (-1.08; 1.08) 0.0% 0.374 
 

Age difference between diabetics and non-diabetics II  (years) 
 

     <10 7  -0.65 (-2.27; 0.96) 66.0% 0.007 
0.99 (-2.80; 4.77) 0.558 2.43 62.04% -28.84%  

     ≥10 2 0.00 (-1.08; 1.08) 0.0% 0.374 
 

Older group 
 

     Same age (1) 3 0.16 (-2.43; 2.76) 78.7% 0.009 
 -0.76 (-4.26; 2.74) 0.623 2.71 64.32% -43.85%  

     Different age (2) 6  -0.62 (-2.12; 0.88) 51.1% 0.069 
 

BMI category in diabetics 
 

     Normal weight (18.5-24.9 kg/m2) 5  -1.13 (-3.16; 0.89) 71.4% 0.007 
1.57 (-1.51; 4.65) 0.267 1.86 54.22% 1.61%  

     Overweight (25.0-29.9 kg/m2) 4 0.15 (-0.78; 1.07) 0.0% 0.723 
 

BMI category in non-diabetics 
 

     Normal weight (18.5-24.9 kg/m2) 5  -0.03 (-1.57; 1.51) 55.1% 0.064 
 -1.11 (-4.47; 2.24) 0.459 2.73 65.44% -44.77%  

     Overweight (25.0-29.9 kg/m2) 4  -1.10 (-3.51; 1.30) 73.6% 0.010 
 

Duration of diabetes (years) 
 

     <8 4 0.15 (-0.78; 1.07) 0.0% 0.723 
 -2.24 (-4.00; -0.48) 0.022 0.00 0.00% 100.00%  

     ≥8 3  -2.26 (-3.49; -1.02) 11.9% 0.321 
 

     No data 2 1.49 (-0.37; 3.34) 0.0% 0.493  -  -  -  -  - 
 

Complications 
 

     Without complications of diabetes 6 0.41 (-0.41; 1.24) 0.0% 0.640 
 -2.70 (-4.48; -0.93) 0.009 0.15 0.00% 92.20%  

     With complications of diabetes 3  -2.26 (-3.49; -1.02) 11.9% 0.321 
 

Sample size 
 

     <100 7  -0.10 (-1.79; 1.59) 56.1% 0.034 
 -0.91 (-4.43; 2.60) 0.559 2.25 59.95% -19.37%  

     ≥100 2  -1.01 (-2.54; 0.53) 73.8% 0.051 
 

Matched 
 

     No matched 2  -0.89 (-2.14; 0.36) 58.1% 0.026 
2.36 (-1.10; 5.81) 0.151 1.10 52.69% 42.20%  

     Matched by age, gender & weight 7 1.49 (-0.37; 3.34) 0.0% 0.493 
 

Dietary survey method 
 

     24-hour dietary recall 2  -1.01 (-2.54; 0.53) 73.8% 0.051 
0.91 (-2.60; 4.43) 0.559 2.25 59.95% -19.37%  

     Dietary record 7  -0.10 (-1.79; 1.59) 56.1% 0.034 
 

Days of dietary survey 
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     24-hour dietary recall (1) 2  -1.01 (-2.54; 0.53) 73.8% 0.051 

0.26 (-0.45; 0.97) 0.413 1.82 58.44% 3.60% 

 
     2-day dietary record (2) 1 1.20 (-1.66; 4.06)  -  - 

 
     3-day dietary record (3) 2 0.56 (-1.25; 2.36) 0.0% 0.606 

 
     4-day dietary record (4) 2  -3.76 (-6.17; -1.36) 0.0% 0.808 

 
     7-day dietary record (7) 2 1.49 (-0.37; 3.34) 0.0% 0.493 

 
BMI (Body Mass Index). 
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Table 3. Stratified analysis for mean difference of the whole blood zinc concentration in diabetic and non-diabetic subjects. 

Subgroup 
Studies 

(n) 
Mean difference (95% CI) 

Heterogeneity Meta-regression 

I2 (%) 
P-

value 
Regression coefficients 

(95% CI) 
P-value Tau2 

I2 residual 
(%) 

Adjusted R2  
(%) 

Geographic area 

     Eastern 4  -320.83 (-361.46; -280.19) 47.1% 0.129 
 -309.20 (-408.99; -209.42) 0.001 1012 55.19% 96.24% 

     Western 2  -12.41 (-70.89; 46.08) 69.3% 0.071 

Continent 

     Europe 2  -12.41 (-70.89; 46.08) 69.3% 0.071 
 -309.20 (-408.99; -209.42) 0.001 1012 55.19% 96.24% 

