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Abstract 

A method for the production of liquid capsules with the potential of modifying drug dose and 

release is presented. For the first time, the co-ordinated use of fused deposition modelling 

(FDM), 3D printing and liquid dispensing to fabricate individualised dosage form on demand 

in a fully automated fashion has been demonstrated. Polymethacrylate shells (Eudragit EPO 

and RL) for immediate and extended release were fabricated using FDM 3D printing and 

simultaneously filled using a computer-controlled liquid dispenser loaded with model drug 

solution (theophylline) or suspension (dipyridamole). The impact of printing modes: 

simultaneous shell printing and filling (single-phase) or sequential 3D printing of shell bottom, 

filling and shell cap (multi-phase), nozzle size, syringe volume, and shell structure has been 

reported. The use of shell thickness of 1.6 mm, and concentric architecture allowed successful 

containment of liquid core whilst maintaining the release properties of the 3D printed liquid 

capsule. The linear relationship between the theoretical and the actual volumes from the 

dispenser reflected its potential for accurate dosing (R2=0.9985). Modifying the shell thickness 

of Eudragit RL capsule allowed a controlled extended drug release without the need for 

formulation change. Owing to its low cost and versatility, this approach can be adapted to wide 

spectrum of liquid formulations such as small and large molecule solutions and obviate the 

need for compatibility with the high temperature of FDM 3D printing process. In a clinical 

setting, health care staff will be able to instantly manufacture in small volumes liquid capsules 

with individualised dose contents and release pattern in response to specific patient’s needs. 

Key words: Rapid prototyping; precision medicine; capsulation, personalised; patient-

specific; three-dimensional printing; additive manufacturing 
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1. Introduction 

Personalised dosing is an upcoming and promising approach in drug therapy that ensures 

doses are tailored to an individual patient’s needs and preferences (McDougall et al., 2016). 

This can reduce the incidence of side effects and risk of overdose as pharmacodynamic and 

pharmacokinetic factors are able to be considered along with the age and weight of the patient 

(Al-Metwali and Mulla, 2017). Over the years, individualising liquid oral dosage forms e.g. 

solutions and suspensions has been carried out by a variety of simple dosing aids e.g. 

calibrated spoons, droppers or syringes. Although these methods provided a low-cost solution, 

they were however associated with human errors during dosing (Ryu and Lee, 2012; Sobhani 

et al., 2008). 

Liquid capsules have been used to enhance the absorption of poorly soluble drugs (Cole et 

al., 2008; Deepthi and Murthy, 2015; Hussein et al., 2012). The use of hard gelatine capsules 

can offer a significant advantage over soft gel capsules for encapsulation of liquids and 

semisolids. There is a reduced incidence of drug migration (Armstrong et al., 1984)  and an 

improvement in product stability by lowering moisture and oxygen permeability, rendering it 

more suitable for sensitive active molecules (Hom et al., 1975; Lucas et al., 1987). Hard shell 

capsules also provide better taste and odour masking, and hence can improve patient’s 

compliance. The wide range of application of capsules in medical treatment are already well 

established; however, dose personalisation using liquid capsules is yet to be investigated.  

The pharmaceutical applications of 3D printers in pharmaceutical production have 

demonstrated great potential as an alternative manufacturing technique for personalising 

dosage forms at a peripheral level. 3D printing has been used in the manufacturing of 

immediate (Okwuosa et al., 2016; Pietrzak et al., 2015; Sadia et al., 2016), extended (Chai et 

al., 2017; Clark et al., 2017; Goyanes et al., 2015; Kyobula et al., 2017; Park, 2015; Skowyra 

et al., 2015), as well as enteric release (Goyanes et al., 2017; Okwuosa et al., 2017) dosage 

forms using pharmaceutical grade polymers. In FDM 3D printing, filaments are heated above 

the glass transition temperature (Tg) of the matrix polymer, passed down a nozzle by gears 

and deposited in a layer-by-layer fashion to fabricate an object without the need for post-

printing processing (Alhnan et al., 2016). 

In a previous attempt, FDM 3D printing was used in the fabrication of capsule by interrupting 

the printing of the shell and filling in the core manually before completing the shell (Markl et 

al., 2017). In another example, the capsule cap and bottom were 3D printed separately and 

then filled manually with powder (Melocchi et al., 2015). To the authors’ knowledge, there have 

been no previous reports around a fully integrated, automated 3D printing of liquid capsules. 

