Exploring role reversal within the victims and perpetrators of domestic abuse

By

Pauline Thomas

A thesis submitted in partial fulfilment for the requirements for the degree of MSc (by Research) at the University of Central Lancashire

March 2018

Total word count 13,109
STUDENT DECLARATION FORM

Type of Award: degree of MSc (by Research)

School: School of Forensic & Applied Sciences

1. Concurrent registration for two or more academic awards

I declare that while registered as a candidate for the research degree, I have not been a registered candidate or enrolled student for another award of the University or other academic or professional institution

2. Material submitted for another award

I declare that no material contained in the thesis has been used in any other submission for an academic award and is solely my own work

3. Collaboration
Where a candidate's research programme is part of a collaborative project, the thesis must indicate in addition clearly the candidate's individual contribution and the extent of the collaboration. Please state below: N/A

4. Use of a Proof-reader
No proof-reading service was used in the compilation of this thesis.

Signature of Candidate

Print name: PAULINE THOMAS
I would like to express my thanks to Stuart Kirby who has guided me with rigor and has kept me focused on the job in hand with the mantra, ‘one step at a time’; to Laura Bolton who has painstakingly educated me about the application of statistics and to Michelle McManus who has added encouragement by letting me see the ‘finishing line’ early enough to endure the pain of getting there. I would also like to thank Phil Caddick, and other members of Merseyside Police, who have allowed me extended access to data systems; and the Chief Constable of Merseyside Police, Mr Andy Cooke QPM, who in being such a gentleman promised not to sell ‘Eccleston Box’ police station- where my data was stored. And finally, to Mark, my husband, for his support as always and for providing sustenance every time he noticed I had sat at the computer for hours without moving.

Dedication

This thesis is dedicated to all of those victims of domestic abuse. ‘It never ceases to amaze me how strong you are.’

Pauline Thomas
Contents

Abstract 5
Literature review 5
 1. INTRODUCTION 5
 The scale of the problem 6
 • 1.1. Defining domestic abuse 6
 • 1.2. Intimate partner violence 8
 • 1.3. Types of abuse 10
 • 1.3.1. Physical abuse 11
 • 1.3.2 Psychological abuse/coercion 13
 • 1.4. Control within domestic abuse 13
 • 1.5. Key factors within domestic abuse 15
 • 1.6. Role reversal within domestic abuse 16
 • 1.6.1. Victims within domestic abuse 16
 • 1.6.2. Perpetrators of domestic abuse 19
 • 1.7. Responses to domestic abuse 21
 • 1.7.1. Police risk assessments within domestic abuse 21
 • 1.7.2. Influential factors when responding to domestic abuse 23
 • 1.8. Summary 23
 2. METHODOLOGY 25
 • 2.1. Procedure 25
 • 2.2. Analysis 26
 • 2.3. The Sample 27
 • 2.4. Coding 28
 • 2.5. Ethical Considerations 31
 3. RESULTS 32
 • 3.1. Repeat DA incidents 32
 • 3.2. Type of DA victimisation (PMV, VMP, Both, Neither) 33
 • 3.3. Relationship status 35
 4. DISCUSSION 36
Abstract:

The aim of the research was to explore incidents of Intimate Partner Abuse to develop a deeper understanding of the relationship dynamics between victims and perpetrators of Intimate Partner Abuse (DOMESTIC ABUSE). The study used a quantitative analysis of data obtained by Merseyside Police in May 2014 for recorded incidents of domestic abuse within that time frame. Victim type was explored and results illustrate that there was a significant relationship between victim type and other variables. This suggests that victim type is important and should be taken into account when intervention and support is considered into relationships where Domestic abuse (DA) is a factor. The findings and implications are discussed.

Keywords: Domestic abuse; domestic violence; Intimate Terrorism; Coercive Behaviours; Intimate Partner Abuse; Victim Type;

LITERATURE REVIEW

1. Introduction

The aim of the dissertation is to examine the role of victims and perpetrators in domestic abuse (DA) relationships and this literature review will look at several particular aspects of domestic abuse. The first will be how academics, policy makers and support agencies have tried to define domestic abuse and how that definition is evolving.

The second section looks in more detail in relation to the way domestic abuse is perpetrated to give the reader a better understanding of the continuum between physical and psychological abuse. The third section explores evidence regarding why domestic abuse takes place, and what root causes have been identified. Finally, the last section will examine the responses to domestic abuse, from victims, society, perpetrators and the police.
The scale of the problem

Domestic abuse is a serious, under-reported problem (Richards, Letchford and Stratton, 2008). In addition to any physical crimes committed, it also associated with other crimes such as criminal damage, harassment and abuse and contributes to a variety of costly issues affecting families, children, communities, schools and employers (Richards, Letchford and Stratton, 2008).

The Crime Survey for England and Wales 2016 shows an estimated 11% of all crimes recorded by the police (excluding fraud) were flagged as domestic abuse-related. Abuse against the person offences were the most likely to be domestic abuse-related, comprising a third (33%) of violent crime. Approximately 2 million adults aged 16 to 59 experienced domestic abuse in the last year, Research shows that only 35% of domestic abuse incidents are reported to the police.

The incidence of domestic abuse is a prolific problem for the police who use valuable resources repeatedly attending at certain address locations and dealing with any offences that have been committed without necessarily addressing the causes of the problem. Since the 1970’s, domestic abuse has become recognised as not merely a private issue but a social problem (Groves and Thomas, 2013). 1 in 8 emergency calls to the police are for domestic abuse (Merrick and Duggan, 2013), and research shows that 1 in 4 women experience domestic abuse at some point in their lives (Groves and Thomas, 2013). The high level of domestic abuse reported within official and unofficial studies indicate a growing problem (see Fig 2), this is further complicated as our knowledge about ways in which these crimes are perpetrated is increasing. Thus, there is a continuous requirement for the review and widening of definitions of DA to ensure appropriate responses are enacted.

1.1. Defining domestic abuse

Problems within the reporting, recording and understanding domestic abuse are evident within the continuous changing definitions used within policy, practice and research. It is apparent that definitions for domestic abuse differ across agencies (Richards, Letchford and Stratton, 2008). The most recent definition, as provided by the Home Office (2013) states that domestic abuse is:
‘Any incident or pattern of incidents of controlling, coercive or threatening behaviour, abuse or abuse between those aged 16 or over who are or have been intimate partners or family members regardless of gender or sexuality. This can encompass but is not limited to the following types of abuse: Psychological, physical, sexual, financial, and emotional. Controlling behaviour is: a range of acts designed to make a person subordinate and/or dependent by isolating them from sources of support, exploiting their resources and capacities for personal gain, depriving them of the means needed for independence, resistance and escape and regulating their everyday behaviour.’ (Home Office 2013; p2).

The definition has recently been expanded to now include coercive control within domestic abuse, that is used to harm, punish, or frighten their victim. This definition includes so-called ‘honour’ based abuse, female genital mutilation (FGM) and forced marriage, and is clear that victims are not confined to one gender or ethnic group.’ The above definition is used by the Police, but the Crown Prosecution have separate guidance issued by the Director of Public Prosecutions. This Code for Crown Prosecutors (2013) quotes section 10 of the Prosecution of Offences Act 1985 and recommends that the Crown prosecution include the term:

"Any criminal offence arising out of physical, sexual, psychological, emotional or financial abuse"

The Women's Aid Survivor's handbook (2015) offers yet another definition of domestic abuse which recognises 'patterns':

“of controlling, coercive, threatening, degrading and violent behaviour, including sexual abuse"

There are numerous terms to describe domestic abuse and domestic violence between partners which are sometimes used interchangeably but an argument exists to distinguish between the two. The researcher will use the term ‘abuse’ to encompass all types of abusive, violent and coercive behaviours, unless specific terminology is being examined.

The above definitions show the complexities within domestic abuse. The key feature included in these three key definitions is the term: ‘sexual’. The Home Office definition (adopted by the Police) and Women’s Aid recognise ‘patterns’, ‘control’, ‘coercion’, ‘threatening behaviour’ and ‘abuse’, but these are not specifically referred to by the CPS definition. However, the CPS agree with the police that
‘psychological’, ‘physical’, ‘financial’ and ‘emotional’ abuse feature in the definition, whereas the Women’s Aid definition does not emphasise any of the latter. It could be argued though that those features are encompassed in the patterns of coercion and control.

Examining the words carefully, coercion defined as “The use of force or threats to compel or dispel a particular response” (Stark, 2007), differs from control which is behaviour designed to compel obedience and “reduce supports needed to exercise independent judgement.” (Stark, 2007). Both Police and Women’s Aid refer to ‘degradation’ (recognised in the Police definition as ‘humiliation’). All three definitions acknowledge the powerful force that exists in domestic abuse, that can make somebody do something they do not really want to do. The big difference between the definitions is that the Home Office definition (adopted by the Police), and Women’s Aid definitions, agree that an incident is sufficient to complete domestic abuse whereas the Crown Prosecution have a higher level in stipulating that the incident must amount to a criminal offence. This gap was recently addressed by the introduction of new legislation (Serious Crime Act 2015 section 76-Controlling or Coercive behaviour in an intimate or family relationship). This new legislation attempts to fill the gap between the differing definitions to ensure that DA is captured and perpetrators are dealt with by law enforcement agencies.

1.2 Intimate partner violence

Domestic abuse can be seen to affect the wider family; however, this dissertation will focus on abuse between partners. The majority of research supports the notion that ‘intimate partner violence’ is predominately male dominated and committed against a female partner. Others would argue that women are equally likely to be the main protagonists against male partners (Archer, 2000). Whether men and women are equally likely to perpetrate domestic abuse is probably best explained by looking more closely at the actual nature of the abuse that supports this claim of ‘Gender Symmetry’. It is more recently argued that it is not the violent acts in themselves that separate the categories from one another, but rather the degree or nature of control accompanying them (Nybergh, Enander and Krantz, 2015). The two approaches to research were recognised initially and characterised as ‘family violence’ (FV) and
‘violence against women’ (VAW) (Dobash et al., 1992). Evidence suggests that male abuse towards females, generally includes a ‘constellation’ of abusive behaviours including intimidating aggressive and controlling acts (Kelly and Johnson, 2008; Gondolf, 2001). Sexual and physical acts of abuse may result in more than just physical injuries for victims of abuse but, emotional and economic damage too as men strive to control their female partners. Such consequences and this wider ‘constellation’ of abuse are not evident in women’s abuse against male partners (Johnson, 2014). The argument here is that male domestic abuse and female domestic abuse are not identical and therefore should be measured separately.

The context of the abuse also causes issues when trying to define abusive behaviours in an abstract and generalised fashion (Johnson, 2014). This is a serious problem. For example, on the psychological spectrum, making ‘threats to leave’ can be a tactic used by males to threaten their female partners and as such they can be labelled ‘abusive’ yet the exact same threat, made by a victimised female towards her abusive partner would be seen as a desperate attempt to escape the abuse or end the relationship. The context is all important. Another definitional problem is the merging of violent acts with non-violent acts in a fusion of ‘domestic abuse’. Physical and sexual (violent) acts are used interchangeably with shouting and name calling (abuse), which collapses everything into a single category. This merging occurs at three major stages of research: the definition stage, the measuring stage and the reporting stage. Using these terms interchangeably can lead to confusion and or/misleading findings. For example, researchers may conclude that women are just as abusive as men when what is examined is incomparable, (men’s violent acts measured against women’s abusive ones) (Dobash et al., 1992). Another problem is that spouses may have differing views as to what they view as violent (Gelles, 1997). They may apply their own interpretations to the abuse or even falsify reports (Margolin, 1987). Both types of abuse, physical and psychological, have potential harmful consequences for the victim, but the physical category is conceptualised as ‘malevolent physical or sexual acts intended to inflict physical and or psychological harm’ whereas the wider constellation of psychological abusive behaviours, are meant to frighten, intimidate and coerce (Dobash and Dobash, 2004). The latter may also have devastating consequences for the victim but they are kept separate and maybe considered less serious.
Attempts were made to categorise interpersonal abuse into 10 types (Walby and Allen, 2004). Examples such as ‘stopped you from seeing friends and relatives’ on the minor scale up to ‘used a weapon against you e.g. a knife’ on the other end of the spectrum. This type of rigid framework has significant limitations, as abusive tactics can be overlooked by the researcher and restrict victim explanations. It also associates certain types of abuse with a risk or perceived seriousness, which is purely subjective. For example, being ‘stopped from seeing friends and family’ can range from minor interventions which disrupt socialisation to unlawful imprisonment at the more severe end of the scale. Respondents answering the research questionnaire may not be given the opportunity to elaborate on the context of the behaviour, therefore defining abuse into a category may be a dangerous practice. It is argued (Dobash and Dobash, 2004) that it is important that ‘family abuse’ and ‘violence against women’ are not collapsed into one category. A counter argument is ‘should individual behaviours be categorised at all?’

To summarise this section, definition is not easily constructed and is developed over time and reflects prevailing understanding (Muehlenhard and Kimes, 1999). This comprehension of the complexities of domestic abuse has been influenced by the actual experiences of abused women together with supporting research evidence. Some issues of terminology remain actively contested, such as whether domestic abuse should be a gender-specific or neutral referent and/or encompass all forms and incidence of abuse in all types of intimate relationships (Muehlenhard and Kimes, 1999).

1.3 Types of abuse

There are two key categories of abuse used to classify how domestic abuse is instigated, psychological and physical abuse. This section will look firstly at psychological or coercive control. Coercive control is a huge factor in making the life of the victim, miserable and confused. For some groups, offending is both conscious and purposeful (Day and Bowen, 2015), who state it is controlling perpetrators who pose the greatest risk. That may be because they are making a conscious and intentional effort to subtly control their partners. Hence domestic abuse is often hidden away. This is explored by researchers who note that our everyday working environment requires people to ‘bottle-up’ and control their anger so that the most
common location for violent arguments is behind closed doors, often in the home (Tavris, 1982). Tavris highlights that psychological signals can be sent from the abuser without outsiders noticing. A look, a glare or a stare can pass on the message that the victim will have to answer to the abuser later, for whatever action they have done to displease the controlling partner. This feeds into the secrecy of abuse, promoting a build-up of psychological distress without anybody else necessarily being aware.

1.3.1 Physical abuse

Physical injuries are initially easier to recognise. They manifest themselves in bruises, scratches, broken bones and worse, and can be seen openly by neighbours and friends. Physical abuse involves harm done to a person through the use of force or battery. Victims of physical abuse may try to hide their injuries with lies and excuses, blaming themselves for being clumsy or accident prone thereby taking the blame away from the abuser. When harm is caused to a person a mark, or scar, or injury may be left and abusers over time may learn to limit these injuries to an area which will not be on public view, such as the stomach or legs. A black-eye or bruised face leaves the casual observer to require an explanation. However, on the other hand, the mere presence of an injury is not evidence of abuse in itself as a carefully constructed story can explain away how an injury was ‘innocently’ caused. The use of coercion alongside physical abuse is therefore imperative if the abuse is to remain undetected. Anyone can sustain accidental injuries and that fact adds to the confusion about the true nature of a relationship.

Two separate perspectives exist regarding abuse against women. Some favour the family abuse perspective (or situational couple violence) (Straus, 1971; Gelles, 1995), where men and women perpetrate equally, the focus of the abuse is to control a particular situation and neither party will generally need to report to the police, seek refuge in shelters, file for divorce or seek medical attention. These views conflict with another perspective called Intimate Terrorism, favoured by (Stark, 2007). Intimate Terrorism is where violence occurs more than once a week and increases in intensity and frequency, the division is greater than at first appears. The focus of the abuse is not only for the perpetrator to control his partner but to display that control. This type of domestic abuse is referred to as ‘Patriarchal Terrorism’ and
it is not reciprocated. Males are the majority of perpetrators. An historical flaw in data collection methods was recognised (Johnson, 2014), which caused this confusion and disagreement amongst academics. Johnson reasoned that both schools of thought were correct and that, crucially, it depended on where the data was collected from. The comparison below may help to clarify the two extremes taken from Johnson’s research findings.

<table>
<thead>
<tr>
<th>Situational Couple Violence</th>
<th>Intimate Terrorism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Violence is reciprocated</td>
<td>The violence is all one way</td>
</tr>
<tr>
<td>Not generally frightened of their partner</td>
<td>Real fear exists</td>
</tr>
<tr>
<td>Men and women perpetrate equally</td>
<td>Perpetrators are male 90% of the time</td>
</tr>
<tr>
<td>Violence does not escalate</td>
<td>Escalating violence</td>
</tr>
<tr>
<td>More likely to agree to participate in surveys</td>
<td>Less likely to agree to participate in surveys</td>
</tr>
<tr>
<td>Data is obtained from random samples such as</td>
<td>Data obtained from women’s’ shelters, criminal justice</td>
</tr>
<tr>
<td>students, shoppers etc.</td>
<td>systems and prisons etc.</td>
</tr>
<tr>
<td>Less likely to be reported to police</td>
<td>Police involvement</td>
</tr>
<tr>
<td>Need to control a particular situation</td>
<td>Need to control a specific partner</td>
</tr>
<tr>
<td>A relatively isolated reaction to conflict</td>
<td>Multi-faceted strategies of control</td>
</tr>
</tbody>
</table>

Figure 1. Situational Couple Violence vs Intimate Terrorism

Other research has examined the impact of different types of abuse. Where control was highly present, any incidence of abuse had little further effect on the victim. Therefore high control would appear to have a greater effect on the victim than the actual use of violent attacks. This would suggest that the psychological impact of emotional control is much more powerful than anticipated and the ceiling of effect already so high that the addition of abuse has little additional effect (Anderson, 2008). In essence the victim has a deep rooted and justified fear of the perpetrator and so obeys without question, knowing the consequences if they do not, (see chapter on coercion) therefore the use of physical abuse can become unnecessary. In relationships where abuse is severe and controlling, with less necessity for abuse to establish the control, high risk victims may be missed by organisations wishing to
intervene. In other words, in looking for the scars and injuries, the real abuse may be overlooked (Johnson, 1995).

1.3.2. Psychological abuse / Coercive control

Coercion which can severely affect the emotional stability of the victim is described as “Chronic Syndrome” (Faver and Strand, 2007). This is the emotional abuse that perpetrators use to maintain control over their partners, this type of emotional abuse can have a severe effect on the victim’s mental health, can be physically debilitating and more psychologically harmful than physical abuse (Coker et al., 2000; Jacobson and Gottman, 1998; Ramos and Carlson, 2004). This coercion category could include relationships whereby the perpetrator shows displeasure and disapproval of certain activities and has coerced their partners into automatically disapproving of them too, so that no abuse is necessary as the victim is so compliant that they are never going to ‘break the rules’. It is important to remember that these ‘rules’ are not consistent with every victim but are ‘tailor made’ to meet individual circumstances and create the greatest impact. Taking controlling elements one stage further, four types of battering are identified physical, sexual, and psychological and destruction of property and pets (Ganley, 1989). Looking in more detail at pet abuse: 9 ‘control strategies’ where identified which abuse towards a pet consolidated (Adams, 1995). It enhanced the perpetrators dominance, increased the helplessness of the victim, maintained an exclusivity in the abusive relationship, demonstrates power and perpetuates a context of terror, teaches submission and prevents separation, and isolates the woman from her network of support (even her pet, her last friend has gone) Hurting the woman by attacking a treasured ‘object’ evokes responses of grief, guilt, hopelessness and self-blame which helps to consolidate the control (Adams, 1995).

