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Abstract: When adopting an image-based biometric system, an important factor for consideration is its potential recognition 
capacity, since it not only defines the potential number of individuals likely to be identifiable, but also serves as a useful figure 
of merit for performance. Based on block transform coding commonly used for image compression, this paper presents a 
method to enable coarse estimation of potential recognition capacity for texture-based biometrics. Essentially, each image block 
is treated as a constituent biometric component, and image texture contained in each block is binary coded to represent the 
corresponding texture class. The statistical variability among the binary values assigned to corresponding blocks is then 
exploited for estimation of potential recognition capacity. In particular, methodologies are proposed to determine appropriate 
image partition based on separation between texture classes and informativeness of an image block based on statistical 
randomness. By applying the proposed method to a commercial fingerprint system and a bespoke hand vein system, the 
potential recognition capacity is estimated to around 1036 for a fingerprint area of 25 mm2 which is in good agreement with the 
estimates reported, and around 1015 for a hand vein area of 2268 mm2 which has not been reported before. 
 

1. Introduction 

With an increasing demand of biometric systems for 

automatic and secure personal identification as well as an 

increasing number of biometric modalities available [1], an 

important factor for consideration when adopting a particular 

biometric system is its potential recognition capacity, defined 

as the potential number of individuals that is likely to be 

identifiable. For personal identification based on practical 

biometric images, potential recognition capacity depends not 

only on distinctiveness related to modality, but also on other 

factors, such as image coverage and quality related to imaging 

system and acquisition control [2], as well as feature 

extraction, strength and matching related to image processing 

methodologies. Hence, if potential recognition capacity can 

be estimated, it can also serve as a useful figure of merit for 

performance comparison. 

In stark contrast to the vast literature available on a 

plethora of approaches to personal identification using 

different behavioural and biological characteristics [3], only 

a limited number of papers exists on estimation of biometric 

recognition capacity, with most of the work conducted from 

an information theoretic view point. The methodologies 

reported in the early papers tend to be specific to a particular 

type of biometric modality from the perspective of 

distinctiveness, namely, the probability of random 

correspondence (PRC) between two sets of biometric features 

extracted from two arbitrary individuals in a population to 

yield a false match. The earliest paper can be traced back to 

1892 on fingerprint distinctiveness, with the first statistical 

model produced based on subjective statistical analysis of 

pattern frequencies and minutiae occurrences [4]. Since then, 

various statistical models with increasing complexity have 

been reported [5-7], and these models can be categorised into 

(a) block based approaches by dividing the fingerprint into 

square regions and capturing the statistical variability of local 

patterns within each region [4, 8, 9]; (b) event based 

approaches by deriving a fixed probability for the occurrence 

of each minutiae type [10, 11]; (c) relative measurement 

based on the positions and orientations of minutiae with 

respect to landmark based spatial references [12-14]; and 

(d) generative approaches such as using point processes, 

mixture models, and Bayesian networks to model minutiae 

spatial distribution [15-18], minutiae position-orientation 

dependencies [19-21] and inter-minutiae relationship [22]. 

There is a significant weakness in the early models as they 

were established using an ideal condition that minutiae are 

independent and identically distributed random events. 

Although the latter models have considered the minutiae 

variability in a more realistic manner, more complex 

statistical relationships were ignored in order to simplify 

model formulation. Furthermore, only minutiae were 

considered in these models without including other 

discriminatory features in fingerprints, such as pattern types, 

apart from [23]. There are two other important aspects which 

have not been explicitly taken into account, namely, image 

quality and intraclass variations which include non-linear 

deformation caused by factors such as skin elasticity and non-

uniform fingertip pressure. 

For other biometric modalities, face distinctiveness 

and iris distinctiveness have also been reported. While the 

former was studied based on unusual facial features with its 

development still in infancy [24], the latter was approached 

through large scale empirical evaluation at the matching score 

level instead of feature level due to high complexity of iris 

patterns for direct statistical modelling [25-27]. 

By treating image quality and intraclass variation as 

possible sources of noise, biometric recognition has been 

modelled as information transmission through a noisy 

channel [28], and this enables the application of the 

information theory to yield the constrained capacity, defined 

as the number of individuals that can be reliably identified 

with a low error rate. Such model has been reported for face 

and iris images based on global appearance features obtained 
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from principal component analysis and independent 

component analysis [29], and for palmprint based on local 

frequency features obtained from the discrete cosine 

transform [30]. For the former, it was formulated based on the 

mutual information of biometric features with the assumption 

of their distributions being independent and identical. For the 

latter, it was formulated based on the information capacity 

derived from the genuine and imposter matching score 

distributions which were assumed to be Gaussian. Comparing 

the two approaches, the feature-level based approach is seen 

to be more relevant for characterisation of biometric 

distinctiveness with quantifiable confidence level, whereas 

the score-level based approach is seen to be more appropriate 

for evaluation of system performance with a computation 

advantage. Nevertheless, the assumptions made by both are 

generally not applicable in practice. An alternative but related 

approach is based on biometric information loss via the 

relative entropy derived from the interclass and intraclass 

feature distributions [31]. Although it has been applied to 

face images, the assumption of Gaussian distributions was 

again required in order to tackle the inherent computation 

issues related to high-dimensional feature space and limited 

availability of data. 