This could be a reflection of major challenges associated with attempts to achieve this goal. 
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Unlike manufacturing capsules by casting, the additive manufacturing of capsules imposes a 

major difficulty of sealing the spaces between the printed layers and maintaining the barrier 

function of the shell. In fact, a fully automated 3D printing of liquid capsules requires the co-

ordination of a liquid dispenser with the shell manufacturing. The design of the shells, its 

additive manufacturing and liquid filling should be carefully organised to ensure that the 

resultant shell structure are compatible with the liquid core.  

In this research, we demonstrate the first example of a fully automated additive manufacturing 

process for a liquid capsule with the capability to control the dispensed dose. A dual FDM 3D 

printer has been modified to include a syringe based liquid dispenser. This was used to 

fabricate a capsule shell through FDM 3D printing and instantaneously dispense either a 

suspension or a solution formulation of model drugs. The dosing accuracy of the liquid 

dispenser was optimised and used in the manufacturing of immediate or extended release 

liquid capsules employing two methacrylate polymers. Eudragit EPO is an amino alkyl 

methacrylate copolymer, which is soluble at pH ≤5. It has been used as a taste-masking agent 

(Taki et al., 2017) and provides a glossy and slippery easy-to-swallow finishing. Its use is well 

established for pharmaceutical purposes as a solubility enhancer (Higashi et al., 2016; Saal 

et al., 2017, 2018), stability enhancer (Ochi et al., 2016) and in the manufacturing of immediate 

release dosage forms (Qiao et al., 2010; Sadia et al., 2016; Yang et al., 2015). Its compatibility 

with hot melt extrusion has also been previously demonstrated (Ashour et al., 2016; Li et al., 

2016a; Li et al., 2016b). On the other hand, Eudragit RL is an insoluble and permeable 

polymer, which has been used for time-controlled drug release (Dave et al., 2015; Elzayat et 

al., 2017; Ozguney et al., 2007). 

2. Materials and methods 

2.1 Materials 

Theophylline (>99%, anhydrous) was purchased from Acros Organics (UK). Triethyl citrate 

(TEC), Tween 80, citric acid and dipyridamole (≥98%) were purchased from Sigma-Aldrich 

(UK). Talc was purchased from Fluka Analytical (UK). Methocel E4 was donated by Colorcon 

limited (UK). Amino alkyl methacrylate copolymers (Eudragit EPO and Eudragit RL) were 

donated by Evonik Industries (Darmstadt, Germany).  

2.2 Preparation of shell filament  

For the preparation of the capsule shell, drug-free Eudragit EPO or RL filaments were 

produced by a HAAKE MiniCTW hot melt compounder (Thermo Scientific, Karlsruhe, 

Germany). An optimised ratio of a powder mixture constituting of the polymer, plasticizer 

(TEC) and filler (talc) was gradually added to the HME and allowed to mix for 5 min at 80 
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rpm to allow homogenous distribution of the molten mass. Afterwards, the filament was 

extruded at 20 rpm. The processing parameters for the hot melt extrusion are shown in 

Table 1. 

2.3 Thermal analysis 

For differential scanning calorimetry (DSC) analysis of Eudragit EPO and RL, a differential 

scanning calorimeter (DSC) Q2000 (TA Instruments, Elstree, Hertfordshire, UK) with a heating 

rate of 10°C/min was employed. Each sample was subjected to a heat-cool-heat scan in order 

to measure and exclude the effect of moisture contents on filament plasticity. A standard scan 

was carried out from −70 to 200 °C or to 150 °C for Eudragit EPO and RL respectively. 

Analysis was carried out under a purge of nitrogen (50 mL/min). The data was analysed using 

a TA 2000 analysis software. Each sample (approximately 5 mg) was accurately weighed and 

placed in a 40 μL aluminium pan and covered with pin-holed lid (TA Instruments, Elstree, 

Hertfordshire, UK). All measurements were carried out in triplicate. 

For TGA analysis, 3D-printed capsule shells, raw materials as well as extruded filaments were 

investigated using a TGA Q5000 (TA Instruments, Hertfordshire, UK) as described in a 

previous study (Okwuosa et al., 2016).  

2.4 X-ray powder diffraction 

A powder X-ray diffractometer, D2 Phaser with Lynxeye (Bruker, Germany) was used to 

assess the physical properties of the shell filaments using parameters as reported earlier 

(Okwuosa et al., 2016).  