1.4. Control within domestic abuse

After being challenged by other researchers who emphasised that control is a crucial factor, Johnson revised his theory on domestic abuse categorisation to include controlling factors (Kelly and Johnson, 2008). Further research concluded that
principal components of the need to control were evident in abusive relationships. (Kelly and Johnson, 2008). One such component is ‘control through surveillance and threats’. This means control through every day routines and decision making and control over autonomous activities such as driving and working expressed by the abuser’s ability to adapt coercive tactics for various everyday settings. What is being claimed here is that the list is endless and control can fit the victim exactly through moderation and individualisation, creating the most effective constellation of ‘rules’ to gain complete control. Johnson’s theory is further challenged (Banyard et al., 2014), and so Johnson expands his categories and goes on to highlight 4 types of Intimate Partner Violence, the categories being: coercive controlling abuse; situational couple violence; violent resistance (often known as self-defense) and Separation-instigated abuse. Both these latter categories being more prevalent at the end of a relationship (Johnson, 2014). The impact of coercion is recognised and Johnson suggests that a new category of Coercive Control needs to be researched in situations where there is a high level of control but no abuse. He argues that abuse may initially be used to gain control and is then no longer necessary, the memory of it being sufficient to keep the victim under control. Johnson’s theory that abuse would be worse in relationships with a higher degree of control is also disputed (Anderson, 2008). Anderson’s argument was that control alone was already highly damaging and the increased abuse was of little further consequence, whereas in relationships where there is little or no control any violent escalation can be unanticipated and devastating. Anderson found that abused women would rather be assaulted, than suffer all the psychological games. Anderson also put forward the suggestion that further categorisation is necessary along the scale of abuse to include relationships with high levels of control but no abuse (Anderson, 2008). It is important to note that some victims chose to submit to the control in exchange for something else, such as expensive houses, public schools for their children or the association with a powerful spouse. Reluctant victims are still consenting adults and can make choices, arguably these choices should not be taken away from them by abusive partners or equally by intervening agencies. Victims, still have their Human Rights. Where children are involved, this choice is more complicated.

Child abuse is closely linked to partner abuse. It has been estimated that between 46% and 53% of spouse abuse cases also involve physical and/or sexual abuse of children (Browne and Hamilton, 1998). It was also discovered that in families where
partner and child abuse was present, the abuse would be more severe. In any case where children are experiencing domestic abuse, they will be subject to emotional abuse and this will have a lasting effect. The control of one’s partner would not be complete if it did not include the children also. Children need to be complicit and silent in order for abuse to succeed and so the level of abuse may need to be increased.

There is an ever-increasing awareness in the role of successful control and coercion in perpetrators who successfully terrorise their partners. The introduction of a new Coercion Law in England and Wales in 2015 would seem to support this conclusion.

1.5 Key factors within domestic abuse

Much research has explored factors that may contribute to domestic abuse, with much research concentrating on domestic abuse relationships.

How men account for their violent behavior has been looked at (Wood, 2004). Her study of 22 incarcerated men noted three main reasons were provided for the abuse. Firstly, they justified their actions with responses such as- ‘she deserved it’ secondly, there was dissociation- ‘I am not the abusive type’, and thirdly remorse or regret for hurting their partners. The justification would explain how the cycle of abuse is kept in place through the victim’s continual attempts to escape the control and the abusers need to keep the control firmly in place. Men convicted of intimate partner abuse frequently deny and minimise their violent behaviour by holding the victim responsible for provoking it (Cattell and Mead, 2008; Henning and Holdford, 2006; Dutton, 1992). In a society which does not condone abuse, the perpetrator must somehow justify his actions and feel vindicated in that in his case, the abuse was deserved. He feels he has the right to control his wife’s behaviour (Dutton, 1992). Denying responsibility or arguing that their wife’s actions provoked the attack is another rationalisation to justify the attack. This explains domestic abuse through cognitive distortions within the offender.

Further studies have looked at the emotional state of the perpetrator: Depression has been linked to separation or guilt and of the abusers who attempted suicide all did so in response to separation (Coleman, 1980). Looking at the effect of
depression on abuse, researchers claim that low self-esteem is not etiologically related to assaulting one’s partner, but in fact that abuse towards one’s partner lowers self-esteem (Goldstein and Rosenbaum, 1985).

Aggression witnessed as a child can play a great part in the relationship building as an adult. The way parents behaved towards their children had a greater influence over later aggression in intimate relationships, than in situations where children simply witnessed their parents behaving aggressively towards each other (Capaldi and Clark, 1998). There is a greater likelihood of becoming an aggressive partner in those youths who had experienced aggression from their parents. More interestingly, they were more likely to be drawn to aggressive partners themselves (Marshall and Rose, 1988).

Alcohol has long been associated with domestic abuse (Fitch and Papantonio, 1983). They found that alcohol abuse was present in half of the cases they studied and drugs in a third. However, substance abuse is not the cause of domestic abuse as in most cases men continued to be abusive towards their partners even after successful treatment for their addictions. Stress can be reduced by bursts of aggression and increases the level of control in the relationship. Perpetrators may blame external factors for their abuse rather than take responsibility for it. Situational factors can influence the incidents of situational couple violence and intimate terrorism. For example, the time period immediately following a football match, if the perpetrator’s team has lost, can lead to an increase in abuse, especially when alcohol is present (Barron and Topping, 2010). Weekends are also a stressful time for victims of abuse (Gantz, Bradley and Wang, 2006; Vazquez, Stohr and Purkiss, 2005), as are holiday periods (Card and Dahl, 2011). Consummation of alcohol, although not a cause of abuse, is frequently found to be a contributing factor (Lockton and Ward, 1997:28).

1.6 Role reversal within domestic abuse

Research has indicated that a further complexity within domestic abuse is the identification of victim and offenders within very chaotic domestic abuse relationships. Exploring the role of victims and perpetrators allows one to see the similarities in key risk factors and vulnerabilities that allow victims to also become ‘perpetrators’ of domestic abuse.
1.6.1. **Victims within domestic abuse**

As a coping mechanism women use a variety of strategies to stop their partners from being violent; these include talking, making promises, hiding, passive defense, aggressive defense and avoidance. Some utilise the intervention of friends or neighbors or in more serious incidents, shelters and police. As an immediate response, crying, yelling and hitting back are used (Bowker, Arbitell and McFerron, 1988). Tactics deployed to get the partner to stop include avoiding certain topics of conversation, using logic and rationalisation to their partners, or leaving. Bowker found the least effective strategy was hitting back. Successful defense tactics are explored by psychotherapist Zoe Lodrick (2007). In her research on sexualised trauma she explains that if a defense is successfully used it is likely to be utilised again. However, if a defense is unsuccessful it is unlikely to be used again (Lodrick, 2007). Some women of course do leave the violent relationship (Those who have experienced severe and frequent abuse). The women who tend to remain are those who experienced abuse as children particularly if they are poor achievers at school and have limited qualifications for achieving a high status in the workplace (Gelles, 1995). The factors listed by Gelles alone i.e. lack of academic achievement, low achievers at school, will not constitute lack of resourcefulness but together will accumulate into making it harder to leave through lack of finance, opportunity and knowledge.

There are other reactions to being controlled and abused (Holtzworth-Munroe and Meehan, 2004). They believe that not all abused wives are passive but can react to the abuse in different ways. They often reciprocate with negative behaviours. Abuse differs from couple to couple (Bartholomew, Henderson and Dutton, 2001) who report three different patterns of abuse between couples:

1. **Reciprocal** involves the mother retaliating violently to the abusive father.
2. **Hierarchical Family** abuse, is where the father is violent to the mother and the mother is in turn violent to the children, but does not retaliate to the father. In cases such as this the mother is viewed as both perpetrator and victim.
3. *Paternal family abuse* is where the father is the head of the family and violent to everybody in it. He is violent towards the mother and the children - who soon learn that she is powerless and controlled so much that some may even begin to behave violently towards their mother and replicate the behaviour of their violent father (Browne and Hamilton, 1998).

Researchers found a difference between genders regarding the use of extreme abuse in that females were more likely to throw something at their partners that could hurt, push, shove or kick their partner whereas males were more likely to choke their partner (Robertson and Murachver, 2007). Choking is a very effective method of control. Recipients reported an incredible sense of vulnerability on realising after a violent episode, how easily they could be killed by their partners. Attempts to extricate themselves from a choking rarely succeeded and resistance resulted in an escalation of the abuse. The after-effects of a strangulation (which is difficult to detect) are such that strangulation need not be repeated in order for submission thus creating an environment of coercive control. Attempt strangulation is one of the high-risk factors used by police to assess victims of abuse (Richards, Letchford and Stratton, 2008). Women who survive strangulation by an abusive partner are at an increased rate of being killed by that partner (Glass *et al.*, 2008; Strack, McClane and Hawley, 2001; Wilbur *et al.*, 2001).

Victims become conditioned over time to the abuse (Gelles, 1995), and this ‘learned helplessness’, a term first used by psychologist Lenore Walker, means they can do nothing to stop the abuse (Walker, 1977). This term highlights the plight of a victim inundated with the profusion of abusive tactics which are tailored to cause the most severe effect. It makes each individual incident difficult to identify and analyse and some may appear trivial and irrelevant. It is thought some victims seldom attempt to respond to abuse with force - they remain physically passive (Gelles, 1995). In order to avoid abuse many victims withdraw from the situation and agree with any accusation thrown at them (Dobash and Dobash, 1979).

The greatest mystery to the casual observer of domestic abuse has always been ‘Why don’t they just leave?’ ‘The longer a victim is controlled and coerced, the less likely they are to respond. The cycle of abuse is explained thus; Repeated beatings, like electric shocks, diminish the victim’s motivation to respond (Walker, 1993). Walker describes a cycle of abuse in which a phase of tension building
precedes the acute battering incident which is followed by a period of loving-contrition or absence of tension. A different dynamic is evoked when a victim attempts to leave an abusive relationship (Walker, 1993). This has been identified by several researchers as a particularly dangerous time for victims (Allen, 1990; Brown and Anderson, 1991; Campbell et al., 2007). They identify that the dynamics around the phenomenon of wife-killing often revolve around the woman’s threatening to, or actually separating from, a marital or relationship partner. The period immediately following the separation is the most dangerous (Wilson, Daly and Daniele, 1995). 50-70% murders took place whilst partners were living apart. The risk of victims being murdered soon after separation is 2-4 times higher than the risk of being murdered whilst co-habiting (Wilson, Daly and Daniele, 1995). This is the point at which abusers feel that they have lost that control and where panic can set in to re-establish that control. It becomes imperative for an abuser to stop the victim from leaving even if this means death (Wilson, Daly and Daniele, 1995). Abusers may use the children to put pressure on the victim to accept them back, they may harass and intimidate the victim with bombardments of promises to reform, apologies and if these tactics are not working, then threats. Threats can be particularly compelling if they are directed at other family members including elderly parents or children (Bancroft and Silverman, 2002; Campbell et al., 2007).

Attempts have been made to analyse the cyclic nature of abuse. The actual beating itself, once over is minimised as the next phase wipes it from memory and leads the victim into a false world of idealism and calm (Walker, 1993). It is actually the next stage, the psychological build-up of what is to come next which is the torturous stage, not knowing how or when a ‘rule will be broken’, the subsequent evidence provided, and the inevitable consequence metered out. It would be apparent to any astute observer that this continual cycle will have a severe detrimental effect on the mental health of the victim as a number of victims experience this cycle over and over again.

The plight of women who have been subject to domestic abuse can be so desperate that even the most severely controlled women can eventually lash out and kill their abusers (Walker, 1993).

1.6.2. Perpetrators of domestic abuse
What makes the victim’s intention to leave especially provoking for some perpetrators is explored (Brown et al., 1999). and some insight into this may represent a real step forward in understanding the dynamics around motivation. Perpetrators have indirect control of their partner during the process of separation (Hayes, 2014). She recognises this as a significant challenge to an abusers control. They may increase their manipulating and intimidating behaviours to get back the control they are losing over their partner’s behaviour (Bancroft and Silverman, 2002; Campbell et al., 2007). The intimidating character who is emerging from the relationship may make threats which include to kill the victim or their loved ones, this could be more and more unsettling for the victim who may begin to believe that the perpetrator is capable of doing so. Murder may seem an extreme reaction to the end of a relationship but the motive for murder is different between genders. Murder of men by women is motivated by self-defense (Campbell et al., 2007; Dobash et al., 1992; Chester et al., 1994). Whereas when a woman tries to leave the relationship, this generates the most notable motive for murder by men followed by suspicion of sexual infidelity (Allen, 1990; Campbell et al., 2007; Garcia, Soria and Hurwitz, 2007; Mahoney, 1991; Polk and Ranson, 1991; Websdale, 1999; Crawford and Gartner, 1992).

Abusers develop ambivalence toward intimacy and those people emotionally connected to them (Rice, 1999). This fearful attachment toward the mother during early childhood is experienced later in life towards the spouse. Rice studied the core of the abusive personality and found that men had learnt to be abusive through three different processes:

1. The parental psychological abuse resulted in a vulnerable borderline personality which often leaves them on the defensive.
2. Physical abuse on themselves or their mother actually demonstrated the effectiveness of abusive behaviour to them and
3. Both physical and emotional abuse left them with fearful attachment styles.

Some perpetrators, despite awareness raising or treatment programs, will never change their beliefs or behavior (Marshall and Rose, 1988). This explains why certain perpetrators have had numerous victims and domestic incidents, they may have experienced sanctions, court appearances, losing their children, divorce separation or arrest but none of these are able to break the cyclic behaviour and so
the perpetrator goes on from victim to victim without learning or changing their behaviour.

Having begun to recognise different categories of domestic abuse, the treatment of perpetrators was researched (Bradley et al., 2014). In situations with low levels of abuse and aggression perpetrated by both partners equally it was concluded that abuse prevention programs should include both males and females (Straus, 2011). Indeed, Creating Healthy Relationship Programs (CHRP) was relatively successful in dealing with less violent families. Not so much success has been reported with extremely violent perpetrators though. Severely aggressive men are the least likely to cease their aggression even with intervention programs (Quigley and Leonard, 1996). This theory has clear implications for risk assessment and reinforces the argument that domestic abuse is complex.

1.7. Responses to domestic abuse

The Police generally respond to domestic abuse when they are called to the scene of an assault or disturbance either by one of the parties concerned or by neighbours/onlookers. Policies now compel the police to take some form of positive action to keep any victims or vulnerable people safe from harm. This may involve separating the conflicting parties and taking a report in an attempt to ascertain and accurately record what has happened.

In a report published in 2014 by HMIC, evidence was provided from victim accounts on how perpetrators can control and manipulate the crime scene when police are called. Often making a counter allegation can cause confusion and render the officers unable to instantly judge who is at fault. Attending the scene of a domestic incident needs skillful handling by the attending police officer and they need to receive adequate training to recognise potential signs of abuse as well as listening carefully to the victim and gaining an accurate picture of what has occurred before committing anything to record. This is vital as a form cannot capture every eventuality so if the officer has no understanding of coercive control and relies on the presentation of physical evidence it can be overlooked. The risk assessment may subsequently be inaccurate and the intervention inappropriate or inadequate.
1.7.1. Police risk assessments within domestic abuse

The current method used to assess risk asks a number of questions of the victim. It is based on a limited number of closed questions (Richards and Haglund, 2015). Secondly, it does not allow for the victim’s subjective assessment of their own risk, which is potentially a very strong predictor of future victimisation (Hoyle, 2008). More emphasis could be placed on the views of the victim themselves. The victim is an intimate partner of the suspect, and their position allows them to consider the unique circumstances and factors involved in their own risk (Beech and Ward, 2004). The other drawback with objective risk assessment tools is that it measures a limited number of factors and other information outside the questions asked can remain unidentified therefore a victim may not believe the police are taking them seriously if they perceive themselves as a high risk victim, but the case is graded as low or medium risk (Hoyle, 2008). This would have a negative impact upon their engagement and satisfaction with the police. This criticism is repeated in other reports (Jonas et al., 2014), who analysed 2596 cases of domestic abuse and found that only 4 out of the 27 risk factors included in the DASH risk assessment were able to identify domestic abuse recidivism.

Overall, it would appear that the DASH risk assessment as an actuarial tool might have significant deficiencies when assessing domestic abuse (Jonas et al., 2014). The Merseyside Risk Identification Toolkit (MeRIT) which is based on the DASH model is therefore similarly flawed. As such, it could reduce the level of victim engagement if the police do not accurately measure the risk to the victim using an appropriate risk assessment tool. There is always a danger with multiple choice questions that they may not adequately record the seriousness of the abuse and to allow for this, there is a margin of ‘professional opinion’ which allows the risk assessment score to be raised if deemed necessary.

The completed forms are then submitted to a specialist unit who deal with domestic abuse and they are allocated to specialist officers to investigate. There are a number of interventions which can be generated, from a simple phone call at one end of the scale; to removing a victim from their home and into a refuge at the more extreme end of the scale.

The officer who attends at the scene of a domestic will assess if there is sufficient evidence to arrest the offender there at the scene, or if they have left prior
to the attendance of the police, a crime report will be completed and the offender
would be recorded as a suspect on the crime report. If the offender has not been
arrested, then when the form arrives with the specialist unit, the detective in charge
will pursue the arrest of that offender under the allocated crime number.
All incidents of domestic abuse, however minor are recorded on a police data base
to capture any increases in severity or frequency of abuse between partners this
creates a history of partner abuse for every individual that comes to the attention of
the police. As well as dealing with the offender, the impact of domestic abuse on any
children in the household is a consideration and referrals are made to social services
who meet with the police at a Multi-Agency Risk Assessment Conference (MARAC)
to decide on what course of action should be taken to safeguard the vulnerable.

1.7.2. Influential factors when responding to domestic abuse

Another variable is the personality and tolerance of officers attending the scene of a
domestic dispute. Human nature is such that not all officers respond equally and it
was found that there were often failures in the positive action required by officers
who attended the domestic abuse incident, with vital evidence and other details
omitted from the investigation (HMIC, 2014). The policing policies which dictate
positive action may sometimes lead to dual arrests when the officers at the scene
cannot accurately identify who the main perpetrator actually is - so both parties may
be arrested. Academics question the ethics of arresting a potential victim and the
impact this has on their future engagement with the police (Fraehlich and Ursel,
2014).

