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Abstract 

 

Monitoring pH within microbial reactors has become an important requirement 

across a host of applications ranging from the production of functional foods (probiotics) 

to biofuel cell systems. An inexpensive and scalable composite sensor capable of 

monitoring the pH within the demanding environments posed by microbial reactors has 

been developed. A custom designed flavin derivative bearing an electropolymerisable 

phenol monomer was used to create a redox film sensitive to pH but free from the 

interferences that can impede conventional pH systems. The film was integrated within a 

composite carbon-fibre-polymer laminate and was shown to exhibit Nernstian behaviour 

(55 mV/pH)  with minimal drift and robust enough to operate within batch reactors.  
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1.0 Introduction 

 

The importance of riboflavin, vitamin B2, in the maintenance of health is well established 

and it is known to play a multitude of roles within the body[1–3]. In recent years however, it has 

begun to garner considerable interest as a key component in the development of electrochemical 

sensors. Where previously, the focus would have been on its detection[4–10], the spotlight is now 

being shone on its ability to aid the detection of other molecules associated with disease[11–21]. 

The prime driver at present relates to the redox chemistry associated with the flavin group which 

can act as a versatile electrochemical mediator in a range of chemical[21], enzyme[18] and 

immunosensing[17,19] and microbial[9,12,14,22] systems. These have included the detection of 

persulfate[20], glutamate[18], human chorionic gonadotropin[17] and hepatitis C[19]. In such 

cases, the riboflavin is either covalently attached to the base substrate through a chemical 

linker[16] or has been electropolymerized directly at the electrode[18–21]. The mechanism 

attributed to the latter is poorly understood [21] and, in most cases, there is considerable 

degradation in the signal associated with the flavin moiety. Large overpotentials are typically 

required to induce polymerisation and it is conceivable that the redox groups are compromised 

during the aggressive oxidative process. We therefore sought to engineer a new flavin analogue 

which, in contrast to riboflavin, possesses an electropolymerisable phenolic substituent distinct 

from the core redox centre. 

 

The custom flavin monomer is highlighted in Scheme 1 and, as with riboflavin, can 

undergo two core transformations – oxidation and reduction of the flavin (I → II and II → 

I)[23][21][24]. The inclusion of the phenol substituent however provides a third electrode process 

through oxidation of the phenol (I → III). It was envisaged that through encouraging 

polymerisation to proceed in a radical cation process via attack at the pendant phenol ring, rather 

than directly at the flavin, the characteristic redox transitions (I →II →I) could be preserved and 

then exploited as the basis of an electrochemical sensor.  The intention here was to exploit the 

pH dependence of the redox transitions as a means of indirectly measuring pH.  Research into the 

production of solid state pH sensors has been an increasingly active field in recent years as the 

need for small, flexible and mechanically robust probes for in situ monitoring applications has 

developed[25–27]. The traditional glass pH probes formats are becoming increasingly 

incompatible in terms of integration with miniaturised/microfluidic systems or for biomedical 
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systems where disposability is a prerequisite. The ability to electropolymerize the flavin molecule 

highlighted in Scheme 1 is a critical advantage in such contexts as it should enable site specific 

deposition of the film directly at the electrode irrespective of shape or size.  The key challenge 

however is the retention of the redox signature after film formation has been completed. 

 

 

Scheme 1. Redox transition of the flavin unit (III) and the electro-oxidation of the phenolic substituent 

leading to the production of a polyphenylene oxide polymer (I->III). 

 

The design of the proposed sensor relies on the use of carbon fibre as the electrode – 

providing a versatile format that can be scaled from single fibre microprobes to large area mats 

suitable for use in fuel cells. In the present case, the sensor format is based on a pressed carbon 

fibre mat modified with the flavin polymer and employed as a planar solid state pH sensing 

element within a microbial reactor designed to produce kefir fermented milk products.  