2.5 Scanning Electron Microscopy (SEM) 

A JOEL JCM-6000PLUS benchtop SEM microscope (Joel LTD, Tokyo, Japan) was used to 

examine the surface morphology of the printed shell-core structures. Images of the capsules 

were also taken using a Canon EOS-1D Mark IV (Canon Ltd, Japan). 

2.6 Preparation of the liquid core 

Two model liquid cores (aqueous active suspension or solution) were prepared for use in the 

syringe based liquid dispenser: 

a. Dipyridamole suspension was initially prepared by subjecting aqueous dipyridamole 

suspension (1.5 g/ 30 mL) to size reduction via application to T8.01 Ultra Turrax Homogeniser 

(IKA, Germany) at 25,000 rpm. This was carried out for 1 h at 15 min interval with 5 min cooling 

time between the intervals. Methocel E4 was added to the suspension to reach a polymer 

concentration 0.5% w/v before probe sonicating using Sonics Vira cell (USA) at 15 min interval 
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in an ice bath for additional 4 h using an amplitude of 70%. The final suspension was diluted 

with Methocel E4 (0.5% w/v in water) to achieve a drug concentration of 1.5% w/v. The size 

distribution of dipyridamole particles in the suspension was confirmed by a Mastersizer 2000 

laser diffraction particle size analyser (Malvern Instruments, UK). 

b. Theophylline solution was prepared by adding 15 g of citric acid and 1.5 g of Tween 80 to 

a 4% w/v theophylline aqueous suspension (50 mL). This was heated to 65 oC and stirred until 

a complete solution is formed. Methocel E4 was then added to achieve a cellulosic solution 

concentration of 0.25% w/v before cooling in an ice bath. 

 

2.7 Modification of dual FDM 3D printer 

In order to devise a fully automated manufacturing of the liquid capsule, a Makerbot Replicator 

Experimental 2X dual FDM 3D printer (MakerBot Industries, New York, USA) was modified. 

The printer has two FDM nozzle heads. The right extruder/head of the dual 3D printer was 

replaced by a syringe-based liquid dispenser as shown in Supplementary Data, Fig 1S. The 

design for the dispenser was obtained from an open source design (Thingiverse, 2017) and 

the different parts were produced by 3D printing using an M2 Makergear FDM 3D printer  and 

ABS filaments (MakerGear LLC, Ohio, USA). The dispenser head was assembled and 

equipped with either a 2 or 10 mL syringe. A Nema17 1.5A 4-lead stepper motor (MakerBot 

Industries, New York, USA) was connected to the motherboard using the default housing 

connectors.  

2.8 Liquid Capsule design and printing 

The shells of the capsules were designed as a 1.6 mm thick capsule shell with a capsule-

shaped cavity and different dimensions (Table 2). Regardless of the digital design of the core, 

the core will be dispensed as a liquid and will fill the cavity of the capsule shell. A simple 

geometry (cube) was chosen as the digital design for the core to simplify the calculations of 

core’s volume and to confine the movement of the liquid dispenser head within the cavity 

space. This proved to be a more suitable approach than using capsule-shaped digital design 

for the core. The contents of the core were manipulated by modifying the dimensions of the 

digital design of the core as specified in section 2.9 and 2.10. 

For the fabrication of liquid capsule, two different printing modes were employed (Fig. 2): 

a. Single-phase printing: Within the Makerbot Desktop software version 3.10.0.1364 

(MakerBot Industries, New York, USA), the core was placed in the centre of the cavity of its 
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corresponding shell and was printed by the interchanging printing of the shell filament and 

core liquid. 

b. Multi-phase printing: A simplified 3D software version 3.1.1 (Simplify 3D LLC, Ohio, USA) 

was used in this printing mode. The shell was designed to comprise a complementary bottom 

and a cap. This liquid capsule printing was carried out in 3 phases: i) printing of the shell 

bottom, ii) filling of liquid core, and iii) sealing of the shell in a separate 3D printing stage. 

The liquid capsules for both modes were printed with cube dimensions corresponding to 80, 

160, 240 or 320 µL (Table 2). The settings of the software were modified, and the shells were 

printed using the 3D printing parameters as shown in Table 1. The resolution was set at 

medium (200 μm layer thickness), the infill was 100 % and the internal and external infill 

pattern were set at grid and concentric respectively. The rest of the settings were left as 

default. As priming was not necessary for liquids, the script of the software was also modified 

to omit the priming step of the liquid dispenser.  

