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Abstract 

There is much evidence that diabetes mellitus (DM) –induced hyperglycemia (HG) is responsible 

for kidney failure or nephropathy leading to cardiovascular complications. Cellular and 

molecular mechanism(s) whereby DM can damage the kidney is still not fully understood. This 

study investigated the effect of streptozotocin (STZ)-induced diabetes (T1DM) on the structure 

and associated molecular alterations of the isolated rat left kidney following 2 and 4 months of 

the disorder compared to the respective age-matched controls. The results revealed 

hypertrophy and general disorganized architecture of the kidney characterized by expansion in 

glomerular borders, tubular atrophy and increased vacuolization of renal tubular epithelial cells 

in the diabetic groups compared to controls. Electron microscopic analysis revealed 

ultrastructural alterations in the left kidney highlighted by an increase in glomerular basement 

membrane width. In addition, increased caspase-3 immuno-reactivity was observed in the 

kidney of T1DM animals compared to age-matched controls.  These structural changes were 

associated with elevated extracellular matrix (ECM) deposition and consequently, altered gene 

expression profile of ECM key components, together with elevated levels of key mediators 

(MMP9, integrin 5α, TIMP4, CTGF, vimentin) and reduced expressions of Cx43 and MMP2 of the 

ECM. Marked hypertrophy of the kidney was highlighted by increased atrial natriuretic peptide 

(ANP) and brain natriuretic peptide (BNP) gene expression. These changes also correlated with 

increased TGFβ1 activity, gene expression in the left kidney and elevated active TGFβ1 in 

plasma of T1DM rats compared to control. The results clearly demonstrated that TIDM could 

elicit severe structural changes and alteration in biochemical markers (remodeling) in the 

kidney leading to diabetic nephropathy (DN). 

Key words: Diabetes-induced nephropathy, Apoptosis, fibrosis, Gene expression, Type 1 

diabetes, Transforming growth factor β1 (TGFβ1). 
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Introduction 

Diabetes-induced nephropathy (DN) is a pathological condition that can lead to cardiovascular 

failure resulting in death of diabetic patients [1]. It is well established that the chronic exposure 

of the kidney to hyperglycemic conditions favours the development of extensive structural 

damage [2]. DN is a micro-vascular complication leading to kidney dysfunction and end-stage 

renal disease (ESRD) [3]. The characteristics of DN include renal glomerular hypertrophy, 

basement membrane thickening, and fibrosis due to accumulation of ECM proteins and 

regulators [2,4]. Clinical features include proteinuria, albuminuria, and progressive glomerular 

dysfunction [5]. 

DN does not develop in the absence of HG, even in the presence of a genetic predisposition [6]. 

Nevertheless, HG is a crucial factor in the development of DN because of its effects on 

glomerular and mesangial cells, but alone it is not causative. Mesangial cells are crucial for 

maintenance of glomerular capillary structure and for the modulation of glomerular filtration 

via smooth-muscle activity [6]. HG is associated with an increase in mesangial cell proliferation 

and hypertrophy, as well as increased matrix production and basement membrane thickening. 

Several in vitro studies have demonstrated that HG is associated with increased mesangial cell 

matrix production and mesangial cell apoptosis [7]. One mechanism whereby HG can elicit 

unfavourable remodelling changes is via the activation of the pro-fibrotic cytokine TGFβ1. This 

concept is reinforced by previous experimental and clinical studies highlighting the functional 

linkage of HG-stimulated elevations in protein synthesis, in particular of ECM proteins with 

increased TGFβ1 signaling in the kidney [8]. Additionally, the role of TGFβ1 in DN has been 

highlighted in resultant increases in renal mesangial cells, kidney hypertrophy and cell survival 

[9]. TGFβ1 plays a major role in glomerular alteration in diabetic sclerosis via induction in 

transient actin cytoskeleton disassembly in mesangial cells, high production of fibronectin, 

collagen types I and IV, and mesangial cell hypertrophy. Thus, TGFβ1 may be considered as an 

important therapeutic target in DN.  

The present study was specifically designed to investigate the duration of T1DM on the kidney 

employing animals induced with T1DM for 2 and 4 months compared to many previous studies 
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that only investigated short- term effect of T1DM. In addition, the study attempted to ascertain 

whether structural remodelling in the kidney follows a similar pattern as myocardial matrix 

remodelling during diabetes for comparison.  

Methods 

Ethical Clearance:  The project obtained relevant clearance from the Animal Ethics Committees 

at University of Central Lancashire, UK, University of Nebraska Medical Center, Omaha, NE, USA 

and College of Medicine & Health Sciences, United Arab Emirates University, UAE. All 

procedures were in confirmation with the ‘UK Animals (Scientific Procedures) Act 1986’. 

Animals were housed in groups (1 or 2 in 1 cage) under institutional regulations at standard 

animal housing conditions. Animals were kept at an average room temperature of 24˚C, a 

relative humidity of 50% and a 12-hour day and night cycle. All rats were allowed unlimited 

access to water and commercial chow (unless indicated). All rats were regularly monitored 

throughout the experimental period for any signs of suffering or disease.  

Induction of Diabetes: This study employed 24 young adult male Wistar rats, 5-6 weeks old. 

The rats were divided into two groups of 12 each. One group was rendered diabetic by a single 

intraperitoneal injection (i.p.) of streptozotocin (STZ) (Sigma-0130) (60 mg kg-1 body weight) 

dissolved in citrate acid buffer (0.1 M citric acid, 0.1 M sodium citrate in distilled water, pH 4.5). 

