Prevalence and factors associated with the use of antibiotics in non-bloody diarrhoea in children under 5 years of age in sub-Saharan Africa

Auta, Asa, Ogbonna, Brian, Adewuyi, Emmanuel, Adeloye, Davies and Strickland-Hodge, Barry

Available at http://clok.uclan.ac.uk/21946/

It is advisable to refer to the publisher's version if you intend to cite from the work. http://dx.doi.org/10.1136/archdischild-2017-314228

For more information about UCLan's research in this area go to http://www.uclan.ac.uk/researchgroups/ and search for <name of research Group>.

For information about Research generally at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law. Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors and/or other copyright owners. Terms and conditions for use of this material are defined in the http://clok.uclan.ac.uk/policies/
Prevalence and factors associated with the use of antibiotics in non-bloody diarrhoea in children under 5 years of age in Sub-Saharan Africa

Asa Auta¹, Brian O. Ogbonna², Emmanuel O. Adewuyi³, Davies Adeloye⁴,⁵, Barry Strickland-Hodge⁶

¹School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, United Kingdom

²Department of Clinical Pharmacy and Pharmacy Management, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria.

³Statistical and Genomic Epidemiology Laboratory, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.

⁴Nigerian Urban Reproductive Health Initiative, Abuja, Nigeria.

⁵Johns Hopkins Centre for Communication Programs, Baltimore, USA.

⁶School of Healthcare, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK.

*Corresponding author: Asa Auta, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK. Email: aauta@uclan.ac.uk
Prevalence and factors associated with the use of antibiotics in non-bloody diarrhoea in children under 5 years of age in Sub-Saharan Africa

Abstract

Objectives: To estimate the prevalence and determine the factors associated with the use of antibiotics in the management of non-bloody diarrhoea in children under 5 years of age in Sub-Saharan Africa (SSA).

Methods: We conducted a meta-analysis of demographic and health survey datasets from 30 countries in SSA. Pooled prevalence estimates were calculated using random effects model. Chi-square tests were employed to determine the factors associated with antibiotic use.

Results: The pooled prevalence of antibiotic use among cases of non-bloody diarrhoea in children under 5 years of age was 23.1% (95% CI 19.5 – 26.7). The use of antibiotics in children with non-bloody diarrhoea in SSA was associated with (p < 0.05) the source of care, place of residence, wealth index, maternal education and breast feeding status.

Conclusion: We found an unacceptably high use of antibiotics to treat episodes of non-bloody diarrhoea in children under the age of 5 in SSA.

What is known about this topic?

- The appropriate treatment of diarrhoea is simple, yet it remains a problem in many low and middle income countries.
- Most cases of non-bloody diarrhoea in children are self-limiting and are caused by microorganisms which are not susceptible to antibiotic therapy
- Use of antibiotics to treat non-bloody diarrhoea in children increases the risk of adverse effects and the development of resistant bacteria.

What this study adds?

- We utilised nationally representative data to estimate the prevalence of antibiotic use in episodes of non-bloody diarrhoea in children under the age of 5 in SSA.
- We found over one-in-five cases of non-bloody diarrhoea were treated with antibiotics in SSA
- We highlight the need to educate prescribers and parents in SSA on appropriate management of diarrhoea and the consequences of inappropriate use of antibiotics in children.
Introduction

Diarrhoea is one of the leading cause of morbidity and mortality in children under five years old worldwide with about 1.7 billion episodes and 578,000 deaths every year. Most of these episodes and deaths occur among children in Africa with about 440 million cases and 350,000 deaths annually.2

The appropriate treatment of diarrhoea is simple, yet it remains a problem in many low and middle income countries (LMICs). Recent reviews of diarrhoea management in children in LMICs have revealed a high degree of inappropriate practise including excessive fluid curtailment and antibiotic prescribing.3-5 The existing WHO guideline recommends the use of oral rehydration solution (or an intravenous electrolyte solution in cases of severe dehydration) as well as zinc supplementation and continued feeding for the treatment and management of diarrhoea in children.6 The guideline only recommends the use of antibiotics in cases of bloody diarrhoea, suspected cholera or associated sepsis.