There is currently no specific crime of domestic abuse or domestic violence
within the UK. Officers have a number of criminal offences which they can rely on to
arrest potential perpetrators. These include the Criminal Damage Act 1971, Criminal
used piece of legislation is Section 39 Criminal Justice Act 1988 and Section 47
Offences against the Person Act 1861. However, one of the major concerns about
arrests for abuse is that once the Crown Prosecution Service analyse the incident
(the CPS definitions differ from the police ones) the offence is frequently dropped to
the lowest form of assault, using Section 39 powers (Cretney and Davis, 1997).
1.8. Summary

The review of the literature has highlighted a number of key issues when exploring domestic abuse, specifically within Intimate Partner Violence. It has been recognised as a large scale problem, yet professionals struggle with inconsistent definitions which evolve as new research becomes available. As such the actual number of incidents is unknown and it is widely accepted that a large amount goes unreported, and therefore not recorded by the Police. There are gender issues and differences in domestic abuse when perpetrated by males as opposed to females, and key factors to consider such as perpetration methods and motivations and psychological and physical methods of instigation. Responders to domestic abuse are still not wholly and accurately identifying abuse, so the management and responses of partner agencies is confused and inconsistent. There is often a lack of confident understanding of the changing dynamics within chaotic incidents of domestic abuse. Repeat victimisation, where victims move on from one abusive relationship, and then become involved in another, frustrate those who have little or no understanding of coercive control. All risk assessments currently require victim involvement and consequently those who are responsible of tackling the problem, including the victim themselves, are at risk of not fully understanding the domestic abuse situation. Therefore, the aim of this study is to explore domestic abuse incidents in order to develop a deeper understanding of the relationship dynamics between victims and perpetrators of domestic abuse.
2.METHODOLOGY

2.1. Procedure
Data was collected from Merseyside Constabulary. Merseyside is a metropolitan county in North West England, with a population of 1.39 million (Office for National Statistics). According to statistics gathered by Merseyside police, in 2014, there were 6976 domestic abuse referrals. This increased significantly in 2015 to 11,367 (see FIG 2)

![Fig 2. DA referrals for Merseyside 2005 - 2015](image)

St Helens, one of the five policing areas within Merseyside, was chosen as the researcher had intimate knowledge of the data collection methods and processes within this area and ready access to that data. St Helens is a small town with an estimated population of 177,612. In 2014 there were 2836 domestic abuse referrals. This figure also increased in 2015 to 4350.

Merseyside Police keep a data base of every incident of domestic abuse that occurs within the policing area. Each incident of abuse is recorded by the radio control room following a call for service by a member of the public. A police officer is then dispatched to the scene of the incident and a form is completed by the officer. This form is designed to generate the answers to specific questions appertaining to the seriousness of the incident. Data collected at the scene of the incident is then
transferred onto a data base. This transfer is conducted by civilian administrative staff who are trained to not change any of the wording on the initial form as this may alter the meaning of what the officer has written. A verbatim approach is adopted. Then, after input, the case is reviewed by a supervisory police officer and directed in one of several ways depending on the severity of the incident. For example, cases involving a criminal offence are allocated to a detective to investigate whereas less serious incidents may be referred to an Independent Domestic abuse Advocate (IDVA) who will liaise with the victim and offer support and advice. The data base collates information which then makes it possible to see all prior incidents for a particular individual or address. It is this data base that was to form the focus of the study using a quantitative approach. That means that conclusions are drawn using the statistical information only. There is no contact with individual victims or perpetrators and the research is based on the information already collected.

The current researcher has intimate knowledge of the practical workings of Merseyside police data bases and procedural processes. The genesis relates to this practitioner experience and perspective. (see page 39) Accessibility of police data and an ability to cross reference several data bases to gather accurate and unique data is a direct result of this experience. This quality of data is not available for all researchers.

2.2. Analysis

There are two main types of research analysis, quantitative and qualitative, and researchers can use either, or a combination, of both of these methods. Each have certain limitations, quantitative involves using data to compare and analyse patterns and trends, the participants are anonymised and do not have any further input into the study once the statistics have been obtained. This method relies on the accuracy and consistency of the data collection to draw accurate comparisons. Qualitative is much more personal data collection and often using this method, participants are interviewed or studied in greater detail. For example, statements made by victims could be read and coded and interview transcripts of suspects could be examined for a more detailed reasoning as to why a participant behaved in a certain way. In this study, a quantitative analysis was adopted which used the data already collected by Merseyside Police. Merseyside police officers receive domestic abuse training and
are taught how to complete the data collection form (VPRF1) and so, allowing for personal deviations, a certain level of standardisation in the collection of data can be assumed.

The live database provided by Merseyside Police therefore provides a secondary source of information ideally suited for quantitative analysis. Due to the sensitive nature of the study, with many incidents involving abuse and criminal activity, it would be more difficult to use a qualitative approach as participants may be tempted to reconstruct the events in their favor or distort their accounts. The information captured has been independently collated and is presented in an unbiased format ready for analysis. This method is preferable to a qualitative approach which, as discussed above, would involve personal contact with the participants and a review of their case histories. By the very nature of domestic incidents there is a dispute involved and therefore participants by definition, could claim different accounts of the same story. Without a thorough investigation and vigorous interview, it would be difficult to gather enough evidence for the researcher to reach a conclusion as to the exact nature of the incident. The sheer volume of incidents, combined with the complexities of domestic abuse, would make qualitative analysis too time consuming in the constraints of the time set aside for this study.

2.3. The sample
The study sample included 450 individuals who between them committed 255 incidents of domestic abuse (DA), which were recorded by Merseyside Police in the month of May 2014. The month of May 2014 was chosen at random as the month for the study. The ‘live’ domestic abuse data base was ideal for the purpose as it included all of the historical abusive relationships for each individual and between each current partnership, but also any subsequent incidents after May 2014 which occurred up to the date of printing out the raw data which took place over two months between 1st June 2015 and 30th July 2015 (once printed out, it ceased to become living data). However, the cases included every incident of domestic abuse that each individual had been involved in, including the number of previous perpetrators and/or victims that they had been in an intimate relationship with.

The Merseyside Police data was then sanitised to protect the identity of each individual and each referral was given a case number. The incidents reported over
the one-month period in May 2014 were analysed to examine the number of domestic incidents that had been reported to the police. Before the data could be analysed it was noted that there were 20 repeat partnerships (i.e. partners who had been involved in more than one incident in the study month). This accounted for a total of 50 incidents which had the potential to skew the data analysis due to duplication, so before the data could be analysed the repeats were scrutinised and the victim information extracted to fit into a standardised row for analysis. From 255 cases, 30 duplicated nominals were then removed. In that month within the repeat victim incidents, 5 cases involved dual victimisation with both partners being a victim. This led to an additional 5 victims, so with all victims now captured, a master spreadsheet was compiled.

The final result was 230 domestic abuse victims. From these 230, just over 10% were repeat victims within the month (n = 25, 10.9%). The perpetrator and victim gender was recorded as male in 195 cases (84.8%) and female in 35 cases (15.2%) Age recorded for the victim ranged from 17 years to 91 years, with the median 32 (M = 33.03, SD = 11.24).

There was evidence of a dual domestic abuse from both victim and offender. Data indicated that within the 230 incidents, the lead victim in 37.8% of occasions also perpetrated an offence against the suspect, with the count ranging from 1 (20.9%) to 47 DA incidents (n = 1, 0.4%) within the time frame recorded.

Relationship status within the DA incidents showed varying intimate partner relationships, with over half recorded as partner (n = 122, 53%), followed by ex-partner (n = 67, 29.1%). Less than 15% were married (husband: n = 29, 12.6%, wife: n = 4, 1.7%) and the rest were ex-husband and ex-wife.
2.4. Coding

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Coding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Age at the time of the recorded incident in May 2014</td>
<td>17-91 years</td>
</tr>
<tr>
<td>Gender</td>
<td>recorded for both the victims within May 2014 and the perpetrators</td>
<td>Male</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Female</td>
</tr>
<tr>
<td></td>
<td></td>
<td>unknown</td>
</tr>
<tr>
<td>Warnings</td>
<td>coded as they appeared within the raw police data, if an individual had ever been allocated a warning marker.</td>
<td>Abuse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alcohol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>none</td>
</tr>
<tr>
<td>Risk assessment (RA)</td>
<td>The current protocol is to complete a Merit (Merseyside risk identification toolkit) pro-forma questionnaire to assess risk. (see appendix)</td>
<td>Bronze</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Silver</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gold</td>
</tr>
<tr>
<td>Victim/perpetrator count</td>
<td>To highlight those victims who had also ever perpetrated against any partner</td>
<td>Frequency count ranging from 1-47</td>
</tr>
<tr>
<td>Repeat</td>
<td>Indicates whether a victim appeared two or more times in the data set</td>
<td>Yes or no</td>
</tr>
<tr>
<td>Type</td>
<td>Compiled by the author (see figures 3&4 below for full explanation)</td>
<td>1.PMV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.VMP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.Both</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.Neither</td>
</tr>
<tr>
<td>Relationship</td>
<td>Current relationship (husband, partner, wife) or ex-relationship i.e. ex-husband, ex-partner, ex-wife</td>
<td>1.Current relationship</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.Ex-relationship</td>
</tr>
<tr>
<td>Residency</td>
<td>Indicate whether the perpetrator lived at the same address as the victim at the time of the domestic incident in May 2014.</td>
<td>(1) living at same address and (2) living separately, or (3) unknown.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Co-operation</td>
<td>whether or not the victim was willing to give an account of the incident and make a statement to the police in 2014 at the time of the Domestic abuse incident.</td>
<td>1. yes they co-operated 2. no they did not co-operate</td>
</tr>
<tr>
<td>Victim/perpetrator</td>
<td>Within the dataset, the victim at some point had also been identified as perpetrator of Domestic abuse.</td>
<td>1. present 2. not present</td>
</tr>
</tbody>
</table>

Type.

The coding type was compiled by the author who noted in analysis that both victims and perpetrators had a recorded history that extended beyond the boundaries of this study. For example, it was recorded how many previous perpetrators a victim had had and in fact how many incidents they had had with each of those perpetrators. Conversely some perpetrators had more victims than the current one. It was felt that this history of abuse would be an important factor to include so ‘Type’ was included as a variable and included four key categories that are explained below:
There are victims whose abusive partners have been abusive to several other victims as well as the current victim. These cases were coded as involving a Perpetrator that has offended against Multiple Victims (PMV). See figure 3. below.

Victim 1 Serial Perpetrator victim 2
Victim 3 Victim 4
Figure 3. Perpetrator of Multiple Victims

Another type identified was those cases that involved a victim that had recorded abuse involving other perpetrators, coded as a Victim of Multiple Perpetrators (VMP).

Perpetrator 1 Victim Perpetrator 2
Perpetrator 3 Perpetrator 4
Figure 4. Victim of Multiple Perpetrators

The other two categories within ‘type’ were: ‘Both’ in that the case presented both PMV and VMP. With the final type category indicating ‘None’.

2.5. Ethical considerations
Data used within this research was archival using anonymised case files of offenders who have been charged and prosecuted and was collected in the normal course of Police business. This project fulfils the requirements of the Data Protection Act and full ethical approval has been granted by University of Central Lancashire. Merseyside Police have also given full permission for this research to be carried out.
3. Results

As there were a number of key variables to explore, the results section takes each key variable in turn to explore its impact within domestic abuse (DA) incidents.

3.1. Repeat DA incidents

Out of the 230 domestic abuse cases harvested in the month of May 2014, 25 were categorised as repeat domestic abuse incidents (10.9%) within the same month. The victim and perpetrator characteristics within these cases of repeat victimisation will now be explored across the different variables.

Repeat versus no. of times the victim perpetrates against the suspect

Due to data being not normally distributed, a Mann-Whitney test was used. This found in these cases of repeat victimisation a significant number of incidents were recorded when the victim also perpetrated against the suspect, \(U = 1650.50, S = -3.352, p < .01 \). This showed that those who were repeat victims also had a significantly higher number of incidents that they perpetrated against a suspect (Mdn = 2.00) than those who were not repeat victims (Mdn = 0).

Repeat versus type

A Chi-Square analysis indicated a non-significant association between repeat victimisation and type of DA victim (types being; a victim of a perpetrator who perpetrates against Multiple Victims (PMV) a Victim of Multiple Perpetrators (VMP) Both meaning both PMV and VMP or Neither meaning neither of those PMV or VMP categories), \(\chi^2 (3) = 7.243, p > .05 \).

Repeat versus Victim as perpetrator (category)

Analysis revealed a significant association between repeat victimisation and whether the victim was also recorded as a perpetrator within any recorded DA incident, \(\chi^2 (1) = 3.939, p < .05 \). This showed that within those that were identified as repeats (n = 25) over half of these were also recorded as perpetrators (n = 14, 56%).
Repeat and abuse warning
There was a significant association between repeat and abuse warning that indicated that those who were repeats (n=25) were significantly more likely to have an abuse warning marker (64%) than those who were not repeats (41%), $X^2 (1) = 4.807$, $p < .05$.

Repeat and no warnings
There was a Significant association between repeat and no warning markers … $X^2 (1) = 7.096$, $p < .01$. with the repeat victims only 4% had none, compared to 28.8% of non-repeats.

Repeat and non-significant variables
Repeat victimisation was explored with a number of variables including victim gender, age, perpetrator gender, residency, risk assessment, cooperation, whether or not it was crimed (reported to the police as a crime and a criminal offence being identified) PMV, VMP, both, neither, alcohol, with all indicating non-significant relationships ($ps > .05$). Please see Appendix * for full SPSS output.

3.2. Type of DA victimisation (PMV, VMP, Both, Neither)

PMV- Victim of a perpetrator of Multiple Victims
VMP-Victim of Multiple Perpetrators
Both- both PMV and VMP
Neither- neither a PMV nor a VMP

Type of DA victimisation and age of victim
A one-way ANOVA was run to explore the impact of type of DA victimisation on the victim age recorded, with a significant effect found, $F (3, 226) = 3.635$, $p < .05$. This indicated that those categorised as VMP were significantly younger (M = 29.73, SD = 9.80) than those within the neither category (M = 35.68, SD = 13.04). This may indicate that the youngest victims are likely to be those who are most vulnerable and suffering DA at a higher level from multiple perpetrators.
Type and perpetrator gender
A Chi-Square analysis indicated that within all types males recorded higher proportions than female perpetrators, however, this difference was more apparent within the types of VMP and Both, where males recorded proportions of 97.6% and 98.0% respectively, with proportions lower for PMV (77.1%) and neither (75.6%), $X^2 (3) = 20.280, p < .001$.

Type and residency
Out of the 230 cases, 144 did not live together at time of incident (62.6%) with 86 living together (37.4%). Of those that lived together, over half were in the Neither category (51.2%), $n = 44$, with the rest evenly split between the other types. Of those not living together, a lower proportion (31.9%) were Neither. The other types not living together showed a proportion of 26.4% in Both and 24.3% PMV. This association was significant, $X^2 (3) = 10.393, p < .05$.

Type and RA
When exploring the type of DA victimisation and risk assessment level (Bronze, silver, gold) there was a significant association, $X^2 (6) = 15.277, p < .05$. This showed that within gold the highest proportion with type was recorded for Both (39.5%), for silver this was equal for VMP and Neither (27.8%) and for bronze this was Neither (44,5%). This may indicate that the higher risk types are being captured within the RA.

Type and victim cooperation with the police
A significant Chi-Square analysis showed a much lower proportion of the VMP type was likely to cooperate (12%) compared to Both (22.2%) PMV (24.1%). Those within the Neither category had the highest proportion likely to cooperate (41.8%) of cases, $X^2 (3) = 12.875, p < .01$.

Type and police warning marker

Interestingly the type that had the lowest proportion of abuse markers was the VMP (15%) followed by Neither (21%) with PMV and Both recording the same proportion of 32%, with this association significant, $X^2 (3) = 33.861 \ p < .001$.

Type and no police warning markers

The highest proportion of those recorded with no markers were seen as Neither type (68.3%). The VMP category showed the second highest proportion with no markers (21.7%) compared to PMV (6.7%) and Both (3.3%), $X^2 (3) = 39.205 \ p < .001$.

Type and non-significant variables

Type was explored with four other variables including victim as perpetrator, (category) and victim as a perpetrator (number), alcohol warning and whether it was crimed, (reported to the police as a crime and a criminal offence being identified) with each association non-significant, $p > .05$.

3.3. **Relationship status**

This was coded to include those within a current relationship (husband, partner, wife) $n = 155$ (67.4%) and those with a DA incident that involved an ex (ex-husband, ex-partner, ex-wife, $n = 75$, 32.6%).

Relationship status and age

An independent t-test found there was a significant effect of relationship status on the age of the victim, $t (228) = 2.2893, \ p < .01$. This indicated that those DA incidents that involved current relationships were significantly older victims ($M = 34.50, \ SD = 11.40$) than those DA incidents with ex-relationships ($M = 30.00, \ SD = 10.33$).

All other findings for relationship status were non-significant, including repeat DA incident, and type of DA victimisation (using all 4 categories of PMV, VMP, Both and Neither), $p > .05$.
4. Discussion

The research set out to explore Intimate Partner Violence incidents to develop a deeper understanding of the relationship dynamics between victims and perpetrators of domestic abuse. There were a number of significant findings that will now be highlighted and discussed.

First, upon examination of the data, it was found that those victims who were repeat victims within the month of May 2014 revealed a significant association between repeat victimisation and whether the victim was also recorded as a perpetrator (they had been recorded in one incident as a victim but in another incident as the perpetrator). See fig 20 below.

In addition, they also had a significantly higher number of incidents that they perpetrated against a suspect than those who were not repeat victims. Findings
showed a significant association between repeat victims and abuse warning markers that indicated that those who were repeats were significantly more likely to have a abuse warning and also least likely to have no warning marker at all.

Explanations for the first finding could align with the confusion around defining domestic abuse and Johnson’s (2014) segregation of domestic abuse into different categories. Situational Couple Violence where abuse is frequent and reciprocated where there is no real fear between partners and Intimate Terrorism which would reflect the lack of reciprocated abuse in couples where the abuse is all one way, and the victim does not ever become a perpetrator due to coercive control and real fear of the perpetrator. The frequency of these repeat incidents may lead police to wrongly diagnose the domestic abuse incident as Intimate Terrorism and apportion a greater degree of risk to the dynamics of such relationships. Frequency and instances of reciprocated abuse may in fact indicate Situational Couple Violence as both partners may have abuse markers which may not be an accurate assessment of the risk of Intimate Terrorism. Incidents of domestic abuse between victims who are not repeats run the risk of being less seriously categorised by police and show a lack of warning markers. Not all victims behave in the same way and numerous complex factors may influence their response to domestic abuse. Therefore, not all incidents can be treated in the same way, yet current risk assessment methods encourage this ‘one size fits all’ response. These findings support the theory that risk assessment as an actuarial tool might have significant deficiencies when assessing domestic abuse (Jonas et al., 2014).

The research went on to look at how the different ‘type’ of victim affected domestic abuse incidents. Type being an original coding used in this study and never having been looked at as a variable before.

PMV- the victim is a victim of a perpetrator of Multiple Victims
VMP-the victim is a victim of Multiple perpetrators
Both-the victim is both of the above two categories
Neither-the victim is neither PMV nor VMP

The incidence of significant findings around the variable type lends weight to the importance of type of victim as a variable. During the analysis of victim type it was found that Victims of Multiple Perpetrators were significantly younger than those
within the neither category. This analysis indicated that the youngest victims are likely to be subject to multiple forms of abuse from multiple perpetrators. This indication of the younger VMP victims being repeatedly abused by different partners underscores just how vulnerable this group are. As the victim progresses from one perpetrator to the next, coercion and control are consolidated and reinforced. Victims become conditioned over time to the abuse, (Gelles, 1995). ‘Learned helplessness’ a term first used by psychologist Lenore Walker (Walker, 1977), means they are unable to stop the abuse. Victims may be inundated with a constellation of abusive tactics which are individually tailored to cause the most severe effect. It makes each individual incident difficult to identify and isolate and some may appear frivolous and irrelevant and so involving the police may seem futile. A repetition of abusive behaviour from different perpetrators may lead a VMP to assume that all partners are the same and so there is no point in leaving. A very vulnerable standpoint, and one which a controlling perpetrator can easily take advantage of.