Different from the information theoretic approaches, a 

data-driven methodology is proposed in this paper to provide 

a practically applicable approach for estimation of potential 

biometric recognition capacity, whereby realistic biometric 

feature characteristics are learnt from the actual biometric 

images collected from the real biometric system under 

consideration, without the need to make unsubstantiated 

assumptions of biometric feature distributions. In particular, 

by drawing some parallels between classification and 

compression of images, the proposed method borrows the 

concept from block transform coding that is commonly used 

for image compression. Essentially, an image is partitioned 

into image blocks with each block considered as a constituent 

biometric component, and the image texture contained in 

each block is binary coded to represent the corresponding 

texture class. The statistical variability among the binary 

codes of different images is then used to identify the 

informativeness of each image block, thereby enabling coarse 

estimation of potential recognition capacity. Although the 

proposed methodology shares some similarities with previous 

works on block-based approaches for statistical modelling of 

fingerprints [4, 8, 9] as well as block-based coding of iris 

images [25-27] and palmprint images [30], a significant 

contribution of the paper lies in providing a solution to the 

tricky problem of appropriate block size. 

To illustrate the proposed methodology and its 

applicability, near-infrared (NIR) dorsal hand vein images 

and fingerprint images acquired from two practical biometric 

systems in an unsupervised environment were used. With no 

prior work on the recognition capacity of hand vein images 

which are considered to have poor image quality, a practical 

contribution is seen to be there for this work to be the first to 

provide a reference point. Unlike various prior works on 

fingerprint distinctiveness based on minutiae only, the block-

based texture coding approach proposed in this paper directly 

takes in raw fingerprint images for estimation of recognition 

capacity, whereby the whole fingerprint image is encoded as 

a binary string with its local and global patterns represented 

by binary value and bit position, respectively. The texture-

based approach with the advantage of including all possible 

fingerprint features for recognition capacity estimation is 

seen to form another contribution of the paper, and a 

comparison of the results with other approaches is presented 

to confirm the validity of the proposed methodology. 

In the rest of the paper, presented first in Section 2 is 

the proposed methodology, which is then applied to 

fingerprint and NIR dorsal hand vein images in Section 3 to 

estimate their potential recognition capacities. Finally, 

conclusions are given in Section 4. 

2. Methodology 

Although compression and classification of images 

are fundamentally different in their goals, several parallels 

can be drawn from their implementation frameworks, since 

both of them map an input image to a binary string, which is 

seen as representing a compact codeword for 

transmission/storage in the case of image compression, or a 

class label in the case of image classification. These 

similarities have led to the use of block-based texture coding 

as the first stage in estimation of potential recognition 

capacity by adapting the three standard steps in block 

transform coding, which are image transform, coefficient 

quantisation, and binary encoding. 

In image transform as the first step of coding, the input 

image is partitioned into small square blocks of equal size so 

as to enable the selected transform operation to be performed 

on a block basis, and this step can be expressed 

mathematically as f(k)’=Tb(k)’, where k[1, …, K] with K 

denoting the number of blocks; b(k) denotes the row vector 

formed by concatenating N×N pixels of the kth block with 

𝑏(𝑘) ∈ ℝ𝑁×𝑁; and T denotes the transform operator to give a 

new representation 𝑓(𝑘) ∈ ℝ𝐷 with D denoting the number 

of dimensions in the transform domain. Unlike image 

compression that normally has D=N×N because it seeks a 

reversible transform to map most of the energy in the input 

image to a few large transform coefficients, biometric 

identification allows D<<N×N because it seeks a mapping 

function (that does not have to be reversible) to enable 

classification to be performed in a low-dimensional feature 

space. 

The adaption of this image transform step for 

estimation of potential recognition capacity requires 

consideration of two intertwined parameters, namely, image 

block size and the number of texture classes to be used. With 

each image block treated as a constituent biometric 

component in this work, how to determine an appropriate 

block size in order to capture discriminative biometric 

content presents a tricky problem, because it depends not only 

on image resolution but also on the effective geometric 

coverage of the texture descriptor adopted. From an 

information perspective, an image block with N×N pixels and 

G possible grey-level values per pixel can appear in any one 

of GN×N possible states, and the maximum amount of 

information conveyed by each image block is N×N×log2G 

bits, if all possible states are equally likely to occur. For a 

given G, as N increases, more image information are 

contained within each image block, and more texture classes 

are likely to be needed in order to provide a good 

representation without loss of salient image information. 

However, in the case of many biometrics based on imaging 

of geometric appearance, which include fingerprint and hand 

vein, the actual amount of information conveyed by each 
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image block is significantly less than N×N×log2G bits, due to 

high occurrence probabilities of certain grey-level ranges and 

spatial dependency among the neighbouring pixels. This 

gives the possibility of representing the salient biometric 

content of an image block by using a small number of texture 

classes. For the sake of implementation simplicity, the 

number of possible texture classes is set to the smallest value 

of two, thereby enabling the use of a single between-class 

distance value instead of multiple between-class distances to 

determine an appropriate image block size, as presented in the 

next section. 

