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Abstract

In this thesis we study the disc surrounding the Young Stellar Object DG Tau B.

We present observations at both cm and mm wavelengths using e-MERLIN and the

EVLA respectively. We study the cold dust in the disc of DG Tau B by looking at

its spectral energy distribution (SED). We also analyse the proper motions of DG

Tau B and the classical T Tauri star DG Tau A to determine if they are a binary.

We fit a modified blackbody to the DG Tau B SED and model the dust using a

temperature of T=9.6±0.6K and a mass of M=0.30±0.03M�. We see a radio excess

which is found to have a spectral index of α = 1.4 ± 0.2, which is indicative of

free-free or synchrotron emission.

The emission from DG Tau B at cm wavelengths is studied at two epochs. The

jet of DG Tau B is resolved with e-MERLIN in both the 2014 and 2016 data, whilst

the disc of DG Tau B is only marginally resolved in 2016. The lack of cm blackbody

emission from the DG Tau B disc, and shallow spectral index of the radio excess,

may indicate that there are no cm-sized dust grains in the disc of DG Tau B.

However, the disc of DG Tau B is resolved at mm wavelengths whilst the jet is

not. This could either be attributed to mm-sized dust grains in the disc of DG Tau

B or be an indication of the dust temperature in the disc.

We study the proper motions of DG Tau A and B and find them to be consistent

with each other. This could be explained if they have formed from the same star-

forming region. Further investigation would need to be conducted in order to confirm

if the two Young Stellar Objects are part of a binary system.
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Chapter 1

Introduction

It is now known that the sun is not the only star to harbour planets. The first

confirmed exoplanet was detected in 1992 (Wolszczan & Frail 1992) and over three

thousand exoplanets have since been discovered. There is a great diversity in the

discovered planets, with some being smaller than Mercury, whilst others are almost

twice as big as Jupiter. Exoplanets have also been discovered to orbit at radii greater

than that of our Solar System, as well as some free-floating planets. Unlike our Solar

System, exoplanets have also been seen to have very eccentric and inclined orbits.

In order to investigate the uniqueness of our Solar System, exoplanets need to

be studied. Their evolution cannot be viewed directly as they form over millions of

years. Planets form in the protoplanetary discs surrounding Young Stellar Objects

(YSO’s) and other pre-main sequence stars. Therefore, in order to investigate how

planets form, the formation and evolution of protoplanetary discs are studied.

Micron sized dust grains in a protoplanetary disc can collide to accumulate and

form millimetre sized grains. Past the snowline (the radius at which water forms

ice) the dust grains gain an ice mantle envelope, increasing the possibility of the

particles sticking upon collision. Once the particles reach millimetre sized they

can begin to drift towards the star and may end up sublimating. As well as this,

larger particles colliding with increasing velocities lead to fragmentation rather than

1
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cohesion, causing the particles to be broken up. These barriers can prevent the

growth of dust to metre sized particles. The mechanism to overcome these barriers

is still unknown. The evolution of planetesimals, km sized objects, to planets is

hypothesised. The planetesimals and gas in the disc can gravitationally interact to

form either terrestrial planets or the cores of gas giants.

This thesis focuses on trying to detect centimetre sized dust grains in the disc

surrounding the YSO DG Tau B. Detecting centimetre sized particles in discs will

help to determine under what circumstances discs overcome the metre-sized barrier.

The radio interferometers e-MERLIN and EVLA are used to observe the protoplan-

etary disc.

1.1 Formation of Protoplanetary Discs

Regions of molecular gas and dust in the Interstellar Medium (ISM) form Giant

Molecular Clouds (GMC). It is within these clouds that stars and planets form

(Ward-Thompson & Whitworth 2011). GMC’s can have radii of tens of parsecs and

have masses of up to millions of solar masses. In order for stars to form, a molecular

cloud needs to collapse. This depends on the relative strengths of the gravitational

potential energy and the internal energy. Once the gravitational potential energy

is greater than the internal energy the cloud may collapse. Smaller regions within

the cloud will begin to fragment forming prestellar cores. These may go on to form

individual stars. The collapse of a GMC can form many stars within a small radius,

which we refer to as a stellar cluster.

Prestellar cores contract to form protostars. Objects that are not yet main se-

quence stars are referred to as Young Stellar Objects (YSO’s). Lada (1987) proposed

a classification system (Class I, II and III) for the different stages of protostellar evo-

lution. Andre et al. (1993) later added a further Class 0 to the classification of Young

Stellar Objects. The different classes of protostellar evolution are shown in Figure

2
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1.1. Protostars are difficult to observe in the optical as they are surrounded by

dust and gas. Therefore, in order to study them, their long wavelength spectral

energy distribution (SED) is looked at. An SED shows the relationship between

flux distribution and frequency.

The class of a Young Stellar Object is determined by looking at the slope of the

SED between the wavelength range of 2.2µm and 10− 25µm. This is defined as the

spectral index, α and is given by Equation 1.1 (Lada 1987):

α =
dlog[λFλ]

dlog[λ]
(1.1)

Class 0 Young Stellar Objects are protostars that are still embedded in an

infalling envelope of dust and gas. These protostars are only visible at infrared and

millimetre wavelengths and are undetected at λ < 10µm (Andre et al. 1993). They

are also characterised by a low ratio of LBolometric/LSubmm (Andre et al. 1993). This

implies that the mass of the envelope surrounding the protostar is much greater

than its mass.

Class I Young Stellar Objects have a spectral index α > 0 (Lada 1987). The

slowly rotating material in the envelope surrounding the pre-main sequence star

begins to fall inwards due to gravity. As the size of the envelope decreases, con-

servation of angular momentum causes the cloud to rotate faster and flatten out to

form a disc.

Class 0 and Class I protostars can remove angular momentum from the accreting

protostar via outflows and jets. The YSO can accelerate a wind which can sweep

up ambient gas, producing a CO outflow (Snell et al. 1980). Molecular outflows

have been found to be bipolar or multipolar with a range of collimations (Lada

1985, Walker et al. 1988). A jet is formed when the disk wind travels at supersonic

speeds (Pudritz & Norman 1983, 1986), which can interact with the surrounding

material to produce knots of emission (Schwartz 1975). These objects are known as

3
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Figure 1.1: The evolutionary sequence of Young Stellar Objects, including their

SED’s (Andre 1994).
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Herbig-Haro objects (Herbig 1951, Haro 1952).

Class II Young Stellar Objects are also known as Classical T Tauri objects.

These are pre-main sequence stars with a spectral index of −1.5 < α < 0 (Lada

1987).These types of YSOs are formed when most of the material in the envelope

has been dissipated and no longer accretes onto the disc (Andre et al. 1993). During

this phase the protostar accretes at a reduced rate (Hartmann et al. 1998). Planet

formation occurs mainly during this stage, and the removal of gas and dust begins

in the protoplanetary disc.

The protoplanetary disc in this stage is cleared of dust and gas by many pro-

cesses such as accretion onto the star, planet formation and photoevaporation of the

disc (Hollenbach et al. 1994, Pollack et al. 1996). Photoevaporation occurs when

ultraviolet radiation from the YSO heats up the surface of the disc. This causes the

gas to unbind itself from the disc and leave as a wind (Hollenbach et al. 1994).

Class III Young Stellar Objects have a spectral index of α < −1.5 and are

known as Weak T Tauri stars (Lada 1987). They no longer have an envelope and

are surrounded by a debris disc. This debris disc contains planetesimals (see Section

1.2), dust and molecular hydrogen (Bryden et al. 2009). The little amount of dust

in the disc causes the infrared excess to be low, therefore the SED of Weak T Tauri

stars shows emission predominantly due to the protostar.

1.2 Planetesimal Formation

The formation of planets from micron sized dust in a protoplanetary disc is a long

process. The growth of µm-sized particles to mm and cm sized grains is well hy-

pothesised, with lab based experiments agreeing with current core accretion theories

(Blum & Wurm 2008, Beitz et al. 2011, Weidenschilling 1977).The formation of ter-

restrial and gas giant planets from kilometre sized planetesimals has been simulated

5
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and is understood to occur due to the mutal gravitational interactions of planetesi-

mals. The precise mechanisms for forming planetesimals is still not well understood,

mainly due to mm and cm dust collisions resulting in fragmentation rather than co-

hesion.

Micron sized dust grains are comprised of mostly silicates and are well coupled

to the gas in the protoplanetary disc. They possess a relative velocity to the gas

caused by Brownian motion. Collisions between nm and µm particles are able to

occur since they travel with a small relative velocity with respect to each other.

Blum & Wurm (2008) showed that µm-sized dust grains can stick upon collision,

via various surface forces such as Van der Waals and electrostatic forces, provided

the relative velocities between the particles is less than 1 ms−1 (Blum & Munch

1993). This leads to the formation of mm to cm sized particles.

There are many barriers that cm sized particles face whilst trying to grow to km

sized planetesimals, including fragmentation and radial drift. As particles begin to

grow in mass they decouple from the gas, causing them to travel with larger relative

velocities with respect to the gas. Wurm et al. (2005) conducted an experiment in

which mm particles were projected at cm dust targets. They found that for collisions

below 13 ms−1 the mm particle rebounded and only a small degree of fragmentation

occurred. They also observed that collisions occurring with a velocity of up to 25

ms−1, resulted in approximately 50% of the mass of the projectile sticking to the

target. The various outcomes of particle collisions are illustrated in Figure 1.2.

The “bouncing barrier” was first introduced by Blum & Munch (1993). They

collided mm sized dust aggregates with velocities between 0.15 and 4 m s−1, and

found that the particles “bounced off” each other rather than combining. This can

limit the growth of particles to cm sized particles (Windmark et al. 2012). The

“bouncing barrier” can be overcome if there is a sufficient amount of cm particles

in the disc to sweep up the smaller dust grains (Windmark et al. 2012).

6
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Figure 1.2: The different outcomes of particle collisions (Windmark et al. 2012).

The gas in the disc is supported by a gas pressure which prevents it from feeling

the effects of the radial component of the stellar gravity. This causes the gas to

travel at sub-Keplerian velocities (Testi et al. 2014). The dust in the disc is not

supported by this pressure, therefore as the particles increase in mass and decouple

from the gas their relative velocities with respect to the gas increases. This causes

them to feel a head wind and begin to lose angular momentum (Weidenschilling

1977). The particles begin to drift towards the central YSO, and will either accrete

onto the YSO or sublimate due to photoevaporation. Fragmentation, the “bouncing

barrier” and radial drift halts particle growth to cm grains, a problem which has

been coined the “meter barrier”.

1.3 Observations of Protoplanetary Discs

There are two types of continuum radiation; thermal and non-thermal. Thermal ra-

diation relies solely on the temperature of the emitter and examples include black-

body radiation and free-free emission. Non-thermal radiation, such as Compton

scattering and synchrotron radiation, is independent of the temperature of the emit-

ter.

7
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The dust in a protoplanetary disc emits thermal blackbody radiation. A black-

body is defined as an object that perfectly absorbs all wavelengths of light. A black-

body that is in thermal equilibrium will emit radiation with an intensity described

by Planck’s law, defined in Equation 1.2:

Bν(T ) =
2hν3

c2
1

e
hν
kT − 1

, (1.2)

where k is the Boltzmann constant and h is the Planck constant. At long wave-

lengths, when hν�kT , a blackbody can be described by the Rayleigh-Jeans law. In

this regime the dust is optically thin and the flux varies with frequency according to

F ∝ ν2. Wien’s approximation describes the emission at shorter wavelengths when

hν�kT (Wien 1897). The dust is optically thick in the Wien regime.