The analysis revealed that within all types males recorded significantly higher proportions than female perpetrators; however, this difference was more apparent with males having a higher proportion recorded within the types of Victim of Multiple Perpetrators and both (VMP and Perpetrator of multiple victims), whilst females conversely showed a higher proportion in PMV and Neither. This supports the theory that males are the most likely to perpetrate abuse (Stark, 2007) and in particular to go on from one victim to the next. This supports the argument that some perpetrators need to control their partner and are entrenched in coercive behaviour and that some perpetrators, despite awareness raising or treatment programs, even when they change their partners will never change their beliefs or behavior (Marshall and Rose, 1988).

There was a significant association between those partners who lived together at the time of the incident and victim type. Of those that lived together, over half were categorised as Neither (neither VMP nor PMV). In other words, they had not been involved with previous perpetrators and their current perpetrator had not had other victims. Those not living together showed a more even split of victim type. This finding is possibly due to the fact that regardless of residency, there is still some element of coercive control which extends into relationships which are over even after separation occurs. Researchers claim it is the most dangerous time and that 50-70% murders took place whilst partners were living apart (Wilson, Daly and
This is the point at which abusers feel that they have lost control and where panic can set in to re-establish it. The fact that partners no longer live together should not therefore influence the risk assessor. Incidents occurring after separation indicate heightened coercion and it is controlling perpetrators who pose the greatest risk (Day and Bowen, 2015).

When exploring the type of domestic abuse victimisation and risk assessment level (Bronze, silver, gold) there was a significant association which showed that within the gold category the highest proportion with type was recorded for Both (those that recorded both PMV and VMP). This may indicate that the risk levels are currently accurate in identifying those that are likely to be the most vulnerable. For those victims assessed as silver risk this was equal for VMP and Neither and for bronze this was Neither. This finding would be expected if the risk assessment was effective and may indicate that the higher risk types are being captured within the risk assessment.

With regards to victim co-operation with the police, analysis showed that the VMP type showed the smallest proportion likely to co-operate compared to PMV and Both. The Neither category had the highest proportion likely to co-operate. This finding reflects the impact of possible coercion on victims of abuse and it is interesting if the results of co-operation and age are cross referenced, as it is the youngest victims who appear to be most heavily influenced by coercion and have a high proportion not as willing to co-operate with police. This factor can have a negative impact on police officers who attend incidents of domestic abuse and who are met repeatedly with young vulnerable victims who are not co-operating with investigations and yet still the police are called again and again. This may lead to Police officers becoming frustrated and they may potentially lose interest in the victims who are most in need of intervention and support. Other support agencies and family and friend networks who lack understanding of the power of coercion, may also become frustrated and irritated by an apparent lack of the victims’ efforts to help themselves. The danger here may be that they ultimately abandon them, leaving them even more vulnerable.

Interestingly the type that had a significantly lower proportion of perpetrator police warning markers was the VMP followed by Neither with PMV and Both recording equally the highest proportion. An explanation for this result is that control
alone is already highly damaging and that increased abuse is of little further consequence (Anderson, 2008). It cannot be ignored that once again it is the VMP type that emerge as the most vulnerable. When analysed against no police perpetrator warning markers there was a significantly higher proportion of VMP victims recorded with perpetrators who had no markers compared to PMV and Both, although it was the Neither type with the majority of perpetrators with no markers. This reinforces the lack of need for violence in order for perpetrators to control their victims.

Finally, when the association of relationship status and age was explored, the findings showed that there was a significant effect of relationship status on the age of the victim. This indicated that those domestic abuse incidents that involved current relationships were significantly older victims than those domestic abuse incidents with ex-relationships. This may impact on the police response, reinforcing the stereotypical view regarding young relationships, with no apparent violence present and the victims not being willing to co-operate with police.

These findings are unique as the categorisation of victim type has never been used before in research literature.

Strengths, Limitations and future research

The strengths of this study arose from the intimate knowledge of the practical workings within Merseyside police of the current researcher and access to several data bases not available to other researchers. This uniqueness of the data and lack of research on this topic, enables this study to address a ‘gap’ in current literature. In addition, the aim of categorising victims into ‘type’ is a unique concept and one which may have beneficial consequences for agencies and organisations trying to intervene and address domestic abuse.

Limitations to the study arose from three main areas, firstly the nature of the quantitative method which, when dealing with human interaction, always has its limitations. First, the sample cannot comprise all individuals who suffered domestic
abuse in St Helens during the month of May 2014. As is known there is a considerable amount of domestic abuse that goes unreported, however there is nothing to suggest the sample is not comparable to other research. The fact that several different data bases have been scrutinized by the current researcher who has intimate working knowledge of their interpretation would lend weight to the fact that as many incidents as possible have been captured. Secondly, of the incidents that were reported, there was no direct involvement with the victims, who therefore had no opportunity to indicate the level of abuse or severity of the domestic abuse incident. Without some form of qualitative analysis, the level of domestic abuse experienced could not be accurately measured. The findings were also limited in that it is difficult to conclude whether a victim type is due to the fact that the victim is inexperienced and this is the first time that they have experienced domestic abuse due to their age. For example, if a victim is Neither, is that due to inexperience with different partners or the fact that they are able to recognise an abusive partner and have avoided becoming involved in an abusive relationship up until this point in time. Secondly the size of the study period was restrictive in that only the Repeats recorded within the month of May 2014 were included. Other victims had experienced repeat incidents with their current partner but these were outside of the timescale. Finally, the police data base relies on the account of the victim and the integrity of the recording officer both of which have margins of human error and interpretation. The initial collection of the data makes assumptions that the officer has some understanding of domestic abuse, but this may not always be the case. There were no means of clarifying the severity of the incident and only the police log showed any indication of the nature of the incident. Logs are written in ‘real time’ and are subject to information being passed accurately across airwaves and being recorded contemporaneously. This in itself can lead to inaccuracies or misinterpretations.

With regards to future research, it would be useful to investigate the extent to which victims are coerced and controlled using a qualitative methodology, such as interviews, to explore the domestic abuse relationship in more detail. The concept of victim type is an original research development and this could be taken forward and explored more fully. It would be a useful study to examine whether any of the Neither category of victim become a VMP or victim of a PMV in future through qualitative
research. Research in this area would inform and enrich an understanding of the complexities of domestic abuse and assist law enforcement and support agencies in targeting their responses and intervention strategies more accurately and in the most effective manner for the individual victim.

Conclusion

The aim of this study was to explore incidents of domestic abuse to develop a deeper understanding of the relationship dynamics between victims and perpetrators in abusive relationships. In order to do this 4 victim types were identified and this included the introduction of a victim of a Perpetrator of Multiple Victims (PMV), Victim of Multiple Perpetrator (VMP). Both, which involved being a victim of both of the above categories and Neither which meant that the victim was neither PMV nor VMP. The study found that there was a relationship between victim type and other variables which indicates that the type of victim does have a bearing on the level and type of domestic abuse experienced. The findings support research that divides domestic abuse into differing categories such as Situational Couple Violence and Intimate Terrorism (Johnson, 2014) and the results run contrary to the concept that victims of domestic abuse can be easily categorised by one risk assessment that will accurately identify risk.

One of the key findings from this thesis is the various associations found when exploring the Domestic Abuse type VMP (Victim of Multiple Perpetrators). This group was found to have the highest proportion of the youngest, most likely to be repeat victims, having perpetrators with no warning markers for violence, female and the least likely to co-operate with the police thus indicating this group to be particularly vulnerable. Further research should seek to further validate the domestic abuse groupings and in particular the significant vulnerability factors that seem to highlight those most likely to be Victims of Multiple Perpetrators (VMP) to enable improved preventative DA work.
References

Appendix

Repeat victimisation

Age and repeat

<table>
<thead>
<tr>
<th>repeat</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>no</td>
<td>205</td>
<td>32.92</td>
<td>11.439</td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td>25</td>
<td>34.00</td>
<td>9.635</td>
</tr>
<tr>
<td>VPerp</td>
<td>no</td>
<td>205</td>
<td>.73</td>
<td>1.550</td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td>25</td>
<td>6.40</td>
<td>11.350</td>
</tr>
</tbody>
</table>

Independent Samples Test

<table>
<thead>
<tr>
<th></th>
<th>Levene's Test for Equality of Variances</th>
<th>t-test for Equality of Means</th>
<th>95% Confidence Interval of the Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>Sig.</td>
<td>t</td>
</tr>
<tr>
<td>Age</td>
<td>Equal variances assumed</td>
<td>.498</td>
<td>.481</td>
</tr>
<tr>
<td></td>
<td>Equal variances not assumed</td>
<td>-519</td>
<td>32.847</td>
</tr>
<tr>
<td>VPerp</td>
<td>Equal variances assumed</td>
<td>89.490</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>Equal variances not assumed</td>
<td>2.494</td>
<td>24.109</td>
</tr>
</tbody>
</table>
Repeat with victim perp against suspect

Descriptive Statistics

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPerp</td>
<td>230</td>
<td>1.35</td>
<td>4.332</td>
<td>0</td>
<td>47</td>
</tr>
<tr>
<td>repeat</td>
<td>230</td>
<td>.11</td>
<td>.312</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPerp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no</td>
<td>205</td>
<td>111.05</td>
<td>22765.50</td>
</tr>
<tr>
<td>yes</td>
<td>25</td>
<td>151.98</td>
<td>3799.50</td>
</tr>
<tr>
<td>Total</td>
<td>230</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics

<table>
<thead>
<tr>
<th></th>
<th>VPerp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>1650.500</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>22765.500</td>
</tr>
<tr>
<td>S</td>
<td>-3.352</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.001</td>
</tr>
</tbody>
</table>

a. Grouping Variable: repeat
Repeat versus type

Repeat * Type Cross tabulation

<table>
<thead>
<tr>
<th></th>
<th>PMV Perpetrates against multiple victims</th>
<th>VMP Victim of multiple perpetrator</th>
<th>Both</th>
<th>Neither</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>repeat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no</td>
<td>40</td>
<td>39</td>
<td>42</td>
<td>84</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>42.8</td>
<td>36.5</td>
<td>45.5</td>
<td>80.2</td>
</tr>
<tr>
<td></td>
<td>% within repeat</td>
<td>19.5%</td>
<td>19.0%</td>
<td>20.5%</td>
<td>41.0%</td>
</tr>
<tr>
<td></td>
<td>% within Type</td>
<td>83.3%</td>
<td>95.1%</td>
<td>82.4%</td>
<td>93.3%</td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>17.4%</td>
<td>17.0%</td>
<td>18.3%</td>
<td>36.5%</td>
</tr>
<tr>
<td>yes</td>
<td>8</td>
<td>2</td>
<td>9</td>
<td>6</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>5.2</td>
<td>4.5</td>
<td>5.5</td>
<td>9.8</td>
</tr>
<tr>
<td></td>
<td>% within repeat</td>
<td>32.0%</td>
<td>8.0%</td>
<td>36.0%</td>
<td>24.0%</td>
</tr>
<tr>
<td></td>
<td>% within Type</td>
<td>16.7%</td>
<td>4.9%</td>
<td>17.6%</td>
<td>6.7%</td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>3.5%</td>
<td>0.9%</td>
<td>3.9%</td>
<td>2.6%</td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
<td>48</td>
<td>41</td>
<td>51</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>48.0</td>
<td>41.0</td>
<td>51.0</td>
<td>90.0</td>
</tr>
<tr>
<td></td>
<td>% within repeat</td>
<td>20.9%</td>
<td>17.8%</td>
<td>22.2%</td>
<td>39.1%</td>
</tr>
<tr>
<td></td>
<td>% within Type</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>20.9%</td>
<td>17.8%</td>
<td>22.2%</td>
<td>39.1%</td>
</tr>
</tbody>
</table>

Chi-Square Tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Value</th>
<th>df</th>
<th>Asymptotic Significance (2-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Chi-Square</td>
<td>7.243a</td>
<td>3</td>
<td>.065</td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>7.283</td>
<td>3</td>
<td>.063</td>
</tr>
<tr>
<td>Linear-by-Linear Assoc</td>
<td>1.557</td>
<td>1</td>
<td>.212</td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>230</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. 1 cells (12.5%) have expected count less than 5. The minimum expected count is 4.46.
Repeat and gender perp

repeat * Perp Gender Cross tabulation

<table>
<thead>
<tr>
<th>repeat</th>
<th>Perp Gender</th>
<th>male</th>
<th>female</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>Count</td>
<td>175</td>
<td>30</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>173.8</td>
<td>31.2</td>
<td>205.0</td>
</tr>
<tr>
<td></td>
<td>% within repeat</td>
<td>85.4%</td>
<td>14.6%</td>
<td>100.0%</td>
</tr>
<tr>
<td></td>
<td>% within PerpGender</td>
<td>89.7%</td>
<td>85.7%</td>
<td>89.1%</td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>76.1%</td>
<td>13.0%</td>
<td>89.1%</td>
</tr>
<tr>
<td>yes</td>
<td>Count</td>
<td>20</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>21.2</td>
<td>3.8</td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td>% within repeat</td>
<td>80.0%</td>
<td>20.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td></td>
<td>% within PerpGender</td>
<td>10.3%</td>
<td>14.3%</td>
<td>10.9%</td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>8.7%</td>
<td>2.2%</td>
<td>10.9%</td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
<td>195</td>
<td>35</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>195.0</td>
<td>35.0</td>
<td>230.0</td>
</tr>
<tr>
<td></td>
<td>% within repeat</td>
<td>84.8%</td>
<td>15.2%</td>
<td>100.0%</td>
</tr>
<tr>
<td></td>
<td>% within PerpGender</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>84.8%</td>
<td>15.2%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Chi-Square Tests

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>df</th>
<th>Asymptotic Significance (2-sided)</th>
<th>Exact Sig. (2-sided)</th>
<th>Exact Sig. (1-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Chi-Square</td>
<td>.497a</td>
<td>1</td>
<td>.481</td>
<td>.553</td>
<td>.325</td>
</tr>
<tr>
<td>Continuity Correction</td>
<td>.168</td>
<td>1</td>
<td>.682</td>
<td>.553</td>
<td>.325</td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>.465</td>
<td>1</td>
<td>.495</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fisher's Exact Test</td>
<td></td>
<td></td>
<td></td>
<td>.553</td>
<td>.325</td>
</tr>
<tr>
<td>Linear-by-Linear Association</td>
<td>.495</td>
<td>1</td>
<td>.482</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. 1 cells (25.0%) have expected count less than 5. The minimum expected count is 3.80.

b. Computed only for a 2x2 table
Repeat and residency

Repeat * Residency Cross-tabulation

<table>
<thead>
<tr>
<th></th>
<th>Residency</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>yes</td>
<td>no</td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>repeat no</td>
<td>Count</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>79</td>
<td>126</td>
<td>205</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>76.7</td>
<td>128.3</td>
<td>205.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within repeat</td>
<td>38.5%</td>
<td>61.5%</td>
<td>100.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within Residency</td>
<td>91.9%</td>
<td>87.5%</td>
<td>89.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>34.3%</td>
<td>54.8%</td>
<td>89.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>yes</td>
<td>Count</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>18</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>9.3</td>
<td>15.7</td>
<td>25.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within repeat</td>
<td>28.0%</td>
<td>72.0%</td>
<td>100.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within Residency</td>
<td>8.1%</td>
<td>12.5%</td>
<td>10.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>3.0%</td>
<td>7.8%</td>
<td>10.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
<td>86</td>
<td>144</td>
<td>230</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>86.0</td>
<td>144.0</td>
<td>230.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within repeat</td>
<td>37.4%</td>
<td>62.6%</td>
<td>100.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within Residency</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>37.4%</td>
<td>62.6%</td>
<td>100.0%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chi-Square Tests

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>df</th>
<th>Asymptotic Significance (2-sided)</th>
<th>Exact Sig. (2-sided)</th>
<th>Exact Sig. (1-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Chi-Square</td>
<td>1.057</td>
<td>1</td>
<td>.304</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuity Correction</td>
<td>.655</td>
<td>1</td>
<td>.418</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>1.097</td>
<td>1</td>
<td>.295</td>
<td>.384</td>
<td>.211</td>
</tr>
<tr>
<td>Fisher's Exact Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear-by-Linear Association</td>
<td>1.052</td>
<td>1</td>
<td>.305</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>230</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 9.35.
b. Computed only for a 2x2 table
Repeat and RA

<table>
<thead>
<tr>
<th>repeat</th>
<th>RA</th>
<th>gold</th>
<th>silver</th>
<th>bronze</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>Count</td>
<td>32</td>
<td>29</td>
<td>143</td>
<td>204</td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>33.9</td>
<td>32.1</td>
<td>138.1</td>
<td>204.0</td>
</tr>
<tr>
<td></td>
<td>% within repeat</td>
<td>15.7%</td>
<td>14.2%</td>
<td>70.1%</td>
<td>100.0%</td>
</tr>
<tr>
<td></td>
<td>% within RA</td>
<td>84.2%</td>
<td>80.6%</td>
<td>92.3%</td>
<td>89.1%</td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>14.0%</td>
<td>12.7%</td>
<td>62.4%</td>
<td>89.1%</td>
</tr>
<tr>
<td>yes</td>
<td>Count</td>
<td>6</td>
<td>7</td>
<td>12</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>4.1</td>
<td>3.9</td>
<td>16.9</td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td>% within repeat</td>
<td>24.0%</td>
<td>28.0%</td>
<td>48.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td></td>
<td>% within RA</td>
<td>15.8%</td>
<td>19.4%</td>
<td>7.7%</td>
<td>10.9%</td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>2.6%</td>
<td>3.1%</td>
<td>5.2%</td>
<td>10.9%</td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
<td>38</td>
<td>36</td>
<td>155</td>
<td>229</td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>38.0</td>
<td>36.0</td>
<td>155.0</td>
<td>229.0</td>
</tr>
<tr>
<td></td>
<td>% within repeat</td>
<td>16.6%</td>
<td>15.7%</td>
<td>67.7%</td>
<td>100.0%</td>
</tr>
<tr>
<td></td>
<td>% within RA</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>16.6%</td>
<td>15.7%</td>
<td>67.7%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Chi-Square Tests

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
<th>df</th>
<th>Asymptotic Significance (2-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Chi-Square</td>
<td>5.226</td>
<td>2</td>
<td>.073</td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>4.842</td>
<td>2</td>
<td>.089</td>
</tr>
<tr>
<td>Linear-by-Linear Association</td>
<td>3.525</td>
<td>1</td>
<td>.060</td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>229</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. 2 cells (33.3%) have expected count less than 5. The minimum expected count is 3.93.
Repeat and co-operation

repeat * Co-op Cross-tabulation

<table>
<thead>
<tr>
<th></th>
<th>Co-op</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>yes</td>
<td>no</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>repeat</td>
<td>no</td>
<td>Count</td>
<td>139</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected Count</td>
<td>140.8</td>
<td>64.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within repeat</td>
<td>67.8%</td>
<td>32.2%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within CoOp</td>
<td>88.0%</td>
<td>91.7%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% of Total</td>
<td>60.4%</td>
<td>28.7%</td>
</tr>
<tr>
<td>yes</td>
<td>Count</td>
<td>19</td>
<td>6</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>17.2</td>
<td>7.8</td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td>% within repeat</td>
<td>76.0%</td>
<td>24.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td></td>
<td>% within CoOp</td>
<td>12.0%</td>
<td>8.3%</td>
<td>10.9%</td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>8.3%</td>
<td>2.6%</td>
<td>10.9%</td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
<td>158</td>
<td>72</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>158.0</td>
<td>72.0</td>
<td>230.0</td>
</tr>
<tr>
<td></td>
<td>% within repeat</td>
<td>68.7%</td>
<td>31.3%</td>
<td>100.0%</td>
</tr>
<tr>
<td></td>
<td>% within CoOp</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>68.7%</td>
<td>31.3%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Chi-Square Tests