 

The production and consumption of kefir beverages has a long history spanning hundreds 

of years with the probiotic nature of the milk ascribed to numerous health benefits which have 
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been extensively reviewed[28–36]. Cow milk is the traditional feedstock but milk from sheep, 

buffalo, coconut, rice and soy sources, amongst others, have also been used.  Irrespective of 

source factors (species, geography, feed and season) and processing conditions (pH regulation, 

temperature, fermentation time) that can influence the nutritional composition of the product 

and overall flavour[33,36], the underlying taste is usually characterised by a tart/acidic tang.  The 

latter arises from the microbial production of lactic acid during the fermentation process[28]. The 

degree of acidic aftertaste can affect its palatability and hence monitoring the pH during 

production can enable greater control over some aspects of the final product characteristic and 

quality[33,36]. 

 

Kefir is produced from the inoculation of the source milk with kefir grains. The latter is a 

heterogenous mixture of lactic acid bacteria, acetic acid bacteria and yeasts encased in semi hard 

exo-polysaccharide matrix[30]. The nature of the microbial population will vary greatly depending 

on production method and, if simply transferred from one batch to another, will inevitably evolve 

over time. Large scale commercial manufacture typically uses defined starter cultures previously 

isolated from kefir batches in order to maintain product consistency[29]. Irrespective of the 

manufacture method, the resulting medium is rapidly transformed to a viscous mixture containing 

a wealth of small molecules and minerals, proteins, fats, and an ever-expanding kefir grain 

biomass[28–30,33,35]. This creates a considerable challenge for electrochemical sensors in that, 

as an interfacial technique, there must be direct contact with the microbial milieu. As the 

bacterial/yeast communities transform the milk, the pH will inevitably drop – typically from pH 

6.5 to pH 3.5. However, the viscosity will rise, as will the possibility of surface fouling. It was 

anticipated that through anchoring the flavin polymer to the electrode and employing a 

voltammetric methodology, rather than the simpler and potentially more corruptible 

potentiometric systems, the influence of the matrix should be minimal.  

 

There is an extensive literature on the development of solid state potentiometric pH 

sensors with nano materials such as MnO2[37], IrO2[38,39], WO3[40] and ZnO[41] coming to the 

fore but, in this case, the pH measurement is derived from measuring the peak potential 

associated with the oxidation of the immobilised flavin group (Scheme 1, I → II).  Voltammetric 

approaches to the indirect determination of pH have become attractive as they can offer greater 

selectivity and fast response time in comparison to conventional potentiometric systems[42–45]. 
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A variety of systems employing quinone species[42–44] and nitroso[45] functionalised monomers 

have been used as the sensing rationale whereby the peak potential is influenced by the prevailing 

proton concentration. While the shift in the redox potential of riboflavin is well established, this 

is the first investigation of a flavin being used as an immobilised pH sensor.   

 

2.0 Experimental Details 

 

All chemicals were obtained from Sigma-Aldrich, were the highest grade available and were used 

without further purification. Electrochemical analysis was carried out using a micro Autolab Type 

III potentiostat with a standard three-electrode configuration with either a glassy carbon or 

carbon fibre mat (4 x 4 mm) as the working electrode.  Platinum wire served as the counter 

electrode and a conventional silver/silver chloride (3M KCl, BAS Technicol UK) reference 

electrode. All measurements were conducted at 22oC ± 2oC.  NMR spectra were recorded on a 

Bruker Fourier 300 (300 MHz) spectrometer. Chemical shifts are reported in ppm relative to 

solvent residual (1H NMR d6-DMSO, 2.500 ppm and CDCl3 ppm, 7.26; 13C NMR d6-DMSO, 39.520 

ppm and CDCl3, 77.16). Coupling constants are reported in Hertz (Hz) and are rounded to the 

nearest 0.5 Hz. Multiplicities are reported as singlets (s), doublets (d) and triplets (t) or a 

combination of these, peaks that appeared broad due to either H-bonding or restricted rotation 

are prefixed as broad (br). Low resolution mass spectra were recorded on a Finnigan™ LCQ™ 

Advantage MAX in ESI mode. Infra-red spectra (1800-800 cm-1) were recorded on a Perkin Elmer 

Spectrum RX 1 with a Specac Golden Gate™ ATR accessory and values are quoted in 

wavenumbers.  