There are various texture descriptors available to 

provide a compact representation of the image content in each 

block. A well-known statistical mapping function to 

characterise image texture is the grey-level co-occurrence 

matrix (GLCM) [32] that describes the spatial relationship of 

grey-level values based on their co-occurrence frequencies, 

and it is expressed for the kth image block as: 

 

𝑃𝑘(𝑖, 𝑗) =
1

𝑁2
∑ ∑ {

1   if 𝐼𝑘(𝑥, 𝑦) = 𝑖 and                              
      𝐼𝑘(𝑥 + 𝑑cos 𝜃, 𝑦 + 𝑑sin 𝜃) = 𝑗

0   otherwise                                            

𝑁

𝑦=1

𝑁

𝑥=1

 

(1) 

 

where Ik(x, y) and Ik(x + dcosθ, y + dsinθ) are pixel pairs 

separated by distance d at angle θ with grey-level values of i 

and j. For an image represented by L grey-level ranges, the 

size of GLCM produced by (1) is L×L. By applying different 

statistical measures to GLCM, a set of texture descriptors is 

available to represent the grey-level variation in each image 

block [32]. By employing one of the statistical texture 

descriptors, the whole image is mapped to a K-element 

feature vector denoted by f(k). 

In the second step of coefficient quantisation, the 

feature values contained in f(k) is restricted from a continuous 

set of possible values to a discrete set of allowed levels. 

Unlike image compression that seeks a quantisation function 

to spread transform coefficients uniformly among as many 

allowed quantisation levels as possible to minimise 

approximation errors, the objective of this step is to divide the 

feature values into as few classes as possible with minimum 

classification errors. This leads to 2-level quantisation to 

divide texture feature values into two classes, which may be 

considered as indicating absence or presence of a particular 

biometric texture pattern in an image block. With Tq denoting 

the threshold to separate two different texture classes, 2-level 

quantisation is expressed as: 

 

𝑞(𝑘) = {
0   if 𝑓(𝑘) < 𝑇𝑞

1   otherwise   
     (2) 

 

Since a sufficiently discriminative texture descriptor 

will result in the feature values of two texture classes 

following a bi-modal statistical distribution, the optimum 

value for Tq can be found by using the Otsu method [33] to 

maximise the separation distance between the two texture 

classes: 

 

𝑇𝑞 = argmax{𝑤<𝑇(𝜇<𝑇 − 𝜇𝑓)2 +
𝑇                                                      

𝑤≥𝑇(𝜇≥𝑇 − 𝜇𝑓)2      (3) 

 

where w<T and w≥T denote the probabilities of the feature 

values contained in f(k) below and above the threshold value 

of T with the respective mean values of µ<T and µ≥T, and µf 

denotes the mean value of f(k). 

In the third step of binary encoding, the multiple 

texture classes in the quantised feature vector are coded using 

binary bits and concatenated into a binary string to represent 

a biometric image. For 2-level quantisation with only 1 bit 

needed for binary representation of each image block, the 

quantised feature vector is already in the required binary form. 

Given a set of biometric images acquired from 

different individuals and mapped to their corresponding 

binary codes based on texture features, the second stage of 

the proposed method is to estimate the potential recognition 

capacity based on the informativeness of each image block 

from the statistical variability of its binary values. For 2-level 

quantisation and coding of the texture information in each 

image based on K blocks, it results in a K-bit binary code per 

image, and the number of possible binary combinations is 2K. 

However, not all the image blocks are likely to provide useful 

discriminatory information. With binary 0 and 1 representing 

the absence or present of a biometric texture pattern in an 

image block, the informativeness of an image block is 

reflected by the statistical variability of its binary values 

across images of different individuals. The most informative 

image blocks correspond to those having the equal 

occurrence probability of 0.5 for both binary values, as a 

result of statistical independence among different individuals; 

and the non-informative image blocks correspond to those 

having a high or low occurrence probability for one of the 

binary values, as a result of similar image appearance among 

different individuals. Let pk denote the occurrence probability 

of binary 1 for the kth image block, and let R denote an 

informativeness threshold to exclude those image blocks with 

the occurrence probability of binary 1 significantly above and 

below the equal probability of 0.5, the number of informative 

image blocks based on statistical entropy, denoted by K’, is 

given by 

 

𝐾′ = − ∑ 𝑝𝑘 𝑙𝑜𝑔2 𝑝𝑘+(1 − 𝑝𝑘)𝑙𝑜𝑔2(1 − 𝑝𝑘)|𝑝𝑘∈[0.5−𝑅,0.5+𝑅]

𝐾

𝑘=1

 

(4) 

 

With K’<K, the number of possible binary combinations is 

reduced to 2k’. 