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>df</th>
<th>Asymptotic Significance (2-sided)</th>
<th>Exact Sig. (2-sided)</th>
<th>Exact Sig. (1-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Chi-Square</td>
<td>.696a</td>
<td>1</td>
<td>.404</td>
<td>.497</td>
<td>.278</td>
</tr>
<tr>
<td>Continuity Correctionp</td>
<td>.367</td>
<td>1</td>
<td>.545</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>.727</td>
<td>1</td>
<td>.394</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fisher's Exact Test</td>
<td></td>
<td></td>
<td></td>
<td>.497</td>
<td>.278</td>
</tr>
<tr>
<td>Linear-by-Linear Association</td>
<td>.693</td>
<td>1</td>
<td>.405</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>230</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 7.83.
b. Computed only for a 2x2 table
Repeat and crimed

Repeat * Crimed Cross tabulation

<table>
<thead>
<tr>
<th></th>
<th>Crimed</th>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>yes</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>repeat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no</td>
<td>Count</td>
<td>50</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>50.8</td>
<td>154.2</td>
</tr>
<tr>
<td></td>
<td>% within repeat</td>
<td>24.4%</td>
<td>75.6%</td>
</tr>
<tr>
<td></td>
<td>% within Crimed</td>
<td>87.7%</td>
<td>89.6%</td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>21.7%</td>
<td>67.4%</td>
</tr>
<tr>
<td>yes</td>
<td>Count</td>
<td>7</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>6.2</td>
<td>18.8</td>
</tr>
<tr>
<td></td>
<td>% within repeat</td>
<td>28.0%</td>
<td>72.0%</td>
</tr>
<tr>
<td></td>
<td>% within Crimed</td>
<td>12.3%</td>
<td>10.4%</td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>3.0%</td>
<td>7.8%</td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
<td>57</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>57.0</td>
<td>173.0</td>
</tr>
<tr>
<td></td>
<td>% within repeat</td>
<td>24.8%</td>
<td>75.2%</td>
</tr>
<tr>
<td></td>
<td>% within Crimed</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>24.8%</td>
<td>75.2%</td>
</tr>
</tbody>
</table>

Chi-Square Tests

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>df</th>
<th>Asymptotic Significance (2-sided)</th>
<th>Exact Sig. (2-sided)</th>
<th>Exact Sig. (1-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Chi-Square</td>
<td>.156a</td>
<td>1</td>
<td>.693</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuity Correction</td>
<td>.022</td>
<td>1</td>
<td>.881</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>.152</td>
<td>1</td>
<td>.697</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fisher's Exact Test</td>
<td></td>
<td></td>
<td></td>
<td>.806</td>
<td>.428</td>
</tr>
<tr>
<td>Linear-by-Linear Association</td>
<td>.155</td>
<td>1</td>
<td>.694</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>230</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 6.20.

b. Computed only for a 2x2 table
Repeat and PMV

<table>
<thead>
<tr>
<th>repeat * Type PMV Cross tabulation</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No PMV</td>
<td>PMV</td>
<td>Total</td>
</tr>
<tr>
<td>repeat no</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Count</td>
<td>165</td>
<td>40</td>
<td>205</td>
</tr>
<tr>
<td>Expected Count</td>
<td>162.2</td>
<td>42.8</td>
<td>205.0</td>
</tr>
<tr>
<td>% within repeat</td>
<td>80.5%</td>
<td>19.5%</td>
<td>100.0%</td>
</tr>
<tr>
<td>% within Type PMV</td>
<td>90.7%</td>
<td>83.3%</td>
<td>89.1%</td>
</tr>
<tr>
<td>% of Total</td>
<td>71.7%</td>
<td>17.4%</td>
<td>89.1%</td>
</tr>
<tr>
<td>yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Count</td>
<td>17</td>
<td>8</td>
<td>25</td>
</tr>
<tr>
<td>Expected Count</td>
<td>19.8</td>
<td>5.2</td>
<td>25.0</td>
</tr>
<tr>
<td>% within repeat</td>
<td>68.0%</td>
<td>32.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>% within Type PMV</td>
<td>9.3%</td>
<td>16.7%</td>
<td>10.9%</td>
</tr>
<tr>
<td>% of Total</td>
<td>7.4%</td>
<td>3.5%</td>
<td>10.9%</td>
</tr>
<tr>
<td>Total</td>
<td>182</td>
<td>48</td>
<td>230</td>
</tr>
<tr>
<td>Expected Count</td>
<td>182.0</td>
<td>48.0</td>
<td>230.0</td>
</tr>
<tr>
<td>% within repeat</td>
<td>79.1%</td>
<td>20.9%</td>
<td>100.0%</td>
</tr>
<tr>
<td>% within Type PMV</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>% of Total</td>
<td>79.1%</td>
<td>20.9%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Chi-Square Tests

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>df</th>
<th>Asymptotic Significance (2-sided)</th>
<th>Exact Sig. (2-sided)</th>
<th>Exact Sig. (1-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Chi-Square</td>
<td>2.104</td>
<td>1</td>
<td>.147</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuity Correction<sup>p</sup></td>
<td>1.416</td>
<td>1</td>
<td>.234</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>1.918</td>
<td>1</td>
<td>.166</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fisher's Exact Test</td>
<td></td>
<td></td>
<td></td>
<td>.189</td>
<td>.119</td>
</tr>
<tr>
<td>Linear-by-Linear Association</td>
<td>2.095</td>
<td>1</td>
<td>.148</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>230</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 5.22.
b. Computed only for a 2x2 table
Repeat and VMP

Repeat * Type VMP Cross tabulation

<table>
<thead>
<tr>
<th></th>
<th>Type VMP</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No VMP</td>
<td>VMP</td>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>repeat no</td>
<td>Count</td>
<td>166</td>
<td>39</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>168.5</td>
<td>36.5</td>
<td>205.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within repeat</td>
<td>81.0%</td>
<td>19.0%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within Type VMP</td>
<td>87.8%</td>
<td>95.1%</td>
<td>89.1%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>72.2%</td>
<td>17.0%</td>
<td>89.1%</td>
<td></td>
</tr>
<tr>
<td>yes</td>
<td>Count</td>
<td>23</td>
<td>2</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>20.5</td>
<td>4.5</td>
<td>25.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within repeat</td>
<td>92.0%</td>
<td>8.0%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within Type VMP</td>
<td>12.2%</td>
<td>4.9%</td>
<td>10.9%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>10.0%</td>
<td>0.9%</td>
<td>10.9%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
<td>189</td>
<td>41</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>189.0</td>
<td>41.0</td>
<td>230.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within repeat</td>
<td>82.2%</td>
<td>17.8%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within Type VMP</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>82.2%</td>
<td>17.8%</td>
<td>100.0%</td>
<td></td>
</tr>
</tbody>
</table>

Chi-Square Tests

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>df</th>
<th>Asymptotic Significance (2-sided)</th>
<th>Exact Sig. (2-sided)</th>
<th>Exact Sig. (1-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Chi-Square</td>
<td>1.849a</td>
<td>1</td>
<td>.174</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuity Correctionp</td>
<td>1.173</td>
<td>1</td>
<td>.279</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>2.188</td>
<td>1</td>
<td>.139</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fisher's Exact Test</td>
<td></td>
<td></td>
<td></td>
<td>.267</td>
<td>.137</td>
</tr>
<tr>
<td>Linear-by-Linear Association</td>
<td>1.841</td>
<td>1</td>
<td>.175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>230</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. 1 cells (25.0%) have expected count less than 5. The minimum expected count is 4.46.
b. Computed only for a 2x2 table
Repeat and Both

Repeat * Type Both Cross tabulation

<table>
<thead>
<tr>
<th></th>
<th>TypeBoth</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not Both</td>
<td>Both</td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>repeat no</td>
<td>Count</td>
<td>163</td>
<td>42</td>
<td>205</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>159.5</td>
<td>45.5</td>
<td>205.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within repeat</td>
<td>79.5%</td>
<td>20.5%</td>
<td>100.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within Type Both</td>
<td>91.1%</td>
<td>82.4%</td>
<td>89.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>70.9%</td>
<td>18.3%</td>
<td>89.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yes</td>
<td>Count</td>
<td>16</td>
<td>9</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>19.5</td>
<td>5.5</td>
<td>25.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within repeat</td>
<td>64.0%</td>
<td>36.0%</td>
<td>100.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within Type Both</td>
<td>8.9%</td>
<td>17.6%</td>
<td>10.9%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>7.0%</td>
<td>3.9%</td>
<td>10.9%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
<td>179</td>
<td>51</td>
<td>230</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>179.0</td>
<td>51.0</td>
<td>230.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within repeat</td>
<td>77.8%</td>
<td>22.2%</td>
<td>100.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within Type Both</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>77.8%</td>
<td>22.2%</td>
<td>100.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chi-Square Tests

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>df</th>
<th>Asymptotic Significance (2-sided)</th>
<th>Exact Sig. (2-sided)</th>
<th>Exact Sig. (1-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Chi-Square</td>
<td>3.107a</td>
<td>1</td>
<td>.078</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuity Correction(^p)</td>
<td>2.273</td>
<td>1</td>
<td>.132</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>2.808</td>
<td>1</td>
<td>.094</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fisher's Exact Test</td>
<td></td>
<td></td>
<td>.122</td>
<td></td>
<td>.070</td>
</tr>
<tr>
<td>Linear-by-Linear Association</td>
<td>3.094</td>
<td>1</td>
<td>.079</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>230</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 5.54.
* b. Computed only for a 2x2 table
Repeat and neither

<table>
<thead>
<tr>
<th></th>
<th>Type Neither</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not Neither</td>
<td>Neither</td>
</tr>
<tr>
<td>repeat no</td>
<td>Count</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>124.8</td>
</tr>
<tr>
<td></td>
<td>% within repeat</td>
<td>59.0%</td>
</tr>
<tr>
<td></td>
<td>% within Type Neither</td>
<td>86.4%</td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>52.6%</td>
</tr>
<tr>
<td>yes</td>
<td>Count</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>15.2</td>
</tr>
<tr>
<td></td>
<td>% within repeat</td>
<td>76.0%</td>
</tr>
<tr>
<td></td>
<td>% within Type Neither</td>
<td>13.6%</td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>8.3%</td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>140.0</td>
</tr>
<tr>
<td></td>
<td>% within repeat</td>
<td>60.9%</td>
</tr>
<tr>
<td></td>
<td>% within Type Neither</td>
<td>100.0%</td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>60.9%</td>
</tr>
</tbody>
</table>

Chi-Square Tests

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>df</th>
<th>Asymptotic Significance (2-sided)</th>
<th>Exact Sig. (2-sided)</th>
<th>Exact Sig. (1-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Chi-Square</td>
<td>2.696a</td>
<td>1</td>
<td>.101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuity Correction</td>
<td>2.030</td>
<td>1</td>
<td>.154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>2.861</td>
<td>1</td>
<td>.091</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fisher's Exact Test</td>
<td></td>
<td></td>
<td></td>
<td>.129</td>
<td>.075</td>
</tr>
<tr>
<td>Linear-by-Linear Association</td>
<td>2.684</td>
<td>1</td>
<td>.101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>230</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 9.78.
b. Computed only for a 2x2 table
Repeat and v perp

Repeat * V Perp Category Cross tabulation

<table>
<thead>
<tr>
<th></th>
<th>V Perp Category</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Victim only</td>
<td>Victim also perp</td>
<td>Total</td>
</tr>
<tr>
<td>repeat no</td>
<td>Count</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within repeat</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within V Perp Category</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>yes</td>
<td>Count</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within repeat</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within V Perp Category</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within repeat</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within V Perp Category</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chi-Square Tests

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>df</th>
<th>Asymptotic Significance (2-sided)</th>
<th>Exact Sig. (2-sided)</th>
<th>Exact Sig. (1-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Chi-Square</td>
<td>3.939</td>
<td>1</td>
<td>.047</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuity Correctionp</td>
<td>3.120</td>
<td>1</td>
<td>.077</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>3.811</td>
<td>1</td>
<td>.051</td>
<td>.052</td>
<td>.040</td>
</tr>
<tr>
<td>Fisher's Exact Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear-by-Linear Association</td>
<td>3.922</td>
<td>1</td>
<td>.048</td>
<td>.052</td>
<td>.040</td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>230</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 9.46.
b. Computed only for a 2x2 table
Repeat and victim gender

<table>
<thead>
<tr>
<th>repeat * Victim Gender Cross tabulation</th>
<th>Victim Gender</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>male</td>
<td>female</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>repeat no Count</td>
<td>30</td>
<td>175</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>Expected Count</td>
<td>31.2</td>
<td>173.8</td>
<td>205.0</td>
<td></td>
</tr>
<tr>
<td>% within repeat</td>
<td>14.6%</td>
<td>85.4%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td>% within Victim Gender</td>
<td>85.7%</td>
<td>89.7%</td>
<td>89.1%</td>
<td></td>
</tr>
<tr>
<td>% of Total</td>
<td>13.0%</td>
<td>76.1%</td>
<td>89.1%</td>
<td></td>
</tr>
<tr>
<td>yes Count</td>
<td>5</td>
<td>20</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Expected Count</td>
<td>3.8</td>
<td>21.2</td>
<td>25.0</td>
<td></td>
</tr>
<tr>
<td>% within repeat</td>
<td>20.0%</td>
<td>80.0%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td>% within Victim Gender</td>
<td>14.3%</td>
<td>10.3%</td>
<td>10.9%</td>
<td></td>
</tr>
<tr>
<td>% of Total</td>
<td>2.2%</td>
<td>8.7%</td>
<td>10.9%</td>
<td></td>
</tr>
<tr>
<td>Total Count</td>
<td>35</td>
<td>195</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>Expected Count</td>
<td>35.0</td>
<td>195.0</td>
<td>230.0</td>
<td></td>
</tr>
<tr>
<td>% within repeat</td>
<td>15.2%</td>
<td>84.8%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td>% within Victim Gender</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td>% of Total</td>
<td>15.2%</td>
<td>84.8%</td>
<td>100.0%</td>
<td></td>
</tr>
</tbody>
</table>

Chi-Square Tests

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>df</th>
<th>Asymptotic Significance (2-sided)</th>
<th>Exact Sig. (2-sided)</th>
<th>Exact Sig. (1-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Chi-Square</td>
<td>.497a</td>
<td>1</td>
<td>.481</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuity Correction</td>
<td>.168</td>
<td>1</td>
<td>.682</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>.465</td>
<td>1</td>
<td>.495</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fisher's Exact Test</td>
<td></td>
<td></td>
<td></td>
<td>.553</td>
<td>.325</td>
</tr>
<tr>
<td>Linear-by-Linear Association</td>
<td>.495</td>
<td>1</td>
<td>.482</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>230</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. 1 cells (25.0%) have expected count less than 5. The minimum expected count is 3.80.
b. Computed only for a 2x2 table
Repeat and abuse warning

Repeat * Warning Abuse Cross tabulation

<table>
<thead>
<tr>
<th></th>
<th>No Abuse</th>
<th>Abuse</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>repeat no</td>
<td>121</td>
<td>84</td>
<td>205</td>
</tr>
<tr>
<td>Expected Count</td>
<td>115.9</td>
<td>89.1</td>
<td>205.0</td>
</tr>
<tr>
<td>% within repeat</td>
<td>59.0%</td>
<td>41.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>% within Warning Abuse</td>
<td>93.1%</td>
<td>84.0%</td>
<td>89.1%</td>
</tr>
<tr>
<td>% of Total</td>
<td>52.6%</td>
<td>36.5%</td>
<td>89.1%</td>
</tr>
<tr>
<td>yes</td>
<td>9</td>
<td>16</td>
<td>25</td>
</tr>
<tr>
<td>Expected Count</td>
<td>14.1</td>
<td>10.9</td>
<td>25.0</td>
</tr>
<tr>
<td>% within repeat</td>
<td>36.0%</td>
<td>64.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>% within Warning Abuse</td>
<td>6.9%</td>
<td>16.0%</td>
<td>10.9%</td>
</tr>
<tr>
<td>% of Total</td>
<td>3.9%</td>
<td>7.0%</td>
<td>10.9%</td>
</tr>
<tr>
<td>Total</td>
<td>130</td>
<td>100</td>
<td>230</td>
</tr>
<tr>
<td>Expected Count</td>
<td>130.0</td>
<td>100.0</td>
<td>230.0</td>
</tr>
<tr>
<td>% within repeat</td>
<td>56.5%</td>
<td>43.5%</td>
<td>100.0%</td>
</tr>
<tr>
<td>% within Warning Abuse</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>% of Total</td>
<td>56.5%</td>
<td>43.5%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Chi-Square Tests

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>df</th>
<th>Asymptotic Significance (2-sided)</th>
<th>Exact Sig. (2-sided)</th>
<th>Exact Sig. (1-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Chi-Square</td>
<td>4.807a</td>
<td>1</td>
<td>.028</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuity Correction</td>
<td>3.916</td>
<td>1</td>
<td>.048</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>4.777</td>
<td>1</td>
<td>.029</td>
<td></td>
<td>.033</td>
</tr>
<tr>
<td>Fisher's Exact Test</td>
<td>4.786</td>
<td>1</td>
<td>.029</td>
<td></td>
<td>.024</td>
</tr>
<tr>
<td>Linear-by-Linear Association</td>
<td>230</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 10.87.
b. Computed only for a 2x2 table
Repeat and alcohol

repeat * Warning Alcohol Cross tabulation

<table>
<thead>
<tr>
<th></th>
<th>Warning Alcohol</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Alcohol</td>
<td>Alcohol</td>
<td>Total</td>
</tr>
<tr>
<td>repeat no</td>
<td>Count</td>
<td>148</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>148.0</td>
<td>57.0</td>
</tr>
<tr>
<td></td>
<td>% within repeat</td>
<td>72.2%</td>
<td>27.8%</td>
</tr>
<tr>
<td></td>
<td>% within Warning Alcohol</td>
<td>89.2%</td>
<td>89.1%</td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>64.3%</td>
<td>24.8%</td>
</tr>
<tr>
<td>yes</td>
<td>Count</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>18.0</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>% within repeat</td>
<td>72.0%</td>
<td>28.0%</td>
</tr>
<tr>
<td></td>
<td>% within Warning Alcohol</td>
<td>10.8%</td>
<td>10.9%</td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>7.8%</td>
<td>3.0%</td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
<td>166</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>166.0</td>
<td>64.0</td>
</tr>
<tr>
<td></td>
<td>% within repeat</td>
<td>72.2%</td>
<td>27.8%</td>
</tr>
<tr>
<td></td>
<td>% within Warning Alcohol</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>72.2%</td>
<td>27.8%</td>
</tr>
</tbody>
</table>