2.9 Validation of the liquid dispenser using different nozzle sizes  

The impact of different nozzle sizes on liquid volumes from the liquid dispenser was 

investigated using digital design of core with cubes of edge dimensions: 2.15, 2.71, 3.42, 4.31, 

4.93, 5.43, 5.85, and 6.21 mm as the printed object. These dimensions corresponded to 

theoretical volumes of 10, 20, 40, 80, 120, 160, 200 and 240 µL. A 10 mL syringe was then 

used for drug dispensing using 0.25, 0.41 or 0.84 mm nozzle sizes. The dispensed liquid was 

collected, weighed and the volume determined based on the density of the liquid at the 

operating temperature. The relationship between the theoretical volumes and the actual 

dispensed liquid volumes were determined. The effect of different 3D printing modes (single-

phase or multi-phase) on the accuracy of the dispensed volume was also investigated.  

2.10 Optimising the dosing accuracy of the liquid dispenser using different syringe 

sizes  

The dosing accuracy of the liquid dispenser was investigated using dispensed liquids 

corresponding to digital design of the core (cube volume of 80, 160, 240 or 320 µL). The nozzle 

size was 0.41 mm and the effect of syringe sizes (2 or 10 mL) (Nipro Luer Lock) was 

investigated (n=4). The dispensed liquid was collected into a tared 5 mL polystyrene diamond-

shaped weighing-boat (Fisher scientific, UK) and weighed. The estimated dispensed volumes 

were calculated based on the density of the dispensed volume. The estimated doses were 

calculated based on the concentration of the suspension and the estimated dispensed volume. 

The actual dispensed dose was determined using HPLC methods shown in section 2.11. The 
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dosing efficiency was used to compared the estimated doses versus actual doses and was 

calculated using Equation 1. 

 

Efficiency (%) = (estimated dose/actual dose) x 100    Equation 1 

 

The relationship between the estimated and actual and doses was determined using both 

printing modes. Due to higher accuracy of 2 mL syringe and the superior quality products 

produced via multi-phase mode, they were considered as a default and used for the 3D 

printing of all capsules reported for dissolution tests. 

2.11 Determination of drug contents 

Liquid capsules and their contents were placed in a 500 mL 1:1 acetonitrile and water in a 

volumetric flask and then sonicated for 2 h. The solution was filtered through 0.22 μm Millex-

GP syringe filters (Merck Millipore, USA) and prepared for HPLC analysis. Dipyridamole and 

theophylline contents in relevant samples were assessed using an Agilent UV-HPLC 1260 

series (Agilent Technologies Inc., Germany) equipped with XTerra RP 18 column 

(150 × 4.6 mm, 5 μm particle size) (Waters, Ireland) as previously reported (Okwuosa et al., 

2016). 

2.12 In vitro Dissolution Test 

In vitro drug release studies for all liquid capsules used in this study were carried out in 

triplicate in 900 mL of 0.1N HCl at 37 ± 0.5 °C in USP II apparatus (AT7, Sotax, city, 

Switzerland) with a paddle speed of 50 rpm. The capsules were placed in sinkers to ensure 

immersion in dissolution medium. 

a. For the Eudragit E-dipyridamole liquid capsule release studies, four mL aliquots of release 

medium were manually collected using 5 mL Leur-Lock syringes at 0, 5, 10, 15, 20, 25, 30, 

40 and 60 min time intervals and filtered through a Millex-HA 0.45-μm filter. Each aliquot 

withdrawn was replaced with 4 mL of 0.1 M HCl. Analysis of dipyridamole content of 

samples was undertaken using HPLC methods reported in section 2.11. 

b. Eudragit E-theophylline liquid capsule release studies were conducted using an in-line 

UV/VIS spectrophotometer (PG Instruments Limited, UK). The amount of released 

theophylline was determined at 5 min intervals at a wavelength of 272 nm and path length of 

1 mm. Data was analysed using IDISis software (Automated Lab, 2012).  

c. For Eudragit RL-Theophylline extended release liquid capsules, the test was carried out 

using 750 mL of a stimulated gastric fluid (0.1 M HCl, pH 1.2) for 2 h followed by 12 h exposure 

to pH 6.8 phosphate buffer. 
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2.13 Statistical Analysis 

One-way ANOVA was employed using SPSS Software (22.0.0.2) to analyse the results. 