Objects that do not absorb all the incident radiation perfectly and emits less

energy than a blackbody are known as greybodies. They are characterised by their

dust emissivity index β.

As the temperature of a blackbody decreases, so does its intensity. This causes

the peak to move to lower frequencies. This is shown in Figure 1.3. The emission of

a blackbody peaks at λmax and is related to temperature according to the equation:

λmax =
b

T
, (1.3)

where b is Wien’s displacement constant. This is known as Wien’s displacement

law. The total energy radiated by a blackbody per second per unit area, j∗ is given

by the Stefan-Boltzmann law,

j∗ = σT 4 , (1.4)

This defines the width of the peak of the blackbody curve.

The dust in a protoplanetary disc can be studied by looking at its infrared SED.

It classifies objects by looking at the slope of the SED at wavelengths longer than
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Figure 1.3: Plank’s law for temperatures of 5000K, 500K and 50K. The emission

at high frequencies is described by Wien’s approximation whilst the Rayleigh Jeans

law describes the emission at low frequencies.

2µm (Lada 1987). YSO’s emit UV radiation which may be absorbed by the dust

in a protoplanetary disc. The dust then re-emits this light at longer wavelengths

(Mendoza V. 1968). A detection of an infrared excess compared to the infrared

emission from the star alone could be indicative of a protoplanetary disc.

Different physical regions in a protoplanetary disc are probed by different wave-

length regimes, each of which affect different regions of the SED (see Figure 1.4).

The hottest region of a protoplanetary disc is the inner region, closest to the YSO.

The dust absorbs UV radiation and re-emits the light with wavelengths between 1

and 10 µm. This region of the disc can reach temperatures up to approximately

1500K.

The surface of a disc contains warm dust with approximate temperatures of 100-

500 K. The dust absorbs radiation from the YSO and emits thermal radiation with

9
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Figure 1.4: SED of a protoplanetary disc and the origin of various components.

(Dullemond et al. 2007).

a wavelength range of 10− 100µm. The layers of dust below the surface will not be

heated by the UV radiation, instead they absorb and re-emit the radiation emitted

by the layers above (Adams et al. 1987, Kenyon & Hartmann 1987, Calvet et al. 1991,

Malbet & Bertout 1991, Chiang & Goldreich 1997). Therefore the temperature of

the dust grains decreases towards the midplane of a protoplanetary disc. The dust

in the midplane has temperatures < 50K and can be probed by sub-mm and mm

observations.

The midplane of a protoplanetary disc contains most of the mass of the dust,

and therefore is the best place to study the evolution of planet formation. The size

distribution of the grains can be deduced by looking at the slope of the SED at

millimetre wavelengths where Fν ∝ να, with α = 2 + β. Draine (2006) showed that
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a spectral index of 2.0 < α < 3.0 at mm-cm wavelengths is indicative of particles

approximately three times the observing wavelength. Whereas a spectral index of

−0.1 < α < 1.0 is indicative of stellar winds and jets. A high spectral index of

3.5 < α < 4.0 is due to grains of dust that have truncated at small sizes.

The flux density, Fν emitted by the dust can be estimated using Equation 1.5:

Fν =
mdκd(ν)Bν(T )

D2
, (1.5)

where D is the distance to the star, md is the mass of the dust, Bν(T ) is the

blackbody intensity (Equation 1.2) and κd(ν) is known as the dust mass opacity

coefficient (Hildebrand 1983). κd(ν) is given by:

κd(ν) =
3Qν

4aρd
, (1.6)

where Qν is the emission coefficient of the dust, a is the radius of a grain of dust

and ρd is the density within a single dust grain.
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Radio Interferometry and

e-MERLIN

2.1 Introduction to Radio Interferometry

The angular resolution of a telescope, ϑ, is given by the Rayleigh criterion (Rayleigh

1879):

ϑ = 1.22
λ

D
, (2.1)

where λ is the operating wavelength of the telescope and D is the size of the aperture.

In order to study small scale structures, such as protoplanetary discs, resolutions

of approximately ϑ ≤ 0.1 arcsec are needed. At cm wavelengths, this requires km

sized apertures, which is infeasible. In order to reach these small angular scales an

interferometer can be used.

A radio interferometer is a collection of small radio telescopes that work together;

combining the signal they each receive to simulate a large single radio telescope dish.

The limiting factor for resolution in an interferometer is the maximum separation

between the telescopes, b. This is known as the baseline length.

12
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Figure 2.1: The relationship between the image plane and the (u,v) plane is shown

here. s is a unit vector in the direction of the object. b is the baseline length between

two telescopes of the array.

The antennae in the array cannot be placed closer than their physical sizes

will allow. Therefore, there is a minimum baseline, bmin, that causes a minimum

resolution to be observed. This is known as the zero spacing problem. Structures

larger than this resolution will not be resolved.

A different frame of reference is used in radio astronomy to view objects on the

night sky (Figure 2.1). An antenna in an interferometer that is observing an object

with right ascension, x and declination y, will point to the object in the direction

given by s. u and v represent the east-west and north-south components of the

interferometer’s projected baseline onto the plane of the sky.

An object being observed by a radio interferometer in the direction s will have an

intensity I(s) on the night sky. An interferometer measures the Fourier transform

of this intensity pattern. For any given observation, a wavefront from the source

13
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will not usually arrive at each antenna simultaneously.

To ensure that the signals received by each antenna due to the same wavefront are

added correctly, a geometric delay is added to each antenna’s signal. The geometric

delay between antennae receiving the wavefront from the source is given by

τg =
b · s
c

, (2.2)

where c is the speed of light and s is a unit vector in the direction of the object

(Burke & Graham-Smith 1997). The correlator does not receive the signals from

each antenna at the same time, therefore there is an instrumental delay, τi, that is

also applied to each antenna.

For a two element array, the signals received by each antenna are outputted as

voltages where:

V1 ∝ v1cos[2πν(t− τg)] + isin[2πν(t− τg)] , (2.3)

V2 ∝ v2cos[2πνt] + isin[2πνt] , (2.4)

where v1 and v2 are the voltage amplitudes, τg is the geometric delay, and ν is the

frequency of the observations (Rohlfs & Wilson 2000).

The voltage outputs are then passed through a correlator where they are cross-

multiplied and time averaged giving:

Rc ∝
v1v2

2
cos[2πντg] + isin[2πντg] , (2.5)

For a source of intensity I(s) observed using antennae of collecting area A(s),

the output of the correlator is given by

R = A(s)I(s){cos[2πντ ] + isin[2πντ ]}dsdν , (2.6)
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where τ is the difference between the geometric and instrumental delays (Rohlfs &

Wilson 2000). Integrating over s, the total response of the correlator is given by:

R =

∫∫
s

A(s)I(s){cos[2πντ ] + isin[2πντ ]}dsdν , (2.7)

When making an observation with an interferometer, the field of view is centred

on the position s0. This is called the phase tracking centre (Thompson 1989) and is

given by:

s = s0 + σ , (2.8)

Substituting Equation 2.8 into Equation 2.7 and replacing τg with Equation 2.2

yields:

R = exp
[
i2πν

(b · s0

c
− τi

)]
dν

∫∫
s

A(σ)I(σ)exp
[
i2πν

(b · σ
c

)]
dσ , (2.9)

where the integral in Equation 2.9 is known as the visibility function, V (Rohlfs &

Wilson 2000).

The van Cittert-Zernike theorem (van Cittert 1934, Zernike 1938) relates the

visibility function measured in (u, v) space to the intensity distribution.

V (u, v) =

∫ ∫
I(x, y)e−2πi(ux+vy)dxdy , (2.10)

where I(x, y) is the intensity distribution. Therefore, the visibility that an interfer-

ometer measures is the Fourier transform of the intensity distribution on the sky.

Not all regions of the focal plane will be used when making observations using

an interferometer. Baselines between antennae are fixed due to an interferometer

being made of individual antennae. This causes the (u, v) plane to only be partially

sampled. In order to produce an image with as few artefacts as possible, a well
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sampled (u, v) plane is needed. If there are N antennae in an array, the number of

available baselines is given by:

Nb =
1

2
N(N − 1) , (2.11)

In order to increase the (u, v) plane coverage and number of baselines, either more

antennas are needed or the antennas can be moved periodically as the observations

are made. As well as this, as the Earth rotates more regions of the focal plane are

used. Therefore, longer observing times will ensure that the (u, v) plane is better

sampled. The process of trying to fill the (u, v) plane is known as aperture synthesis.

The visibility is sampled at discrete points on the (u, v) plane. The sampling

function, S(u, v), is described by a delta function that gives unity to all the sampled

positions in the (u, v) plane and zero to everything else. The initial image that is

produced after an observation is known as the dirty image and is given by:

ID(x, y) =

∫ ∫
V (u, v) · S(u, v)e2πi(ux+vy)dudv , (2.12)

where V (u, v) is the complex visibility and S(u, v) is the sampling function (Clark

1989). The convolution theorem states that the product of two Fourier transforms

is equal to the Fourier transform of their convolution. Therefore, the dirty image

can also be expressed as:

ID(x, y) = S(x, y) ~ I(x, y) , (2.13)

where S(x, y) is the Fourier transform of the sampling function and is given by:

S(x, y) =

∫ ∫
S(u, v)e2πi(ux+vy)dudv , (2.14)

This is known as the point spread function or dirty beam (Clark 1989). In order to

obtain the intensity distribution, I(x, y), the dirty beam needs to be deconvolved

from the dirty image.
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2.2 Calibrating Radio Interferometric Data

Each telescope in an interferometer responds differently to the incoming signals from

the astronomical source. This is due to the variation in each telescope’s size as well

as their individual efficiencies. As well as this, the atmosphere will affect the signals

reaching the antennae. In order to improve the fidelity of the final image, the data

needs to be calibrated. Calibrating radio interferometric data involves:

• Initial calibration

• Delay calibration

• Bandpass calibration

• Flux calibration

• Gain calibration

Initial calibration involves removing the first few seconds of data from each tele-

scope. This is done to remove systematic errors that occur during the initial stage of

the observation. This process is known as “quacking”. The data are also inspected to

find any obvious bad data. This could be caused by errors in an individual antenna

or a particular baseline. If an individual antenna was responsible for the majority

of the bad data it should be deleted. However this will reduce the sensitivity of the

observation.

Inaccuracies in the position of the telescopes will cause the phase to vary as

a function of frequency. This will affect the accuracy of the sky representation.

Delay calibration can be applied to accurately determine the phase as a function of

frequency.

Each antenna has a unique phase and amplitude response to the incoming signal.

Bandpass calibration can be conducted to correct any errors that the amplitude and
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phase have as a function of frequency. The bandpass and delay calibrations can both

be done using a point source with a high brightness. It will need to be observed

for a short period of time in order to determine the relationship between phase and

frequency.

Flux Calibration is required to scale the amplitudes correctly and convert the

the signal to conventional units such as Janskys (1Jy = 10−26Wm−2Hz−1). A bright

source with a known flux density is observed when making flux calibrations.

Gain calibration is performed to correct the time dependent phase and amplitude

data which have been affected by the atmosphere or the instruments. A source

that is close to the target source, has a known structure and a moderately strong

intensity can be used for this calibration. Examples include quasars and planets.