Chi-Square Tests

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>df</th>
<th>Asymptotic Significance (2-sided)</th>
<th>Exact Sig. (2-sided)</th>
<th>Exact Sig. (1-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Chi-Square</td>
<td>.000a</td>
<td>1</td>
<td>.984</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuity Correction</td>
<td>.000</td>
<td>1</td>
<td>.984</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>.000</td>
<td>1</td>
<td>.984</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fisher's Exact Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear-by-Linear Association</td>
<td>.000</td>
<td>1</td>
<td>.984</td>
<td>1.000</td>
<td>.575</td>
</tr>
</tbody>
</table>

N of Valid Cases: 230

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 6.96.

b. Computed only for a 2x2 table
Repeat and no markers

Repeat * Warning None Cross tabulation

<table>
<thead>
<tr>
<th></th>
<th>Warning None</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not None</td>
<td>None</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>repeat no</td>
<td>146</td>
<td>59</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td></td>
<td>151.5</td>
<td>53.5</td>
<td>205.0</td>
<td></td>
</tr>
<tr>
<td>% within repeat</td>
<td>71.2%</td>
<td>28.8%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td>% within Warning None</td>
<td>85.9%</td>
<td>98.3%</td>
<td>89.1%</td>
<td></td>
</tr>
<tr>
<td>% of Total</td>
<td>63.5%</td>
<td>25.7%</td>
<td>89.1%</td>
<td></td>
</tr>
<tr>
<td>yes</td>
<td>24</td>
<td>1</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18.5</td>
<td>6.5</td>
<td>25.0</td>
<td></td>
</tr>
<tr>
<td>% within repeat</td>
<td>96.0%</td>
<td>4.0%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td>% within Warning None</td>
<td>14.1%</td>
<td>1.7%</td>
<td>10.9%</td>
<td></td>
</tr>
<tr>
<td>% of Total</td>
<td>10.4%</td>
<td>0.4%</td>
<td>10.9%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
<td>170</td>
<td>60</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>170.0</td>
<td>60.0</td>
<td>230.0</td>
</tr>
<tr>
<td>% within repeat</td>
<td>73.9%</td>
<td>26.1%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td>% within Warning None</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td>% of Total</td>
<td>73.9%</td>
<td>26.1%</td>
<td>100.0%</td>
<td></td>
</tr>
</tbody>
</table>

Chi-Square Tests

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>df</th>
<th>Asymptotic Significance (2-sided)</th>
<th>Exact Sig. (2-sided)</th>
<th>Exact Sig. (1-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Chi-Square</td>
<td>7.096a</td>
<td>1</td>
<td>.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuity Correction</td>
<td>5.869</td>
<td>1</td>
<td>.015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>9.555</td>
<td>1</td>
<td>.002</td>
<td></td>
<td>.007</td>
</tr>
<tr>
<td>Fisher's Exact Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear-by-Linear Association</td>
<td>7.066</td>
<td>1</td>
<td>.008</td>
<td></td>
<td>.004</td>
</tr>
</tbody>
</table>

N of Valid Cases 230

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 6.52.
b. Computed only for a 2x2 table
Type of DA victim

Type of DA victim and age

<table>
<thead>
<tr>
<th>Age</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
<th>95% Confidence Interval for Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lower Bound</td>
</tr>
<tr>
<td>PMV Perpetrates against multiple victims</td>
<td>48</td>
<td>30.73</td>
<td>9.439</td>
<td>1.362</td>
<td>27.99</td>
</tr>
<tr>
<td>VMP Victim of multiple perpetrator</td>
<td>41</td>
<td>29.73</td>
<td>9.803</td>
<td>1.531</td>
<td>26.64</td>
</tr>
<tr>
<td>Both</td>
<td>51</td>
<td>33.20</td>
<td>9.436</td>
<td>1.321</td>
<td>30.54</td>
</tr>
<tr>
<td>Neither</td>
<td>90</td>
<td>35.68</td>
<td>13.040</td>
<td>1.375</td>
<td>32.95</td>
</tr>
<tr>
<td>Total</td>
<td>230</td>
<td>33.03</td>
<td>11.244</td>
<td>.741</td>
<td>31.57</td>
</tr>
</tbody>
</table>

Test of Homogeneity of Variances

<table>
<thead>
<tr>
<th>Age</th>
<th>Levene Statistic</th>
<th>df1</th>
<th>df2</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.495</td>
<td>3</td>
<td>226</td>
<td>.061</td>
</tr>
</tbody>
</table>

ANOVA

<table>
<thead>
<tr>
<th>Age</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>1332.499</td>
<td>3</td>
<td>444.166</td>
<td>3.635</td>
<td>.014</td>
</tr>
<tr>
<td>Within Groups</td>
<td>27617.223</td>
<td>226</td>
<td>122.200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>28949.722</td>
<td>229</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Post Hoc Tests

Multiple Comparisons

Dependent Variable: Age

<table>
<thead>
<tr>
<th>(I) Type</th>
<th>(J) Type</th>
<th>Mean Difference (I-J)</th>
<th>Std. Error</th>
<th>Sig.</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tukey HSD</td>
<td>PMV Perpetrates against multiple victims</td>
<td>.997</td>
<td>2.351</td>
<td>.974</td>
<td>-5.09</td>
<td>7.08</td>
</tr>
<tr>
<td></td>
<td>VMP Victim of multiple perpetrator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Both</td>
<td>-2.467</td>
<td>2.223</td>
<td>.684</td>
<td>-8.22</td>
<td>3.29</td>
</tr>
<tr>
<td></td>
<td>Neither</td>
<td>-4.949</td>
<td>1.976</td>
<td>.062</td>
<td>-10.06</td>
<td>.17</td>
</tr>
<tr>
<td></td>
<td>VMP Victim of multiple perpetrator</td>
<td>-.997</td>
<td>2.351</td>
<td>.974</td>
<td>-7.08</td>
<td>5.09</td>
</tr>
<tr>
<td></td>
<td>PMV Perpetrates against multiple victims</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Both</td>
<td>-3.464</td>
<td>2.319</td>
<td>.443</td>
<td>-9.47</td>
<td>2.54</td>
</tr>
<tr>
<td></td>
<td>Neither</td>
<td>-5.946*</td>
<td>2.083</td>
<td>.024</td>
<td>-11.34</td>
<td>-.56</td>
</tr>
<tr>
<td></td>
<td>Both</td>
<td>2.467</td>
<td>2.223</td>
<td>.684</td>
<td>-3.29</td>
<td>8.22</td>
</tr>
<tr>
<td></td>
<td>VMP Victim of multiple perpetrator</td>
<td>3.464</td>
<td>2.319</td>
<td>.443</td>
<td>-2.54</td>
<td>9.47</td>
</tr>
<tr>
<td></td>
<td>Neither</td>
<td>-2.482</td>
<td>1.937</td>
<td>.576</td>
<td>-7.50</td>
<td>2.53</td>
</tr>
<tr>
<td></td>
<td>Both</td>
<td>2.482</td>
<td>1.937</td>
<td>.576</td>
<td>-2.53</td>
<td>7.50</td>
</tr>
<tr>
<td></td>
<td>PMV Perpetrates against multiple victims</td>
<td>4.949</td>
<td>1.976</td>
<td>.062</td>
<td>-1.17</td>
<td>10.06</td>
</tr>
<tr>
<td></td>
<td>VMP Victim of multiple perpetrator</td>
<td>5.946*</td>
<td>2.083</td>
<td>.024</td>
<td>.56</td>
<td>11.34</td>
</tr>
</tbody>
</table>

* The mean difference is significant at the 0.05 level.
Type and v perp number

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
<th>95% Confidence Interval for Mean</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lower Bound</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Upper Bound</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Upper Bound</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMV Perpetrates</td>
<td>48</td>
<td>30.73</td>
<td>9.439</td>
<td>1.362</td>
<td>27.99</td>
<td>33.47</td>
<td>18</td>
</tr>
<tr>
<td>against multiple</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>victims</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VMP Victim of</td>
<td>41</td>
<td>29.73</td>
<td>9.803</td>
<td>1.531</td>
<td>26.64</td>
<td>32.83</td>
<td>17</td>
</tr>
<tr>
<td>multiple</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>perpetrator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Both</td>
<td>51</td>
<td>33.20</td>
<td>9.436</td>
<td>1.321</td>
<td>30.54</td>
<td>35.85</td>
<td>19</td>
</tr>
<tr>
<td>Neither</td>
<td>90</td>
<td>35.68</td>
<td>13.040</td>
<td>1.375</td>
<td>32.95</td>
<td>38.41</td>
<td>17</td>
</tr>
<tr>
<td>Total</td>
<td>230</td>
<td>33.03</td>
<td>11.244</td>
<td>.741</td>
<td>31.57</td>
<td>34.50</td>
<td>17</td>
</tr>
<tr>
<td>VPerp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMV Perpetrates</td>
<td>48</td>
<td>2.42</td>
<td>8.008</td>
<td>1.156</td>
<td>.09</td>
<td>4.74</td>
<td>0</td>
</tr>
<tr>
<td>against multiple</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>victims</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VMP Victim of</td>
<td>41</td>
<td>1.02</td>
<td>2.372</td>
<td>.370</td>
<td>.28</td>
<td>1.77</td>
<td>0</td>
</tr>
<tr>
<td>multiple</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>perpetrator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Both</td>
<td>51</td>
<td>1.45</td>
<td>3.657</td>
<td>.512</td>
<td>.42</td>
<td>2.48</td>
<td>0</td>
</tr>
<tr>
<td>Neither</td>
<td>90</td>
<td>.87</td>
<td>1.868</td>
<td>.197</td>
<td>.48</td>
<td>1.26</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>230</td>
<td>1.35</td>
<td>4.332</td>
<td>.286</td>
<td>.78</td>
<td>1.91</td>
<td>0</td>
</tr>
</tbody>
</table>

Test of Homogeneity of Variances

<table>
<thead>
<tr>
<th></th>
<th>Levene Statistic</th>
<th>df1</th>
<th>df2</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>2.495</td>
<td>3</td>
<td>226</td>
<td>.061</td>
</tr>
<tr>
<td>VPerp</td>
<td>4.115</td>
<td>3</td>
<td>226</td>
<td>.007</td>
</tr>
</tbody>
</table>

ANOVA

<table>
<thead>
<tr>
<th></th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Between Groups</td>
<td>1332.499</td>
<td>3</td>
<td>444.166</td>
<td>3.635</td>
</tr>
<tr>
<td></td>
<td>Within Groups</td>
<td>27617.223</td>
<td>226</td>
<td>122.200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>28949.722</td>
<td>229</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VPerp</td>
<td>Between Groups</td>
<td>80.504</td>
<td>3</td>
<td>26.835</td>
<td>1.438</td>
</tr>
<tr>
<td></td>
<td>Within Groups</td>
<td>4217.670</td>
<td>226</td>
<td>18.662</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>4298.174</td>
<td>229</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Post Hoc Tests

Multiple Comparisons

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>(I) Type</th>
<th>(J) Type</th>
<th>Mean Difference (I-J)</th>
<th>Std. Error</th>
<th>Sig.</th>
<th>95% Confidence Interval Lower Bound</th>
<th>95% Confidence Interval Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Tukey HSD</td>
<td>PMV Perpetrator against multiple victims</td>
<td>VMP Victim of multiple perpetrator</td>
<td>.997</td>
<td>.974</td>
<td>-5.09</td>
<td>7.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Both</td>
<td>-2.467</td>
<td>2.223</td>
<td>.684</td>
<td>-8.22</td>
<td>3.29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neither</td>
<td>-4.949</td>
<td>1.976</td>
<td>.062</td>
<td>-10.06</td>
<td>.17</td>
</tr>
<tr>
<td>VMP Victim of multiple perpetrator</td>
<td>PMV Perpetrator against multiple victims</td>
<td>-1.392</td>
<td>.919</td>
<td>.430</td>
<td>-.99</td>
<td>3.77</td>
<td></td>
</tr>
<tr>
<td>Both</td>
<td></td>
<td>Both</td>
<td>3.464</td>
<td>2.319</td>
<td>.443</td>
<td>-2.54</td>
<td>9.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neither</td>
<td>-5.946*</td>
<td>2.083</td>
<td>.024</td>
<td>-11.34</td>
<td>-.56</td>
</tr>
<tr>
<td>VMP Victim of multiple perpetrator</td>
<td>PMV Perpetrator against multiple victims</td>
<td>4.949</td>
<td>1.976</td>
<td>.062</td>
<td>-.17</td>
<td>10.06</td>
<td></td>
</tr>
<tr>
<td>Both</td>
<td></td>
<td>Both</td>
<td>2.482</td>
<td>1.937</td>
<td>.576</td>
<td>-2.53</td>
<td>7.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neither</td>
<td>1.550</td>
<td>.772</td>
<td>.188</td>
<td>-.45</td>
<td>3.55</td>
</tr>
<tr>
<td>VPerp Tukey HSD</td>
<td>PMV Perpetrator against multiple victims</td>
<td>VMP Victim of multiple perpetrator</td>
<td>-1.392</td>
<td>.919</td>
<td>.430</td>
<td>-3.77</td>
<td>.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Both</td>
<td>-4.27</td>
<td>.906</td>
<td>.965</td>
<td>-2.77</td>
<td>1.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neither</td>
<td>1.966</td>
<td>.869</td>
<td>.683</td>
<td>-1.28</td>
<td>3.21</td>
</tr>
<tr>
<td></td>
<td>Neither</td>
<td>.158</td>
<td>.814</td>
<td>.997</td>
<td>-1.95</td>
<td>2.26</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Both</td>
<td>PMV Perpetrates against multiple victims</td>
<td>-.966</td>
<td>.869</td>
<td>.683</td>
<td>-3.21</td>
<td>1.28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VMP Victim of multiple perpetrator</td>
<td>.427</td>
<td>.906</td>
<td>.965</td>
<td>-1.92</td>
<td>2.77</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neither</td>
<td>.584</td>
<td>.757</td>
<td>.867</td>
<td>-1.38</td>
<td>2.54</td>
<td></td>
</tr>
<tr>
<td>Neither</td>
<td>PMV Perpetrates against multiple victims</td>
<td>-1.550</td>
<td>.772</td>
<td>.188</td>
<td>-3.55</td>
<td>.45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VMP Victim of multiple perpetrator</td>
<td>-1.158</td>
<td>.814</td>
<td>.997</td>
<td>-2.26</td>
<td>1.95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Both</td>
<td>-.584</td>
<td>.757</td>
<td>.867</td>
<td>-2.54</td>
<td>1.38</td>
<td></td>
</tr>
</tbody>
</table>

* The mean difference is significant at the 0.05 level.
<table>
<thead>
<tr>
<th>Type</th>
<th>Count</th>
<th>Perp Gender</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>male</td>
<td>female</td>
</tr>
<tr>
<td>PMV Perpetrates against multiple victims</td>
<td></td>
<td>37</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40.7</td>
<td>7.3</td>
</tr>
<tr>
<td></td>
<td>% within Type</td>
<td>77.1%</td>
<td>22.9%</td>
</tr>
<tr>
<td></td>
<td>% within Perp Gender</td>
<td>19.0%</td>
<td>31.4%</td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>16.1%</td>
<td>4.8%</td>
</tr>
<tr>
<td>VMP Victim of multiple perpetrator</td>
<td></td>
<td>40</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34.8</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td>% within Type</td>
<td>97.6%</td>
<td>2.4%</td>
</tr>
<tr>
<td></td>
<td>% within Perp Gender</td>
<td>20.5%</td>
<td>2.9%</td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>17.4%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Both</td>
<td></td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>43.2</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td>% within Type</td>
<td>98.0%</td>
<td>2.0%</td>
</tr>
<tr>
<td></td>
<td>% within Perp Gender</td>
<td>25.6%</td>
<td>2.9%</td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>21.7%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Neither</td>
<td></td>
<td>68</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>76.3</td>
<td>13.7</td>
</tr>
<tr>
<td></td>
<td>% within Type</td>
<td>75.6%</td>
<td>24.4%</td>
</tr>
<tr>
<td></td>
<td>% within Perp Gender</td>
<td>34.9%</td>
<td>62.9%</td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>29.6%</td>
<td>9.6%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>195</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>195.0</td>
<td>35.0</td>
</tr>
<tr>
<td></td>
<td>% within Type</td>
<td>84.8%</td>
<td>15.2%</td>
</tr>
<tr>
<td></td>
<td>% within Perp Gender</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>84.8%</td>
<td>15.2%</td>
</tr>
</tbody>
</table>
Type and residency

Type * Residency Cross tabulation

<table>
<thead>
<tr>
<th>Type</th>
<th>Residency</th>
<th>Count</th>
<th>Yes</th>
<th>No</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMV Perpetrates against multiple victims</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Count</td>
<td></td>
<td>13</td>
<td>35</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Expected Count</td>
<td></td>
<td>17.9</td>
<td>30.1</td>
<td>48.0</td>
<td></td>
</tr>
<tr>
<td>% within Type</td>
<td></td>
<td>27.1%</td>
<td>72.9%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td>% within Residency</td>
<td></td>
<td>15.1%</td>
<td>24.3%</td>
<td>20.9%</td>
<td></td>
</tr>
<tr>
<td>% of Total</td>
<td></td>
<td>5.7%</td>
<td>15.2%</td>
<td>20.9%</td>
<td></td>
</tr>
<tr>
<td>VMP Victim of multiple perpetrator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Count</td>
<td></td>
<td>16</td>
<td>25</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Expected Count</td>
<td></td>
<td>15.3</td>
<td>25.7</td>
<td>41.0</td>
<td></td>
</tr>
<tr>
<td>% within Type</td>
<td></td>
<td>39.0%</td>
<td>61.0%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td>% within Residency</td>
<td></td>
<td>18.6%</td>
<td>17.4%</td>
<td>17.8%</td>
<td></td>
</tr>
<tr>
<td>% of Total</td>
<td></td>
<td>7.0%</td>
<td>10.9%</td>
<td>17.8%</td>
<td></td>
</tr>
<tr>
<td>Both</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Count</td>
<td></td>
<td>13</td>
<td>38</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Expected Count</td>
<td></td>
<td>19.1</td>
<td>31.9</td>
<td>51.0</td>
<td></td>
</tr>
<tr>
<td>% within Type</td>
<td></td>
<td>25.5%</td>
<td>74.5%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td>% within Residency</td>
<td></td>
<td>15.1%</td>
<td>26.4%</td>
<td>22.2%</td>
<td></td>
</tr>
<tr>
<td>% of Total</td>
<td></td>
<td>5.7%</td>
<td>16.5%</td>
<td>22.2%</td>
<td></td>
</tr>
<tr>
<td>Neither</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Count</td>
<td></td>
<td>44</td>
<td>46</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Expected Count</td>
<td></td>
<td>33.7</td>
<td>56.3</td>
<td>90.0</td>
<td></td>
</tr>
<tr>
<td>% within Type</td>
<td></td>
<td>48.9%</td>
<td>51.1%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td>% within Residency</td>
<td></td>
<td>51.2%</td>
<td>31.9%</td>
<td>39.1%</td>
<td></td>
</tr>
<tr>
<td>% of Total</td>
<td></td>
<td>19.1%</td>
<td>20.0%</td>
<td>39.1%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Count</td>
<td></td>
<td>86</td>
<td>144</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>Expected Count</td>
<td></td>
<td>86.0</td>
<td>144.0</td>
<td>230.0</td>
<td></td>
</tr>
<tr>
<td>% within Type</td>
<td></td>
<td>37.4%</td>
<td>62.6%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td>% within Residency</td>
<td></td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td>% of Total</td>
<td></td>
<td>37.4%</td>
<td>62.6%</td>
<td>100.0%</td>
<td></td>
</tr>
</tbody>
</table>