     Asia 4  -320.83 (-361.46; -280.19) 47.1% 0.129 

Quality 50 

     <50 3  -191.61 (-438.19; 54.97) 98.0% <0.001 
 -55.64 (-479.08; 367.81) 0.734 32234 97.94% -19.72% 

     ≥50 3  -243.57 (-440.95; -46.19) 97.9% <0.001 

Quality 55 

     <55 4  -146.24 (-316.36; 23.89) 97.3% <0.001 
 -202.89 (-547.55; 141.77) 0.178 18048 96.42% 32.96% 

     ≥55 2  -343.86 (-379.36; -308.37) 0.0% 0.649 

Gender 

     Men (1) 1  -351.80 (-401.08; -302.52)  -  - 
46.41 (-571.35; 644.17) 0.515 972 63.59% 0.18% 

     Women (2) 2  -305.39 (-359.40; -251.38) 63.6% 0.097 

     Both genders 1  -43.73 (-93.14; 5.67)  -  -  -  -  -  -  - 

     No data 2  -148.21 (-512.01; 215.58) 87.2% 0.5%  -  -  -  -  - 

Age of diabetics (years) 

     30-40 1  -280.00 (-320.73; -239.27)  -  - 

88.59 (-111.75; 288.93) 0.254 23307 97.58% 20.04%      50-60 2  -343.86 (-379.36; -308.37) 0.0% 0.649 

     60-70 2  -12.41 (-70.89; 46.08) 69.3% 0.071 

     No data 1  -358.00 (-617.29; -98.71)  -  -  -  -  -  -  - 

Age of diabetics 50 (years) 

     <50 1  -280.00 (-320.73; -239.27)  -  - 
101.57 (-580.72; 783.86) 0.668 36305 98.43% -24.55% 

     ≥50 4  -178.44 (-369.42; 12.55) 98.4% <0.001 

     No data 1  -358.00 (-617.29; -98.71)  -  -  -  -  -  -  - 

Age of non-diabetics (years) 

     30-40 1  -280.00 (-320.73; -239.27)  -  - 

73.98 (-103.31; 251.27) 0.276 24367 97.52% 16.41%      50-60 3  -243.57 (-440.95; -46.19) 97.9% <0.001 

     70-80 1 16.01 (-26.58; 58.13)  -  - 

     No data 1  -358.00 (-617.29; -98.71)  -  -  -  -  -  -  - 
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Age of non-diabetics 50 (years) 

     <50 1  -280.00 (-320.73; -239.27)  -  - 

101.57 (-580.72; 783.86) 0.668 36305 98.43% -24.55%      ≥50 4  -178.44 (-369.42; 12.55) 98.4% <0.001 

     No data 1  -358.00 (-617.29; -98.71)  -  - 

Older group II 

     Same age (1) 4  -320.83 (-361.46; -280.19) 47.1% 0.129 
 -309.20 (-408.99; -209.42) 0.001 1012 55.19% 96.24% 

     Different age (2) 2  -12.41 (-70.89; 46.08) 69.3% 0.071 

Duration of diabetes (years) 

     <13 2  -162.30 (-393.83; 69.24) 98.1% <0.001 
 -180.84 (-692.57; 330.88) 0.268 13550 96.19% 31.12% 

     ≥13 2  -343.86 (-379.36; -308.37) 0.0% 0.649 

     No data 2  -148.21 (-512.01; 215.58) 87.2% 0.005  -  -  -  -  - 

Sample size 

     <150 2  -12.41 (-70.89; 46.08) 69.3% 0.071 
 -309.20 (-408.99; -209.42) 0.001 1012 55.19% 96.24% 

     ≥150 4  -320.83 (-361.46; -280.19) 47.1% 0.129 

Matched 

     No matched 2  -12.41 (-70.89; 46.08) 69.3% 0.071 
 -309.20 (-408.99; -209.42) 0.001 1012 55.19% 96.24%      Matched by age, gender 

& weight 
4  -320.83 (-361.46; -280.19) 47.1% 0.129 

Zinc assessment method 

     ASS 4  -237.46 (-411.56; -63.35) 98.3% <0.001 
69.65 (-389.57; 528.86) 0.695 31017 97.80% -15.21% 

     ICP 2  -174.03 (-477.49; 129.42) 81.6% 0.020 

AAS (Atomic Absorption Spectrophotometry), ICP (Inductively coupled plasma), EAAS (Electrothermal Atomic Absorption Spectroscopy). 

 

 

 

 

 

 

  



27 
 

 



28 
 

 



29 
 

 



30 
 

 

 



31 
 

 

 



32 
 

 