Observations need to be conducted frequently to find the atmospheric phase change

to the line of sight of the target.

All sources used for the calibrations need to be close to the target object. This

is because the antenna response may be affected by several factors such as opacity

of the atmosphere and aperture illumination.

From Equation 2.14 we saw that in order to obtain the true sky brightness,

the dirty beam needs to be deconvolved from the dirty image. This deconvolution

can be done using the CLEAN algorithm proposed in 1974 (Högbom 1974). This

algorithm assumes the sky is made up of a series of point sources. It iteratively finds

the position and strength of these sources and removes them until a set threshold is

reached. The final image produced will be a sum of the “CLEANED” sources and

a “CLEANED” beam.
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Table 2.1: e-MERLIN capabilities in the C band (Garrington et al. 2004)

C Band (4-8 GHz)

Resolution (mas) 40

Field of View (arcmin) 7

Bandwidth (GHz) 2

Sensitivity in a full imaging run (µJy/Bm) 1.8-2.3

2.3 e-MERLIN

The observations used in this thesis were taken with the extended Multi-Element

Radio Linked Interferometer Network (e-MERLIN). This is an array of seven tele-

scopes situated across England (Figure 2.2), with the central correlator situated

at the Jodrell Bank Observatory. The array includes the Lovell and Mark II tele-

scopes at the Jodrell Bank Observatory, and radio telescopes in Defford, Knockin,

Pickmere, Darnhall and Cambridge.

The interferometer is capable of conducting astrometric, polarimetric and spec-

troscopic observations. It has a resolution of 10 − 150 milliarcsec (mas) and a

sensitivity of approximately 1 µJy. e-MERLIN operates at three observing bands;

1.3 - 1.8 GHz, 4-8 GHz and 22-24 GHz (L,C and K bands respectively). Continuum

observations for this thesis were conducted in the C band and the capabilities of

e-MERLIN at this band can be found in Table 2.1.

The observations in this thesis were conducted as part of the Planet Earth

Building-Blocks - a Legacy e-MERLIN Survey (PEBBLeS). It plans to image the

discs around nineteen young stellar objects with the aim of detecting cm emission.

This thesis will focus on the YSO DG Tau B.
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Figure 2.2: The interferometer e-MERLIN consists of seven telescopes situated

across England.
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2.4 EVLA

Observations for this thesis have also been taken with the Expanded Very Large

Array (EVLA). The EVLA is an interferometer situated at the National Radio As-

tronomy Observatory in New Mexico, America. It is comprised of twenty seven radio

antennae, each with a diameter of 25m. The antennae are positioned in a Y-shaped

configuration (see Figure 2.3). The location of each antenna can be altered in order

to increase or decrease the maximum baseline; this will depend on the resolution

needed for the observations. There are four possible configurations of the EVLA;

A,B,C and D. The A configuration of the EVLA has the longest maximum baseline

at 36.4Km, whilst the D configuration has the shortest at 1.03Km. Therefore, the

EVLA in the D configuration is able to resolve structures of a larger angular scale

than the A configuration.

The interferometer is capable of astrometric, polarimetric and spectroscopic ob-

servations and has a sensitivity of ≈ 1µ Jy in a 9hr observation. The EVLA can

operate at eight different frequency bands, ranging from the L band at 1.0-2.0GHz

to the Q band at 40.0-50.0GHz. Observations for this thesis were conducted us-

ing the Ka band in the D configuration. The capabilities of the EVLA during the

observation can be found in Table 2.2.

The observations conducted in this thesis were part of the Disks@EVLA project

(https://safe.nrao.edu/evla/disks/). This project aims to investigate millime-

tre and centimetre emission from large dust grains in the discs surrounding sixty six

pre-main sequence stars.

21

https://safe.nrao.edu/evla/disks/


CHAPTER 2

Figure 2.3: The EVLA interferometric array consists of twenty seven telescopes

in a Y-shaped configuration. Each telescope is 25 m in diameter. Image from

NRAO/AUI.

Table 2.2: EVLA capabilities in the Ka band (Perley et al. 2011)

Ka Band

Frequency Range (GHz) 26.5-40.0

Bandwidth (GHz) 8

Sensitivity (1σ/hr) (µJy/Bm) 3.2

D Configuration

Maximum Baseline Separation (km) 1.03

Minimum Baseline Separation (km) 0.035

22



Chapter 3

A cm Study of DG Tau B

3.1 Previous Studies of DG Tau B

This thesis will focus on the disc surrounding the young stellar object DG Tau B,

located 150pc away in the constellation of Taurus. The spectral energy distribution

of DG Tau B has previously been studied and it was found to be a Class I young

stellar object (Watson et al. 2004, Luhman et al. 2010). The SED of DG Tau B

has been modelled using a 0.5M�, 2.5R� star at 4000K (Gramajo et al. 2010). It

is located approximately 1′ SW from the classical T Tauri star DG Tau A (Jones

& Cohen 1986, Eislöffel & Mundt 1998, Torres et al. 2009, Luhman et al. 2010,

Rodŕıguez, Dzib, Loinard, Zapata, Raga, Cantó & Riera 2012). It is suspected that

the two pre main sequence stars are unrelated except by projected proximity (Jones

& Cohen 1986).

Mundt & Fried (1983) first detected the Herbig Haro jet powered by DG Tau B

and named it HH159. This is an asymmetric bipolar jet that has been imaged at

optical and infrared wavelengths (Eislöffel & Mundt 1998, Stapelfeldt et al. 1997).

The red optical lobe of the jet has a chain of bright knots that extend 55′′ to the

NW of DG Tau B. The blue lobe is less collimated and fainter and only extends 10′′

to the SE (Mundt et al. 1991, Eislöffel & Mundt 1998).
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DG Tau B also features a 12CO(3−2) molecular outflow first detected by Mitchell

et al. (1994). They report the outflow being spatially aligned to the jet as well as

the momentum transport rates of the jet and outflow being similar. They conclude

that the molecular outflow is formed by ambient gas being swept up by the fast

collimated jet. The redshifted CO emission extends approximately 40′′ NW from

DG Tau B, whilst the blueshifted emission only extends approximately 3′′ (Mitchell

et al. 1997).

Perpendicular to the jet and molecular outflow of DG Tau B is a circumstellar

disc (Stapelfeldt et al. 1997, Padgett et al. 1999). The disc is close to edge on

at 64 ± 2◦ (Guilloteau et al. 2011) and at optical wavelengths it is optically thick

(Stapelfeldt et al. 1997).

Zapata et al. (2015) conducted 12CO(2 − 1) line and 1.3mm continuum obser-

vations of DG Tau B with the Submillimetre Array (SMA) (see Figure 3.1). The

redshifted NW molecular outflow detected by Mitchell et al. (1994) can be seen as

well as its distinctive ‘V’ shaped morphology. Hubble Space Telescope (HST) mea-

surements by Stapelfeldt et al. (1997) at ≈800 nm and ≈670 nm have been overlaid

on this image and show the SE component of the jet from DG Tau B. The SMA

1.3mm continuum observations have detected the circumstellar disc surrounding DG

Tau B, previously detected lying perpendicular to the jet and outflow (Stapelfeldt

et al. 1997, Padgett et al. 1999). The contours range in steps of 15% from 25% to

85% of the peak emission.

3.2 New data : Observations with e-MERLIN

Observations of DG Tau B were taken with e-MERLIN in 2014 and 2016; at 6.48GHZ

(4.63cm) and 7.25GHz (4.14cm) respectively. The data were calibrated following the

processes outlined in Section 2.2. The data were then deconvolved using CLEAN in

the Common Astronomy Software Applications (CASA) package.
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Figure 3.1: SMA observations at 1.3mm by Zapata et al. (2015) show the disc of DG

Tau B (contour). The peak continuum emission is 0.31 Jy beam−1 and the contours

range in steps of 15% from 25% to 85% of the peak emission. SMA 12CO emission

of the molecular outflow (red) traces the DG Tau B jet. C1 and C2 indicate where

position-velocity measurements were made by Zapata et al. (2015). Observations

taken using the HST Wide-Field Planetary Camera 2 conducted by Stapelfeldt et al.

(1997) are also shown. Observations were taken at ≈ 800nm (blue) and ≈ 670nm

(green).
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Data taken with the Jodrell Bank Lovell Telescope were not included in the

final observations. During the “quacking” stages of calibration, (see Section 2.2), a

significant amount of the data from the start of the observation contained systematic

errors. There were also many outliers in the amplitude and phase plots produced

during the bandpass calibration staged. Therefore, the observations taken with the

Lovell Telescope were removed; this reduced the sensitivity of the observations.

The final cleaned images are shown in Figures 3.2a and 3.2b. The beam for each

observation is shown in the lower left corner. Residuals from the cleaning process can

be seen in both observations, although they are more prominent in the 2016 epoch

than the 2014. The 2014 data still contain some artefacts. However, attempts to

remove them significantly affected the quality of the observation of DG Tau B. An

elongated structure can be seen in both observations, with the NW component being

more prominent in the 2014 epoch than the 2016. Comparing Figures 3.2a and 3.2b

to the observation made by Zapata et al. (2015), the orientation of the structure

appears to be in the same direction as the DG Tau B jet and molecular outflow.

Two-dimensional elliptical Gaussian components were fit to DG Tau B in each

epoch to determine parameters of the system. This was done in CASA using imfit.

We found that DG Tau B had a position of αJ2000.0 = +04h27m02.574s ± 0.001s,

δJ2000.0 = +26◦05′30.274′′ ± 0.004′′ in 2014 and αJ2000.0 = +04h27m02.576s ± 0.001s,

δJ2000.0 = +26◦05′30.211′′ ± 0.005′′ in 2016. DG Tau B appears to have moved

between the two epochs which could be due the proper motion of the system.

We found that the flux density and peak intensity values of DG Tau B are

204 ± 26µJy and 98.4 ± 8.8µJy beam−1 respectively in 2014 and 158 ± 23µJy and

121 ± 11µJy beam−1 in 2016. We also find from this fit that the source has a

deconvolved size of 133×74 ± 27×18 mas with a position angle of 106±18◦ in 2014.

In 2016, the source has a deconvolved size of 153×83 ± 32×11 mas with a position

angle of 130±8◦. Table 3.1 outlines the parameters found from the Gaussian fit.
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(a) DG Tau B taken with e-MERLIN in 2014 at 6.48GHZ. The beam, shown

in the lower left, is 0.12× 0.08′′ with a position angle of −69.9◦

(b) DG Tau B taken with e-MERLIN in 2016 at 7.25GHZ. The beam, shown

in the lower left, is 0.12× 0.08′′ with a position angle of −68.0◦

Figure 3.2: e-MERLIN Observations of DG Tau B taken in 2014 (top) and 2016

(bottom).
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Table 3.1: Parameters of DG Tau B found by fitting elliptical Gaussians to the data.

Parameter 2014 2016

RA (J2000) 04h27m(s) 02.574± 0.001 02.576± 0.001

Dec (J2000) +26◦05′(′′) 30.274± 0.004 30.211± 0.005

Deconvolved Major Size (mas) 133± 27 153± 32

Deconvolved Minor Size (mas) 74± 18 83± 11

Position Angle (◦) 106± 18 130± 8

Integrated Flux (µJy) 204± 26 158± 23

Peak Flux (µJy beam−1) 98.4± 8.8 121± 11

Frequency (GHz) 6.48 7.25

3.3 Spectral Energy Distribution

Previous observations of DG Tau B have been conducted at near-infrared, submil-

limetre and centimetre wavelengths (see references in Table 3.2). The flux densities

of DG Tau B detected in these previous studies as well as in this work are outlined

in Table 3.2.

