Structural modelling of food allergen knowledge, attitude and practices among consumers in Malaysia

Abstract
The aim of this study was to assess food allergen knowledge, attitude and self-reported practices among consumers in Malaysia. An online survey was conducted and data were analysed using descriptive statistics and exploratory factor analysis. A model linking food allergen knowledge and attitude and their direct effects on practices were confirmed using structural equation modelling (SEM). Consumers demonstrated moderate food allergen knowledge in this study but scored highly in their attitude towards food allergens. Although participants scored moderately in food allergen knowledge, this does not necessarily translate into practices. There is a possibility that an increase in food allergen knowledge can increase optimistic bias or a sense of over-confidence to manage allergen risks. Consumers’ attitude towards food allergens have a positive and significant influence on practices. A positive attitude represents personal beliefs and reflects the level of motivation and care required to manage food allergens effectively. There was insignificant relationship between food allergen knowledge and attitude. This demonstrates a need to tailor targeted risk communication and learning strategies to influence consumers’ practices.

Highlights
- Consumers have moderate level of food allergen knowledge but rank highly in attitude scores.
- Food allergen knowledge has a negative relationship with food allergen handling practices.
- Attitude has a positive and significant relationship with food allergen handling practices.
- Attitude and knowledge independently influenced practices.

Keywords: cross contamination; food allergens; hygiene; structural equation modelling

Introduction
The prevalence of food allergy is increasing in a number of developed nations. Meanwhile, data from developing and less developed countries are scarce hence creating a perception of lower prevalence in food allergy (Boyce, 2012; Yadav & Naidu, 2015). In fact, some developing nations in Asia has reported cow’s milk allergy (Ngamphaiboon, Chatchatee, & Thongkaew, 2008) and shrimp allergy (Lao-araya & Trakultivakorn, 2012) in Thailand, shellfish (Shek et al., 2010) and fish allergy in Philippines (Connett et al., 2012), egg, cow’s milk, shrimp and fish allergy in China (Chen, Hu, Allen, Ho, & Li, 2011; Chen et al., 2012). In other more affluent Asian countries, Chiang et al. (2007) reported egg, shellfish and peanut as among the most common sensitising food allergen in young atopic children in Singapore, whilst hen’s eggs, cow’s milk and wheat were the most frequent causative foods in Japan (Ebisawa et al., 2017). Similarly, hen’s eggs, cow’s milk and peanuts/nuts
were the leading cause of food allergic reactions among Korean infants (Kim, Chang, Han, Ahn, & Lee, 2011). Wu et al. (2012) reported seafood (i.e. shrimp, crab, mollusc and fish) as the most common food allergen in Taiwan.

In Malaysia, food and food ingredients such as cereal containing gluten (including wheat, rye, barley and oat), nut and nut products including peanut, soybean, fish and fish products, milk and milk products (including lactose) and egg and egg products are known to cause hypersensitivity and must be declared on labels (MOH, n.d.). Yadav and Naidu (2015) reported a higher sensitisation towards egg white and cow's milk in children less than 2 years in Malaysia. Prawn was the most common food allergen in children up to 12 years (Gendeh, Mujahid, Murad, & Rizal, 2004) and in adults with allergic rhinitis in Malaysia (Wan Majdiah, Nurul Khaiza, Suzina, Che Maraina, & Norr Suryani, 2016). Other studies related to food allergens involved the survey of knowledge and practices of food allergen management. For example, Ajala et al. (2010) evaluated food handlers' knowledge on food allergy management while Ahuja and Sicherer (2007) investigated the factors that affect the provision of allergen-safe meals. Similarly, Dupuis et al. (2017) and Lee and Sozen (2016) assessed restaurant workers' and food handlers' knowledge, attitude, and training in food allergy management.

Awareness and understanding of food allergen management in Thai food companies were conducted by Waisarayutt et al. (2014) whilst Dzwolak (2017) evaluated compliance of food allergen management in small food facilities in Poland. In Malaysia, similar studies among food handlers (Shafie & Azman, 2015), hospitality students (Din, Rashid, & Ramli, 2015), medical science students (Redhwan, Low, Mustafa, Robert, & Ali, 2011) had been carried out. A nationwide survey carried out by the Malaysian Society of Allergy and Immunology (MSAI) and Universiti Putra Malaysia reported that there is still a big gap between awareness of food allergies and its implications on health (Murugappan, 2016).