 

Kefir Production: Kefir grains were obtained from commercial sources and were incubated in 500 

mL (10g live grain kefir at 22oC) batches using cow’s milk as the fermentation medium. The carbon 

fibre probes were placed in the fermentation mixture and pH of the growth medium monitored 

in situ over periods up to 51 hours.    

 

Electrochemical Anodisation: The carbon fibre film was sectioned and mounted in a conventional 

polyester laminate patterned with a 4 mm square window and thermally sealed[46]. This was 

done to standardise the electrode area to enable comparison before and after the various 

modifications. It has become relatively common to electrochemically anodise carbon composite 
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electrodes in order to counter poor electrochemical behaviour whereby the electro-oxidation (+2 

V, 0.1 M NaOH) typically increases exfoliation of the carbon fibre. This has the effect of generating 

more edge plane sites and introduces various oxygen functional groups (i.e. COOH, OH, C=O )[42].  

 

Flavin Electropolymerisation: Riboflavin was obtained from commercial sources whereas the 

phenol derivative was custom synthesised. The synthesis of the 10-(4-

hydroxyphenyl)benzo[g]pteridine-2,4(3H,10H)-dione was accomplished via modifications to 

previous methods[47–49]. The reaction summary is highlighted in Scheme 2 and full details 

relating to the characterisation of the intermediates can be found in the supplementary 

information. In summary, p-anisidine (1) was reacted with 2-fluoro-1-nitrobenezne (2) in the 

presence of potassium carbonate to yield 4-methoxy-2-nitrodiphenylamine (3) which was isolated 

at the pump in 78% yield.  The crude material (3) was reduced using zinc dust under acidic 

conditions, and subsequently treated with alloxan monohydrate (4) in the presence of boric acid 

to yield the 10-(4-methoxyphenyl)benzo[g]pteridine-2,4(3H,10H)-dione intermediate in 93% yield 

which was demethylated using hydrobromic acid you yield the final derivative (5) in 98% yield.  

 

 

 

Scheme 2. Preparation of the phenolic flavin derivative 

 

Electropolymerisation was achieved through placing the electrode (glassy carbon or carbon-

polyethylene film) into an aqueous solution containing the phenol derivative (150 M, pH 7). 

Repetitive scan cyclic voltammetry (+0.2 V -> -0.8 V -> +1 V, 50 mV/s) was used to initiate the 

electropolymerisation process. Solutions were generally degassed with nitrogen prior to 

commencing the experiments and run under nitrogen blanket. 
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3.0 Results and Discussion 

 

The electrochemical properties of the phenolic flavin derivative (I) were compared to 

riboflavin and the voltammetric responses observed at a conventional glassy carbon electrode are 

detailed in Figure 1A. In both cases the reduction and oxidation peak processes of the flavin centre 

(I→II→I) are easily identifiable and exhibit near reversible electrode kinetics.  While the phenolic 

substituent, by nature, will be electron releasing, the effect will be less than the combined 

influence of the methyl and sugar substituents on the riboflavin and, as such, the reduction of the 

phenolic flavin derivative occurs at a slightly lower potential. The main difference in the 

voltammetric profiles however relates to the peak processes observed at +0.81V on the phenolic 

derivative.  The irreversible nature of the peak process and the fact it decreases on consecutive 

scans (Figures 1B) is consistent with a phenol oxidation process and it is important to note that 

there is no corresponding electrode process on the riboflavin. 