An SED of DG Tau B was plotted (see Figure 3.3) using the data in Table 3.2.

The dust in the disc may not perfectly absorb all incident radiation and therefore

acts like a modified blackbody (or a greybody). Equation 1.5 outlined in Section

1.3 describes the flux density emitted by a modified blackbody. This equation as

well as the Python curve-fitting routine LMFIT were used to fit a greybody curve

on the SED.

Following Rodŕıguez, Dzib, Loinard, Zapata, Raga, Cantó & Riera (2012) we

adopted a distance of 150 pc to DG Tau B. This distance is based on parallax

measurements to both the L1495 region (131.5 pc; Torres et al. 2007, 2012) and HP
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Table 3.2: Flux values from previous observations of DG Tau B used in the SED.

Frequency (GHz) Wavelength (mm) Flux (mJy) Detector References

245731.50 0.001 1.95 ± 0.19 2MASS (1)

183921.80 0.002 5.91 ± 0.59 2MASS (1)

136891.50 0.002 14.24 ± 1.42 2MASS (1)

83275.70 0.004 90.62 ± 5.00 IRAC (2)

66620.50 0.005 287.88 ± 15.88 IRAC (2)

51688.40 0.006 571.47 ± 21.04 IRAC (2)

37474.10 0.008 830.28 ± 22.93 IRAC (2)

12491.40 0.024 4641.7 ± 99.2 MIPS (1)

4284.75 0.070 7836.0 ± 783.6 MIPS (1)

230.61 1.300 531.4 ± 0 IRAM (3)

111.03 2.700 83.6 ± 12.4 IRAM (3)

42.83 7.000 3.57 ± 0.29 VLA (4)

34.00 8.817 1.63 ± 0.087 EVLA (5)

23.06 13.000 1.23 ± 0.03 VLA (4)

17.63 17.004 0.735 ± 0.078 AMI-LA (6)

16.87 17.771 0.645 ± 0.060 AMI-LA (6)

16.12 18.598 0.595 ± 0.052 AMI-LA (6)

15.37 19.505 0.555 ± 0.045 AMI-LA (6)

14.99 20.000 0.80 ± 0.13 VLA (4)

14.62 20.505 0.523 ± 0.049 AMI-LA (6)

8.57 35.000 0.36 ± 0.02 VLA (7)

8.33 36.000 0.46 ± 0.05 VLA (4)

7.25 41.344 0.158 ± 0.023 e-MERLIN (5)

6.48 46.276 0.204 ± 0.026 e-MERLIN (5)

4.67 61.95 0.150 ± 0.063 e-MERLIN (8)

References. (1) Robitaille et al. (2007), (2) Hartmann et al. (2005), (3) Guilloteau et al. (2011),

(4) Rodmann et al. (2006), (5) This work, (6) AMI Consortium et al. (2012), (7) Rodŕıguez, Dzib,

Loinard, Zapata, Raga, Cantó & Riera (2012), (8) Ainsworth et al. (2013)
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Tau (161 pc; Torres et al. 2009). Following Beckwith et al. (1990) and assuming

a gas-to-dust ratio of 100 : 1, the mass opacity coefficient, κd(ν), was determined

using:

κd(ν) = 0.1

{
ν

νcentral

}βdisc

cm2g−1 , (3.1)

where νcentral = 1012Hz. Previous observations of protoplanetary discs have deter-

mined their opacity spectral indices βdisc ≈ 1 (Beckwith & Sargent 1991, Andrews &

Williams 2005), therefore βdisc in the equation above was fixed at this value. There

is still some debate in regards to the true value of β for protoplanetary discs; this

will be discussed in Chapter 5.

A modified blackbody was fit to the emission from DG Tau B using a temperature

of T=9.6± 0.6K and a mass of M=0.30± 0.03M�. The emission from DG Tau B at

wavelengths smaller than submillimetre can be attributed to hotter dust closer to

the central YSO (Dullemond et al. 2007), as well as the emission from DG Tau B.

This project is only interested in the cold dust in the protoplanetary disc. The dust

emits radiation at mm and cm wavelengths, therefore the SED was only modelled

at long wavelengths.

An excess of emission can be seen at radio frequencies in the SED. This excess

radiation could be due to thermal emission emitted by cm sized dust grains in the

disc surrounding DG Tau B or non-thermal emission emitted by the DG Tau B jet.

The excess emission could also be attributed to photoevaporative winds; formed

when gas in the protoplanetary disc is heated and accelerated to thermal escape

velocities. The radio excess was fit using a power law and the slope of the SED,

i.e. the spectral index α, at cm wavelengths was calculated in order to determine

the grain size distribution. The gradient of the radio excess was calculated to be

α = 1.4 ± 0.2. The radio excess is a combination of free-free/synchrotron emission

(αfree−free/sync = 0.3 ± 0.2) and thermal greybody radio (αgreybody = 3.0 ± 0.1).
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Following Draine (2006) where a spectral index of 2.0< α <3.0 is indicative of large

dust grains and a spectral index of -0.1< α <1.0 can be attributed to stellar winds

and jets, we suspect that we have detected the DG Tau B jet rather than the disc.

Analysis of the e-MERLIN observations were then conducted in order to confirm

this.

3.4 Cross Cut Analysis

The e-MERLIN observations were studied in order to determine if the DG Tau B

disc and/or jet had resolved. The full width half maximum of the DG Tau B at both

epochs were found. This was done by fitting 2D Gaussian models to the observations,

using the IDL routine MPFIT2DPEAK. The results from the Gaussian models can

be found in Table 3.3.

The major axis is aligned parallel to the elongated structure of DG Tau B.

Comparing our observations to those made by Zapata et al. (2015), we assume that

the major axis lies in the direction of the jet of DG Tau B. The angle of the major

axis from the x-axis has changed between the two epochs. This may imply that the

jet of DG Tau B is either precessing or it may be an effect of the proper motion of

the source. The proper motion of DG Tau B will be studied in Chapter 5.

In order to improve the signal to noise of the morphological structure of the DG

Tau B disc, the two epochs of e-MERLIN data were combined. The position of

DG Tau B has changed between the two observations (see Table 3.1), therefore the

two epochs were first aligned in CASA. The separation between the co-ordinates

of the peak emission in each epoch were found. This was added onto the reference

co-ordinate of the 2016 data to align the 2016 data with the 2014. The 2016 epoch

was aligned to the 2014 as the latter had better signal to noise.

The 2016 observation was then rotated in order to align the jet of DG Tau B

in both epochs. The extent to which the jet has rotated was found by finding the
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Table 3.3: Parameters of DG Tau B found by fitting 2D Gaussian models to the two

epochs of data. The angle of the major axis is measured anticlockwise from north.

Epoch

FWHM of

Major Axis

(mas)

FWHM of

Minor Axis

(mas)

Angle of Major

Axis (◦)

2014 156.7 ± 4.2 96.9 ± 2.6 112.7 ± 4.6

2016 140.0 ± 5.0 103.2 ± 2.5 131.6 ± 3.4

Combined 164.7 ± 7.3 90.5 ± 3.6 114.0 ± 5.2
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difference between the angle of the major axis in both epochs. The 2016 observa-

tion was rotated by 18.9◦ to ensure the jet was aligned in both epochs. The two

observations were then added and averaged to produce Figure 3.4.

The elongated structure is still visible in the combined image and there appears

to be no improvement to the structure perpendicular to this. In order to determine

if combining the observations resolved the disc and/or jet of DG Tau B or not, the

FWHM of the emission both parallel and perpendicular to the disc was determined.

This was done by fitting 2D Gaussian models to the combined image. The results

from the model are given in Table 3.3.

The emission parallel and perpendicular to the major axis of the Gaussian fit was

studied in order to determine whether the disc and jet of DG Tau B were resolved.

The peak of the emission was assumed to be the position of DG Tau B. The emission

from DG Tau B in 2014 was studied at angles of 112.7◦ and 22.7◦. The emission

in the 2016 epoch was studied at angles of 131.6◦ and 41.6◦. The emission from

the combined image was studied at angles of 114.0◦ and 24.0◦. These angles were

measured anticlockwise from north.

The emission was normalised to the peak intensity and each cross cut was fit

with a Gaussian using the IDL routine mpfitpeak. The cross cuts for each epoch, as

well as the combined observation are shown in Figures 3.5, 3.6 and 3.7. Cross cuts of

the beam were also taken to determine the beam width parallel and perpendicular

to the long axis of the source as well as the position angle. The results of these cross

cuts for each observation can be found in Table 3.4. The beam widths were plotted

onto the cross cuts of the emission of DG Tau B.

The FWHM of the emission along the minor axis of DG Tau B, as seen in Figure

3.5a, in 2014 is comparable with the size of the beam. Therefore, the structure

is unresolved in this direction. The emission perpendicular to this has also been

studied in Figure 3.5b. The emission along the major axis has a larger FWHM
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Figure 3.4: Image of DG Tau B made by combining and averaging the data from the

2014 and 2016 epoch. The observations were first aligned by assuming the position

of the peak is due to DG Tau B. The 2016 epoch was then rotated to ensure the jet

of DG Tau B was aligned in both epochs.

Table 3.4: Parameters of the beam in each epoch

Epoch
Beam Major

(mas)

Beam Minor

(mas)

Beam Position

Angle (◦)

2014 119.5 76.7 70.0

2016 120.0 80.0 68.0

Combined 119.8 78.4 70.0
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than the size of the beam. Therefore, the structure along the major axis has been

resolved.

The emission along the minor axis of the Gaussian fit in the 2016 epoch appears

to have a slightly larger FWHM than that of the beam. Therefore, the emission

that has been studied in Figure 3.6a is slightly resolved. The major axis which lies

parallel to the direction of the DG Tau B jet has been studied in Figure 3.6b and

the FWHM of the emission is larger than the beam. Therefore, the emission along

both the major and minor axis of the Gaussian fit has been resolved in the 2016

epoch.

The cross cuts from the combined observation bare similar results to that of

the 2016 e-MERLIN observation. The emission along the minor axis (Figure 3.7a)

is only slightly resolved compared to the size of the beam. Whereas the emission

that lies along the major axis is resolved (Figure 3.7b). Therefore, we conclude that

the emission along the minor axis has only slightly been resolved with e-MERLIN,

whilst the emission along the major axis has been resolved.
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A mm Study of DG Tau B

4.1 New Data : Observations with the EVLA

Observations of DG Tau B were conducted using the EVLA in 2010 at a frequency of

34.0 GHz (8.8 mm). The data were calibrated using CASA and a modified version of

the EVLA calibration pipeline (see https://science.nrao.edu/facilities/vla/

data-processing/pipeline). The pipeline performs basic flagging and calibration

following the processes outlined in Section 2.2 .

The disc surrounding DG Tau B is unresolved at cm wavelengths and no cm

size dust has been detected. A resolved disc at mm wavelengths would allow us to

determine the upper limit on the grain size distribution in the disc surrounding DG

Tau B.