A number of food safety knowledge, attitudes and practices (KAP) of food handlers’ studies had been carried out in developing countries (Zanin, da Cunha, de Rosso, Capriles, & Stedefeldt, 2017) including Malaysia (Abdul Mutalib et al., 2012; Abdullah Sani & Siow, 2014; Siow & Abdullah Sani, 2011; Tan, Bakar, Karim, Lee, & Mahyuddin, 2013). Structural equation modelling is used as a confirmatory technique to determine model validity and had been used in a number of food safety studies (Baser, Ture, Abubakirova, Sanlier, & Cil, 2017; Chen, 2017; Lagerkvist & Okello, 2016; Lim, Chye, Sulaiman, Mohd Suki, & Lee, 2016), HACCP practices (Ko, 2013), eliminating pesticide residues (Wang, Tao, Yang, Chu, & Lam, 2017) and checking expiry dates (Shah & Hall-Phillips, 2017). There is currently lack of food allergen KAP studies among consumers that utilise the SEM technique. Based on the literature and the limited study on consumers’ knowledge, attitude and practices towards food allergen it is crucial to explore the current understanding of food allergen handling among general consumers. In this study, the author postulates Figure 1 based on the relationship as suggested by
Baser et al. (2017), Lim et al. (2016), Schwartz (1975) and Shafie and Azman (2015). Figure 1 represents the following hypotheses:

H1: Food allergen knowledge directly affects food allergen handling practices
H2: Attitude towards food allergen directly affects food allergen handling practices
H3: Food allergen knowledge and attitude are correlated.

A number of studies on food allergen management among food handlers had been conducted. Although it is crucial to understand the implementation of food allergen management among food handlers, consumers too have the responsibility to ensure food safety and safe food allergen management. Hence, this study utilises structural equation modelling (SEM) to examine the relationship between knowledge, attitude and the self-reported practices of food allergen handling among consumers in a developing country.

Materials and Methods

Questionnaire development

The questionnaire was constructed and divided into 5 sections: (i) demographics (6 questions); (ii) purchasing habits (4 questions); (iii) knowledge (10 questions); (iv) attitudes (10 questions); and (v) practices (10 questions). The questions were developed based on Choi and Choi (2016), Marchisotto et al. (2016) and Shafie and Azman (2015). In the food allergen knowledge section, participants were provided with optional answers of “yes”, “no” or “uncertain” to prevent participants from selecting the correct answer by chance. Each correct answer received 1 point, while incorrect or uncertain answers were not allocated any points. The attitude and practices sections allow participants to rate on a 5-point Likert scale of strongly disagree/never to strongly agree/always. Participants were invited to complete all sections. The questionnaire was provided in both English and Malay languages. A pilot study was conducted among 20 participants who were not included in the actual study to evaluate the language, clarity and suitability of wording.

Data collection

The questionnaire was uploaded onto an online survey system (Survey Monkey) and sent to 560 consumers (adults) all around Malaysia between June – August 2017. The subjects were targeted based on the author’s personal contacts where they were invited through email and social media that contain the link to direct the consumers to the survey. Participants experiencing food allergies or are caring for family members with food allergies were encouraged to post the link in their own social media page to generate more responses via the snowballing technique. Snowball sampling is particularly useful in identifying potential hidden subjects (e.g. food allergic subjects) where subjects
are hard to locate (Ali, Guo, Sherwani, & Ali, 2017). Although food allergic subjects can be invited to participate from support groups, currently, there is no allergy support group in Malaysia. The Malaysian Society of Allergy and Immunology is hoping to initiate such groups (Lim, 2012). Survey is a useful tool to obtain a high volume of information from a large number of people in a short period of time (MacLeod 2014). A total of 325 questionnaires were returned. Of this, 285 surveys were valid resulting in a successful response rate of 50.89%. This is similar to other studies carried out by New et al. (2017) and Lee and Lee (2005), but lower than the food safety survey in Saudi Arabia (66.08%) (Al-Shabib, Husain, & Khan 2017) and Republic of Ireland (76.8%) (Moreb, Priyardashini, & Jaiswal, 2017).

Statistical analysis

Descriptive and Exploratory Factor Analysis (EFA) was conducted using Statistical Package for Social Science (SPSS) 22.0 software. EFA was performed to extract valid items for knowledge, attitude and practices. This is based on factor loadings of the scale items greater than 0.40 (Baser et al., 2017). Confirmatory Factor Analysis (CFA) was performed using Analysis of Moment Structures (AMOS) and confidence level was set at 95%.

Results and Discussion

Female makes up three quarter of the respondents. Almost 90% of the respondents are within the 18 – 25 and 26 -35 years group and exposed to higher education. This is similar to other research that found a larger proportion of respondents were female (Achon, Serrano, Garcia-Gonzalez, Alonso-Aperte, & Varela-Moreiras, 2017; Lake et al., 2006) and more educated people are more likely to participate in surveys (Curtin, Presser, & Singer, 2000). This is largely attributable to the survey subject matter. It is highly likely that females dominate the food purchasing and preparation role (Lake et al., 2006). Although more than half of the respondents had not experienced food allergic reactions before, a large proportion of them (60%) reported that their family members have had experienced the symptoms of food allergies or potentially intolerances. Crustaceans (n=150) were reported as the most common causative agent of food allergies, followed by peanuts (n=38) and tree nuts (n=30) (Table 1).