Control animals received an equal volume (0.3 ml) of the citrate buffer alone. All rats were 

caged separately and fed routinely on a normal diet and water until after 2 months or 4 months 

of diabetes, when they were humanely killed for experimentations.  DM was confirmed 4-5 

days following STZ injection and on the day, prior to killing the rats, using a glucose meter (One 

Touch II glucose meter, Lifescan inc). 

Sample collection: Wistar rats were humanely killed by a blow to the head followed by cervical 

dislocation and the left kidney rapidly removed by mid-abdominal incision. Blood samples were 

taken directly from the heart by cardiac puncture. Following the removal of the kidney, it was 

blotted dry, weighed and either frozen in liquid N2 for protein assay/gene expression and 

stored at -80⁰C or processed for light/electron microscopy. For all animals, body weight and 
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kidney weight were measured immediately after isolation and non-fasting blood glucose was 

measured prior to experiments.  

Histological studies 

Tissues were processed for histological examination according to previously described 

techniques [10-11]. Briefly, kidney tissue samples were fixed in 10% formalin and dehydrated in 

alcohol series for specific time limits. Paraffin-embedded samples were sectioned at 4 µm using 

HM325 microtome, deparaffinized, rehydrated and stained with hematoxylin and eosin (H&E) 

for general examination and with Masson’s trichrome for the determination of ECM deposition 

according to previously established methods [10-11]. Morphometry was performed by digital 

image analysis using a PC digital image camera (Digital Sight DS-5M, Nikon Corp, Japan) 

mounted on an Axiolab Zeiss light microscope (Carl Zeiss Corp, Germany) with a 40X objective. 

Extent of ECM proliferation in the LV and Kidney was assessed using Image J software (National 

Institutes of Health, Bethesda, MD, USA; http://www.nih) and colour segmentation plugin was 

applied to calculate the percentage of interstitial fibrosis present in the Masson’s trichrome 

stained kidney sections. Image J was programmed to identify shades of a specific colour (green 

for collagen) on the stained sections. Approximately, 30-40 selected fields in each group were 

included in the analysis.  

 

 Immuno-histochemistry 

The activity of caspase-3 as a primary effector of kidney tissue apoptosis was measured using a 

commercially available caspase-3 detection kit following the manufacturers’ instructions 

(Signal-Stain Apoptosis (Cleaved Caspase-3) IHC detection kit, Cell Signaling Technology, 12692). 

Briefly, paraffin-embedded sections were deparaffinised a series of alcohol before antigen 

retrieval. Sections were then blocked with 1x TBST/5% normal goat serum and incubated for 1 

hour at room temperature. Sections were incubated over night at 4˚C with polyclonal rabbit 

anti-active caspase 3 antibody diluted in antibody diluent (1:500) supplied within the kit. 30 µl 

of chromagen concentrate was added to 1 ml of Signal Stain DAB Diluent, which was then 

applied to each section and monitored closely for acceptable staining intensity (red-brown) 

http://www.nih/
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monitored by light microscopy. A semi-quantitative analysis of the apoptotic cells that was on 

average of 30-40 LV groups, defined as caspase-3 positive cells/area (mm2) were obtained using 

Image J. Photomicrographs were imaged at X400.  

 Electron Microscopy 

Randomly selected semi-thin sections, were cut with glass knives and stained with Toluidine 

blue for examination by light microscopy in order to exclude abnormal tissues from 

ultrastructural studies. Thereafter, semi-thin sections were stained with methylene blue and 

examined in the light microscope to select appropriate areas for the preparation of ultrathin 

sections. Ultrathin sections were cut with a diamond knife (DuPont) on LKB III ultratome and 

picked up on mesh copper grids. Sections were carefully stained with saturated uranyl acetate 

solution in 50 percent ethanol for 15 min followed by lead citrate solution for two min. A JEM 

1010 electron microscope was used to examine the ultrathin sections at an accelerating voltage 

of 60 kV. Subsequently, electron micrographs were printed on 8 x 10 inch photographic paper 

at 7,000 X and 14,000 X magnifications.  

mRNA quantification by Quantitative Reverse transcriptase Polymerase chain reaction: mRNA 

isolation and generation of cDNA 

A two-step SYBR green I RT-PCR protocol was used to quantify mRNA expression of numerous 

target genes in ‘real time’ RTqPCR assays. The primer sequences, experimental conditions, 

design and techniques detailed below had previously been validated [13]. Briefly, frozen kidney 

samples were cut into 10 µm sections using a cryostat, making sure the samples do not thaw. 

Total RNA was isolated from sections using Qiagen muscle RNA extraction procedure and 

manufacturer’s instructions (Qiagen, Hilden, Germany). Briefly, 10 µl of β-mercaptoethanol was 

added to 1 ml of ‘RLT’ buffer provided and a stock of carrier RNA was prepared. Samples were 

homogenized and a volume of 5 µl of proteinase K was then added to digest proteins in tissue. 

A second elution gave a final volume of approximately 90 µl that was left to precipitate 

overnight at -20˚C followed by centrigugation, and resulting RNA was ethanol precipitated and 

pellets were dissolved in 10 µl, RNAse free water. Thereafter, the concentration and purity of 
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RNA samples was measured at A260 and the ratio of absorbance at 260 and 280 nm with a 

Nanodrop ND-1000 spectrophotometer (Nanodrop Techologies, USA).  

A volume of 10 µl of the RT/buffer master mix was added while samples were on ice. Samples 

were then incubated at 25°C for 10 min in the PCR machine, for first priming, 50°C for 50 min, 

for further synthesis and 85°C for 15 min, to stop the reaction. Aliquots of neat cDNA were 

diluted (2 µl into 18 µl H2O) giving a 1:10 ratio for direct use in qPCR. 