The inappropriate use of antibiotics in children with diarrhoea can result in the development of antibiotic resistance. In addition, the majority of antibiotics can increase the risk of diarrhoea because of their effect on gut microflora.7 Very few studies have focussed on understanding the extent of antibiotic use in episodes of non-bloody diarrhoea in children in SSA. Rogawski et al.8 reported that 48.2% and 21.5% of cases of non-bloody diarrhoea in Haydom in Tanzania and Venda in South Africa, respectively were treated with antibiotics. Also, Opondo et al.9 found that 64.5% of cases of non-bloody diarrhoea in children were treated inappropriately with antibiotics in eight district hospitals in Kenya. However, these studies were not nationally representative and did not explore the factors associated with the use of antibiotics in children with non-bloody diarrhoea. We conducted a meta-analysis of demographic and health survey (DHS) datasets from 30 countries in SSA to determine the prevalence and factors associated with the use of antibiotics in children with non-bloody diarrhoea.

Methods

Data source

We conducted a meta-analysis of DHS data on the treatment of non-bloody diarrhoea with antibiotics in children under the age of 5 in 30 countries in sub-Saharan Africa. DHS are nationally-representative household surveys conducted by ICF Macro/MEASURE DHS on behalf of national ministries of health with financial support from many international partners including the United States Agency for International Development.10 The standard DHS uses identical methodology including the probability sampling strategy and survey instrument to collect data that are comparable across countries.
Our study only included country datasets that were collected from 2000 to 2016 and contained disaggregated data on the type of diarrhoea—bloody and non-bloody diarrhoea in children under the age of 5. The datasets of 38 countries in SSA were available from DHS programme website. Of these 38 datasets, 30 met the inclusion criteria. Details of the included countries are contained in Figure1.

Data analysis

All DHS datasets were downloaded with permission from the DHS programme website and the data were analysed using Stata version 14 and Microsoft Excel 2016.

The variables from the DHS datasets extracted and included in our analysis were prevalence of children with diarrhoea; type of diarrhoea, whether bloody or non-bloody; proportion of children treated/untreated; proportion of children who were treated for diarrhoea, type and sources of treatment. Other variables included were the socio-demographics characteristics of children and their households including age and sex of child, mother’s educational level, wealth index of households, type and geographical location of child’s residence.

We employed a random effects meta-analysis to calculate pooled prevalence estimates of the use of antibiotics in children with diarrhoea. A random effects meta-analysis was used because it allows for heterogeneity across studies. Despite the similarity of the DHS study design across countries, we expected heterogeneity due to differing population parameters including geographical distribution and socioeconomic conditions in different countries and regions of SSA. A test of heterogeneity of the DHS data obtained for the different countries showed a high level of inconsistency ($I^2 > 50\%$) thereby agreeing with our decision to use the random effects model in our analysis. Furthermore, we performed sensitivity analysis by excluding from our analysis one country data at a time and the impact of excluding the data was evaluated on the summary results. This was done to examine the effect of outliers and test the robustness of our findings.

Subgroup analyses were performed to determine whether factors such as sex, age, type of residence, wealth index, education and sources of care were associated with the use of antibiotics in children under 5 years of age in SSA. The chi-square tests for association, or where appropriate for trend were calculated and results were considered statistically significant at $p < 0.05$.

Results

The datasets from the 30 countries covered 287,624 children under 5 years of age. Overall, the pooled prevalence of all types of diarrhoea was 15.7% (95% CI 14.0 – 17.4) while the prevalence estimate for non-bloody diarrhoea was 12.8% (95% CI: 11.4 – 14.2). The majority
of the cases of non-bloody diarrhoea were attended to in government health centres (17.6%),
government hospitals (8.9%), government health posts or dispensaries (7.4%), shops (6.6%),
community pharmacies (4.0%) and private hospitals/clinics (3.8%).