Differences in results above probability level (p > 0.05) was considered not significant whilst 

differences (p < 0.05) were considered significant. 
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3. Results and Discussion  

The co-ordination of a FDM 3D printer with a liquid dispenser enabled the manufacturing of 

liquid capsules in a fully automated process (Figure 1). The proposed configuration allowed 

the synchronisation of two processes: i) capsule shell fabrication, and ii) capsule filling whilst 

maintaining control over both through 3D printing software. To orchestrate these processes, 

two modes of capsule shell printing and filling have been adapted. The single-phase 3D 

printing, which involves the simultaneous construction of the shell and dispensing of the liquid 

core into its cavity (Figure 2A, Supplementary Data Video S1). However, this mode 

implicates a constant switching between the two printing heads after building each layer, 

leading to frequent disruptions of the shell 3D printing process. It is possible that core liquids 

can interfere with the layer-by-layer deposition of filaments during shell manufacturing by the 

deposition of liquid on the growing layers, hence preventing the casted layers from fusing and 

in effect compromising the barrier function of the shell walls. This was avoided when a multi-

phase printing mode was adopted. In multi-phase printing, the printing of 75% of the bottom 

side of the shell is first completed, followed by the core liquid filling before sealing the shell in 

another separate 3D printing stage (Figure 2B, Supplementary Data Video S2). 

The design and the printing patterns of the shell were essential to successfully print liquid 

capsules. The capsule shell was hollow in the middle with a 1.6 mm thick wall to be able to 

accommodate the liquid core (Figure 2). When thinner wall thicknesses were initially 

assessed, it led to leakage of the liquid core during or following the printing process and were 

deemed insufficient to control liquid contents within the shell (unpublished data).  

The thermogravimetric analysis of the shell demonstrated that the filaments were not 

subjected to a significant weight loss at the 3D printing temperatures (Fig. 3 A1 and A2). The 

DSC analysis of the filaments indicated that the addition of TEC to the methacrylate polymeric 

matrix in filament manufacturing effectively plasticised the polymers and lowered their Tg from 

43.7 to 18.9 oC and from 74.7 to 47.9 oC for Eudragit EPO and RL respectively (Fig. 3 B1 and 

B2). The resultant filaments were thus compatible with FDM 3D printer head. The addition of 

the structure former, talc, was essential to permit the 3D printing by regulating the filament 

diameter, retaining the filament integrity following going through nozzles and allowing rapid 

solidification after extrusion from the nozzle (Okwuosa et al., 2016). With these adaptations, it 

was possible to carry out FDM 3D printing at 135 and 170 oC for Eudragit EPO and RL 

respectively.  

The XRD patterns for the filaments and 3D printed capsule shell based on both Eudragit EPO 

and RL demonstrated the presence of peaks at (2ᶿ) = 9.5, 19.0, 28.6, 36.5 and 48.9o (Fig.4). 

These peaks could be attributed to the talc used in the formulation, and confirmed that talc 
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remained in a crystalline form. Previous research also indicated that in filled polymeric 

systems, the addition of a non-melting component to methacrylic polymer enhanced the 

viscoelastic behaviour of the melt in a monotonic fashion and decreased the critical strain 

amplitude for strain thinning (Sadia et al., 2016). 

In conventional capsule filling, most gelatine capsules are designed at thicknesses of usually 

≤ 0.240 mm, which could differ depending on the size and the manufacturer of the capsules 

(Capsugel, 2012; Limited, 2014). The body and the cap of gelatine capsules are manufactured 

separately, typically by casting before being filled and sealed. In this research, the shell and 

the core of a 3D printed liquid capsule were created simultaneously by stacking polymeric 

layers and filling the printed cavity with liquid. Therefore, the barrier function of the 3D printed 

capsule shell was maintained by increasing shell thickness to 1.6 mm and applying a 100% 

infill pattern. Moreover, the pattern of shell printing also seemed to influence the integrity of 

the shell. While rectilinear pattern resulted in gaps of approximately 100 µm (Figs. 5A1 and 

5A2), concentric capsule filling provided tighter alignment of the fused filament and resulted 

in more stable shell (Figs. 5B1 and 5B2).  