QPCR  

Gene expression analyses were performed by reverse transcription and qPCR. RTqPCR was 

achieved using an ABI Prism 7900 HT Sequence Detection System (Applied Biosystems, Foster, 

USA). The size of QPCR products and specificity of primers were tested in the laboratory 

previously by running samples on 2 % agarose gels containing ethidium bromide and visualized 

by UV light. For this study commercially available primers were utilized which gave amplicons of 

similar size. The reaction mixture consisted of 1 μl of cDNA, 1x Qiagen assay, 1x SYBR Green 

Master Mix (Applied Biosystems, 4367659) and the final volume of 10 μl was made up with 

DNAse-free water.  

Gene expression was analyzed using SDS 2.1.1 software (Applied Biosystems) by a double 

standardization method known as the modified 2-ΔΔCt that was adjust for PCR efficiency 

differences [14]. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 18S ribosomal RNA 

were analyzed to determine the housekeeping gene whose amplification efficiency is equal to 

other PCR targets of this study. Ratios relative to the calibrator were determined based on the 

respective delta cycle tresholds. Expression levels were articulated as value of mRNA 

abundance relative to average GAPDH content.  

Transforming growth factor β1 Immunoassay  

Protein extraction - Left kidney samples from STZ-induced T1DM rats for 2 and 4 months and 

Wistar age-matched control animals were homogenized in in homogenization buffer, pH 7.4 as 

recommended by ELIZA kit manufacturers. Sample homogenate was sonicated and centrifuged 
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at 14,000 g for 1 min at 4 ˚C. The supernatant was collected and aliquoted into tubes and 

further assayed for protein concentration or stored at -80 ˚C.  

Modified Lowry protein assay - Protein concentrations in tissue homogenates of the kidney 

were assayed employing the modified Lowry method previously described [14] and a 

microplate reader (Micro Quant, Biotech Instruments) was used for analysis. The linearity range 

for protein detection was given as 1-1,500 µg/ml.    

Total and active Transforming growth factor β1 detection by Enzyme-Linked ImmunoSorbant 

Assay (ELIZA) - Total and biologically active TGF1 protein in serum and from frozen samples 

was measured using an enzyme-linked immunosorbent assay (ELISA) kit (TGF1 Emax 

ImmunoAssay System, Promega, USA) and manufacturer’s instructions.  

Detection of endogenous TGFβ1 in plasma, LV and kidney homogenates (extracted as 

mentioned above) from aged matched control and STZ-induced and GK subgroups were 

achieved using manufacturer’s protocol.  

Sample preparation was achieved by dividing plasma and kidney homogenates in 2 equal 

fractions to assay for total and active TGFβ1. A volume of 100 µl of either acid treated or 

naturally processed samples were added to the coated plate and incubated for 90 minutes at 

room temperature with shaking (500±100 rpm). Samples were diluted in buffer prepared 

according to manufacturer protocol. After washing, the specifically bound polyclonal antibody 

was detected by diluting 10 µl stock Anti-TGFβ1 pAb in 10 ml of Sample 1X buffer (1:1000). A 

volume of 100 µl of this was pipetted in each well and incubated for 2 hours at room 

temperature with shaking (500±100 rpm). Samples were incubated with 100 µl of TMB One 

Solution (chromagen substrate) for 15 minutes at room temperature, which produced a blue 

colour in the wells. The reaction was stopped using 100 µl of 1 N HCl, which changed the colour 

to yellow and was measured at 450 nm using a microplate reader (Anthos Hill, Biochrome Ltd, 

UK). Samples were analyzed in duplicate and the results were obtained by extrapolation from 

the TGFβ1 standard curve and expressed as ratio of Active: Total TGFβ1 for plasma samples and 

pg/mg of total protein for LV and kidney homogenates.     
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Statistical analysis 

 Quantitative data acquired from these experiments were statistically analyzed using different 

statistical tests. Mean (±SEM) data were plotted as graphs with n=3-6 different experiments. 

Statistical significance of differences between age-matched control and STZ-induced diabetic 

data were compared by Independent samples Student’s t-test using IBM SPSS statistics 22 

software (SPSS Inc., Chicago, IL, USA). Unless stated otherwise, statistical comparisons were 

performed using one-way ANOVA followed by Bonferroni corrected t-tests for multiple 

comparisons. A value of p<0.05 was taken as statistically significant and values <0.01 were 

taken as highly significant.  

 Results 

 Characteristic evaluation of the experimental model 

General characteristics of the STZ-treated T1DM rats and age-matched Wistar control are 

shown in Table 1. The results show that diabetes can significantly (p<0.05) reduce blood glucose 

level and body weights at 2 and 4 months compared to the respective age-matched controls. In 

contrast, T1DN significantly (p<0.05) increases kidney weight and kidney to body weight ratio 

compared to the respective controls. Changes in these different parameters were more severe 

following 4 month of T1DM compared to 2 months.   

Histopathology of the Kidneys after 2 and 4 months of STZ-treatment 

Figure 1 shows the histopathology of the left kidney at 2 and 4 months after STZ-induction 

compared to age-matched controls. Kidney optical analysis using the H & E stain by light 

microscopy revealed general disorganized architecture of the kidney characterized by 

expansion in glomerular borders, tubular atrophy and increased vacuolization of renal tubular 

epithelial cells in the STZ-induced diabetic group. In contrast, the control groups revealed 

organized intact glomeruli, Bowman’s capsule and tubular structure.  
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Table 1: General characteristics of T1DM and control rats. Data are shown as the Mean 

(±S.E.M), *p<0.05 **p<0.01, unpaired Student’s t-test. Numbers in bracket indicate number of 

animals used for experiments. 