The pooled prevalence of antibiotic use among cases of non-bloody diarrhoea in children
under 5 years of age was 23.1% (95% CI 19.5 – 26.7). Antibiotics were commonly used among
cases of non-bloody diarrhoea in Congo-Brazzaville 58.6% (95% CI 55.9 – 61.3) and Sierra
Leone 47.1% (95% CI 43.9 – 50.3) (Figure 1). The regional estimate was lowest in east Africa
18.7% (95% CI 13.9 – 23.6) and highest in central Africa 27.6% (95% CI 16.9 – 38.3). The
higher estimate in central Africa was due to the contribution of Congo-Brazzaville. The
sensitivity analysis conducted by excluding the Congo-Brazzaville data yielded a pooled
estimate of 21.8% in the central region, which is comparable to southern African region. The
SSA pooled estimate obtained following the sensitivity analysis (21.9%, 95% CI 18.8 – 24.9)
was comparable to our previous estimate.

Table 1 summarises data based on the sub-group analyses performed. The subgroup
analyses suggested that the use of antibiotics in children with non-bloody diarrhoea in SSA
was significantly associated with (p < 0.05) the source of care, type of residence, wealth index,
maternal education and breast feeding status. The results revealed that antibiotics were
commonly used in children who sought advice or treatment from private hospitals/clinic and
community pharmacies with pooled estimates of 41.1% (95% CI 34.1 – 47.4) and 41.8% (95% CI
34.8 – 48.9), respectively.

Discussion

The main contributions of our study lie in the use of nationally-representative data, the
comprehensiveness of the factors explored and the application of meta-analysis to provide
pooled estimates on the prevalence of antibiotic use in episodes of non-bloody diarrhoea in
children under the age of 5 in SSA. We found a high use of antibiotics to treat episodes of
non-bloody diarrhoea in children under the age of 5 in SSA: over one-in-five cases of non-
bloody diarrhoea were treated with antibiotics. Most cases of non-bloody diarrhoea in children
are self-limiting and caused by microorganisms which are not susceptible to antibiotic therapy
such as rotavirus or for which the efficacy of antibiotic therapy is somewhat uncertain such as
in campylobacter infections. Up to 13% of cases of non-bloody diarrhoea are due to *Shigella*
ssp or enteroinvasive *Escherichia coli*, which may justify antibiotics in children with severe
toxicity or systemic symptoms of sepsis. However the high rates of antibiotic prescribing seen
in many SSA countries cannot be justified by the data on the aetiology of non-bloody diarrhoea
and will only lead to antibiotic resistance and antibiotic-associated diarrhoea. Therefore, our
findings underscore the need to educate both prescribers and parents in SSA on appropriate management of diarrhoea and the consequences of inappropriate use of antibiotics in children.

This study, however, is not without limitations. Some countries in SSA were not included due to non-availability of DHS data for the study period considered. Also, the data used in this study was based on self-reported data and so liable to recall and social desirability biases which may result in under-estimation of the prevalence of antibiotics used in non-bloody diarrhoea. Despite these limitations, this study provides additional insight into the management of diarrhoea in SSA and could prompt appropriate health system response.

Acknowledgements:

The authors gratefully appreciate ICF International, USA, for providing the NDHS datasets for this study.

Funding

None

Competing interest

None declared

References

Figure 1: Meta-analysis for the prevalence of antibiotic use among cases of non-bloody diarrhoea
Table 1: Prevalence of antibiotic use in non-bloody diarrhoea by demographic category