Finally, using the Hamming distance measure to give 

the smallest number of bits in a binary code that must be 

changed in order to differentiate one individual from the other, 

the potential recognition capacity is estimated as: 

 

𝐶 =
2𝐾′

𝐻
      (5) 

 

where 𝐻 denotes the average interclass Hamming distance. 
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3. Potential recognition capacities of hand vein 
and fingerprint 

In this section, the proposed methodology is applied to 

estimate the potential recognition capacities of two different 

biometric modalities. One is NIR dorsal hand vein images 

with no previous report found on its recognition capacity, and 

the other is fingerprint images to confirm the compatibility of 

the proposed method with respect to other estimates reported. 

 

3.1. Hand vein and fingerprint images 
 

All the results reported in this section are based on 

images from the NCUT biometric database that is publicly 

available. While hand vein images were acquired using a self-

developed NIR image acquisition device [34], fingerprint 

images were acquired using a DigitalPersona UareU 4000 

fingerprint reader [35]. Image acquisition was conducted in a 

realistic environment without supervision and with 

participants recruited from the student population at NCUT. 

To include intraclass variations, each volunteer was required 

to alternate their hands and fingers for each image acquisition. 

80 hand classes and 80 fingerprint classes were used in this 

work with 10 images per class. 

Since the dataset is relatively small in size and 

contains significant intraclass variations, geometric pre-

processing is required to produce correct alignment of 

different images acquired from the same individual and 

consistent extraction of the region-of-interest (ROI) from 

each image before applying the proposed methodology. 

While alignment correction is used to minimise intraclass 

variations caused by posture variations in an unconstrained 

image acquisition environment, consistent ROI extraction 

ensures estimation of the recognition capacity based on the 

texture information contained in the same image blocks. 

While geometric pre-processing was achieved using a fully 

automatic approach based on the method developed 

previously for NIR dorsal hand vein images [36, 37], a semi-

automatic approach with manual involvement was used for 

fingerprint images to achieve the accuracy required. 

The geometric pre-processing of hand vein images 

consisted of (a) background removal to extract the hand area; 

(b) horizontal shear correction based on relative position of 

the mid-point along the top and bottom parts of the hand to 

align hand posture; (c) computation of hand centroid to 

provide a geometric reference; and (d) image cropping from 

the hand centroid to provide the ROI with a fixed size. These 

steps are illustrated in Fig. 1, where an example hand vein 

image with horizontal tilt is shown on the left, and the hand 

area extracted by thresholding in step (a) is shown on the right. 

Superimposed on the extracted hand area are mid-points E 

and F found by using horizontal lines AB and CD along the 

top and bottom parts of the hand, and this enables the shearing 

factor to be estimated in step (b) as the slope of line EF. The 

hand centroid computed in step (c) based on the pixel values 

in the extracted hand area and the ROI produced by image 

cropping in step (d) are shown as the white dot and white 

square on Image A of Hand 1 in Fig. 3, where the effect of 

hand tilting is seen to be reduced with vein lines running more 

parallel to the vertical axis. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.  Example hand vein image (left), and extracted hand 

area with geometry for shearing estimation (right) 

 

The geometric pre-processing of fingerprint images 

consisted of (a) identification of two corresponding landmark 

pairs to provide the geometric reference required; (b) position 

alignment based on the coordinate differences of the 

landmark pair near to the image centre via image translation; 

(c) orientation alignment based on the angular differences 

derived from the two landmark pairs via image rotation; and 

(d) image cropping from the landmark pair near the image 

centre to provide the ROI with a fixed size. These steps are 

illustrated in Fig. 2 using two example fingerprint images 

from the same individual to be aligned. Superimposed on the 

two images are two corresponding landmark pairs identified 

in step (a), and they are denoted by AA’, and BB’, respectively. 

While the coordinate differences between A and A’ are used 

for position alignment in step (b), the angular difference 

between lines AB and A’B’ with respect to the horizontal is 

used for orientation alignment in step (c). The corresponding 

ROI pair produced in step (d) by image cropping from A and 

A’ are shown as white squares on Images A and B of Finger 

1 in Fig. 4, where they are seen to contain similar geometric 

patterns. 

 

 

 

 

 

 

 

 

 

Fig. 2.  Example fingerprint images with corresponding 

landmarks for their alignment 

  

To illustrate interclass and intraclass image 

differences, four hand vein images from two different hands 

and four fingerprint images from two different fingers are 

shown in Figs. 3 and 4, with ROI centre and size 

superimposed on each image. Compared with distinctive 

patterns contained in interclass ROIs (in images of different 

hands or fingers), intraclass ROIs (in Images A and B of the 

same hand or finger acquired at two separate instants) appear 

to contain the same and geometrically aligned pattern at a 

cursory glance. On a close examination of these intra-class 

images, they are not identical with local image differences 

which are more apparent in hand vein images. With geometric 

pre-processing based on affine transformation, the intraclass 

variations in ROI consist of small linear geometric 

deformation as a result of inherent alignment errors and 

uncorrected non-linear geometric deformation. Compared 

with fingerprint images, hand vein images are seen to have 

higher intraclass variations and this can be attributed to a 
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larger effect of non-linear geometric deformation, due to a 

large coverage area with high curvature at the back of the 

hand as well as skin elasticity and imaging camera. 