 

Examination of the glomerular basement membrane   

Figure 2 shows glomerular basement membrane examination, highlighted by Periodic Acid 

Schiff (PAS) stained sections in the left kidney at 2 and 4 months after STZ-induction compared 

to age matched controls. Light microscopy revealed thickened glomerular basement 

membranes in both STZ-treated groups compared to age-matched control groups. Increased 

mesengial expansion is clearly visible in both groups as the earliest morphological change in 

diabetic nephropathy due to increased deposition of the mesangial matrix together with a mild 

increase in mesangial cellularity, and mesangial cells hypertrophy. 

 

Animals Fasting 

Blood 

Glucose 

(mg/dl) 

Body Weight 

(g) 

Kidney weight 

(g) 

Kidney Weight/Body Weight 

ratio (g/100g body weight) 

Control (n=6)             

2 months 

98±3.79 343±9.99 3.25±0.12 0.94±0.01 

Diabetic (n=6)             

2 months 

443±12.2** 270±5.78** 4.22±0.13** 1.56±0.02** 

Control (n=8)             

4 months 

97±3.04 378±10.63 3.08±0.13 0.82±0.01 

Diabetic (n=8)            

4 months 

446±18.8** 221±13.02** 4.45±0.16** 2.01±0.03** 
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Figure 1: Kidney pathology Representative light photomicrographs detailing kidney 

histopathology in H & E stained kidney sections at 2 and 4 months of STZ-induced diabetes and 

age-matched controls. General glomeruli are intact and organized in structure. Original 

magnification X400. Photomicrographs are typical of 20-25 fields/per group consisting of 6-9 

animals per group. Scale bar in the right hand corner is 20 µm and for all micrographs. D: Distal 

tubulus, P: Proximal tubulus, G: Glomerulus, BC: Bowman’s capsule, Tailed arrow: expanded g 

lomerulus borders in DM group, Block arrow: RBC that make statis in glomerulus and 

interstisium, Diamond; clear cells. 

 

 

 

.   

 

 

 

 

Figure 2: Glomerular basement membrane:  Representative light micrographs of PAS stained 

kidney sections from 2 and 4 months after STZ-treatment. Glomerular basement membrane is 
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seen to be increased in STZ-treated kidneys in comparison to age-matched controls. Original 

Magnification X400, Photomicrographs are typical of 35-47 fields/experimental groups 

consisting of 6-9 animals per group. Scale bar indicates 20 µm. D; Distal tubulus, P; Proximal 

tubulus, Tailed arrow; thickened basement membrane of glomerulus, Block arrow; increased 

Bowman’s space, Diamond; clear cells of tubulus Triangle; Dilated tubulus.   

Ultrastructural study of the kidneys after 2 and 4 months of STZ-treatment  

Figure 3 shows electron microscopic images of the left kidney at 2 (A) and 4 (B) months after 

STZ-induction compared to age-matched controls. The image shows ultrastructural abnormality 

in diabetic nephropathy as seen as diffused thickening of the GBM. In addition, a variable 

degree of mesangial expansion by extracellular matrix deposition and increased mesangial 

cellularity is also present in the diabetic kidney of both groups. A reduction in podocyte number 

(podocytopenia), along with a reduced podocyte per glomerulus ratio can also be seen in both 

groups after STZ-induction. Diffuse foot process effacement and podocyte detachments are 

another hallmark of DN and they are visible in both STZ-treated groups. Figure 2C shows 

quantitative assessment of GBM width using Image J analysis tool. The data revealed significant 

(p< 0.05) increases at 2 months (510±1.35 vs. 330±1.15 µm) and 4 months after STZ-treatment 

(540±1.50 vs. 348±1.15 µm) compared to age-matched controls.  
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Figure 3: Kidney Ultrastructure: Representative TEM electron micrographs showing increased 

mesangial matrix and glomerular basement membrane (GBM) together with increased 

detachment of podocytes in the kidneys from 2 and 4 months after STZ-treatment (A) and 

quantitative assessment of GBM (nm) using Image J analysis tool (B). Original magnification X 

14,000. Electron micrographs are representative of 35-45 photomicrographs studied from 5-6 

animals per group. Scale bar in the lower right indicates 1µm; MM; Mesangial Matrix, Block 

arrow; Thick GBM, NP; Normal Podocyte, Chevron; Podocyte detachment. Data are MeanSEM, 

*P< 0.05, One-way ANOVA followed by Bonferroni corrected t-tests for multiple comparisons. 

 

Kidney fibrosis after 2 and 4 months of STZ-treatment 

Figure 4 shows the results from light microscopy photomicrographs of Masson’s Trichrome 

stained sections in the left kidney after STZ-induction compared to age-matched controls 

following 2 (A) and 4 months (B). STZ-treated rats demonstrated significantly increased ECM 

deposition in both glomerulus and tubulus regions. Figure 4C shows quantitative analysis of 

fibrosis in STZ-treated rats and the data revealed significantly greater glomerular area coverage 

as compared to age-matched controls occupying at 2 months (5.89±0.51% vs. 2.41±0.44%; 

p<0.05) and 4 months (7.66±0.53% vs. 3.36±0.46%; p<0.01 post STZ-treatment. These changes 

were significantly (p<0.05) different between 2 and 4 months of STZ-treatment time indicating 

the severity of the diabetes in the kidney. 

 

 

 

 

 

 



14 
 

 

 

 

 

 

 

Figure 4: ECC deposition in the kidney::Representative light micrographs of Masson’s 

Trichrome stained myocardial sections from 2 months after STZ-treatment (A) and 4 months 

after STZ-treatment (B) and quantitative assessment of interstitial fibrosis using Image J analysis 

tool (C). Original Magnification X400, Photomicrographs are typical of 35-47 fields/experimental 

group consisting of 6-9 animals per group. Scale bar indicates 10 µm. Data are MeanSEM, *p< 

0.05, **p< 0.01 One-way ANOVA followed by Bonferroni corrected t-tests for multiple 

comparisons.   