<table>
<thead>
<tr>
<th>Category</th>
<th>Number of Children with non-bloody diarrhoea</th>
<th>Prevalence estimate % (95% CI)</th>
<th>Test for association or trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex of child</td>
<td></td>
<td></td>
<td>X² = 1.778, p = 0.182</td>
</tr>
<tr>
<td>Male</td>
<td>18268</td>
<td>23.5 (19.9 – 27.1)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>16809</td>
<td>22.9 (16.2 – 39.8)</td>
<td></td>
</tr>
<tr>
<td>Age of child</td>
<td></td>
<td></td>
<td>X² = 0.018, p = 0.893</td>
</tr>
<tr>
<td>0</td>
<td>9307</td>
<td>21.1 (17.6 – 24.5)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>11395</td>
<td>25.0 (21.2 – 28.8)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7040</td>
<td>22.9 (18.9 – 26.9)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4413</td>
<td>22.1 (18.0 – 26.2)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2922</td>
<td>22.0 (17.8 – 26.2)</td>
<td></td>
</tr>
<tr>
<td>Currently breastfeeding</td>
<td></td>
<td></td>
<td>X² = 13.485, p = 0.000</td>
</tr>
<tr>
<td>No</td>
<td>13160</td>
<td>24.1 (20.0 – 28.2)</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>21917</td>
<td>22.4 (18.9 – 26.0)</td>
<td></td>
</tr>
<tr>
<td>Type of residence</td>
<td></td>
<td></td>
<td>X² = 109.137, p = 0.000</td>
</tr>
<tr>
<td>Urban</td>
<td>10771</td>
<td>26.7 (22.5 – 31.0)</td>
<td></td>
</tr>
<tr>
<td>Rural</td>
<td>24306</td>
<td>21.6 (18.2 – 25.1)</td>
<td></td>
</tr>
<tr>
<td>Wealth Index</td>
<td></td>
<td></td>
<td>X² = 176.047, p = 0.000</td>
</tr>
<tr>
<td>Poor</td>
<td>16596</td>
<td>20.7 (16.9 – 24.5)</td>
<td></td>
</tr>
<tr>
<td>Middle</td>
<td>6789</td>
<td>22.0 (18.6 – 25.5)</td>
<td></td>
</tr>
<tr>
<td>Rich</td>
<td>11668</td>
<td>27.6 (23.6 – 31.6)</td>
<td></td>
</tr>
<tr>
<td>Mother’s highest level of education</td>
<td></td>
<td></td>
<td>X² = 184.584, p = 0.000</td>
</tr>
<tr>
<td>No education</td>
<td>14740</td>
<td>20.5 (17.2 – 23.8)</td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td>12360</td>
<td>24.0 (20.4 – 27.7)</td>
<td></td>
</tr>
<tr>
<td>Secondary</td>
<td>7352</td>
<td>27.9 (23.3 – 32.4)</td>
<td></td>
</tr>
<tr>
<td>Higher</td>
<td>611</td>
<td>33.0 (26.1 – 39.8)</td>
<td></td>
</tr>
<tr>
<td>Sources of care</td>
<td></td>
<td></td>
<td>X² = 3447.205, p = 0.000</td>
</tr>
<tr>
<td>Government hospitals</td>
<td>3131</td>
<td>38.5 (32.3 – 44.8)</td>
<td></td>
</tr>
<tr>
<td>Government health centres</td>
<td>6184</td>
<td>35.2 (29.9 – 40.4)</td>
<td></td>
</tr>
<tr>
<td>Government health posts/dispensaries</td>
<td>2603</td>
<td>30.9 (24.4 – 37.5)</td>
<td></td>
</tr>
<tr>
<td>Private hospitals/clinics</td>
<td>1347</td>
<td>41.1 (34.1 – 47.4)</td>
<td></td>
</tr>
<tr>
<td>Community pharmacies</td>
<td>1391</td>
<td>41.8 (34.8 – 48.9)</td>
<td></td>
</tr>
<tr>
<td>Category</td>
<td>N</td>
<td>Percentage (Range)</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-----</td>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>Shops</td>
<td>2321</td>
<td>33.6 (25.5 – 41.7)</td>
<td></td>
</tr>
<tr>
<td>Market</td>
<td>1236</td>
<td>21.6 (6.9 – 36.3)</td>
<td></td>
</tr>
<tr>
<td>Traditional practitioners</td>
<td>1011</td>
<td>5.0 (3.6 – 6.5)</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>1626</td>
<td>16.8 (11.8 – 21.9)</td>
<td></td>
</tr>
<tr>
<td>Did not seek treatment from any provider</td>
<td>14189</td>
<td>9.3 (7.3 - 11.2)</td>
<td></td>
</tr>
</tbody>
</table>

N=35,077 *Category with some missing data