Furthermore, hand vein images have lower image quality, as 

reflected by lower contrast between vein and its surrounding 

tissue, in comparison to high contrast between ridge and 

valley in fingerprint images. 
 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  Examples of four hand vein images with two images 

per class 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.  Examples of four fingerprint images with two 

images per class 

 

From the overall image characteristics observed 

between Figs. 3 and 4, one is likely to expect the potential 

recognition capacity of hand vein to be lower than that of 

fingerprint. This is because, in comparison to numerous 

fingerprint papillary ridges densely distributed in a small 

fingertip area, only a few vein lines sparsely distributed in a 

relatively large area of dorsal hand are visible, implying a 

lower information density of hand vein images. 
Subsequent to extraction of ROI are median filtering 

based on a small window of 3×3 pixels to reduce outlier noise 

in ROI and normalisation of the grey-level range. Outlier 

noise, if not reduced, can lead to a higher estimate of the 

potential recognition capacity, since the informativeness of 

an image block depends on the statistical variability of its 

binary values among different image classes and the random 

nature of outlier noise has the potential to increase the 

statistical variability. For capacity estimation described in the 

following, the ROI sizes were set to 381×381 pixels for hand 

vein images to cover most of the dorsal hand part with an area 

around 2268 mm2, and 100×100 pixels for fingerprint images 

to cover a patch around 25 mm2, respectively. 

 

3.2. Block based feature coding 
 

Following the methodology presented in Section 2, the 

first stage of recognition capacity estimation is block based 

feature coding after image pre-processing described in 

Section 3.1, and the first step is to map the texture content in 

each image block to a corresponding feature value based on a 

texture descriptor. In the implementation of this step, four 

GLCMs were computed for each image block in each image 

using (1) with d=1 at θ[0°, 45°, 90°, 135°] to capture grey-

level variations in different directions, and averaged. In order 

to reduce the matrix size of GLCM and computation, the 

number of grey-level values was reduced according to image 

contrast, with 16 grey-level intervals used to represent hand 

vein images and 2 grey-level intervals to represent fingerprint 

images. The texture descriptor based on entropy was then 

used to provide the statistical measure of the averaged GLCM 

produced for each image block: 

 

𝑓(𝑘) = − ∑ ∑ 𝑃𝑘
̅̅ ̅(𝑖, 𝑗) 𝑙𝑜𝑔2 𝑃𝑘

̅̅ ̅ (𝑖, 𝑗)

𝐿−1

𝑗=0

𝐿−1

𝑖=0

      (6) 

 

where 𝑃𝑘
̅̅ ̅(𝑖, 𝑗)  denotes the averaged GLCM. Since f(k) is 

minimum when all values in 𝑃𝑘
̅̅ ̅(𝑖, 𝑗)  are equal, and high 

otherwise, a higher texture entropy value is likely to be 

generated by a relatively inhomogeneous image block 

containing geometric edges (such as vein-tissue and ridge-

valley borders) and vice versa. This is illustrated in Fig. 5, 

showing the corresponding texture entropy images of Hand 1 

Image A ROI shown in Fig. 3 based on 20×20 image blocks 

and Finger 1 Image A ROI shown in Fig. 4 based on 31×31 

image blocks. 

 

 

 

 

 

 

 

 

 

Fig. 5.  Texture entropy images of hand vein (left), and 

fingerprint (right) 

 

For the steps of coefficient quantisation and binary 

encoding, (3) was applied to the set of texture entropy values 

generated from each image to produce a threshold, and the 

threshold was then used in (2) to generate a binary code with 

each image block represented by either binary 0 or 1, which 

may be considered as indicating the absence or presence of 

vein-tissue or ridge-valley borders in an image block. Using 

the hand vein and fingerprint texture entropy images shown 
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in Fig. 5 as examples, the resulting binary images produced 

by this step are illustrated in Fig. 6. 

 

 

 

 

 

 

 

 

 

Fig. 6.  Binary coded images of hand vein (left), and 

fingerprint (right) 

 

The quantisation step can be considered as dividing 

the texture features contained in each image block into two 

classes corresponding to absence and presence of vein-tissue 

or ridge-valley borders. With Tq being the threshold produced 

by (3) to maximise the distance between two possible texture 

classes, the variance of the texture entropy values obtained 

from each image, f(k), with respect to Tq should be maximum 

if the number of image blocks, K, is optimum, and this 

condition can be expressed as: 

 

𝐾𝑜𝑝𝑡 = argmax
𝑘

∑(𝑓(𝑘) − 𝑇𝑞)2      (7)

𝐾

𝑘=1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.  Average variance of texture entropy versus number 

of image blocks for hand vein (top) and fingerprint (bottom) 

 

Based on the images of 10 individual hands and 10 

individual fingerprints, the average variance of texture 

entropy against the number of image blocks for hand vein and 

fingerprint are shown in Fig. 7. From the highest average 

variance in Fig. 7, the optimum numbers of image blocks are 

seen to be 20×20 blocks for hand vein, and 31×31 blocks for 

fingerprint. Converting these numbers to image block sizes 

gives 19×19 pixels per block for hand vein, and 3×3 pixels 

per block for fingerprint. Hence, for the given image 

resolution and texture feature descriptor, the biometric 

information density of hand vein based on two texture classes 

per block is around 40 times lower, compared with fingerprint. 