Apoptosis in the kidneys after 2 and 4 months of STZ-treatment 

Figure 5 shows a significant (p<0.05) increase in the immune-reactivity of cleaved (active) 

caspase-3 within the left kidney of STZ-treated diabetic rats compared to age-matched controls 

at (A) 2 months (8.96±0.89 vs. 1.89±0.39) positive cells/mm2 (p<0.05) and (B) 4 months 

(9.66±1.00 vs 2.49±0.50) positive cells/mm2 after STZ-treatment. Figure 5C shows quantitative 

analysis of positive caspase-containing cells in the kidney of age- matched control and diabetic 

rats. This increase was significant (p<0.05) in diabetic kidney compared to control. 
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Figure 5: Kidney Apoptosis: Active Caspase-3 positive cells (brown staining) in the kidneys from 

2 months after STZ-treatment (A) and 4 months after STZ-treatment (B) and quantitative 

assessment of immune-reactivity using Image J (C). Photomicrographs are typical of 15-20 

fields/experimental groups consisting of 5-6 animals per group. Diamond; clear cells of tubulus, 

Block arrow; Thickened basement membrane and small glomerular size. Scale bar indicates 20 

µm and for all photomicrographs. Data are MeanSEM, *p< 0.05, One-way ANOVA followed by 

Bonferroni corrected t-tests for multiple comparisons. 

 

Molecular events underlying structural remodeling in the kidneys  

Gene expression for ECM components 

Figure 6 represents gene expression of the ECM components, collagen 1α, collagen 3α, 

fibronectin and elastin quantified using qRT-PCR. The data revealed a significant (p<0.01) 

increase of collagen 1α after 2 months (0.89±0.14 vs. 0.53±0.10 ratio units) and 4 months 

(1.23±0.13 vs. 0.58±0.11 ratio units) of STZ-treatment (figure 6A). Similarly, there was a 

significant (p<0.05) increase in collagen 3α after 2 months (1.00±0.12 vs.0.61±0.09) and 4 

months (1.45±0.13 vs. 0.68±0.07 ratio units) (figure 6B) in of STZ-induced diabetes compared to 

age-matched control. Both type of collagens showed significant (p<0.05) differences between 

the two age- groups indicating that collagen expressions are changed over time possibly due to 

the duration of diabetes. Fibronectin (figure 6C) and elastin (Figure 6D) were significantly 

increased at 2 months (fibronectin; 1.26±0.14 vs. 0.92±0.07 ratio units), (elastin; 0.98±0.13 vs. 

0.55±0.05 ratio units) and 4 months (fibronectin; 1.59±0.11 vs. 0.92±0.07 ratio units), (elastin; 
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1.09±0.12 vs. 0.59±0.08 ratio units) after STZ-induction compared to age-matched control.  

However, only fibronectin revealed an adult vs young adult effect that was significantly (p<0.05) 

evident. Furthermore, these changes were accompanied by divergent alterations in ECM 

regulators.  

Figure 7 shows the gene expression of ECM regulators MMP2, MMP9, TIMP4, CTGF, connexin 

43, integrin 5α and vimentin. Kidney mRNA gene expression for MMP2 (Figure 7A) revealed a 

significant (p<0.05) down regulation at 2 months (0.56±0.12 vs. 1.00±0.11 ratio units) and 4 

months (0.58±0.13 vs. 1.13±0.10 ratio units) after STZ-induction compared to age-matched 

control. On the other hand, MMP9 (Figure 7B) was significantly (p<0.05) up-regulated at 2 

months (1.16±0.11 vs. 0.86±0.02 ratio units) and 4 months (1.31±0.12 vs. 0.91±0.10 ratio units) 

after STZ-induction compared to age-matched controls. Interestingly, endogenous MMP tissue 

inhibitor TIMP4 (Figure 7C) was up regulated at 2 months (1.00±0.12 vs. 0.67±0.06 ratio units) 

and 4 months (1.32±0.11 vs. 0.93±0.05 ratio units) after STZ-induction compared to age-

matched control and this difference was significantly (p<0.05)  evident between the two age 

groups. mRNA gene expression level for CTGF (Figure 7D) was significantly p<0.05)  increased at 

2 months (1.11±0.14 vs. 0.57±0.04 ratio units) and 4 months (1.23±0.15 vs. 0.79±0.08 ratio 

units) after STZ-induction compared to age-matched controls. Additionally, a significant 

(p<0.05) down-regulation in gap junction protein Cx43 (Figure 7E) was evident in the STZ-

induced diabetic rat kidney after 2 months (0.89±0.12 vs. 1.28±0.06 ratio units) and at 4 months 

(p<0.01) (0.45±0.14 vs. 1.39±0.09 ratio units) of STZ-induction compared to age-matched 

control and this difference was significantly (p<0.05) evident between the two age groups. 

Additionally, mRNA level of Integrin 5α (Figure 7F) was significantly (p<0.05) increased at 2 

months (1.08±0.13 vs. 0.49±0.06 ratio units) and 4 months (1.19±0.15 vs. 0.55±0.09 ratio units) 

after STZ-induction compared to age-matched control. Integrin 1α was also studied, but 

remained unaffected by the disease. Finally, mRNA level of vimentin (Figure 7G) was 

significantly (p<0.05) up-regulated at 2 months (1.08±0.13 vs. 0.49±0.06 ratio units) and 4 

months (1.19±0.15 vs. 0.55±0.09 ratio units) after STZ-induction compared to age-matched 

control. Taken together, gene expression profile of ECM components in the kidneys revealed 

marked changes that were accompanied by parallel alterations in ECM regulating agents 
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(MMP2 and MMP9) and tissue inhibitor (TIMP4), gap junction proteins and vimentin 

expression, .An imbalance in these expressions could lead to abnormal ECM deposition which 

remains as one of the hallmarks of DN. 