Further examination of the peak processes for the phenolic derivative (Figure 1B) reveals 

that the flavin peak processes observed at -0.3 V increase in magnitude with increasing scan 

number. This only occurs when the potential is swept to the positive potentials required to oxidise 

the hydroxy functionality and thereby induce the formation of oligomeric and polymeric deposits 

as indicated in Scheme 1 (I→III). When the flavin derivative was cycled with a narrower potential 

range (+0.2V → -0.8 V) that did not induce the oxidation of the phenol, no increase in the flavin 

current was observed. Thus, oxidation of the phenol leads to the deposition of the flavin at the 

electrode with the accumulated material giving rise to sustained increases in the flavin peak 

magnitude. It is important to recognise at this point that the definition of the flavin peak process 

remains distinct and stands in contrast to previous reports detailing the electropolymerisation of 

riboflavin where the peak processes are far from clear[21]. 
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Figure 1. A) Cyclic voltammograms comparing the response of a glassy carbon electrode towards 

riboflavin and the flavin derivative in pH 7 buffer. B)  Five consecutive cyclic voltammograms detailing the 

electropolymerisation of flavin-phenol derivative in pH 7 buffer. Scan rate: 50mV/s 

 

Further evidence that a polymeric deposit was formed on the electrode surface was 

obtained through rinsing the electrode and placing in fresh buffer solution. Initial inspection 

reveals that the flavin peak processes were retained and cyclic voltammograms detailing the 

response of the immobilised film (in fresh pH 7 buffer) to increasing scan rate are detailed in 

Figure 2. It can be seen that the peak separation of the flavin unit increases markedly at the higher 
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scan rates and can be attributed to the slow transfer of counter ions into the film.  The variation 

of peak height with both scan rate and the square root of scan rate are detailed in Figure 2B.  

 

 

 

Figure 2. Variation of polyflavin peak heights with scan rate (A) and square root of scan rate (B) recorded 

on a glassy carbon electrode in pH 7 buffer.  

 

A linear relationship was found with scan rate over the range of 10 mVs−1 to 5 Vs−1, 

indicating a surface-confined electrode process. Roushani and colleagues found similar behaviour 
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with riboflavin encased as a composite component within graphene quantum dots[20]. Surface 

coverage (c ) was estimated from the relationship: 

 

 

  

where Ip is the peak height, v is the sweep rate, A is the effective surface area (0.071 cm2) of the 

glassy carbon electrode and the other symbols have their usual meaning. From the slope of 

cathodic peak currents vs. scan rate, the calculated surface concentration of the poly flavin 

compound was found to be 1.32 × 10−10 mol cm−2. 

Given the apparent stability of the redox processes shown in Figure 2 after insertion in 

fresh buffer, the next step was to determine if the flavin film could be transferred to an 

electrochemically treated carbon fibre mesh electrode. The flavin monomer was 

electropolymerized using the same approach employed with the glassy carbon electrode and the 

voltammetric profiles obtained were analogous to the scans highlighted in Figure 1B. The flavin 

modified carbon fibre electrode was removed and the influence of pH on the peak responses 

assessed. In this instance, square wave voltammetry was used to enable a more accurate 

determination of the peak potential and to minimise the effect of oxygen. The scans were initiated 

at -0.8 V which, as indicated in Figure 1, is sufficiently negative to induce the reduction of the 

flavin centre. The scan is then swept towards more positive potentials whereby the flavin is re-

oxidised. The voltammetric responses obtained in buffers of varying pH are detailed in Figure 3. 

In each case, a well-defined oxidation peak is obtained and moves towards more negative 

potentials with increasing pH.  The relationship between peak position and pH was found to be 

near Nernstian with a typical slope of 55 mV/ pH unit (E / V = 0.055 pH + 0.077; N = 7; R2 = 0.999).  

This is similar to previous reports on the use of riboflavin-graphene quantum dots[20].  
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Figure 3. A) Square wave voltammograms detailing the response of the flavin modified carbon fibre mesh 

in buffers of varying pH. B) Influence of pH on oxidation peak potential over three cycles (Each pH 

analysed in triplicate - total 63 scans).  