From the classification perspective, Kopt should also 

produce a good separation between the interclass binary 

codes representing different classes and intraclass binary 

codes representing the same class. Hence, Hamming distance 

can be used to show the goodness of Kopt by measuring the 

dissimilarity among interclass and intraclass binary codes. 

For two binary codes denoted by qa(k), and qb(k), the 

normalised Hamming distance is given by: 

 

𝐻𝐷 =
1

𝐾
∑ 𝑞𝑎(𝑘) ⊗ 𝑞𝑏(𝑘)      (8)

𝐾

𝑘=1

 

where ⊗ denotes the exclusive-OR operation. By using 200 

interclass image pairs and 100 intraclass image pairs, the 

computed HD distributions of hand vein and fingerprint are 

shown in Fig. 8 for two different selections in the number of 

image blocks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.  Interclass and intraclass HD distributions for hand 

vein (top) and fingerprint (bottom) 

 

For hand vein images, the interclass and intraclass HD 

distributions were computed based on the image partitions of 

Kopt=20×20 blocks with 19×19 pixels per block and K=10×10 

blocks with 38×38 pixels per block. It is seen from the top 

figure in Fig. 8 that the interclass HD distance values for the 

optimum image partition with Kopt=20×20 blocks are higher, 

as shown by its average interclass distance of 0.35 

(corresponding to 𝐻 =139 bits), compared with 0.31 

(corresponding to  𝐻=31 bits) for K=10×10 blocks, indicating 

a much lower correlation among the binary codes of hand 

veins in different hand classes. The overlap between the 

interclass and intraclass HD distributions is also less for the 

optimum image partition with Kopt=20×20 blocks, as shown 

by a narrower interclass HD distribution with the variance 

value of 0.048, compared with 0.07 for K=10×10 blocks, 

indicating a much lower error in distinguishing between 



7 

 

binary codes of hand veins in different hand classes and 

binary codes of hand veins in the same hand class. 

Similarly, for fingerprint images, the interclass and 

intraclass HD distributions were computed based on the 

image partitions of Kopt=31×31 blocks with 3×3 pixels per 

block and K=20×20 blocks with 5×5 pixels per block. As 

shown in the bottom figure of Fig. 8, the same two 

observations apply, namely, higher interclass HD distance 

values, and less overlap between the interclass and intraclass 

HD distributions for the optimum image partition with 

Kopt=31×31 blocks. While the average interclass distance for 

Kopt=31×31 blocks is 0.472 (corresponding to  𝐻=453 bits), 

significantly higher than 0.202 (corresponding to  𝐻̅=81 bits) 

for K=20×20 blocks, the interclass variance for Kopt=31×31 

blocks is 0.024, significantly lower than 0.064 for K=20×20 

blocks. 

With each ROI image divided into Kopt blocks and 

each block coded as 0 or 1, the binary coded images obtained 

for Hand 1 Image A and Finger 1 Image A shown in Figs. 3 

and 4 are illustrated in Fig. 6. 

 
3.3. Estimation of potential recognition capacity 

 

After block-based feature coding of a set of biometric 

images to their corresponding binary codes, the second stage 

of the proposed method is to estimate the potential 

recognition capacity based on the statistical variability of the 

resulting binary codes. With Kopt=20×20 and Kopt=31×31 as 

the optimum numbers of blocks for hand vein and fingerprint 

images, respectively, Fig. 9 illustrates the statistical 

variability of each image block based on the occurrence 

probability of binary 1 derived from 80 different classes. 

 

 

 

 

 

 

 

 

 

 

Fig. 9.  Occurrence probability of binary 1 in each image 

block for hand vein (left), and fingerprint (right) 

 

For an image block to be informative, the binary 

values assigned to the same block based on different 

individuals should be uncorrelated, giving a high statistical 

variability with an equal occurrence probability of 0.5 for 

both binary values of 0 and 1. Based on the statistical 

variability of blocks shown in Fig. 9 for hand vein images, 

the informativeness for image blocks in the middle area of the 

image as well as at four corners are low due to its near to zero 

probability of being coded as binary one. While the former 

could be attributed to a high probability of encountering a 

skin tissue area without vein in the same image block among 

different individuals, the latter could be attributed to a high 

probability of encountering background pixels outside dorsal 

hand area (see hand vein ROI images shown in Fig. 3 with a 

small number of dark background pixels appeared at corners). 

Unlike hand vein images, the statistical variabilities of most 

image blocks are high throughout the fingerprint images as 

shown in Fig. 9, and this is seen as a result of its dense and 

high contrast ridge-valley patterns. 