 

ECM Components 

 

 

Figure 6: Gene expression of ECM component:  Summarized data showing gene expression for 

ECM components Collagen 1 (A), Collagen 3 (B), Fibronectin (C) and Elastin (D) in STZ-treated 

and age-matched controls at 2 and 4 months post STZ-treatment. Results are representative of 

8 animals/per group conducted in triplicates. RT-PCR amplification was normalised to that of 

GAPDH. Data are expressed as mean ± SEM. Lines over bars indicate significance * p<0.05, One-

way ANOVA followed by Bonferroni corrected t-tests for multiple comparisons. 

 

 

 

 

 

 

 

 

 

Figure 7: Gene expression of ECM regulatory components: Summarized quantitative data 

showing gene expression for ECM regulators MMP2 (A), MMP9 (B), TIMP4 (C), CTGF (D), 

Connexin 43 (E), Integrin 5α  (F), and Vimentin (G) in STZ-treated and age-matched controls at 2 
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and 4 months post STZ-treatment. Results are representative of 8 animals/per group conducted 

in triplicate. RT-PCR amplification was normalised to that of GAPDH. Data are expressed as 

mean±SEM. Lines over bars with asterisk indicate significance * p<0.05, ** p<0.01, One-way 

ANOVA followed by Bonferroni corrected t-tests for multiple comparisons. 

 

 Assessment of hypertrophy in kidneys 

The hypertrophic biomarkers ANP and BNP were assessed in STZ-induced and age-matched 

controls at 2 and 4 months post STZ-treatment. Figure 8 shows the gene expression analysis for 

ANP and BNP. The results revealed that ANP was significantly p<0.05) up-regulated at 2 months 

(1.55±0.16 vs. 0.56±0.09 ratio units) and 4 months (2.50±0.14 vs. 0.67±0.06 ratio units) after 

STZ-induction compared to age-matched control. There was a significant (p<0.05) difference 

between the two age groups, indicating a diabetes-induced age-related effect. On the other 

hand, BNP was significantly (p<0.05) up-regulated at 4 months (0.89±0.12 vs. 0.55±0.09 ratio 

units) after STZ-induction compared to age-matched controls. However, no significance 

(p<0.05) was observed at 2 months (0.55±0.13 vs. 0.49±0.66 ratio units) after STZ-induction. 

 

 

 

 

Figure 8: Gene expression for ANP and BNP biomarkers: Summarized quantitative data 

showing ANP (A), and BNP (B) gene expression in STZ-treated and age-matched controls at 2 

and 4 months post STZ-treatment. Results are representative of 8 animals/per group conducted 

in triplicates. RT-PCR amplification was normalized to that of GAPDH. Data are expressed as 

mean±SEM. Lines over bars with asterisk indicate significance * p<0.05, ** p<0.01, One-way 

ANOVA followed by Bonferroni corrected t-tests for multiple comparisons.  

 

TGFβ1 in plasma and kidney after 2 and 4 months of STZ-treatment 
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Figure 9 shows plasma level as well as total, active and gene expression for TGFβ1 in the kidney. 

The results show that  TGFβ1 was significantly (p< 0.05) increased in plasma after 2 months 

(2.72±0.20 vs. 1.15±0.04 ng/ml) of STZ-induced diabetes compared to control whereas no 

significant differences were observed after 4 months (2.36±0.06 vs. 2.18±0.07 ng/ml) of STZ-

treatment (Figure 9A). Total TGFβ1 levels were significantly (p<0.05) increased in STZ-induced 

diabetic kidney at 2 months (9.53±0.12 vs. 3.44±0.20 pg/mg of total protein) and 4 months 

(11.92±0.32 vs. 4.73±0.15 pg/mg of total protein) after STZ-treatment compared to age-

matched control and this significance was apparent between the two age groups (Figure 9B). 

Similarly, active TGFβ1 levels in kidneys were significantly (p<0.01) increased after 2 months 

(60.75±0.38 vs. 28.83±0.35 pg/mg of total protein) and 4 months (59.68±0.32 vs. 36.33±0.28 

pg/mg of total protein) of STZ-induction compared to age-matched control (Figure 9C). 

However, these differences were not significantly different between the two age groups. TGFβ1 

gene expression was also significantly (p<0.05) different between the two age groups (after 2 

months; (1.25±0.13 vs. 0.55±0.05) and after 4 months; (1.79±0.15 vs. 0.88±0.08) in STZ induced 

diabetic rat LV compared to age-matched control this significance was apparent between the 

two age groups (Figure 9D). 

 

Figure 9: Plasma level, total, active and gene expression of TGFβ1: Summarized quantitative 

data from ELIZA showing ratio of active : total TGFβ1 protein in plasma (A), total TGFβ1: total 

extracted kidney protein (B) and active TGFβ1: total extracted kidney protein (C) at 2 and 4 

months of STZ-treatment with age-matched control animals (n=3/group). mRNA gene 

expression of TGFβ1 (D) at 2 and 4 months of STZ-treatment with age-matched controls. The 

results of both ELIZA and qRT-PCR are representative of 3 individual experiments conducted in 

triplicate. RT-PCR amplification was normalized to that of GAPDH. Data are expressed as mean 

± SEM. Lines over bars indicate significance * p<0.05, ** p<0.01, One-way ANOVA followed by 

Bonferroni corrected t-tests for multiple comparisons.  
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Discussion  

In this study, the morphological and molecular consequences of HG-induced diabetes have 

been characterized in the left kidney of STZ-induced type 1 diabetics male rats compared to 

age-matched controls. The left kidney is slightly larger than that of right kidney and it is 

positioned slightly upper than the right kidney due to asymmetry within the abdominal cavity 

caused by the liver. In addition, its posterior surface is associated with the spleen, pancreas, 

stomach and other organs surrounding it. Male rats are normally employed in most diabetic 

studies in order to avoid any complications of other hormonal changes that may occur in 

females, but not in male animals. The discussion will now focus on the various measured 

parameters in this study. 

