Article

Analysis of the complete mitochondrial genomes of two forensically important blowfly species: Lucilia caesar and Lucilia illustris

Schoofs, Kathleen, Ahmadzai, Urszula Krzeminska and Goodwin, William H

Available at http://clok.uclan.ac.uk/22132/

It is advisable to refer to the publisher’s version if you intend to cite from the work.
http://dx.doi.org/10.1080/23802359.2018.1457991

For more information about UCLan’s research in this area go to
http://www.uclan.ac.uk/researchgroups/ and search for <name of research Group>.

For information about Research generally at UCLan please go to
http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law. Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors and/or other copyright owners. Terms and conditions for use of this material are defined in the http://clok.uclan.ac.uk/policies/
Analysis of the complete mitochondrial genomes of two forensically important blowfly species: *Lucilia caesar* and *Lucilia illustris*

Kathleen R. Schoofs, Urszula Krzeminska Ahmadzai & William Goodwin

To cite this article: Kathleen R. Schoofs, Urszula Krzeminska Ahmadzai & William Goodwin (2018) Analysis of the complete mitochondrial genomes of two forensically important blowfly species: *Lucilia caesar* and *Lucilia illustris*, Mitochondrial DNA Part B, 3:2, 1114-1116, DOI: 10.1080/23802359.2018.1457991

To link to this article: https://doi.org/10.1080/23802359.2018.1457991

© 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

Published online: 09 Oct 2018.

Submit your article to this journal

Article views: 24

View Crossmark data
Species from the family Calliphoridae are typically the first to colonize a corpse (Rodriguez and Bass 1983) and their development can be used to determine the time since oviposition (Amendt et al. 2007), and hence an estimation of the PMImin, which can aid legal investigations (Easton and Smith 1970; Erzinclioglu 1983; Kulshrestha and Chandra 1987). The two closely related greenbottles Lucilia caesar and Lucilia illustris are both members of the family Calliphoridae and are commonly found in the UK. These species are very similar and morphological identification is a challenging task even for experienced entomologists (Stevens and Wall 1996; Wallman and Donnellan 2001).

mtDNA-based identification has been explored in previous studies, most frequently looking at COI, to distinguish species, including L. caesar and L. illustris (Malgorn and Coquoz 1999; Wells and Sperling 2000; Wallman 2001; Harvey et al. 2003; Sonet et al. 2012). The COI gene, the 16s ribosomal gene and the cyt b gene also showed insufficient interspecific variation between L. caesar and L. illustris (Sonet et al. 2012). The samples were all collected from a site in Burnley UK (53.7661140 N, –2.2366190 W), which is at an altitude of 268 m. DNA was extracted using the DNeasy® Blood and Tissue Kit (Qiagen, Hilden, Germany). The genomes of five specimens were amplified with 21 custom-made primer pairs and Sanger sequenced (KM657109.1, KM657110.1, KM657111.1, KM657112.1, KM657113.1). DNA extracts are stored at the University of Central Lancashire, UK.

Genes were identified using ORF Finder (Wheeler et al. 2002), tRNAscan-SE (v 1.21) (Lowe and Eddy 1996), and alignment with other complete Lucilia mitochondrial genomes (L. sericata AJ422212, L. porphyrina JX913758, L. cuprina JX913744) (Stevens et al. 2008; Nelson et al. 2012). Newly sequenced mitochondrial genomes of both species consisted of 13 protein-coding genes, 22 tRNA genes and two rRNA genes: 23 are located on the heavy strand (tRNA^Leu^AUA, tRNA^Met, ND2, tRNA^Trp, COI, tRNA^Leu^UUA, COII, tRNA^Lys, tRNA^Asp, ATP8, ATP6, COIII, tRNA^Glu^, ND3, tRNA^Ala, tRNA^Arg, tRNA^Asn, tRNA^Ser^AGC, tRNA^Glu, tRNA^Thr^, tRNA^Ser^UCN). The other 14 genes are located on the light strand. This genome organization is consistent with other Lucilia species AJ422212, JX913758, and JX913744 (Stevens et al. 2008; Nelson et al. 2012).