In order to estimate the potential recognition capacity, 

an informativeness threshold is needed in (4) to exclude those 

image blocks with low statistical variability. However, there 

exists a dilemma in setting an appropriate informativeness 

threshold. While too high an informativeness threshold value 

is likely to result in an underestimate of recognition capacity 

due to an increase in the number of informative image blocks 

being excluded, too low an informativeness threshold value 

is likely to result in an overestimate of recognition capacity 

due to an increase in the number of non-informative image 

blocks being included. In this work, by treating binary 

representation of each biometric unit as a Bernoulli trial with 

two possible outcomes [38], this dilemma is solved by 

defining the informativeness threshold as the standard 

deviation of the binary occurrence probability from the ideal 

value of 0.5 in order for the statistical variability of an image 

block to be accepted as random or informative. 

Let M represent the number of different image classes 

available for learning the statistical variability. With these 

images acquired from different hand or fingerprint classes, 

the binary values assigned to the same image block based on 

different images can be treated as independent, meaning that 

the occurrence of a binary value from one image has no 

influence on the occurrence of other binary values from other 

images. If the binary value resulted from each image is 

assumed to have an identical and random Bernoulli 

distribution with the same variance, the composite standard 

deviation of M binary values from the expected mean based 

on the variance sum law is given by 

 

𝜎 = √
𝑝1(1 − 𝑝1)

𝑀
      (9) 

 

where p1 denotes the occurrence probability of binary 1 of an 

image block, and equals 0.5 for an informative image block. 

By the law of large numbers, increasing M reduces . 

In experimental validation, four different sets of hand 

vein images acquired at different times from the same 80 

individuals were used to test the proposed method to see if 

similar recognition capacity values could be produced. Based 

on Kopt found for hand vein images, each ROI image was 

divided into a total of 20×20 blocks per image. With the 

statistical variability of an informative image block allowed 

to lie within one standard deviation, substituting M=80 and 

p1=0.5 in (9) gives =0.056, and using it as the 

informativeness threshold in (4) results in four consistent set 

of results shown in Table 1, where K’ denotes the number of 

informative image blocks obtained using (4), and 𝐻̅ denotes 

the average of the Hamming distance values obtained from 

3160 possible image pairs in each dataset. Using the 

minimum value of K’ in Table 1, the percentage of the 

informative image blocks with respect to Kopt is 14.25%, and 

the potential recognition capacity for hand vein images is 

estimated to be around 1015 for an area of 2268 mm2 by 

applying (5). 



8 

 

 

Table 1 Number of informative image blocks and average 

HD for hand vein 

Dataset 1 2 3 4 

K’ 

H  

58 

143 

59 

143 

58 

143 

57 

142 

 

Based on the same setting except Kopt that is set to 

31×31 blocks per image, Table 2 shows the results obtained 

by applying the proposed method to four different sets of 

fingerprint images acquired at different times from the same 

80 individuals. Although the number of informative image 

blocks is seen to be variable against consistent values for 

average Hamming distance from Table 2, it is not seen to 

invalidate the proposed method, as it is a consequence of 

using a small image block size of 3×3 pixels, which increases 

the susceptibility of the binary representation to small image 

difference caused by geometric distortion of the same 

fingerprint, ROI extraction error, even random noise 

remained after filtering. Using minimum value of K’ in Table 

2, the percentage of the informative image blocks with respect 

to Kopt is around 13.42%, similar to that for hand vein images, 

and the potential recognition capacity for fingerprint is 

estimated to be around 1.51×1036 for an area of 25 mm2 by 

applying (5). 

 

Table 2 Number of informative image blocks and average 

HD for fingerprint 

Dataset 1 2 3 4 

K’ 

H  

134 

455 

154 

453 

129 

451 

147 

452 

 

There exists a relationship between the potential 

recognition capacity and the probability of random 

correspondence (PRC). While the probability of an individual 

fingerprint can be equated to the inverse of the potential 

recognition capacity, random correspondence for a pair of 

fingerprints can be considered as the probability of drawing 

the same fingerprint twice with replacement. If all possible 

fingerprints can be assumed to be independent and identically 

distributed, the equivalent PRC value for the estimated 

fingerprint recognition capacity can be approximated as the 

product of two individual fingerprint probabilities, or 

1/(1.51×1036)2 = 4.39×10-73, thereby enabling a direct 

comparison with the estimates of the previous work to show 

its compatibility. The available PRC values for comparison 

can be divided into two groups, with one from non-generative 

modelling approaches and the other from generative 

modelling approaches. For the non-generative modelling 

approaches, a wide range of the PRC values has been 

produced. For fingerprints which are divided into 24 regions 

and have 36 minutiae on average, the PRC values range from 

1.45×10-11 based on the early model in 1890s [4, 7] to 

1.2×10-80 based on the latter model in 1980s [7, 13]. From 

which, the equivalent PRC value of the proposed method is 

seen to be more comparable with that from the latter non-

generative model. For the generative modelling approaches 

based on the positions and orientations of minutiae, the PRC 

values between two fingerprints with each containing 46 

minutiae were reported to lie from 5.86×10-7 for matching 12 

out of 46 minutiae to 1.33×10-77 for matching all 46 

minutiae [13]. From which, the equivalent PRC value of the 

proposed method is seen to be more comparable with the 

lower end of the PRC value involving a large number of 

features, and it is consistent with the use of a large the number 

of image blocks in the proposed method for estimation of 

recognition capacity. Another factor affecting the PRC values 

is the number of feature types used, and the PRC values for 

fingerprints have been shown to be significantly smaller in 

the generative modelling approach including not only 

minutiae but also ridges and pores [23]. This should be 

applicable to the proposed method since its equivalent PRC 

value is likely to be reduced by increasing the number of 

texture classes in each image block. 