 

The robustness of the modified film towards periodic scanning - a prerequisite when 

monitoring the pH change within a batch process taking at least 24 hours to complete – was 

assessed through cycling the electrode through a series of three pH sequences – each sequence 

ranging from pH 2.55 to pH 8.12. Square wave voltammograms were recorded in triplicate for 
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each pH buffer and the entire process repeated a further two times to establish the reversibility 

of the pH changes on going from low pH to high pH and back again (Figure 3B). It was anticipated 

that this process would also identify any potential drift should the integrity of the redox centres 

within the film be compromised as a consequence of the repetitive cycling. The latter can be 

common in quinoid systems where the oxidised centre can be prone to attack from hydroxyl ion 

in moderately alkaline conditions. Given the data highlighted in Figure 3B, it is clear that the pH 

sensing capabilities are reversible with a drift of only 4 mV. The height of the peak was however 

found to be affected with a reduction in the magnitude in the range of 20% over the course of 63 

scans.   

It must be acknowledged that operation within a clean buffer solution presents little 

chemical or physical challenge to the system, therefore the next phase was to examine the 

performance of the carbon fibre – flavin composite in the kefir matrix – from the initial inoculum 

to the final production of the kefir milk. During this time, it was anticipated that there would be a 

significant increase in the biomass within the batch which could foul the electrode. The latter was 

confirmed through examining the electrode fibre network before immersion and after 51 hours 

fermentation. The electron micrographs obtained are shown in Figure 4 and highlight how the 

microbial biomass permeates through the fibre network. 
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Figure 4. Scanning electron micrographs of the carbon fibre network after incubation in Kefir mixture.  

 

Square wave voltammograms detailing the response of anodised carbon fibre electrodes 

with and without the flavin polymer film in the kefir mixture before and after production are 

compared in Figure 5.  Examining the response of carbon fibre electrodes without the flavin layer 

reveals the presence of a small but distinct oxidation peak – initially at -0.413 V which then moves 

to -0.231 V at the end of production (51 hrs). This is ascribed to the presence of riboflavin which 

is endogenous to the milk mixture. The pH of the batch switches from pH 6.18 to pH 3.68 when 

complete.  
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Figure 5.  A) Square wave voltammogram detailing the response of a poly flavin modified carbon-fibre 

electrode in kefir at the start and end of the fermentation cycle.  B) Comparison between the 

conventional glass pH probe and the flavin modified electrode within the kefir mixture over a period of 50 

hours. Each point is the average of 3 scans.  

 

It can be seen from the data presented in Figure 5 that while the pH recorded at the flavin 

modified fibre follows that obtained with the conventional glass probe, there are anomalies. The 
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latter are highlighted in Figure 5 and it is noteworthy that on both occasions, significant deviations 

occur only after a period in which the electrode has been dormant for over 12 hours. In contrast, 

repetitive scanning, in which the delay between each scan is short, results in close agreement 

with the standard pH probe. It should also be noted that upon recommencing the measurements 

– the response of flavin modified probe soon recovers to match the standard probe. It is likely 

that during the dormant phases – microbial colonisation of the probe (as indicated in Figure 4) 

initially compromises the response with the pH recorded reflecting the local environment arising 

within the biofilm at the film interface. Further modification of the probe with a permselective 

barrier to minimise fouling could be considered but film formation on the barrier may still lead to 

a discrepancy between the internal void and the bulk. Scanning with increased frequency however 

appears to negate such an approach (at least in this instance) an is shown to minimise the 

deviations from the control pH.  This could be attributed to the redox transitions at the surface 

and the corresponding physical swelling through the flux of counter ions. Nevertheless, biofilm 

formation is apparent after the 51 hours and, while this is arguably beyond the typical 

fermentation timespan used in Kefir consumer products, it could be problematic when 

considering translation to other microbial systems (i.e. fuel cells)[50].  