Firstly, the general characteristics of rats revealed significant decreases in body weight in STZ-

induced rats compared to the respective controls. In contrast, there were marked elevations in 

blood glucose levels, kidney weights and kidney weight to body weight ratios observed in the 

STZ-induced rat at 2 and 4 months after diabetes-induction compared to control.  The increase 

in kidney size is an indication of renal hypertrophy, which is the hallmark of DN [15-16]. This 

increase in size is primarily due to glomerular and tubular hypertrophy, although some low-

grade proliferations of glomerular cells are also present in the early stage of DN [16,17]. 

Glomerular hypertrophy is in part the result of glomerular cell hypertrophy and recent studies 

have suggested that the diabetic milieu per se, hemodynamic changes and local growth factors 

such as TGFβ1 and angiotensin II (ANG II) are mediators in the pathogenesis of glomerular cell 

hypertrophy [16]. The results of this study are consistent with previously published reports on 

renal hypertrophy [18]. Previous in vitro studies have reported that high glucose, TGFβ1 and 

ANG II are mediators of DN and they are closely linked with the Akt pathway [19]. Owing to 

these findings, the activity of Akt under diabetic conditions has been heavily investigated, but 

discrepancies remain, some have demonstrated an increase in Akt phosphorylation [19].  

The results of this study revealed marked elevations in gene expression levels for ANP and BNP, 

which are sensitive biomarkers for hypertrophy. The up-regulation in ANP and BNP levels in the 

left kidney at 2 and 4 months post STZ-induction compared to age-matched controls is 
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consistent with previous studies [20]. Therefore, monitoring of ANP and BNP can play an 

important role in the management of DN.  

Ultrastructure studies of the kidney in T1DM 

Ultrastructural analysis employed in this study revealed an increase in GBM thickness in the 

kidney from 2 and 4 months of STZ-induced diabetes compared to age-matched control 

animals. Data from the literature suggest that GBM thickening is a characteristic of early change 

in T1DM [21]  and T2DM-induced DN [22] and it increases with the disease duration [23]. GBM 

thickening is a consequence of ECM accumulation, with increased deposition of normal ECM 

components together with altered expression of the regulators of EM, similar to the findings of 

this study (Figure 6). Another hallmark feature of DN is the derangement of the architecture of 

podocytes and glomerular endothelial cells which participate in initiation and progression of 

nephropathy resulting in significant effect on the function of the kidney [24]. Podocyte 

detachment (PD), (Figure 5) and structural changes in DN have previously been described in 

T1DM with similar results to the findings of this study [24-25]. 

Apoptosis in the diabetic kidney 

Increased apoptosis mediated by caspase-3 immuno-reactivity has been highlighted in this 

study. At both 2 and 4 months after TIDM induction, the rat kidney was infiltrated with 

increased apoptotic cells compared to respective age-matched control groups. Apoptosis has 

been documented in the time course of various renal diseases and more frequently in DN [26]. 

Cell death by apoptosis is believed to be involved in the process of mesangial cell loss in the late 

stage of DN [27]. In addition, apoptosis is considered to be one of the underlying causes of 

podocyte loss, which contributes to the development of albuminuria in DN [26]. STZ-induced 

diabetic rats at 2 and 4 months displayed signs of tubular, as well as, interstitial apoptosis 

compared to respective control groups and these results are in correlation with previously 

published study in STZ-diabetic rat kidney [28]. A previous study has shown that this damaging 

due to T1DM can be reversed by insulin therapy [28]. Moreover, Ang II type 1 (AT1) and type 2 

(AT2) Ang II receptor blockade can reduce apoptosis in the diabetic kidney indicating 

therapeutic relevance in the treatment of DN [29]. 
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Role of TGFβ1 in kidney remodeling 

The present study supports previous observations that TGFβ1 is upregulated in the diabetic 

kidney and that this upregulation is associated with glomerulosclerosis and tubule-interstitial 

fibrosis [30]. Numerous studies have demonstrated that TGFβ1 promotes renal cell growth, 

stimulates synthesis of key ECM proteins including, type I and type II collagen, laminin and 

fibronectin and inhibits ECM degradation by decreasing the activity of MMPs [15]. These results 

in the literature are consistent with findings from this study which showed marked elevations in 

ECM components (Col 1α, Col 3α, elastin and fibronectin) together with glomeru-sclerosis in 

the STZ-induced diabetic kidney at 2 and 4 months post STZ-induction compared to age-

matched control animals. 

TGFβ1 plays an important role in the pathophysiology of renal disease, including DN. 

Furthermore, the present study showed an overall increase in TGFβ1 activity in left kidney of 2 

and 4 months after STZ-induction compared to respective age-matched controls. Elevated 

TGFβ1 activity was correlated with parallel findings of increased TGFβ1 gene expression that is 

consistent with previous findings with correlations to fibrosis in animals [31] and in humans 

[15]. A previous study reported that TGFβ1 is over expressed in glomerular mesangial cells, 

proximal and distal tubules in the STZ-induced diabetic rat after 9 weeks of diabetes [32]. These 

authors demonstrated that supplementation with 17β-estradiol (E2) for 8 weeks following a 9-

week duration of diabetes attenuates TGFβ1 protein expression, suggesting that one of the 

mechanisms by which E2 exerts its reno-protective effects in the diabetic kidney is by regulating 

the expression of locally active cytokines, such as TGFβ1.  