The observation of DG Tau B can be seen in Figure 4.1. The beam for the

observation is shown in the lower left and is 0.08×0.07” with a position angle of

-73.0◦. The beam used in the EVLA observation is a near circular beam, whereas

the e-MERLIN observations were taken using an elliptical beam. The position of

DG Tau B lay nearly directly overhead during the EVLA observation which resulted

in a near circular beam. Whereas, the position of DG Tau B during the e-MERLIN

observation lay closer to the horizon. There are also significantly less residuals from

40
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Figure 4.1: Observation of DG Tau B taken with the EVLA in 2010. The observa-

tions were taken at a frequency of 34.0 GHz (8.8 mm). The beam, in the lower left,

is 0.08× 0.07′′ with a position angle of −73.0◦.

the cleaning processes in the EVLA data than the e-MERLIN.

An elongated structure can be seen in the EVLA observation extending from NE

to SW. The elongated structure in the EVLA observation lies perpendicular to the

structure seen in the e-MERLIN observation. Following our assumption in Section

3.4 that the jet lies parallel to the major axis in the e-MERLIN observation, we

assume that the elongated structure seen in Figure 4.1 is the protoplanetary disc

surrounding DG Tau B.

The EVLA observations were studied following the method outlined in Section

3.2. A two-dimensional elliptical Gaussian was fit to DG Tau B to determine various

parameters of the system. This was done using imfit in CASA. The results from

this fit can be found in Table 4.1. At this epoch we found the position of DG Tau
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Table 4.1: Parameters of DG Tau B found by fitting elliptical Gaussians to the

EVLA data.

Parameter 2010

RA (J2000) +04h27m(s) 02.5724± 0.0001

Dec (J2000) +26◦05′(′′) 30.293± 0.002

Deconvolved Major Size (mas) 113.0± 7.0

Deconvolved Minor Size (mas) 71.4± 6.4

Position Angle (◦) 25.5± 6.8

Integrated Flux (mJy) 1.63± 0.09

Peak Flux (µJy beam−1) 643± 25

Frequency (GHz) 34.0

B to be αJ2000.0 = +04h27m02.5724s ± 0.0001s, δJ2000.0 = +26◦05′30.293′′ ± 0.002′′.

The EVLA observations were conducted four years prior to the first e-MERLIN

observation and the position of DG Tau B has changed between the two epochs.

This could be due to the proper motion of the system.

An integrated flux density and peak flux of DG Tau B were found to be 1.63±0.09 mJy

and 643±25µ Jybeam−1 respectively. The integrated flux was measured over the de-

convolved size of DG Tau B which was determined to be 113.0×71.4±7.0×6.4 mas

with a a position angle of 25.5± 6.8◦. Therefore, at the distance of the DG Tau B

(150pc), we find the size of the continuum source to be ≈ 17× 11± 1× 1 AU. The

integrated flux value was included in the SED of DG Tau B shown in Figure 3.3.
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4.2 Cross Cut Analysis

Analysis of the emission of DG Tau B observed with the EVLA data was conducted

following the method outlined in Section 3.4. The FWHM along the major and

minor axis was first found. This was done by fitting 2D Gauusian models to the

observations. The parameters from the model can be found in Table 4.2. The major

axis of the Gaussian fit has a FWHM of 100.0 ± 0.6 mas whilst the minor axis has

a FWHM of 78.8 ± 0.5 mas.

The major axis is aligned parallel to the elongated structure seen in the EVLA

observation. The major axis has an angle of 28.4 ± 2.0◦ measured anticlockwise

from north. Assuming that the disc is aligned to the major axis and the jet lies

perpendicular to this, the jet is 118.4±0.8◦ measured anticlockwise from north. This

agrees with the change in jet angle found in the e-MERLIN data and further implies

that either the jet is precessing, or it is an effect of the proper motion of the system.

The emission along the major and minor axis of the Gaussian model of DG Tau

B was studied. This was done in order to determine if the DG Tau B disc and jet

had been resolved or not. The location of the peak intensity was taken to be the

position of DG Tau B. The emission from the EVLA observation of DG Tau B was

studied at angles of 28.4◦ and 118.4◦, measured anticlockwise from north.

The emission was normalised to the peak intensity and each cross cut was fit

with a Gaussian using the IDL routine mpfitpeak. The cross cuts along the major

and minor axis are show in Figures 4.2a and 4.2b respectively. Cross cuts of the

beam were also taken to determine the beam width parallel and perpendicular to

the long axis of the source as well as the position angle. The beam of the EVLA

observation has a size of 80×70 mas with a position angle of -73◦. The beam was

plotted onto the cross cuts of DG Tau B in order to determine if the emission has

been resolved or not.

The FWHM of the emission along the major axis of DG Tau B, as seen in Figure
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4.2a, is larger than the size of the beam. Therefore, the structure is resolved in this

direction. Perpendicular to this, the FWHM of the minor axis is comparable to the

size of the beam. This can be seen in Figure 4.2b. Following our assumption that

the disc lies parallel to the major axis in the EVLA data, we conclude that we have

resolved the disc of DG Tau B at mm wavelengths but not the jet.
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Table 4.2: Parameters of DG Tau B found by fitting a 2D Gaussian model to the

EVLA data. The angle of the major axis is measured anticlockwise from north.

Epoch

FWHM of

Major Axis

(mas)

FWHM of

Minor Axis

(mas)

Angle of Major

Axis (◦)

2010 100.0 ± 0.6 78.8 ± 0.5 28.4 ± 2.0
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Discussion

Observations of the young stellar object DG Tau B were studied in this thesis. Cen-

timetre observations were made using the interferometer e-MERLIN whilst observa-

tions at mm wavelengths were made using the EVLA. The e-MERLIN observations

were taken in 2014 at 6.48GHz (4.63cm) and at 7.25GHz (4.14cm) in 2014. The

EVLA observations were made in 2010 at 30.0GHz (8.8mm).

The observations of DG Tau B are shown in Figures 3.2 and 4.1. The observations

were reduced using CASA following the methods outlined in Section 2.2. Data

from the Lovell Telescope were not included in the final e-MERLIN observations

due to a large quantity of systematic errors in the calibration data. As the Lovell

is the largest telescope in the array, the sensitivity of the final observations were

reduced. Residuals from the e-MERLIN cleaning process can still be seen in the

final observations. Attempts were made to clean the data further, however this

compromised the emission from DG Tau B. There are significantly less residuals

from the cleaning process seen in the EVLA data.

An elongated structure can be seen in both the e-MERLIN and EVLA observa-

tions however, they appear to be perpendicular to each other. The structure in the

e-MERLIN observations extend from the NW to SE whilst the structure observed

with the EVLA extends from the NE to SW.
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The observations conducted in this thesis were compared to observations made by

Zapata et al. (2015) (see Figure 3.1). This was done in order to identify the elongated

structure seen in the three observations. The structure in the e-MERLIN data lies

parallel to the molecular outflow and jet seen by Zapata et al. (2015). Therefore, we

suspect that e-MERLIN has detected the jet and/or molecular outflow of DG Tau

B.

The structure in the EVLA observations lies perpendicular to the structure in

the e-MERLIN observation. We have assumed that protoplanetary discs lie perpen-

dicular to outflows from YSOs such as jets and therefore suspect that the disc of

DG Tau B has been detected using the EVLA. We confirm these results by fitting

cross cuts of the observations in Section 3.4 and 4.2, the results of which shall be

discussed in Section 5.3.

Two-dimensional elliptical Gaussian components were fit to DG Tau B in order to

determine various parameters of the system. This was done for both the e-MERLIN

and EVLA observations. The extent of the emission from DG Tau B was used to

plot a SED, the results from which will be discussed in Section 5.1. The position

of DG Tau B appears to have changed over the three epochs of observation. This

could either be due to its proper motion, or its proximity to the classical T-Tauri

star DG Tau A. This is further discussed in Section 5.5.

5.1 SED Fitting

Previous observations of DG Tau B have been conducted at near-infrared, submil-

limetre and centimetre wavelengths. Observations at mm and cm wavelengths were

carried out in this thesis.

An integrated flux density of 204 ± 26µJy over a deconvolved size of 133×74

± 27×18 mas was detected from DG tau B in 2014. The deconvolved size has a

position angle of 106±18◦. Therefore, at the distance of the DG Tau B (150pc), we
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find the size of the continuum source to be ≈ 20 × 11 ± 4 × 3 AU. An integrated

flux density of 158±23µJy was detected from DG Tau B in 2016 over a deconvolved

size of 153×83 ± 32×11 mas with a position angle of 130±8◦. This corresponds to

a size of ≈ 23× 13± 5× 2 AU.

An integrated flux density of 1.63±0.09 mJy over a deconvolved size of 113.0×71.4

±7.0×6.4mas was detected from DG Tau B at mm wavelengths. The deconvolved

size has a position angle of 25.5±6.8◦. At the distance of the DG Tau B (150pc),

we find the size of the continuum source to be ≈ 17× 11± 1× 1 AU.

The observations were used to plot a spectral energy distribution of DG Tau

B which can be seen in Figure 3.3. In order to model the thermal emission from

the cold dust in the disc, a modified blackbody, described by Equation 1.5, was

used. This allowed us to determine the mass and temperature of the dust in the

disc surrounding DG Tau B.

This thesis is solely focussed on the circumstellar material in the protoplanetary

disc, therefore, observations at wavelengths smaller than 100 microns were not mod-

elled. Thermal emission at these smaller wavelengths is produced by hot dust closer

towards the young stellar object (Dullemond et al. 2007) or from the YSO itself.

To fit the modified blackbody, we have adopted a distance to DG Tau B of 150 pc.

This measurement is based upon previous parallax measurements conducted by

Torres et al. (2007, 2012, 2009). Assuming a gas-to-dust ratio of 100:1, and following

Beckwith et al. (1990), we use Equation 3.1 to determine the mass opacity coefficient,

κd(ν). We adopt a value of β = 1 for the opacity spectral index based upon previous

observations of protoplanetary discs (Beckwith & Sargent 1991, Andrews & Williams

2005).

The disc mass determined by fitting a modified greybody to the SED should

be treated as a lower limit. This is due to a number of errors associated with this

method of determining the disc mass.
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Firstly, DG Tau B is a Class I young stellar object and may still be embedded

inside its infalling envelope. The contribution from dust in the envelope and the

disc are hard to separate, therefore the emission detected from DG Tau B may be

contaminated by emission from the surrounding envelope. This would affect the

modified blackbody used to fit the SED and hence, the determined disc mass.

Secondly, we have assumed that the temperature of the dust grains is uniform

across the disc. However, protoplanetary discs are rarely isothermal as gravitational

instabilities in the disc can vary the local temperature (Evans et al. 2015). A change

in the temperature of the disc results in a change of dust mass calculated using

Equation 1.5. Therefore, by modelling the SED using one temperature, we may be

neglecting some of the hotter dust found in the protoplanetary disc.

One of the biggest areas of uncertainty in the determination of the dust mass

is the mass opacity coefficient. The opacity has a power-law dependence upon

frequency according to κd(ν) ∝ νβ. The value of the opacity spectral index for a

protoplanetary disc, βdisc, is still widely speculated. If we assume that the dust

in a protoplanetary disc is both optically thin and similar to interstellar dust, we

expect values of βdisc ≈ 2 (Draine 2006). However, Beckwith & Sargent (1991) and

Andrews & Williams (2005) both predict βdisc ≈ 1 for protoplanetary discs. βdisc

values of less than one have also been determined and these have been attributed

to grain growth in the disc (Calvet et al. 2002, Testi et al. 2003).