The printing mode appeared to influence the architecture and the finishing of the capsule. In 

multi-phase printing mode, the wall of the shell appeared tighter in comparison to single-phase 

printing (Figs. 6A1 and 6B1). In single-phase mode, following the deposition of each layer, 

the FDM 3D printer’s nozzle moves away from the shell to allow the liquid dispenser to fill the 

capsule. To add the next layer, the nozzle head returns to the same x-y spot at a higher level 

(200 m, thickness of the one layer). However, the lag in the stoppage and commencement 

of material flow from the printer’s nozzle during heads movement and alternation results in the 

formation of a gap at each layer starting point (Fig. 6A2). By employing multi-phase 3D 

printing, it was possible to minimize imperfection (Fig. 6B2) as the 3D printing of the shell is 

only interrupted once. It is expected that the precision of the printing will improve with the 

development of highly precise 3D printers (Gross et al., 2014).   

These different modes of 3D printing appear to also affect the volume of dispensed liquid (p< 

0.05) (Fig. 7A and 7B). The lower dispensed volume from the single-phase mode compared 

to multi-phase printing could be attributed to the continuous stoppage and retraction of the 

liquid dispenser at each layer of printing (as a part of switching between FDM printing nozzle 

and liquid dispenser). This creates a gap between dispensed volumes leading to a lower 

overall volume. Therefore, the multi-phase mode was employed as a default printing method.  

As accurate dose dispensing is of paramount importance for personalised dosing, it was 

necessary to confirm the accuracy and reproducibility of the dispenser. Initial investigation on 

the accuracy of the dispensed volume was demonstrated using the dipyridamole suspension 
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(density= 1.008 g/mL). A linear relationship was established between the theoretical volumes 

and the actual dispensed volumes from the liquid dispenser across the different sizes of nozzle 

used with R2 values >0.9992 (Supplementary Data, Figs. S2 and S3). While a smaller 

aperture nozzle (0.35 mm) provided a better accuracy, it it frequently blocked, and a nozzle 

diameter of 0.41 mm was used as a default.  

The impact of different syringe sizes on the dispensed volumes and dosing accuracy of the 

liquid dispenser was also investigated (Figs. 7A and 7B). Reducing the size of the syringe 

used on the liquid dispenser influences both the volume of dispensed liquid and its accuracy. 

The 2 mL syringe produced a narrower deviation and was used as a default syringe for further 

studies. This could be directly related to the mechanism of liquid discharge from the syringe 

dispenser. During liquid dispensing, although the distance travelled by the piston of the liquid 

dispenser motor remained identical for both 2 and 10 mL syringes, however the dispensed 

volume is significantly reduced by a syringe of smaller diameter. The control of liquid 

dispensing could also be achieved through the use of pneumatic liquid dispensers (Xie et al., 

2010).  

Different liquid volumes (80, 160, 240 or 320 µL) of dipyridamole suspension (median particles 

size 5.08±0.68 µm) were dispensed and analysed for dosing accuracy by HPLC. It was 

possible to dictate the dispensed volume and hence corresponding doses by the software 

modification of the digital core’s volume (Fig 8A, Table 2). The linearity between the estimated 

and the actual dose (R2 =0.9985) (Fig. 8B) demonstrated the promising potential of this 

dispenser for on demand drug dosing. The accuracy of dosing was affected by surface tension 

related phenomena such as foam forming and droplet hanging. These were noted in both 

printing modes and are potentially could be mitigated in commercial manufacturing via 

adjustments to the programme for the dispenser motor. 

In order to determine the release profile of the 3D printed liquid capsule, a USP II dissolution 

apparatus was used. Initially, an optimised suspension of dipyridamole was dispensed in a 

Eudragit EPO shell at different doses. An immediate drug release profile was obtained as >85 

% of the active was released before 30 min (Fig. 9A), and complied with USP criteria for oral 

dipyridamole products. (Convention, 2007) This might be attributed to rapid ionization of 

cationic chains of the methacrylate polymer in gastric medium (Sadia et al., 2016) as well as 

high solubility of dipyridamole in this medium (Alhnan et al., 2010; Paprskarova et al., 2016).  

In order to prove the suitability of this capsule system to drug solution, the model core of drug 

suspension was substituted by a theophylline solution. The shell system was also effective in 

containing the liquid drug payload without compromising the integrity of the shell, with the 

absence of leakage during or after printing. In vitro, the capsules demonstrated their ability to 
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dissolve quickly leading to a complete release of theophylline before 30 min (Fig. 9B). This 

also demonstrated the versatility of the presented approach in the delivery of potentially a wide 

range of actives in different forms, and potentially hold the promise to be used where thermal 

processing must be avoided to minimize aggregation and potency loss. 