The results of this study have also revealed significant increases in the gene expression of CTGF, 

another pro-sclerotic cytokine, in the kidney of T1DM rats compared to the respective controls 

CTGF has been shown to be involved in both the early and later stages of DN. CTGF expression 

is seen to be increased in experimental diabetic glomerulosclerosis [33]. Elevated CTGF levels in 

glomeruli of NOD mice appear to correlate with the duration of diabetes [34]. Elevated CTGF 

expression has also been detected in human DN [33]. Gromerular CTGF levels have been found 
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to be elevated in diabetic patients with micro-albuminuria as well as overt nephropathy [35]. 

Several in vitro studies have shown that CTGF is induced in renal cells by high glucose and AGE 

[36], as well as ROS [37], which they generate. CTGF is one of the TGFβ1 inducible immediate 

early genes and has shown to be induced by TGFβ1 [38CTGF is a crucial mediator for TGFβ1 

stimulated matrix protein expression. Additionally, CTGF has been shown to mediate TGFβ1 

induced increases in fibronectin and collagen type I [39]. Collectively, these observations are 

consistent with the findings of the present study and correlate with the fact that although all 

these factors likely interact in the pathogenesis of DN, the driving force behind the cytokine 

expression is most likely to be HG, either directly or indirectly.  

Role of metalloproteinases in T1DM 

The results of this study have shown reciprocal changes in MMP2 and MMP9. The level of 

MMP2 decreased significantly in the kidney of diabetic rats compared to controls, whereas 

MMP9 and TIMP4 increased significantly in T1DM compared to control. MMPs are major 

determinants of extracellular matrix degradation and turnover in the glomerulus. Hence, the 

changes in either MMP expression or activity can influence intra-renal ECM composition [40]. 

Renal hypertrophy is prognostic of the development of micro-albuminuria in type 1 DM [41]. 

Since abnormal extracellular matrix deposition is the hallmark of diabetic nephropathy, it is to 

be expected that either altered MMP expression or activation also contributes to diabetic 

nephropathy, and specifically to the onset of this characteristic renal hypertrophy.  

 

It has been reported that MMP9 was dramatically increased in the glomeruli of diabetic mice, 

and MMP9 deficiency attenuates diabetic nephropathy by modulation of podocyte function 

and dedifferentiation. Collectively, these results suggest MMP9 can play a role in the 

development of diabetic nephropathy [42]. Elevated MMP9 levels have strong correlations with 

age, body mass index (BMI) and HbA1c levels, as well as progression of diabetes [43]  

 Previous studies in humans have also found circulating TIMP1, TIMP4 and MMP2 to be 

decreased in patients with DN [44]. Furthermore, Del Prete et al. [45] demonstrated a dramatic 

decrease in MMP2 gene expression in glomeruli of patients with T2DM. However, another 



24 
 

study showed that MMP2 protein and related-enzyme activity were up-regulated in kidneys of 

patients with diabetes, as assessed by Western blot analysis and ELISA methods [46].  

The MMPs have long been identified as critical mediators of ECM degradation and turnover, 

but increasing evidence suggests that they, in conjunction with TIMPs, play an important role in 

the progression of diabetic nephropathy. Additionally, TIMP4 is involved in suppressing the 

activity of MMP1, MMP2, MMP3, MMP7 and MMP9 [47].  

The present results revealed marked decreases in Cx43 levels of 2 and 4 months STZ-induced 

diabetic rat kidney compared to age-matched controls and this change was more severe with 

the duration of the diabetes. Previous studies in human kidney cells in culture have highlighted 

the possibility of a protective effect of Cx43 in preventing renal damage [48]. Specifically, 

studies in human collecting duct cell lines found that as glucose concentrations increased, there 

was a time-dependent increase in levels of Cx43 that is opposite to the observations made in 

the present study [48]. The increase in Cx43 and gap junctional communication correlated with 

functional acceleration of calcium transients between cells. Furthermore, levels of Cx43 have 

also been studied in human DN as a predictive marker of disease progression and severity [49]. 

Another study reported that down-regulation of Cx43 within podocytes was closely associated 

with disease progression in established DN and correlated with the degree of future decline in 

renal function [50]. Additionally, vimentin was found to be elevated in STZ-induced diabetic rat 

kidney at 2 and 4 months of STZ-induced DM. Vimentin is a major intermediate filament (IF) 

protein of the mesenchymal cells and is physiologically important as it shows dynamically 

altered expression patterns during different developmental stages [51].  

Major functions of vimentin involve the maintenance of cellular integrity and provide resistance 

against stress [52]. A number of studies have found the role of TGFβ1 in response element 

within the activated protein complex-1 region of the vimentin promoter to be involved in 

regulation of vimentin expression  [52]. Thus, the increased gene expression of vimentin may be 

closely related to the increased TGFβ1 activity observed in this study. Furthermore, this may 

depend on the duration of the diabetes since the expression of both TGFβ1 and vimentin 

increased at 4 month compared to 2 months.  
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Conclusion  

In conclusion, the results of this study clearly demonstrated that TIDM can elicit severe 

structural changes and remodelling of the kidney as revealed by the fibrosis, similar to that 

seen in the myocardium of diabetic rats [10-11]. These associated structural and biochemical 

alterations can lead to diabetic nephropathy (DN) and this in turn can be more severe 

depending on the duration of the diabetes.  
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