Chi-Square Tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Value</th>
<th>df</th>
<th>Asymptotic Significance (2-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Chi-Square</td>
<td>10.393a</td>
<td>3</td>
<td>.016</td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>10.521</td>
<td>3</td>
<td>.015</td>
</tr>
<tr>
<td>Linear-by-Linear Association</td>
<td>5.200</td>
<td>1</td>
<td>.023</td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>230</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 15.33.
Type and RA Cross tabulation

<table>
<thead>
<tr>
<th>Type</th>
<th>RA</th>
<th>gold</th>
<th>silver</th>
<th>bronze</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td></td>
<td>10</td>
<td>9</td>
<td>29</td>
<td>48</td>
</tr>
<tr>
<td>Expected Count</td>
<td></td>
<td>8.0</td>
<td>7.5</td>
<td>32.5</td>
<td>48.0</td>
</tr>
<tr>
<td>% within Type</td>
<td></td>
<td>20.8%</td>
<td>18.8%</td>
<td>60.4%</td>
<td>100.0%</td>
</tr>
<tr>
<td>% within RA</td>
<td></td>
<td>26.3%</td>
<td>25.0%</td>
<td>18.7%</td>
<td>21.0%</td>
</tr>
<tr>
<td>% of Total</td>
<td></td>
<td>4.4%</td>
<td>3.9%</td>
<td>12.7%</td>
<td>21.0%</td>
</tr>
<tr>
<td>PMV Perpetrates against multiple victims</td>
<td></td>
<td>10</td>
<td>9</td>
<td>29</td>
<td>48</td>
</tr>
<tr>
<td>Count</td>
<td></td>
<td>6.8</td>
<td>6.4</td>
<td>27.8</td>
<td>41.0</td>
</tr>
<tr>
<td>Expected Count</td>
<td></td>
<td>7.3%</td>
<td>24.4%</td>
<td>68.3%</td>
<td>100.0%</td>
</tr>
<tr>
<td>% within Type</td>
<td></td>
<td>7.9%</td>
<td>27.8%</td>
<td>18.1%</td>
<td>17.9%</td>
</tr>
<tr>
<td>% within RA</td>
<td></td>
<td>1.3%</td>
<td>4.4%</td>
<td>12.2%</td>
<td>17.9%</td>
</tr>
<tr>
<td>% of Total</td>
<td></td>
<td>1.3%</td>
<td>4.4%</td>
<td>12.2%</td>
<td>17.9%</td>
</tr>
<tr>
<td>VMP Victim of multiple perpetrator</td>
<td></td>
<td>3</td>
<td>10</td>
<td>28</td>
<td>41</td>
</tr>
<tr>
<td>Count</td>
<td></td>
<td>6.8</td>
<td>6.4</td>
<td>27.8</td>
<td>41.0</td>
</tr>
<tr>
<td>Expected Count</td>
<td></td>
<td>7.3%</td>
<td>24.4%</td>
<td>68.3%</td>
<td>100.0%</td>
</tr>
<tr>
<td>% within Type</td>
<td></td>
<td>7.9%</td>
<td>27.8%</td>
<td>18.1%</td>
<td>17.9%</td>
</tr>
<tr>
<td>% within RA</td>
<td></td>
<td>1.3%</td>
<td>4.4%</td>
<td>12.2%</td>
<td>17.9%</td>
</tr>
<tr>
<td>% of Total</td>
<td></td>
<td>1.3%</td>
<td>4.4%</td>
<td>12.2%</td>
<td>17.9%</td>
</tr>
<tr>
<td>Both</td>
<td></td>
<td>15</td>
<td>7</td>
<td>29</td>
<td>51</td>
</tr>
<tr>
<td>Count</td>
<td></td>
<td>8.5</td>
<td>8.0</td>
<td>34.5</td>
<td>51.0</td>
</tr>
<tr>
<td>Expected Count</td>
<td></td>
<td>29.4%</td>
<td>13.7%</td>
<td>56.9%</td>
<td>100.0%</td>
</tr>
<tr>
<td>% within Type</td>
<td></td>
<td>39.5%</td>
<td>19.4%</td>
<td>18.7%</td>
<td>22.3%</td>
</tr>
<tr>
<td>% within RA</td>
<td></td>
<td>6.6%</td>
<td>3.1%</td>
<td>12.7%</td>
<td>22.3%</td>
</tr>
<tr>
<td>% of Total</td>
<td></td>
<td>6.6%</td>
<td>3.1%</td>
<td>12.7%</td>
<td>22.3%</td>
</tr>
<tr>
<td>Neither</td>
<td></td>
<td>10</td>
<td>10</td>
<td>69</td>
<td>89</td>
</tr>
<tr>
<td>Count</td>
<td></td>
<td>14.8</td>
<td>14.0</td>
<td>60.2</td>
<td>89.0</td>
</tr>
<tr>
<td>Expected Count</td>
<td></td>
<td>11.2%</td>
<td>11.2%</td>
<td>77.5%</td>
<td>100.0%</td>
</tr>
<tr>
<td>% within Type</td>
<td></td>
<td>26.3%</td>
<td>27.8%</td>
<td>44.5%</td>
<td>38.9%</td>
</tr>
<tr>
<td>% within RA</td>
<td></td>
<td>4.4%</td>
<td>4.4%</td>
<td>30.1%</td>
<td>38.9%</td>
</tr>
<tr>
<td>% of Total</td>
<td></td>
<td>4.4%</td>
<td>4.4%</td>
<td>30.1%</td>
<td>38.9%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>38</td>
<td>36</td>
<td>155</td>
<td>229</td>
</tr>
<tr>
<td>Count</td>
<td></td>
<td>38.0</td>
<td>36.0</td>
<td>155.0</td>
<td>229.0</td>
</tr>
<tr>
<td>Expected Count</td>
<td></td>
<td>16.6%</td>
<td>15.7%</td>
<td>67.7%</td>
<td>100.0%</td>
</tr>
<tr>
<td>% within Type</td>
<td></td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>% within RA</td>
<td></td>
<td>16.6%</td>
<td>15.7%</td>
<td>67.7%</td>
<td>100.0%</td>
</tr>
<tr>
<td>% of Total</td>
<td></td>
<td>16.6%</td>
<td>15.7%</td>
<td>67.7%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Chi-Square Tests</td>
<td>Value</td>
<td>df</td>
<td>Asymptotic Significance (2-sided)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>----</td>
<td>-----------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pearson Chi-Square</td>
<td>15.277<sup>a</sup></td>
<td>6</td>
<td>.018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>14.891</td>
<td>6</td>
<td>.021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear-by-Linear Association</td>
<td>2.311</td>
<td>1</td>
<td>.128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>229</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 6.45.
Type and co-op

Type * Co-operation Cross tabulation

<table>
<thead>
<tr>
<th>Type</th>
<th>Co-op</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>yes</td>
<td>no</td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td></td>
<td>Count</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMV Perpetrates against</td>
<td></td>
<td>38</td>
<td>10</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>multiple victims</td>
<td></td>
<td>Expected Count</td>
<td>33.0</td>
<td>15.0</td>
<td>48.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Type</td>
<td>79.2%</td>
<td>20.8%</td>
<td>100.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Co-op</td>
<td>24.1%</td>
<td>13.9%</td>
<td>20.9%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% of Total</td>
<td>16.5%</td>
<td>4.3%</td>
<td>20.9%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VMP Victim of multiple</td>
<td></td>
<td>19</td>
<td>22</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>perpetrator</td>
<td></td>
<td>Expected Count</td>
<td>28.2</td>
<td>12.8</td>
<td>41.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Type</td>
<td>46.3%</td>
<td>53.7%</td>
<td>100.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Co-op</td>
<td>12.0%</td>
<td>30.6%</td>
<td>17.8%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% of Total</td>
<td>8.3%</td>
<td>9.6%</td>
<td>17.8%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Both</td>
<td></td>
<td>35</td>
<td>16</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected Count</td>
<td>35.0</td>
<td>16.0</td>
<td>51.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Type</td>
<td>68.6%</td>
<td>31.4%</td>
<td>100.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Co-op</td>
<td>22.2%</td>
<td>22.2%</td>
<td>22.2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% of Total</td>
<td>15.2%</td>
<td>7.0%</td>
<td>22.2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neither</td>
<td></td>
<td>66</td>
<td>24</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected Count</td>
<td>61.8</td>
<td>28.2</td>
<td>90.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Type</td>
<td>73.3%</td>
<td>26.7%</td>
<td>100.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Co-op</td>
<td>41.8%</td>
<td>33.3%</td>
<td>39.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% of Total</td>
<td>28.7%</td>
<td>10.4%</td>
<td>39.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>158</td>
<td>72</td>
<td>230</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected Count</td>
<td>158.0</td>
<td>72.0</td>
<td>230.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Type</td>
<td>68.7%</td>
<td>31.3%</td>
<td>100.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Co-op</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% of Total</td>
<td>68.7%</td>
<td>31.3%</td>
<td>100.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chi-Square Tests

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>df</th>
<th>Asymptotic Significance (2-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Chi-Square</td>
<td>12.875</td>
<td>3</td>
<td>.005</td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>12.317</td>
<td>3</td>
<td>.006</td>
</tr>
<tr>
<td>Linear-by-Linear Association</td>
<td>.160</td>
<td>1</td>
<td>.690</td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>230</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 12.83.
Type and crime

Type * Crimed Cross tabulation

<table>
<thead>
<tr>
<th>Type</th>
<th>Crimed</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Count</td>
<td>yes</td>
<td>no</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>PMV Perpetrates against</td>
<td>12</td>
<td>36</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>multiple victims</td>
<td>Expected</td>
<td>11.9</td>
<td>36.1</td>
<td>48.0</td>
<td></td>
</tr>
<tr>
<td>% within Type</td>
<td>25.0%</td>
<td>75.0%</td>
<td>100.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% within Crimed</td>
<td>21.1%</td>
<td>20.8%</td>
<td>20.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of Total</td>
<td>5.2%</td>
<td>15.7%</td>
<td>20.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VMP Victim of multiple</td>
<td>10</td>
<td>31</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>perpetrator</td>
<td>Expected</td>
<td>10.2</td>
<td>30.8</td>
<td>41.0</td>
<td></td>
</tr>
<tr>
<td>% within Type</td>
<td>24.4%</td>
<td>75.6%</td>
<td>100.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% within Crimed</td>
<td>17.5%</td>
<td>17.9%</td>
<td>17.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of Total</td>
<td>4.3%</td>
<td>13.5%</td>
<td>17.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Both</td>
<td>12</td>
<td>39</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>12.6</td>
<td>38.4</td>
<td>51.0</td>
<td></td>
</tr>
<tr>
<td>% within Type</td>
<td>23.5%</td>
<td>76.5%</td>
<td>100.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% within Crimed</td>
<td>21.1%</td>
<td>22.5%</td>
<td>22.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of Total</td>
<td>5.2%</td>
<td>17.0%</td>
<td>22.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neither</td>
<td>23</td>
<td>67</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>22.3</td>
<td>67.7</td>
<td>90.0</td>
<td></td>
</tr>
<tr>
<td>% within Type</td>
<td>25.6%</td>
<td>74.4%</td>
<td>100.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% within Crimed</td>
<td>40.4%</td>
<td>38.7%</td>
<td>39.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of Total</td>
<td>10.0%</td>
<td>29.1%</td>
<td>39.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>57</td>
<td>173</td>
<td>230</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected</td>
<td>57.0</td>
<td>173.0</td>
<td>230.0</td>
<td></td>
</tr>
<tr>
<td>% within Type</td>
<td>24.8%</td>
<td>75.2%</td>
<td>100.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% within Crimed</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of Total</td>
<td>24.8%</td>
<td>75.2%</td>
<td>100.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chi-Square Tests</td>
<td>Value</td>
<td>df</td>
<td>Asymptotic Significance (2-sided)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>----</td>
<td>----------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pearson Chi-Square</td>
<td>.076<sup>a</sup></td>
<td>3</td>
<td>.995</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>.077</td>
<td>3</td>
<td>.994</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear-by-Linear Association</td>
<td>.007</td>
<td>1</td>
<td>.933</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>230</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a 0 cells (0.0%) have expected count less than 5. The minimum expected count is 10.16.
Type * V Perp Category Cross tabulation

<table>
<thead>
<tr>
<th>V Perp Category</th>
<th>Victim only</th>
<th>Victim also perp</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMV Perpetrates against multiple victims</td>
<td>Count</td>
<td>29</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>29.8</td>
<td>18.2</td>
</tr>
<tr>
<td></td>
<td>% within Type</td>
<td>60.4%</td>
<td>39.6%</td>
</tr>
<tr>
<td></td>
<td>% within V Perp Category</td>
<td>20.3%</td>
<td>21.8%</td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>12.6%</td>
<td>8.3%</td>
</tr>
<tr>
<td>VMP Victim of multiple perpetrator</td>
<td>Count</td>
<td>27</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>25.5</td>
<td>15.5</td>
</tr>
<tr>
<td></td>
<td>% within Type</td>
<td>65.9%</td>
<td>34.1%</td>
</tr>
<tr>
<td></td>
<td>% within V Perp Category</td>
<td>18.9%</td>
<td>16.1%</td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>11.7%</td>
<td>6.1%</td>
</tr>
<tr>
<td>Both</td>
<td>Count</td>
<td>29</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>31.7</td>
<td>19.3</td>
</tr>
<tr>
<td></td>
<td>% within Type</td>
<td>56.9%</td>
<td>43.1%</td>
</tr>
<tr>
<td></td>
<td>% within V Perp Category</td>
<td>20.3%</td>
<td>25.3%</td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>12.6%</td>
<td>9.6%</td>
</tr>
<tr>
<td>Neither</td>
<td>Count</td>
<td>58</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>56.0</td>
<td>34.0</td>
</tr>
<tr>
<td></td>
<td>% within Type</td>
<td>64.4%</td>
<td>35.6%</td>
</tr>
<tr>
<td></td>
<td>% within V Perp Category</td>
<td>40.6%</td>
<td>36.8%</td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>25.2%</td>
<td>13.9%</td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
<td>143</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>143.0</td>
<td>87.0</td>
</tr>
<tr>
<td></td>
<td>% within Type</td>
<td>62.2%</td>
<td>37.8%</td>
</tr>
<tr>
<td></td>
<td>% within V Perp Category</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>62.2%</td>
<td>37.8%</td>
</tr>
</tbody>
</table>
Chi-Square Tests

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>df</th>
<th>Asymptotic Significance (2-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Chi-Square</td>
<td>1.108a</td>
<td>3</td>
<td>.775</td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>1.103</td>
<td>3</td>
<td>.776</td>
</tr>
<tr>
<td>Linear-by-Linear Association</td>
<td>.067</td>
<td>1</td>
<td>.796</td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>230</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 15.51.
Type * Victim Gender Cross tabulation

<table>
<thead>
<tr>
<th>Type</th>
<th>Victim Gender</th>
<th>Count</th>
<th>Male</th>
<th>Female</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMV Perpetrates against multiple victims</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Count</td>
<td>11</td>
<td>37</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>7.3</td>
<td>40.7</td>
<td>48.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within Type</td>
<td>22.9%</td>
<td>77.1%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within Victim Gender</td>
<td>31.4%</td>
<td>19.0%</td>
<td>20.9%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>4.8%</td>
<td>16.1%</td>
<td>20.9%</td>
<td></td>
</tr>
<tr>
<td>VMP Victim of multiple perpetrator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Count</td>
<td>1</td>
<td>40</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>6.2</td>
<td>34.8</td>
<td>41.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within Type</td>
<td>2.4%</td>
<td>97.6%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within Victim Gender</td>
<td>2.9%</td>
<td>20.5%</td>
<td>17.8%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>0.4%</td>
<td>17.4%</td>
<td>17.8%</td>
<td></td>
</tr>
<tr>
<td>Both</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Count</td>
<td>1</td>
<td>50</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>7.8</td>
<td>43.2</td>
<td>51.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within Type</td>
<td>2.0%</td>
<td>98.0%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within Victim Gender</td>
<td>2.9%</td>
<td>25.6%</td>
<td>22.2%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>0.4%</td>
<td>21.7%</td>
<td>22.2%</td>
<td></td>
</tr>
<tr>
<td>Neither</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Count</td>
<td>22</td>
<td>68</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>13.7</td>
<td>76.3</td>
<td>90.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within Type</td>
<td>24.4%</td>
<td>75.6%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within Victim Gender</td>
<td>62.9%</td>
<td>34.9%</td>
<td>39.1%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>9.6%</td>
<td>29.6%</td>
<td>39.1%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Count</td>
<td>35</td>
<td>195</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected Count</td>
<td>35.0</td>
<td>195.0</td>
<td>230.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within Type</td>
<td>15.2%</td>
<td>84.8%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within Victim Gender</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>15.2%</td>
<td>84.8%</td>
<td>100.0%</td>
<td></td>
</tr>
</tbody>
</table>
Chi-Square Tests

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>df</th>
<th>Asymptotic Significance (2-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Chi-Square</td>
<td>20.280a</td>
<td>3</td>
<td>.000</td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>25.145</td>
<td>3</td>
<td>.000</td>
</tr>
<tr>
<td>Linear-by-Linear Association</td>
<td>.932</td>
<td>1</td>
<td>.334</td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>230</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The minimum expected count is 6.24.
Type and warning marker