The capacity of this shell system to extend drug release has also been subject to preliminary 

investigation, employing a water insoluble permeable polymer, Eudragit RL in the filament 

used to fabricate the shell (Fig. 9C). This is essentially a reservoir-based controlled release 

system where amongst other factors, formulation of reservoir vehicle, drug loading, drug 

solubility, drug diffusivity through shell, plasticiser or pore formers in shell can all impact drug 

release rate  (Ahmed and Naini, 2010). 

By altering the shell thickness (1.6, 2 or 2.4 mm), it was possible to control drug release simply 

through a digital order, without the need to change the formulation composition. It is likely that 

soluble drug permeates through the insoluble acrylate layer through diffusion mechanism 

(Evonik, 2010). As the shell thickness increases, the travelled distance of drug will increase 

too thereby further prolonging drug release. It is worth noting here that the thickness of coating 

far exceeds typical Eudragit coating systems for pellets (Akhgari and Tavakol, 2016), this 

might be attributed to the porous nature of 3D printed shell due to voids between fused layers 

as well as the pores within the filament structure (Tsuda et al., 2015). It is worth noting that 

conventional coating system can provide a tighter control in comparison to the proposed 3D 

printed system (Emami and Kazemali, 2016; Siddique et al., 2010). However, this is the first 

report to achieve such control of drug release from a 3D printed capsule. With on-going 

advances in additive manufacturing in general, we expect that many of such limitations will be 

overcome in the future attempts. 

In summary, we have reported a dynamic capsule-dispensing platform based on the 

orchestration of FDM 3D printing and liquid dispensing. Such platform is of high value when 

providing a small volume of liquid drug payload in a capsule is desirable. It could be potentially 

developed to include thermolabile substrate in the core, where hot melt extrusion (Patil et al., 

2016) and FDM 3D printing (Okwuosa et al., 2016) are usually avoided. Other complex release 

profiles could also be feasible since the interior of the capsule shell could be 

compartmentalised with different wall thicknesses, which could be potentially filled with 

different actives for multiple active administration.   

4. Conclusions   

This is the first report of a fully automated process for the 3D printing of a liquid capsule. Both 

immediate and extended drug release profiles based on polymethacrylate polymer shells were 

achieved. Although the capsule shell was constructed in layer-by-layer fashion, it was possible 
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to construct a structure that maintains capsule shell integrity and instantly contains the loaded 

liquid dose without any curing step. The system also proved suitable for two APIs 

(dipyridamole and theophylline) and for suspensions or solutions as core materials. Above all, 

this technique demonstrated the ability to control dose as well as drug release by manipulating 

the dispensed volume and shell thickness simply via software. In a clinical setting, this will 

empower healthcare staff with capability to provide specific dosing and drug release in 

individualized liquid capsules without the need to change formulation.   
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Figure 1 Schematic illustration of the fabrication of 3D-printed liquid capsule. A dual head 3D 

printer was modified by replacing the right-hand nozzle with a syringe dispenser. The FDM 

nozzle head were loaded with HME processed API-free filament of immediate or extended 

release properties whilst drug solution or suspension were dispensed using syringe of variable 

sizes and nozzle diameters. 
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Figure 2 The co-ordination of FDM nozzle and liquid syringe dispenser is achieved in two 

different printing modes: i) Single-phase printing: (A1) the core is located in the centre of the 

cavity of the shell, (A2) Shell printing and capsule filling is achieved by alternation at each 

layer. (A3) Image of completed shell-core designs with dipyridamole core and Eudragit EPO 

shell. ii) Multi-phase printing: (B1) the core is located in a median level between the bottom 

shell (75%) and the top shell (25%). (B2) the shell is printed first followed by complete filling 

of the shell bottom, the printing is completed by printing the shell top. (B3) Image of completed 

shell-core designs (shell top was separated from bottom for demonstration). (See 

Supplementary Data Videos S1 and S2) 
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Figure 3 (A1 and A2) TGA analysis and (B1 and B2) DSC thermographs of  polymer, polymer 

: TEC physical mixture, polymer : TEC : talc physical mixture, filament and 3D printed shell for 