There are a number of reasons as to why the value of βdisc varies across the

literature. Assumptions that protoplanetary discs are optically thin are often made

(including in this thesis). A disc may contain regions that are optically thick, affect-

ing the true value of βdisc. The composition of the dust grains may also affect the

value of βdisc. Spheroids of silicate or graphite will have β ≈ 2 above 100µm whilst

particles in a fractal arrangement have β . 1 beyond 1 mm (Beckwith et al. 1990).

Recent work by Dunham et al. (2014) and Evans et al. (2017) have shown that
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assuming the protoplanetary disc is isothermal and selecting an incorrect value for

βdisc may result in disc mass underestimates by up to factors of 2-3 at millimetre

wavelengths or up to an order of magnitude at smaller wavelengths.

The modified blackbody was fit to the SED using a mass of M = 0.30±0.03M�

and T = 9.6±0.6K respectively. Comparisons of results found in this thesis with

other work shall be discussed in Section 5.2.

There is an excess of radiation seen at radio frequencies on the SED. The excess

emission can be attributed to a number of mechanisms including thermal blackbody

radiation from dust in the disc, free-free and synchrotron emission from the DG

Tau B jet. The excess could also be due to a photoevaporative wind. In order to

determine the source of the excess we calculated its spectral index, α.

The excess radiation at radio frequencies has been fit using a power law. The

spectral index of the DG Tau B radio excess was calculated to be α = 1.4 ± 0.2.

This spectral index is a combination of thermal greybody and free-free/synchrotron

spectral indices. The spectral index due to thermal greybody radiation at radio

wavlengths was found to be αgreybody = 3.0 ± 0.1. The difference between α and

αgreybody is equal to the spectral index of the free-free/synchrotron emission. This

was determined to be αfree−free/sync = 0.3± 0.2.

Draine (2006) showed that a spectral index of 2.0< α <3.0 is indicative of

particles three times their observing wavelength. Dust grains that truncate at small

sizes will have spectral indices of α > 3. There have been a number of studies to

determine the spectral index of the free-free and synchrotron emission produced by

stellar winds and jets (Panagia & Felli 1975, Olnon 1975, Wright & Barlow 1975

Reynolds 1986), and a spectral index range of -0.1< α <1.0 was found.

The spectral index we have determined for DG Tau B agrees with the spectral

index values attributed to free-free and synchrotron radiation. Therefore, we suspect

that the radio excess is predominantly produced by the DG Tau B jet and/or stellar
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wind rather than by dust grains in the protoplanetary disc.

5.2 Comparing the SED Results with Previous

Observations

A disc mass estimate for the disc surrounding DG Tau B has previously been deter-

mined in Robitaille et al. (2007). They use a method first presented in Robitaille

et al. (2006), to analyse the spectral energy distributions of Young Stellar Objects.

The method fits the SED of YSOs using pre-computed two-dimensional Monte Carlo

radiation transfer models. The fourteen model parameters varied for 20,000 models

include stellar mass, radius and temperature, disc mass and radius, and envelope

accretion rate for young objects. Each model has also been computed at 10 viewing

angles, resulting in 200,000 SED models.

The models were tested on thirty young and spatially resolved sources in the

Taurus-Auriga star-forming region (Robitaille et al. 2007). The disc surrounding

DG Tau B was modelled using a mass of 0.074+0.259
−0.050Modot. The disc mass determined

in this thesis marginally agrees with the mass found in (Robitaille et al. 2007) within

errors.

Robitaille et al. (2007) state that the disc masses determined for embedded

sources like DG Tau B may not be well constrained. The uncertainty in the disc

masses arise from reasons explained in Section 5.1.

The upper and lower limit for the disc mass and dust temperature that can be

used to fit modified blackbodies to the SED is shown in Figure 5.1. The cold dust

in the disc can be modelled using a temperature of 17K and mass of 0.13±0.1M�.

The dust in this model is warmer than the dust derived in the best fit model whilst

the mass of the disc has decreased. The disc mass derived in this model agrees with

the disc mass derived by Robitaille et al. (2007). The data can also be fit using a
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temperature of 7K and mass of 0.53±0.1M�. The dust in this model is colder whilst

the mass of the disc has increased. The disc mass derived in this model however

does not agree with the disc mass determined by Robitaille et al. (2007). To account

for the full range of values seen, we adopt a disc mass of 0.3±0.3M�.

5.3 Gaussian Fitting

The emission of DG Tau B detected with e-MERLIN and the EVLA has been studied

by performing cross cuts on the observations. This determined if the jet and/or disc

surrounding DG Tau B has been resolved or not.

Two-dimensional Gaussians were fit to the observations in order to determine

the FWHM of the emission from DG Tau B. This was done in IDL using the routine

MPFIT2DPEAK.The emission along the major and minor axis of the Gaussian fit

was then studied. The emission was normalised to the peak intensity and each cross

cut was fit using a Gaussian curve. In order to determine if the emission along the

major and minor axis of DG Tau B had been resolved or not, the parameters of the

beam in each epoch was found. The FWHM of the major and minor axis of the

beam were then plotted onto each cross cut using the IDL routine mpfitpeak.

5.3.1 e-MERLIN Cross Cuts

The major axis of the Gaussian fit is aligned parallel to the elongated structure

seen in Figures 3.2a and 3.2b, whilst the minor axis lay perpendicular to this. A

FWHM of 156.7± 4.2 mas was determined for the major axis of DG Tau B in 2014

whilst the minor axis had a FWHM of 96.9± 2.6 mas. The angle of the major axis,

measured anticlockwise from north was determined to be 112.7 ± 4.6◦. Following

the assumption we have made above, that the elongated structure seen in the e-

MERLIN observations lies parallel to the jet observed by Zapata et al. (2015), we
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conclude that the angle of the jet is 112.7±4.6◦, measured anticlockwise from north.

The emission from DG Tau B in 2014 was studied along angles of 22.7◦ and

112.7◦, measured anticlockwise from north. The 2014 data were taken with a beam

size of 119.5× 76.7 mas with a position angle of of 70.0◦. The FWHM of the beam

along an angle of 22.7◦ was plotted on the cross cut along the major axis of the

Gaussian fit. The FWHM of the beam along an angle of 112.7◦ was plotted onto

the cross cut along the minor axis of the Gaussian fit. The results of the 2014

e-MERLIN cross cuts are shown in Figures 5.2a and 5.2b.

The FWHM of the emission along the minor axis is only slightly larger than

the minor axis of the beam used in the observation. Therefore, the emission in this

direction is unresolved. The emission parallel to the major axis has however, been

resolved. The FWHM along the major axis of the beam is smaller than the FWHM

of the emission from DG Tau B. Following our assumption that the major axis of

the e-MERLIN observation is aligned parallel to the DG Tau B jet, we conclude

that the disc surround DG Tau B in 2014 has not been resolved using e-MERLIN,

however the jet has.

The FWHM of the major axis in the 2016 observation was determined to be

140.0± 5.0 mas, whilst the minor axis has a FWHM of 103.2± 2.5 mas. There is a

decrease in the FWHM along the major axis between the two epochs, however, there

is an increase along the minor axis. The angle, of what we assume is the jet of DG

Tau B, was determined to be 131.6 ± 3.4◦ in the 2016 epoch. There is a difference

of 18.9◦ between the angles of the jet in both epochs. This could be an effect of the

proper motion of the system (discussed in Section 5.5 below), or the precession of

the jet (discussed in Section 5.4).

Following the method explained above, the emission parallel and perpendicular

to the major axis of the Gaussian fit of the 2016 e-MERLIN data was studied. The

cross cuts for the 2016 data were made at angles of 41.6◦ and 131.6◦, measured
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anticlockwise from north. The beam used to observe DG Tau B is 120.0× 80.0 mas

with a position angle of 68.0◦. Cross cuts of the beam taken in the same direction

as the 2016 cross cuts were made. These were then plotted onto the cross cuts of

the emission from DG Tau B in the 2016 epoch, the results of which can be seen in

Figures 5.3a and 5.3b. Unlike the 2014 observation of DG Tau B, both the minor

and major axis have been resolved using e-MERLIN. Therefore, the jet and the

emission perpendicular to this have been resolved.

5.3.2 Combining Epochs

Upon first inspection of the data, the disc surrounding DG Tau B is not visible in

Figures 3.2a and 3.2b. Therefore, the two epochs of data were combined. This was

done to improve the signal to noise of the observation with the aim of improving

the visible structure.

The position of the YSO had changed between the two epochs of observation,

therefore the images were first aligned. The position of the peak emission was

assumed to be the location of DG Tau B and the co-ordinates of this point were

found. The difference between the peak position was determined and added onto

the reference co-ordinate of the 2016 data. The 2014 data have a better signal to

noise, therefore the 2016 data were aligned to the 2014.

The 2016 epoch of data was then rotated by an angle of 18.9◦. This is to account

for the rotation of the source between the two epochs of observation. Rotating one

dataset relative to the other may blur the rotated data. This would affect the visible

structure of the source as well as the detected emission.

There is a slight difference in frequency at which the observations were conducted

(0.77GHz). We did not take this into account when combining and averaging the

two epochs of data as the difference is so small. The combined data of DG Tau B are

shown in Figure 3.4. There appears to be no significant improvement to the signal
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to noise of the structure parallel to the disc when compared to the 2014 and 2016

observations separately. The structure perpendicular to what we assume is the disc

is more pronounced in the combined image than the 2014 and 2016 observations.

The FWHM of the major axis in the combined observation was determined to be

164.7 ± 7.3 mas. This is an increase from the FWHM values determined along the

major axis of the Gaussian fit in the 2014 and 2016 epochs. The minor axis of the

Gaussian fit to the combined image was found the have a FWHM of 90.5± 3.6 mas.

The size of the beam for the combined observation is 119.8×78.4 mas with a position

angle of 70.0◦. Cross cuts of the emission were made following the method outlined

above for the 2014 and 2016 observations, these are shown in Figures 5.4a abd 5.4b.

Similar to the 2016 epoch of the e-MERLIN observations, the emission both parallel

and perpendicular to the major axis of the Gaussian fit has been resolved. However,

the emission along the minor axis is only slightly resolved.

The emission along the major axis has been detected in both epochs of observa-

tion using e-MERLIN. It has also been resolved in the combined data. On the other

hand, the emission along the minor axis has been unresolved in one epoch and only

slightly resolved in another. We suspect that we have detected the jet of DG Tau B

using e-MERLIN rather than the disc. Therefore, the main source of radio emission

from the DG Tau B system can be attributed to free-free or synchrotron radiation

rather than thermal blackbody radiation.

The lack of cm thermal blackbody radiation at cm wavelengths implies that there

are no cm sized dust grains, or pebbles, in the disc surrounding DG Tau B. This is

supported by the results of the SED modelling which showed that radio excess could

be attributed to free-free and synchrotron radiation rather than thermal greybody

radiation.

DG Tau B has previously been modelled as a Class I Young Stellar Object

Luhman et al. (2010) that may still be embedded in an envelope (Robitaille et al.
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2007). Although its age has not been determined, Class I Young Stellar Objects are

no older than a few hundred thousand years (Adams et al. 1987, Hartmann 1998).

The lack of thermal emission at cm wavelengths may imply that this disc is too

young to be forming cm sized dust grains.