In further experimental validation, potential 

recognition capacity is estimated for degraded biometric 

images, thereby showing its usefulness as a figure of merit for 

performance comparison. Simple moving average filters with 

different window sizes were applied to each hand vein and 

fingerprint image after pre-processing before using them for 

recognition capacity estimation. As the window size 

increases, the image quality becomes poorer with 

increasingly blurred vein-tissue and ridge-valley borders, and 

the potential recognition capacity should decrease as a result 

of more image blocks becoming less informative. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10.  Number of informative image blocks versus 

average window size for hand vein (top) and fingerprint 

(bottom) 

 

Using the same four sets of hand vein and finger print 

images, moving average filters were applied to each set 

consisting of 80 individuals, and Fig. 10 shows the decline in 

the number of informative images blocks for hand vein and 

fingerprint images against moving average window size, 

where the line represents the average, and the whiskers 

represent the maximum and minimum values. Due to lower 

biometric information density as a result of a larger image 

block size, the decline in the potential recognition capacity 

for hand vein is seen to be at a slower rate compared with that 

for fingerprint. In particular, when the image blurring area 

was set to equal the block size of Kopt, the percentage of the 

informative image blocks with respect to Kopt was found to be 
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reduced by around 3.75% (from 14.25% to 10.5%) for 

degraded hand vein images, smaller than 4.58% (from 

13.43% to 8.95%) for degraded fingerprint images. These 

correspond to a reduction of the potential recognition 

capacity to around 1010 for hand vein images, and around 1023 

for fingerprint images. Although these reductions in 

recognition capacity were produced as a result of uniform 

blurring of hand vein and fingerprint images by applying 

moving average filters, it can be related to the practical 

scenario of image capture with a defocusing camera. 

4. Conclusions 

By treating each biometric image as consisting of a 

number of constituent biometric components based on the 

concept of block-based feature coding, this paper presents a 

method to provide a coarse estimate of the potential 

recognition capacity for a practical biometric system, with 

solutions to the problems of image partition based on 

separation distance between texture classes and 

informativeness of image blocks based on the statistical 

variability of their binary representation. Although the paper 

focuses on a simple implementation of the proposed 

methodology based on a common image texture descriptor 

and the smallest number of texture classes per image block, 

the approach is applicable for estimation of potential 

recognition capacity based on other types of feature 

descriptors and can be extended to multiple texture classes 

per image block. 

Experimental validation involves the use of NIR 

dorsal hand vein images acquired from an in-house bespoke 

system and fingerprint images from a commercially available 

system. The work has led to several findings: 

• The biometric information density of hand vein 

images is around 40 times lower than that of 

fingerprint images. 

• The percentage of informative image blocks with 

respect to the optimum image blocks is similar for 

both hand vein and fingerprint images, and less 

than 15%. 

• The potential recognition capacity for hand vein 

images is around 1015 for an area of 2268 mm2 

which has not been reported before. 

• The potential recognition capacity for fingerprint 

images is around 1036 for an area of 25 mm2 which 

is in good agreement with the previous estimates. 

• The estimated recognition capacity decreases as 

the image quality decreases, and the estimation is 

likely to be more consistent for large image blocks 

with low information density. 

However, it is important to recognise that these results 

represent crude estimates, since they were obtained from a 

relatively small dataset based on two texture classes which 

were assumed to be statistically independent and uniformly 

distributed. From repeated experiments on hand vein and 

fingerprint images, it is observed that consistent results have 

been produced for large image blocks with low information 

density, but this has not been the case for small image blocks 

with high information density. Therefore, larger datasets are 

needed in order to establish a higher level of statistical 

confidence with more consistent results, especially if the 

proposed method is to be applied to biometric modalities 

containing feature rich patterns. Furthermore, it should be 

noted that the recognition capacity estimates are closely 

related to the choice of the informativeness threshold value. 

In the proposed method, the informativeness threshold value 

is set as a function of the dataset size, and the use of a 

relatively small dataset may result in a higher value for 

informativeness threshold with more image blocks treated as 

informative, resulting in overestimates of the potential 

recognition capacity. 

Nevertheless, the proposed methodology is seen to 

offer an alternative approach for estimation of the potential 

recognition capacity of biometric systems with data-driven 

advantages. In addition to using large datasets to refine 

recognition capacity estimation and application of the 

proposed method to other texture-based biometrics, such as 

face, finger knuckle and palmprint, it will be interesting to 

explore the possible use of the proposed method as a 

performance indicator for comparative assessment of 

individual factors affecting texture-based biometrics, and to 

investigate the relationship of the proposed method with other 

information theoretic approaches. 
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