Start and stop codons were also similar to other Diptera Elodia flavipalpis (Zhao et al. 2013) and Chrysomya chloropyga (Junqueira et al. 2004): the most used start codon was ATG (6), but ATT (4) and ATA (2) were also present; the COI start codon is TCG (serine), which is not a typical start codon, but has been observed in other Diptera (including L. cuprina and L. sericata) – the ATTAA sequence adjacent to the start codon is involved in translation initiation (Junqueira et al. 2004). Incomplete termination codons (T) were observed for COII, ND4, and ND5; it is thought that the termination codon is completed by polyadenylation (Lessinger et al. 2000).

Two extra copies of tRNA^Leu^ and tRNA^Ser^ were found, which is typical for most Diptera. Some Diptera contain more duplicate copies of tRNAs, but this was not the case for L. caesar and L. illustris (Lessinger et al. 2000; Harvey et al. 2003; Junqueira et al. 2004; Duarte et al. 2008). Anti-codons of the tRNAs were identified and showed to be consistent with other Diptera (L. sericata AJ422212, L. porphyrina JX913758, L. cuprina JX913744). Based on tRNAscan-SE results and RNAfold (Lorenz et al. 2011), all identified tRNAs successfully folded.
into typical cloverleaf structures, except for tRNASer(AGC), which missed the D stem. However, this has been observed in other species as well, including Diptera (Junqueira et al. 2004).

The length of the ribosomal RNAs, 1327 bp for the 16S subunit and 787 bp for the 12S subunit was the same as other Lucilia species (L. sericata AJ422212, L. porphyrina JX913758, and L. cuprina JX913744). The control regions of L. caesar and L. illustris were 1122 bp and 1121 bp, respectively; this is shorter than L. sericata (1125 bp) and L. cuprina (1136), but larger than L. porphyrina (1047 bp).

Besides finding possible new genetic markers, the complete mitochondrial genomes provide insight into the evolution of Calliphoridae. To infer phylogenetic relationships among Calliphoridae, we performed Bayesian phylogenetic analysis based on complete mitochondrial genome sequences (Figure 1). PartitionFinder (Lanfear et al. 2012) was run prior to phylogenetic analysis to find the most supported data partitioning and associated substitution models based on the Bayesian Information Criterion (BIC). Fourteen partitions were identified for the alignment of the complete mitochondrial genomes of analysed Calliphoridae. All tested Lucilia species formed a monophyletic group. Phylogenetic analysis confirmed L. illustris and L. caesar as sister species. There were two distinct clades among tested Calliphoridae species, one included Lucilia spp., Calliphora spp., Hemipyrellia sp., Aldrichina sp. while the other clade included Chrysomya spp., Protophormia sp., and Phormia sp. A polytomy was present in the final tree, represented by Cochliomyia sp.

Most studies for genetic identification of L. caesar and L. illustris have been based on the COI gene. Other mitochondrial genes that have been used are the COII gene, the 16S ribosomal gene and the cytb gene, but these show insufficient interspecific variation between these two Calliphoridae indicating that additional genetic markers need to be developed (Sonet et al. 2012). In this study, the ND6 and ND5 genes contained the most species specific SNPs (1.71% and 1.68%, respectively), followed by the COI gene (1.56%). Although these results are based on only few mitochondrial genomes, the results are consistent with the study of Nelson et al. (2012), where the ND6 gene showed the highest interspecific genetic variation within Calliphoridae (and...
Chrysomyinae), when compared to other mitochondrial genes. Further work, including population studies, is needed to evaluate the value of ND6 and NR5 as markers for differentiating between *L. caesar* and *L. illustris* in forensic casework.

Disclosure statement

The authors report no conflict of interest and are responsible for the content and writing of this article. The University of Central Lancashire’s Ethics Committee approved all experimental procedures.

References