Eudragit EPO and RL respectively. 
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Figure 4 XRD patterns of polymer, talc and polymer: TEC: talc physical mixture, filament and 

3D printed shell for Eudragit E. 
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Figure 5 Impact of 3D printing pattern on the structure and integrity of the shell: SEM images 

of (A1 and B1) external surface and (A2 and B2) internal surface of the Eudragit E based shell, 

in rectilinear or concentric infill respectively. 
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Figure 6 The impact of printing pattern on the structure of the shell: SEM image of external 

surface of the corner and side of Eudragit E based capsule shell produced via (A1 and A2) 

single-phase or (B1 and B2) multi-phase 3D printing. 
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Figure 7 Impact of single-phase and multi-phase 3D printing modes on dispensed volume of 

dipyridamole suspension (1.5% w/v) from the liquid dispenser using (A) 2 mL or (B) 10 mL 

syringe. 
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Figure 8 Dose accuracy using syringe liquid dispenser of dipyridamole suspension (1.5% w/v): 

(A) relation of theoretical volume of the core in the software and dispensed dose using single- 

or multi-phase 3D printing modes, (B) correlation between theoretical and actual volume. 
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Figure 9 A) In vitro release pattern of dipyridamole suspension from 3D printed liquid 

Eudragit EPO capsule using USP II with different core volumes in gastric media (pH 1.2). B) 

In vitro release of theophylline from 3D printed liquid capsule filled with theophylline solution 

based on (B) Eudragit E or (C) Eudragit RL. All capsules were printed using multi-phase 

mode 3D printing and 2 mL syringe liquid dispenser. 
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Table 1 The formulation and processing parameters for HME and FDM 3D printing of shell filament formulations  

 Polymer (%) TEC (%) Talc (%) Processing 
temperature 
(°C) 

Extrusion 
temperature  
(°C) 

Nozzle size 
(mm) 

3D printing 
temperature 
(°C)  

Platform 
temperature 
(°C) 

Eudragit EPO 45 5 50 100 90 1.7 135 40 

Eudragit RL 45 5 50 130 120 1.7 170 20 
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Table 2  A summary of the volume, dimensions and respective volumes, estimated volume, estimated dose and actual dose for different cores in the 3D 

printed liquid capsules (n=4, ±SD).  

 

*The estimated dispensed volume was calculated based on the density of the dispensed dipyridamole suspension. **The estimated dose was calculated 

based on the concentration of the suspension and the estimated dispensed volume. †Actual dose was measured using HPLC, and ‡dosing efficiency was 

calculated as efficiency (%) = (estimated dose/ actual dose) x 100. 

Sample Theoretical 
Volume (µL) 

Core's Dimensions 
(mm) 

Shell's Dimensions 
(mm) 

Core weight 
(mg) 

Estimated 
dispensed 
volume* (µL) 

Estimated 
Dose** (mg) 

Actual dose † 
(mg) 

Dosing 

efficiency ‡ 
(%) x y z x y z 

Core 1 80 4.32 4.32 4.32 23 10.35 6.74 82.3 ± 6.95 82.7 ± 7.0 1.4 ± 0.1 1.51 ± 0.2 91.1 ± 7.5 

Core 2 160 5.43 5.43 5.43 23 10.35 6.74 185.8 ± 23.75 186.8 ± 23.9 3.1 ± 0.4 3.11 ± 0.2 99.4 ± 13.7 

Core 3 240 6.22 6.22 6.22 23 10.35 7.74 284.6 ± 1.48 286.1 ± 1.5 4.7 ± 0.02 4.99 ± 0.5 95.6 ± 9.8 

Core 4 320 6.84 6.84 6.84 23 10.35 9.74 385.7 ± 30.57 387.8 ± 30.7 6.4 ± 0.5 6.60 ± 0.9 99.0 ± 11.5 
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Figure S1 Modification of dual FDM 3D printer to accommodate a liquid dispenser (right) in 

combination with FDM 3D printer head (left). 
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Figure S2 Linear relationship theoretical volume of the software and dispensed volume using single-

phase printing mode and different nozzle aperture sizes (blue, orange and grey graphs for 0.25, 0.41 

or 0.84 mm nozzles respectively). 
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Figure S3 Linear relationship theoretical volume of the software and dispensed volume using multi-

phase printing mode and different nozzle aperture sizes (blue, orange and grey graphs for 0.25, 0.41 

or 0.84 mm nozzles respectively). 
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