In principle, it is possible to utilise the bare, anodised carbon fibre as a means of 

measuring the riboflavin directly within the kefir milk sample and exploit the fact that the 

oxidation peak process moves with pH.  The shift in the riboflavin peak potentials with pH is well 

established[20]. There are, however, several issues with this approach. It assumes that riboflavin 

will always be present in the milk feedstock and at a level which can be easily detected. Switching 

to other milk sources such as soy or coconut or sugar feeds where there may be less or no 

riboflavin would clearly nullify this approach[28,35]. Examination of the voltammogram in Figure 

5 also highlights the fact that although the riboflavin peak is distinct in both the initial and final 

mixtures, the magnitude of the peak is similar to the other, unascribed, components within the 

mixture (the broad peak at +0.25V). It is possible that even with minor changes in the composition 

of the milk feed (i.e. the introduction of flavours or other additives, that the endogenous riboflavin 

peak could be obscured.  The magnitude of the immobilised flavin stands in marked contrast to 

the solution riboflavin and overcomes any issue with changes in the nature and composition of 

the starter mixture. 

The development of new pH sensing methodologies and electrode modifiers than can 

confer pH selectivity is an ever-present challenge and continues to capture the attention of 
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researchers. A summary of the more recent advances in the field are detailed in Table 1 along 

with a comparison of this work. It is notable that, while there is a wide variation in the nature of 

the electrode modifier/technology, validation of the systems within real matrices is often 

problematic. The flavin system investigated here demonstrates a near Nernstian response and, 

while the key parameters are comparable to many of those highlighted in Table 1, it is important 

to note that it has been tested within a complex and changing medium.  

 

Table 1. Comparison of electrode modifiers / pH detection methodologies 

      

Modifier Typea 
 

Sensitivity 
mV/pH 

pH 
Range 

Test 
Medium 

Ref. 

      
CeTixOy P 89.8 2-12 N/A [51] 
RuO2/Nafion P 55.2 2-6 Beverages [52] 
IrOx / Pt P 64 1-13 Corrosion [53] 
ERGO Polyaniline / Nafion P 55 2-9 Fermentation [54] 
CuO nanorods C 0.64 F/pH 5-8.5 N/A [55] 

Graphite/polyurethane P 11.13 5-9 Sweat [56] 
WO4/WO3 P 56 2-10 N/A [57] 
Graphene - Polyaniline A 139 A/pH 1-5, 7-11 N/A [58] 

NiO P 63 1-13 N/A [59] 
ZnO/W P 46 2-9 CSF [60] 
Ni3(PO4)2·8H2O  P 34.8 4-7 Sweat [61] 
Carbon-quinone V 73 2-8 Saliva [62] 
Pt-IrOx P 56 4-9 Biofilm [63] 
Si  EGFET P 56 2-12 N/A [64] 
ZnO P 43 2-9 Tumor Cells [65] 
Polyaniline V 50 4-10 Wound fluid [66] 
Poly Dopamine V 58 1-12 N/A [67] 
Poly Flavin V 55 2-8 Fermentation 

Reactor 
This 

Work 

      
a where C = capacitance; P = potentiometric; V = voltammetric; A = amperometric;  
EGFET = extended gate field effect transistor; ERGO = electrochemically reduced graphene oxide. 

 

 

4.0 Conclusions 

A solid state pH sensor based on an engineered flavin redox polymer has been shown to 

be capable of operating within a microbial reactor. Critically, the system provides a clear, 

unambiguous signal within a chemically complex medium with the redox peaks residing within a 

potential region where there are few competing processes. The application of square wave 

voltammetry enables the accurate determination of peak position from which the pH can be 
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readily computed. The system is reagentless and exhibits reversible characteristics over the pH 

range 2-8 with minimal drift.  A key feature is the ability to identify and measure the analytical 

peaks within the need for solution degassing. The flavin polymer was immobilised on an 

inexpensive carbon fibre network and while deployment and, indeed replacement, is more 

economically acceptable, it could be envisaged that the system could be translated to screen 

printed systems to facilitate the development of disposable sensor systems.  
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