The lack of thermal blackbody radiation in the disc of DG Tau B may also be

explained by the presence of the DG Tau B jet and molecular outflow. The jet and

molecular outflow of DG Tau B both emit free-free and/or synchrotron radiation at

cm wavelengths. The jet of DG Tau B is extremely powerful and extends for up to

55” in some places (Mundt et al. 1991, Eislöffel & Mundt 1998) whilst the molecular

outflow extends for approximately 40”. If there are cm sized dust grains in the disc

surrounding DG Tau B, and the disc has a small radius, it may not be possible to

disentangle the emission due to the jet, molecular outflow and dust grains.

5.3.3 EVLA Cross Cuts

DG Tau B has also been studied at mm wavelengths. Cross cuts were also made to

the EVLA observations following the method outlined above.

The major axis of the Gaussian model is aligned parallel to the elongated struc-

ture seen in Figure 4.1. This lies perpendicular to the major axis of the e-MERLIN

observations. The FWHM along the major axis of the Gaussian fit was determined

to be 100.0±0.6 mas whilst 78.8±0.5 mas is the FWHM along the minor axis of

the Gaussian fit. The major axis has an angle of 28.4±2.0◦ measured anticlockwise

from north.

Cross cuts of the emission from DG Tau B were made at angles of 28.4◦ and 118.4◦

along the major and minor axis of the Gaussian fit. The emission was normalised

to the peak and the FWHM of the beam along the same directions as the cross cuts

were also found. These were plotted onto the cross cuts of the DG Tau B emission

detected with the EVLA. The beam used in the EVLA observations is 80× 70 mas.
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The major axis of the beam is aligned parallel to the minor axis of the Gaussian fit

and vice versa. The results from the EVLA cross cuts can be seen in Figures 5.5a

and 5.5b.

The emission along the minor axis of the Gaussian fit of DG Tau B is unresolved.

The FWHM is comparable with the size of the beam. Perpendicular to this, the

emission is resolved. The FWHM of the emission along the major axis of the Gaus-

sian fit is larger than the size of the beam. We have assumed that the elongated

structure in the e-MERLIN observations is the DG Tau B jet. The major axis of the

EVLA observations lies perpendicular to this, therefore, we suspect that the disc

surrounding DG Tau B has been resolved with the EVLA.

The elongated structure seen in the EVLA observations may be an indication

that a disc has been detected around DG Tau B. The detection of thermal blackbody

radiation from the disc of DG Tau B at mm wavelengths may imply that there

are mm sized dust grains in the disc, or it may simply be indicative of the dust

temperature in the disc. The emission perpendicular to the disc is also unresolved

which means that there is no contamination from the jet of DG Tau B.

The detection of mm thermal blackbody radiation, as well as the lack of cm

blckbody emission detected with e-MERLIN, may provide an upper limit on the

grain size distribution in the disc of DG Tau B. Cm sized dust grains have previously

been detected in YSOs (Testi et al. 2003, Wilner et al. 2005, Rodmann et al. 2006,

Lommen et al. 2009), however, the protostars in these studies have all been Class II

YSOs(classical T-Tauri stars). The presence of mm emission but not cm emission

may indicate that DG Tau B, a Class I YSO, may be too young to begin the

formation of cm sized dust grains.
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5.4 DG Tau B Jet

Analysis of the DG Tau B SED revealed that the excess emission at radio wave-

lengths is primarily due to free-free or non-thermal emission. Both these mechanisms

can explain the shallow spectral index determined for the radio excess.

Free-free emission from DG Tau B may arise from three sources. Photoevapo-

ration of gas in the disc may contribute to the free free emission as well as ionised

particles in the jet. Ambient gas surrounding the YSO being swept up by the fast

moving jet causes a molecular outflow to be formed. Ionised gas from this outflow

may be a source of the free-free emission being detected from DG Tau B. The non-

thermal emission that may contribute to the radio excess seen on the SED may be

from DG Tau B itself.

In order to locate the source of the radio excess, the e-MERLIN observations

were compared to observations made by Zapata et al. (2015). The elongated struc-

ture seen in the e-MERLIN observations is resolved in both epochs and combined

observation. It lies parallel to the jet and molecular outflow detected by Zapata

et al. (2015). Therefore, we suggest that we have detected the jet and/or molecu-

lar outflow of DG Tau B, and it is these two components of the system primarily

producing the free-free emission seen in the radio excess of the SED.

We have assumed that the major axis of the Gaussian model fit in Section 3.4 lies

parallel to the DG Tau B jet. The angle of the major axis in 2014 was determined

to be 112.7±4.6◦ and 131.6±3.4◦, therefore the angle of the jet has changed by 18.9◦

between the two observations. This could either be due to the proper motion of the

DG Tau B system (discussed in Section 5.5) or the precession of the DG Tau B jet.

The precession of a jet indicates the change in its launching position. This may

be caused by a change in the orientation of the accretion disc. Precessing jets have

previously been detected emanating from Young Stellar Objects (Terquem et al.

1999, Bate et al. 2000). However these systems contain Classical T-Tauri stars in
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binary orbits rather than Class I young stellar objects such as DG Tau B.

Circumstellar jets trace emission ejected from the system on timescales < 10

years (Anglada et al. 2015). Molecular outflows on the other hand, trace emission

ejected on timescales several orders of magnitude longer (Carrasco-González et al.

2008, López et al. 2006, 2015). Therefore, studying and comparing the ejection

direction of the DG Tau B jet and molecular outflow may enable us to determine if

the change in jet direction is due to precession or the proper motion of the system.

Previous observations of the jet of DG Tau B have been made in 1991 and 2004

((Mundt et al. 1991) and McGroarty & Ray 2004). These studies found the angle of

the jet to be 122◦ and 116◦ respectively. As well as this, the molecular outflow from

DG Tau B has previously been detected with a principle angle of 114◦. Infrared

observations conducted by McGroarty & Ray (2004) reveal that there are several

Herbig-Haro objetcs associated with DG Tau B. Each of these are well aligned with

the DG Tau B jet which could mean that they are tracing ejecta from the YSO that

took place thousands of years ago. The alignment of the jet, molecular outflow and

Herbig-Haro objects detected across several epochs and studies indicate that the jet

of DG Tau B may not be precessing.

There is a difference of almost 20◦ between the angle of the DG Tau B jet deter-

mined in 2016 compared with the jet angles found in both this work and literature.

If the jet of DG Tau B is not precessing (for reasons outlined above), there may be

another explanation for the change in angle measured for the DG Tau B jet. The

2016 e-MERLIN observations feature more residuals from the e-MERLIN cleaning

process than the 2014 observations. Structure from the source may have been lost

during the cleaning process which has resulted in a change in angle being measured

for the DG Tau B jet.

65



CHAPTER 5

5.5 Is DG Tau A and B A Binary?

Located at approximately 1’ NW of DG Tau B is the classical T Tauri star DG

Tau A. DG Tau A has been studied in greater depth than DG Tau B across various

wavelengths (Isella et al. 2010, Podio et al. 2012, Ainsworth et al. 2013, Schneider

et al. 2013), and it was one of the first T Tauri stars to be associated with an

optical jet (Mundt & Fried 1983), which has since been found to extend for ≈ 0.5 pc

(McGroarty et al. 2007). Observations of DG Tau A at mm wavelengths provide

evidence for a disc surrounding the YSO containing mm sized dust grains (Beckwith

et al. 1990, Kitamura et al. 1996, Dutrey et al. 1996, Rodmann et al. 2006).

DG Tau A and DG Tau B are thought be unrelated except by projected proximity

(Jones & Cohen 1986). The emission from DG Tau A may contaminate the sub-mm

and mm emission detected by DG Tau B (AMI Consortium et al. 2012); this may

provide an explanation as to why the sub-mm and mm SED of DG Tau B is poorly

constrained. In order to determine if both YSOs are locked in a binary system, we

intend to investigate the proper motion of both objects.

Along with DG Tau B, the disc surrounding DG Tau A has been studied as

part of the Disks@EVLA and PEBBLeS surveys. Both these surveys aim to detect

large dust grains in the disc surrounding DG Tau A. The observations with the

EVLA and e-MERLIN were taken at the same frequency and epoch as the DG Tau

B observations. The observations of DG Tau A were reduced and cleaned following

the method outlined in Sections 3.2 and 4.1.

The position of DG Tau A and B in the e-MERLIN and EVLA observations

were found by fitting two-dimensional elliptical Gaussian components to the data.

This was done in CASA using imfit. We have assumed here that the peak emission

is the location of DG Tau A and B in all observations. The positions of DG Tau A

and B detected in previous observations as well as the positions determined in this

thesis can be found in Tables 5.1 and 5.2.
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Table 5.1: Positions of DG Tau A used to investigate the proper motion of the

system.

Epoch
RA (J2000)

04h27m(s)

Dec (J2000)

+26◦06′(′′)
Reference

1981 4.683 ±0.006 16.35±0.095 (1)

1984 4.676±0.003 16.38±0.01 (1)

1985 4.675±0.003 16.23±0.03 (1)

1994 4.687±0.002 16.15±0.01 (1)

1997 4.690±0.001 16.12±0.03 (1)

2010 04.697 ± 0.001 16.11 ± 0.01 (2)

2011 04.693 15.82 (3)

2014 04.700 ± 0.001 15.714 ± 0.002 (4)

2016 04.702 ± 0.001 15.677 ± 0.009 (4)

References. (1) Rodŕıguez, González, Raga, Cantó, Riera, Loinard, Dzib & Zapata (2012),(2)

Disks@EVLA Chandler (2017), (3) Ainsworth et al. (2013), (4) PEBBLeS Greaves (2017)

The variation in the position of DG Tau A was studied first. The right ascension

as a function of time is shown in Figure 5.6a whilst the declination is shown in

Figure 5.6b. The Python package curvefit was used to add a least squares fit to the

change in position of DG Tau A. This was done for both the right ascension and

declination.

The gradient of the fits in Figures 5.6a and 5.6b were taken as the proper motion

of DG Tau A. In order to calculate the proper motion of the right ascension in

milliarcseconds, the declination between the first and last epoch in Table 5.1 was

used. The proper motion of DG Tau A was determined to be:

µαacosδ = +8.95 ± 1.40 mas yr−1
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Table 5.2: Positions of DG Tau B used to investigate the proper motion of the

system.

Epoch
RA (J2000)

04h27m(s)

Dec (J2000)

+26◦05′(′′)
Reference

1994 02.556 ± 0.003 30.65 ± 0.05 (1)

1997 02.561 ± 0.004 30.63 ± 0.06 (1)

2009 02.558 ± 0.002 30.22 ± 0.04 (1)

2010 02.572 ± 0.001 30.293 ± 0.002 (2)

2011 02.564 ± 0.002 30.38 ± 0.05 (1)

2014 02.574 ± 0.001 30.274 ± 0.004 (2)

2016 02.576 ± 0.001 30.211 ± 0.005 (2)

References. (1) Rodŕıguez, González, Raga, Cantó, Riera, Loinard, Dzib & Zapata (2012), (2)

This work
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(a) The right ascension of DG Tau A is given with respect to 04h27m

(b) The declination of DG Tau A is given with respect to +26◦06′

Figure 5.6: The right ascension (a) and declination (b) of DG Tau A over a 35 year

period. The straight lines are least squares fits to the data that give the proper

motions discussed in the text.
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µδa = -19.05 ± 1.08 mas yr−1

A similar analysis was was performed for DG Tau B. There are fewer position

measurements for DG Tau B than A as it is a heavily obscured object and high res-

olution imaging is needed to determine its position. The variation in right ascension

for DG Tau B is shown in Figure 5.7a. The declination variation is shown in Figure

5.7b. A least squares fit was also added to the DG Tau B data in order to determine

its proper motion.