Type * Warning Abuse Cross tabulation

<table>
<thead>
<tr>
<th>Type</th>
<th>Warning Abuse</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No Abuse</td>
<td>Abuse</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>PMV Perpetrates against multiple victims</td>
<td></td>
<td>16</td>
<td>32</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Expected Count</td>
<td></td>
<td>27.1</td>
<td>20.9</td>
<td>48.0</td>
<td></td>
</tr>
<tr>
<td>% within Type</td>
<td></td>
<td>33.3%</td>
<td>66.7%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td>% within Warning Abuse</td>
<td></td>
<td>12.3%</td>
<td>32.0%</td>
<td>20.9%</td>
<td></td>
</tr>
<tr>
<td>% of Total</td>
<td></td>
<td>7.0%</td>
<td>13.9%</td>
<td>20.9%</td>
<td></td>
</tr>
<tr>
<td>VMP Victim of multiple perpetrator</td>
<td></td>
<td>26</td>
<td>15</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Expected Count</td>
<td></td>
<td>23.2</td>
<td>17.8</td>
<td>41.0</td>
<td></td>
</tr>
<tr>
<td>% within Type</td>
<td></td>
<td>63.4%</td>
<td>36.6%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td>% within Warning Abuse</td>
<td></td>
<td>20.0%</td>
<td>15.0%</td>
<td>17.8%</td>
<td></td>
</tr>
<tr>
<td>% of Total</td>
<td></td>
<td>11.3%</td>
<td>6.5%</td>
<td>17.8%</td>
<td></td>
</tr>
<tr>
<td>Both</td>
<td></td>
<td>19</td>
<td>32</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Expected Count</td>
<td></td>
<td>28.8</td>
<td>22.2</td>
<td>51.0</td>
<td></td>
</tr>
<tr>
<td>% within Type</td>
<td></td>
<td>37.3%</td>
<td>62.7%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td>% within Warning Abuse</td>
<td></td>
<td>14.6%</td>
<td>32.0%</td>
<td>22.2%</td>
<td></td>
</tr>
<tr>
<td>% of Total</td>
<td></td>
<td>8.3%</td>
<td>13.9%</td>
<td>22.2%</td>
<td></td>
</tr>
<tr>
<td>Neither</td>
<td></td>
<td>69</td>
<td>21</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Expected Count</td>
<td></td>
<td>50.9</td>
<td>39.1</td>
<td>90.0</td>
<td></td>
</tr>
<tr>
<td>% within Type</td>
<td></td>
<td>76.7%</td>
<td>23.3%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td>% within Warning Abuse</td>
<td></td>
<td>53.1%</td>
<td>21.0%</td>
<td>39.1%</td>
<td></td>
</tr>
<tr>
<td>% of Total</td>
<td></td>
<td>30.0%</td>
<td>9.1%</td>
<td>39.1%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>130</td>
<td>100</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>Expected Count</td>
<td></td>
<td>130.0</td>
<td>100.0</td>
<td>230.0</td>
<td></td>
</tr>
<tr>
<td>% within Type</td>
<td></td>
<td>56.5%</td>
<td>43.5%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td>% within Warning Abuse</td>
<td></td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td>% of Total</td>
<td></td>
<td>56.5%</td>
<td>43.5%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td>Chi-Square Tests</td>
<td>Value</td>
<td>df</td>
<td>Asymptotic Significance (2-sided)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td>----</td>
<td>----------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pearson Chi-Square</td>
<td>33.861a</td>
<td>3</td>
<td>.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>34.828</td>
<td>3</td>
<td>.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear-by-Linear Association</td>
<td>18.243</td>
<td>1</td>
<td>.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>230</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 17.83.
Type and alcohol warning

Type * Warning Alcohol Cross tabulation

<table>
<thead>
<tr>
<th></th>
<th>Warning Alcohol</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Alcohol</td>
<td>Alcohol</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMV Perpetrates against multiple victims</td>
<td>37</td>
<td>11</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>34.6</td>
<td>13.4</td>
<td>48.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>77.1%</td>
<td>22.9%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22.3%</td>
<td>17.2%</td>
<td>20.9%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16.1%</td>
<td>4.8%</td>
<td>20.9%</td>
<td></td>
</tr>
<tr>
<td>VMP Victim of multiple perpetrator</td>
<td>28</td>
<td>13</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29.6</td>
<td>11.4</td>
<td>41.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>68.3%</td>
<td>31.7%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16.9%</td>
<td>20.3%</td>
<td>17.8%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.2%</td>
<td>5.7%</td>
<td>17.8%</td>
<td></td>
</tr>
<tr>
<td>Both</td>
<td>35</td>
<td>16</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td></td>
<td>36.8</td>
<td>14.2</td>
<td>51.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>68.6%</td>
<td>31.4%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21.1%</td>
<td>25.0%</td>
<td>22.2%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.2%</td>
<td>7.0%</td>
<td>22.2%</td>
<td></td>
</tr>
<tr>
<td>Neither</td>
<td>66</td>
<td>24</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>65.0</td>
<td>25.0</td>
<td>90.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>73.3%</td>
<td>26.7%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>39.8%</td>
<td>37.5%</td>
<td>39.1%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28.7%</td>
<td>10.4%</td>
<td>39.1%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>166</td>
<td>64</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td></td>
<td>166.0</td>
<td>64.0</td>
<td>230.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>72.2%</td>
<td>27.8%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>72.2%</td>
<td>27.8%</td>
<td>100.0%</td>
<td></td>
</tr>
</tbody>
</table>
Chi-Square Tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Value</th>
<th>df</th>
<th>Asymptotic Significance (2-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Chi-Square</td>
<td>1.263<sup>a</sup></td>
<td>3</td>
<td>.738</td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>1.271</td>
<td>3</td>
<td>.736</td>
</tr>
<tr>
<td>Linear-by-Linear Association</td>
<td>.068</td>
<td>1</td>
<td>.794</td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>230</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 11.41.
Type and none markers

<table>
<thead>
<tr>
<th>Type</th>
<th>Count</th>
<th>Warning None</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not None</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>PMV Perpetrates against multiple victims</td>
<td>44</td>
<td>4</td>
<td>48</td>
</tr>
<tr>
<td>Expected Count</td>
<td>35.5</td>
<td>12.5</td>
<td>48.0</td>
</tr>
<tr>
<td>% within Type</td>
<td>91.7%</td>
<td>8.3%</td>
<td>100.0%</td>
</tr>
<tr>
<td>% within Warning None</td>
<td>25.9%</td>
<td>6.7%</td>
<td>20.9%</td>
</tr>
<tr>
<td>% of Total</td>
<td>19.1%</td>
<td>1.7%</td>
<td>20.9%</td>
</tr>
<tr>
<td>VMP Victim of multiple perpetrator</td>
<td>28</td>
<td>13</td>
<td>41</td>
</tr>
<tr>
<td>Expected Count</td>
<td>30.3</td>
<td>10.7</td>
<td>41.0</td>
</tr>
<tr>
<td>% within Type</td>
<td>68.3%</td>
<td>31.7%</td>
<td>100.0%</td>
</tr>
<tr>
<td>% within Warning None</td>
<td>16.5%</td>
<td>21.7%</td>
<td>17.8%</td>
</tr>
<tr>
<td>% of Total</td>
<td>12.2%</td>
<td>5.7%</td>
<td>17.8%</td>
</tr>
<tr>
<td>Both</td>
<td>49</td>
<td>2</td>
<td>51</td>
</tr>
<tr>
<td>Expected Count</td>
<td>37.7</td>
<td>13.3</td>
<td>51.0</td>
</tr>
<tr>
<td>% within Type</td>
<td>96.1%</td>
<td>3.9%</td>
<td>100.0%</td>
</tr>
<tr>
<td>% within Warning None</td>
<td>28.8%</td>
<td>3.3%</td>
<td>22.2%</td>
</tr>
<tr>
<td>% of Total</td>
<td>21.3%</td>
<td>0.9%</td>
<td>22.2%</td>
</tr>
<tr>
<td>Neither</td>
<td>49</td>
<td>41</td>
<td>90</td>
</tr>
<tr>
<td>Expected Count</td>
<td>66.5</td>
<td>23.5</td>
<td>90.0</td>
</tr>
<tr>
<td>% within Type</td>
<td>54.4%</td>
<td>45.6%</td>
<td>100.0%</td>
</tr>
<tr>
<td>% within Warning None</td>
<td>28.8%</td>
<td>68.3%</td>
<td>39.1%</td>
</tr>
<tr>
<td>% of Total</td>
<td>21.3%</td>
<td>17.8%</td>
<td>39.1%</td>
</tr>
<tr>
<td>Total</td>
<td>170</td>
<td>60</td>
<td>230</td>
</tr>
<tr>
<td>Expected Count</td>
<td>170.0</td>
<td>60.0</td>
<td>230.0</td>
</tr>
<tr>
<td>% within Type</td>
<td>73.9%</td>
<td>26.1%</td>
<td>100.0%</td>
</tr>
<tr>
<td>% within Warning None</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>% of Total</td>
<td>73.9%</td>
<td>26.1%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Test</td>
<td>Value</td>
<td>df</td>
<td>Asymptotic Significance (2-sided)</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------</td>
<td>----</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Pearson Chi-Square</td>
<td>39.205</td>
<td>3</td>
<td>.000</td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>44.337</td>
<td>3</td>
<td>.000</td>
</tr>
<tr>
<td>Linear-by-Linear Association</td>
<td>17.148</td>
<td>1</td>
<td>.000</td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>230</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 10.70.

Relationship status

Original categories included: spouse, partner, ex-spouse, ex-partner, Not Known

<table>
<thead>
<tr>
<th>Relationship</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>husband</td>
<td>29</td>
<td>12.6</td>
<td>12.7</td>
<td>12.7</td>
</tr>
<tr>
<td>partner</td>
<td>122</td>
<td>53.0</td>
<td>53.5</td>
<td>66.2</td>
</tr>
<tr>
<td>ex-husband</td>
<td>5</td>
<td>2.2</td>
<td>2.2</td>
<td>68.4</td>
</tr>
<tr>
<td>ex-partner</td>
<td>67</td>
<td>29.1</td>
<td>29.4</td>
<td>97.8</td>
</tr>
<tr>
<td>wife</td>
<td>4</td>
<td>1.7</td>
<td>1.8</td>
<td>99.6</td>
</tr>
<tr>
<td>ex-wife</td>
<td>1</td>
<td>.4</td>
<td>.4</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>228</td>
<td>99.1</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System</td>
<td>2</td>
<td>.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>230</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recoded to include those within a current relationship (husband, partner, wife) n = 155 (67.4%) and those with a DA incident that involved an ex (ex-husband, ex-partner, ex-wife, n = 75, 32.6%).
Coding

A number of variables were provided by Merseyside Police, some of these were already pre-coded and not subject to any change such as:

- **Age.** Age was recorded as the age at the time of collecting data in May 2014 when the DA incident was recorded.
- **Gender.** Gender was recorded for both the victims within May 2014 and the perpetrators. This was recorded as either male, female or unknown.
- **Warnings.** Warnings was coded as they appeared within the raw police data which indicated whether the individual had a warning marker for any of the following:
 - Abuse (If the perpetrator had any previous incidents were abuse had been a factor whether it was recorded on a risk assessment form (or elsewhere, -it does not need to be a conviction.)
 - Alcohol (If any previous risk assessment forms had alcohol recorded as a factor)
 - None (If there had never been any warning indicators recorded against the perpetrator)
- **Risk Assessment (RA).** The current protocol is to complete a Merit (Merseyside risk identification toolkit) pro-forma questionnaire to assess risk. The officer completes the form after speaking to the victim of abuse, the questions are divided into three categories: (1) Breakdown factors, (2) Social factors, and (3) violent factors. The scores are added up and a Merit score obtained by multiplying each category’s score.

<table>
<thead>
<tr>
<th>Breakdown</th>
<th>X</th>
<th>Social</th>
<th>X</th>
<th>Violent</th>
<th>X</th>
<th>Total</th>
</tr>
</thead>
</table>

This score is then converted to a final risk level, which included the options of: Gold, (the highest Merit scores of 72+), Silver (16-71) or Bronze (1-15).
Other variables were cleaned and re-categorised from the raw data to enable further analysis to be undertaken. These included:

- VPERP (count).

This coding was created to highlight those victims that also perpetrated against a partner. This was recorded as a count which indicated the frequency of the victim being identified as a possible perpetrator.

- Repeat.

This did not exist as a code until the data was collated. Therefore, the researcher noted for whether a victim appeared two or more times in the data set extracted. Each victim and their data was included in analysis only once to avoid repetition and skewing of data. Thus, the variable ‘repeat’ was recorded as ‘yes’ or ‘no’.

- Type.

The coding type was compiled by the author who noted in analysis that both victims and perpetrators had a recorded history that extended beyond the boundaries of this study. For example, it was recorded how many previous perpetrators a victim had had and in fact how many incidents they had had with each of those perpetrators. Conversely some perpetrators had more victims than the current one. It was felt that this history of abuse would be an important factor to include so ‘Type’ was included as a variable and included four key categories that are explained below:

There are victims whose abusive partners have been abusive to several other victims as well as the current victim. These cases were coded as involving a Perpetrator that has offended against Multiple Victims (PMV).

Another type identified was those cases that involved a victim that had recorded abuse involving other perpetrators, coded as a Victim of Multiple Perpetrators (VMP).

The other two categories within ‘type’ were: ‘Both’ in that the case presented both PMV and VMP. With the final type category indicating ‘None’.
- Relationship status

This was coded to include the relationship status of the perpetrator to the victim at the time of the DA incident in May 2014. The raw data included the coding of: Husband, Wife, Ex-husband, Ex-Wife, Partner, Ex-partner, Ex-partner, Not known. However, to enable statistical analysis this was recoded to include those within a (1) current relationship (husband, partner, wife) and those with a DA incident that involved an (2) ex (ex-husband, ex-partner, ex-wife). This was due to unequal sample sizes across the larger categorisation of relationship status.

- Residency.

Residency was coded to include the residency status of the perpetrator to indicate whether the perpetrator lived at the same address as the victim at the time of the DA incident in May 2014. This was identified as (1) living at same address and (2) living separately, or (3) unknown.

- Co-operation.

Co-operation was coded to indicate whether or not the victim was willing to give an account of the incident and make a statement to the police in 2014 at the time of the DA incident.

1. yes they co-operated
2. no they did not co-operate

- Victim /perp.

This variable highlighted those that within the dataset, the victim at some point had also been identified as a suspect of DA, with this coded as present or not present.
List of tables and figures

Figure 1 Situational Couple Violence vs Intimate Terrorism
Figure 2 Domestic abuse referrals in Merseyside and in St Helens
Figure 3 Perpetrator of Multiple Victims
Figure 4 Victim of Multiple Perpetrators
Figure 5 Repeat victims who also perpetrate
Figure 6 Gender of victim
Figure 7 Relationship to victim
Figure 8 Victim type
Figure 9 Risk assessment
Figure 10 Recorded as a crime
Figure 11 Arrests made
Figure 12 Number of times a victim with current partner
Figure 13 role reversal
Figure 14 Total perpetrators A
Figure 15 Total perpetrators B
Figure 16 Total perpetrators C
Figure 17 Total perpetrators D
Figure 18 Total victims A
Figure 19 Total victims B
Figure 20 Total victims C
Figure 21 Total victims D
Figure 22 Repeat couples’ perpetration rates
Figure 23 MeRIT Risk assessment form
Figure 5. Repeat victims who have also ever perpetrated abuse

Figure 6. Gender of victim
Figure 7 Perpetrators relationship to victim

Figure 8. Victim type
Figure 9. Risk assessment

Figure 10. Incidents that were recorded as a crime
Figure 11. Whether or not an arrest was made

Figure 12. How many times each victim was a victim with this current perpetrator
Figure 13. Number of victims who also perpetrated abuse

143 victims did not reverse role.

Figure 14. How many victims each perpetrator had (A)
Figure 15. How many victims each perpetrator had (B)

Figure 16. How many victims each perpetrator had (C)
Figure 17. How many victims each perpetrator had (D)

Figure 18. How many perpetrators each victim had (A)
Figure 19. How many perpetrators each victim had (B)

Figure 20. How many perpetrators each victim had (C)
Figure 21. How many perpetrators each victim had (D)

Figure 22. Repeat couples’ perpetration rates
Merit risk assessment form

<table>
<thead>
<tr>
<th></th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Are there issues around separation/divorce, regardless of timescale?</td>
</tr>
<tr>
<td>2</td>
<td>Are there any child contact issues?</td>
</tr>
<tr>
<td>3</td>
<td>Have threats been made to the victim? (Consider any Honour Based V issues)</td>
</tr>
<tr>
<td>4</td>
<td>Has the victim been stalked/harassed? (By the perpetrator or 3rd party)</td>
</tr>
<tr>
<td>5</td>
<td>Were children present? (If so, where?)</td>
</tr>
<tr>
<td>6</td>
<td>Did children witness the incident?</td>
</tr>
</tbody>
</table>

Social factors,

<table>
<thead>
<tr>
<th></th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Is the victim pregnant/new birth (child under 1 year)?</td>
</tr>
<tr>
<td>8</td>
<td>Is the victim a repeat victim?</td>
</tr>
<tr>
<td>9</td>
<td>Does the victim have mental health issues?</td>
</tr>
<tr>
<td>10</td>
<td>Does the perpetrator have mental health issues?</td>
</tr>
<tr>
<td>11</td>
<td>Is the victim unemployed?</td>
</tr>
<tr>
<td>12</td>
<td>Is the perpetrator unemployed?</td>
</tr>
<tr>
<td>13</td>
<td>Has the perpetrator ever self-harmed/threatened to self-harm/threatened suicide?</td>
</tr>
<tr>
<td>14</td>
<td>Does the victim deny an assault has taken place (when there are signs of an assault)</td>
</tr>
<tr>
<td>15</td>
<td>Were the victim and perpetrator violent to each other?</td>
</tr>
<tr>
<td>16</td>
<td>Was abuse used in self-defence?</td>
</tr>
<tr>
<td>17</td>
<td>Alcohol present (perpetrator only)</td>
</tr>
<tr>
<td>18</td>
<td>Alcohol present (victim only)</td>
</tr>
<tr>
<td>19</td>
<td>Alcohol present (both)</td>
</tr>
<tr>
<td>20</td>
<td>Drugs present (perpetrator only)</td>
</tr>
<tr>
<td>21</td>
<td>Drugs present (victim only)</td>
</tr>
</tbody>
</table>

And violent factors;

<table>
<thead>
<tr>
<th></th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Drugs present (both)</td>
</tr>
<tr>
<td>23</td>
<td>Is the victim socially isolated? (Consider any possible HBV issues)</td>
</tr>
<tr>
<td>24</td>
<td>Is the victim un-cooperative?</td>
</tr>
<tr>
<td>25</td>
<td>Does the victim appear afraid? (Please note demeanour)</td>
</tr>
<tr>
<td>26</td>
<td>Does the victim feel they are at risk? (If yes give details)</td>
</tr>
<tr>
<td>27</td>
<td>Is there emotional abuse present? (consider any possible HBV issues)</td>
</tr>
<tr>
<td></td>
<td>Question</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>28</td>
<td>Is there financial abuse present?</td>
</tr>
<tr>
<td>29</td>
<td>Is there extreme jealousy present?</td>
</tr>
<tr>
<td>30</td>
<td>UNREPORTED previous incidents? (If so, how many?)</td>
</tr>
<tr>
<td>31</td>
<td>Have the incidents escalated in terms of severity and/or frequency?</td>
</tr>
<tr>
<td>32</td>
<td>Does the perpetrator have a recorded history of abuse?</td>
</tr>
<tr>
<td>33</td>
<td>Has the perpetrator ever been (or threatened to be) violent to the children?</td>
</tr>
<tr>
<td>34</td>
<td>Has the perpetrator ever been (or threatened to be) violent to the pets?</td>
</tr>
<tr>
<td>35</td>
<td>Has the perpetrator ever sexually abused the victim or been sexually inappropriate? (including threats)</td>
</tr>
<tr>
<td>36</td>
<td>Was there damage to any property/belongings?</td>
</tr>
<tr>
<td>37</td>
<td>Was there physical abuse?</td>
</tr>
<tr>
<td>38</td>
<td>Did the perpetrator strangle/attempt to strangle or place hands around victim’s throat?</td>
</tr>
<tr>
<td>39</td>
<td>Was a pre-meditated weapon present?</td>
</tr>
<tr>
<td>40</td>
<td>Was an opportunity weapon present?</td>
</tr>
</tbody>
</table>

The scores are added up and a Merit score obtained by multiplying each category’s score.

<table>
<thead>
<tr>
<th>Breakdown</th>
<th>Social</th>
<th>Violent</th>
<th>Total</th>
</tr>
</thead>
</table>

Figure 23. Merit risk assessment form.