The declination between the first and last epoch in Table 5.2 was used to calculate

the proper motion of the right ascension of DG Tau B in milliarcseconds. The proper

motion of DG Tau B was determined to be:

µαbcosδ = +9.94 ± 4.11 mas yr−1

µδb = -21.00 ± 3.30 mas yr−1

5.6 Comparing the Proper Motions to Previous

Results

Rodŕıguez, González, Raga, Cantó, Riera, Loinard, Dzib & Zapata (2012) studied

the continuum emission from DG Tau A using the Very Large Array (VLA) as well

as determining its proper motion. The full set of observations used to calculate the

proper motion of DG Tau A spans approximately 30 years and was determined to

be: µαacosδ = +7.5 ± 0.9 mas yr−1 and µδa = -19.0 ± 0.9 mas yr−1.

The proper motion determined for DG Tau A in this work agrees with the proper

motion determined in Rodŕıguez, González, Raga, Cantó, Riera, Loinard, Dzib &

Zapata (2012). They are also consistent within 2-σ with the proper motion reported

by Ducourant et al. (2005) ( µαacosδ = +3.0 ± 2.0 mas yr−1 and µδa = -24.0 ± 2.0

mas yr−1) based upon optical observations.
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(a) The right ascension of DG Tau B is given with respect to 04h27m

(b) The declination of DG Tau B is given with respect to +26◦05′

Figure 5.7: The right ascension (a) and declination (b) of DG Tau B over a 22 year

period. The straight lines are least squares fits to the data that give the proper

motions discussed in the text.
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The continuum emission of DG Tau B has previously been studied by Rodŕıguez,

Dzib, Loinard, Zapata, Raga, Cantó & Riera (2012) using the VLA. The proper

motion of DG Tau B was determined to be: µαbcosδ = +3.8 ± 1.9 mas yr−1 and µδb

= -20.6 ± 3.3 mas yr−1. The proper motion of the declination is consistent with the

proper motion derived by Rodŕıguez, Dzib, Loinard, Zapata, Raga, Cantó & Riera

(2012), whilst the proper motion of the right ascension is only consistent within 2-σ.

The position of DG Tau B detected by Rodŕıguez, Dzib, Loinard, Zapata, Raga,

Cantó & Riera (2012) using the VLA in 2009 and 2011 do not lie close to the line of

best fit plotted in Figures 5.7a and 5.7b. Therefore, the proper motion analysis was

repeated without these two observations in order to investigate their significance on

the final proper motion values. The position of DG Tau B across the 22 year period

without the two VLA observations are shown in Figures 5.8a and 5.8b.

The proper motions of DG Tau B calculated using the new least squares fits were

determined to be:

µαbcosδ = +11.81 ± 0.95 mas yr−1

µδb = -20.98 ± 1.58 mas yr−1

The removal of the VLA data has decreased the proper motion detected for the

declination of DG Tau B. The new value is fractionally more consistent with the

declination proper motion determined by Rodŕıguez, Dzib, Loinard, Zapata, Raga,

Cantó & Riera (2012). However, the right ascension proper motion has increased,

making it less consistent with Rodŕıguez, Dzib, Loinard, Zapata, Raga, Cantó &

Riera (2012). The error measurement on both proper motion values has decreased,

therefore, the proper motion determined without the VLA data has a greater degree

of accuracy than the original results. These results are outlines in Table 5.3.
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(a) The right ascension of DG Tau B is given with respect to 04h27m

(b) The declination of DG Tau B is given with respect to +26◦05′

Figure 5.8: The right ascension (a) and declination (b) of DG Tau B over a 22

year period. The data used to generate these plots does not include the two VLA

observations conducted by Rodŕıguez, Dzib, Loinard, Zapata, Raga, Cantó & Riera

(2012) in 2009 and 2011. The straight lines are least squares fits to the data that

give the proper motions discussed in the text.
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We have shown that DG Tau A and B have very similar proper motions, however,

this alone does not determine if DG Tau A and B are a binary system. DG Tau

A and B are suspected to have formed in the same star forming region, this could

provide an explanation for their very similar proper motions.

DG Tau A and B are separated by approximately 55” (≈ 9000 AU), therefore,

they do not appear to be a close binary when observed. In order to determine if

DG Tau A and B are part of a binary system, follow up observations of DG Tau A

and B would need to be conducted. Spectroscopic observations of both stars may

determine if the observed spectral lines are being affected by the Doppler effect.

This may reveal if DG Tau A and B are orbiting around a common barycentre.
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Conclusion and Future Work

Observations of the Young Stellar Object DG Tau B have been conducted in this

thesis. Observations have been carried out at cm wavelengths using the interfer-

ometer e-MERLIN and mm wavelengths using the EVLA. We suggested an upper

limit for the grain size distribution in the DG Tau B disc. We have determined the

source of the cm emission detected from DG Tau B. Analysis of the proper motions

of DG Tau B and the classical T-Tauri star DG Tau A have also been conducted in

order to determine if they are a binary system.

6.1 SED Fitting

The flux density of DG Tau B from previous observations as well as in this thesis

were used to plot a spectral energy distribution of DG Tau B. This thesis is focussed

on the cold dust in the protoplanetary disc. Therefore, a modified blackbody was

used to model the SED at wavelengths longer than 100 microns. The cold dust was

modelled with a temperature of T=9.6±0.6K and a mass of M=0.30±0.03M�.

We have found a radio excess above the greybody spectrum. The radio excess

of the SED was modelled using a power law and a spectral index of α = 1.4 ± 0.2.
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This is a combination of the thermal greybody (αgreybody = 3.0 ± 0.1) and free-

free/synchrotron (αfree−free/sync = 0.3 ± 0.2) spectral indices. Following Draine

(2006) where a spectral index of 2.0< α <3.0 is indicative of large dust grains and

a spectral index of -0.1< α <1.0 can be attributed to stellar winds and jets, we

suspect that the emission detected from DG Tau B at cm wavelengths is due to

synchrotron or free-free emission rather than blackbody emission.

6.2 Centimetre Observations of DG Tau B

Centimetre observations of DG Tau B were taken with the interferometer e-MERLIN

at 6.48GHz (4.63cm) and 7.25GHz (4.14cm). Both observations revealed an elon-

gated structure orientated from NW to SE. By comparing our observations to those

made in Zapata et al. (2015), we hypothesis that we have detected the jet of DG

Tau B with e-MERLIN rather than the disc.

Two-dimensional Gaussian models were fit to DG Tau B in each epoch in order

to determine its position and the extent of its emission. DG Tau B was found to have

a position of αJ2000.0 = +04h27m02.574s± 0.001s, δJ2000.0 = +26◦05′30.274′′± 0.004′′

in 2014, with a deconvolved size of 133×74 ± 27×18 mas at a position angle of

106± 18◦.

In 2016 DG Tau B was found to have a position of αJ2000.0 = +04h27m02.576s±

0.001s, δJ2000.0 = +26◦05′30.211′′ ± 0.005′′ with a deconvolved size of 153×83 ±

32×11 mas at a position angle of 130± 8◦.

The major axis of an elliptical Gaussian fit to DG Tau B is aligned parallel to

the jet whilst the minor axis is aligned parallel to the disc. Cross cuts were made

of the observations in order to determine if the emission parallel and perpendicular

to the Gaussian models were resolved or not. The emission parallel to the major

axis of the Gaussian model has been resolved in both the 2014 and 2016 e-MERLIN

observations. However, the emission parallel to the minor axis of the Gaussian
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model is unresolved in the 2014 observations and only slightly resolved in the 2016

observations.

The 2014 and 2016 e-MERLIN observations were then combined in order to

improve the signal to noise of the observations. There did not appear to be signif-

icant improvement to the signal to noise of the structure parallel to the disc when

compared to the 2014 and 2016 observations separately. The signal to noise of the

emission in the direction of the jet did improve in the combined observation com-

pared to the separate observations. The emission both parallel and perpendicular

to the jet of DG Tau B has been resolved in the combined observations, but more

so parallel to the jet.

Therefore, we conclude that the jet of DG Tau B, rather than the protoplanetary

disc, has been detected at cm wavelengths. The shallow spectral index of the radio

excess of the SED, which is indicative of free-free emission, supports our conclusion.

The lack of cm thermal emission from DG Tau B may indicate that this Young

Stellar Object is too young to begin the formation of cm-sized dust grains.

6.3 Millimetre Observations of DG Tau B

DG Tau B has also been studied at mm wavelengths using the interferometer EVLA

at 34.0GHz (8.8mm) in 2010. An elongated structure is also visible in the EVLA

observations. However this lies perpendicular to the structure seen in the e-MERLIN

observations. A two-dimensional Gaussian model determined the position of DG

Tau B to be αJ2000.0 = +04h27m02.5724s ± 0.0001s, δJ2000.0 = +26◦05′30.293′′ with

a deconvolved size of 113.0×71.4±7.0×6.4 mas with a position angle of 25.5± 6.8◦.

A two-dimensional elliptical Gaussian model was fit to DG Tau B with the major

axis aligned parallel to the disc of DG Tau B, whilst the minor axis is aligned parallel

to the jet. Analysis of the emission parallel and perpendicular to the Gaussian model

revealed that the disc of DG Tau B has been resolved using the EVLA whilst the
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jet has not.

The detection of mm thermal emission, and a lack of cm thermal emission, in the

direction of the DG Tau B disc may imply that mm-sized dust grains are present,

but not cm-sized grains. This puts an upper limit on the grain size distribution in

the disc surrounding DG Tau B. The thermal blackbody radiation from the disc of

DG Tau B may simply be indicative of the dust temperature in the disc.

6.4 The relationship between DG Tau A and B

The positions of DG Tau A and B found in this thesis were used alongside literature

values to determine the proper motion of each YSO. This analysis was conducted

in order to determine if DG Tau A and B are a binary system.

The best fit proper motions of DG Tau B were determined to be µαbcosδ =

+11.81 ± 0.95 mas yr−1, µδb = -20.98 ± 1.58 mas yr−1. These are consistent with

the calculated proper motions of DG Tau A; µαacosδ = +8.95 ± 1.40 mas yr−1, µδa

= -19.05 ± 1.08 mas yr−1.

DG Tau A and B are thought to have formed from the same star forming regions;

which may explain their similar proper motions. If they are indeed locked in a

binary system they would be considered a wide binary as they are separated by

≈55” (9000AU). In order to confirm this, further observations would need to be

conducted.

6.5 Future Work

There are various ways in which the work in this thesis could be extended.

Structure from DG Tau B may have been lost during the cleaning process of

the 2016 e-MERLIN observation. This may explain the inconsistency between the

jet angle measured in the 2016 observation and the angles measured in the 2014
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e-MERLIN, EVLA and literature observations. The data reduction of the 2016

observation could be repeated in order to determine if structure was lost during

the original cleaning process. The analysis presented in this thesis could then be

repeated for the newly cleaned data.

Follow up spectroscopic observations of both DG Tau A and B could also be

conducted. The observed spectral lines of both stars could be compared in order to

determine if they are being affected by the Doppler effect. This may reveal if DG

Tau A and B are orbiting around a common barycentre.

Observations of DG Tau B using the Atacama Large Millimetre Array (ALMA)

could also be conducted. This may resolve some of the structure in the disc of DG

Tau B.
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