This coincides with other studies that shellfish is a major sensitising food source in Asian children (Chiang et al., 2007; Shek et al., 2010; Wu et al., 2012). The abundance of seafood in this region (Boye, 2012; Lee, Thalayasningam, & Lee, 2013) and exposure to insects (e.g. cockroaches, dust mite) also increases the likelihood of shellfish sensitisation (Chiang et al., 2007). Respondents also reported reactions to other type of food products such as alcohol, bird’s nest, pineapple, turmeric, monosodium glutamate, mango, chicken, rambutan (tropical, hairy fruit native to Southeast Asia),
coconut, coconut milk and kiwifruit. Anaphylactic reactions to exotic food such as sago worms (Yew & Kok (2012) and bird's nest from swiftlets (de Bruyne & Lee, 2004) had been reported. Participants who had experienced food allergic reactions (including those with family members who experienced food allergies) were more likely to look for food allergen information on the labelling ($\chi^2 = 2.14, p < 0.05$). Both groups rated that they seldom purchase food products that are labelled in a language they are not familiar with and even less so if the label contains precautionary statements (Table 2). This is in contrast with Hefle et al. (2007), Marchisotto et al. (2017) and Mills, Wang and Kattan (2016) who reported that consumers choose to ignore precautionary statements and purchased food products bearing advisory statements.

More than 90% of the respondents were aware that food allergies are not common but can be serious and the only way to prevent food allergic reactions is to avoid the food allergen (Table 3). More than half did not know that food allergens are protein-based and hands that had been in contact with food allergens can cross contaminate other surfaces. When it comes to cleaning effectively before meal preparation, more than 80% consumers were aware that effective cleaning could help to prevent cross contamination. However, when probed further, there is a possibility that consumers were not aware of the correct procedures in cleaning as only 30% disagreed that rinsing utensils with water alone are sufficient to remove food allergens. However, consumers scored highly on the question about using separate cooking oil for allergen-free meals to prevent cross contamination. According to MOH (n.d.), monosodium glutamate (MSG) is not considered as food causing hypersensitivity of which slightly more than 60% of the respondents were correct. However, in some populations particularly among those with asthma or atopy, MSG can cause 'Chinese Restaurant Syndrome' characterised by palpitations, general weakness and numbness (Geha et al., 2000; Rangan & Barcelouz, 2009). According to Murugappan (2016) Malaysians were aware of common food allergens such as seafood (89.9%), tree nuts (47%) and soy (44.3%). There was also lower awareness among Malaysians about cow’s milk as a food allergen (8.3%). No comparison was made between different age groups due to the high number of participants categorised as millennials (i.e. born in 1996 and onwards). According to Leal, Ruth, Rumble, and Simonne (2017), the millennials or younger generation were identified as having the least amount of food safety knowledge and mostly learned about food safety from their parents.

Respondents mostly agreed with the statements in Table 4. With the exception of A9, the mean scores ranged positively from 4.00 – 4.56. A9 scored lowest among the statements and represented a general disagreement among the respondents in diluting the food allergen with water. Table 5
suggested a good level of self-reported food allergen handling practices. This is evident in P4 where the consumers seldom use the same dish cloth for different activities (e.g. cleaning, drying) and for different meals (e.g. conventional and allergen meals) can help to prevent cross contamination. This is similar to the principle of utilising different utensils for raw or cooked meat and fresh produce. Similarly, in P9, consumers often wash their hands prior to preparing allergen free meals. Although consumers strongly agreed that if a person is suffering from food allergic reactions, he or she should get immediate treatments, however, a majority of the respondents were not confident when it comes to handling an emergency situation (due to food allergic reactions) at home or when eating out.

EFA was applied in factor analysis to extract the items for knowledge, attitude and practices. The score of > 0.40 is used to select items (Baser et al. 2017). A total of one item each from attitude and practices were removed. The Kaiser-Meyer-Olkin (KMO) measure of sampling value for food allergen knowledge, attitude and practices were 0.647, 0.886 and 0.874 respectively. These values fulfil Hair, Black, Babin, Anderson, and Tatham (2010) who stated that the criterion of validity should be > 0.60.

The relationship between food allergen knowledge, attitude towards food allergens and food allergen handling practices is shown in Figure 2. In order to evaluate the model fit, Hair, Anderson, Tatham and Black (1998) recommended observing more than one indicator. The indices such as Comparative Fit Index (CFI) was estimated at 0.905 and indicates a good fit (Table 6). CFI is commonly used as a fit index as it is least affected by sample size (Fan, Thompson, & Wang, 1999). Both the Goodness of Fit (GFI) and Normed Fit Index (NFI) measured slightly below the accepted values but were comparable to Baser et al. (2017) and Wang et al. (2017). The Root Mean Square Error of Approximation (RMSEA) was measured below 0.10 (MacCallum, Browne, & Sugawara, 1996) and is considered a good fit if below 0.06 (Hu & Bentler, 1999). Based on the indices and comparison with other studies, the hypothesised model had an acceptable fit.

Figure 2 and Table 7 demonstrate the magnitude and direction of relationship of the model. Food allergen knowledge has a negative relationship ($\beta_1 = -0.271, p<0.05$) with food allergen handling practices hence supporting H1. One could draw the theoretical interpretation from Figure 2 that food
allergen handling practices will decrease 0.27 unit with each incremental unit in knowledge. This does not indicate a direct linear relationship between knowledge and practices but the possibility that having good food allergen knowledge does not translate into good practices. Previous studies indicated similar results where Baser et al. (2017) and Ko (2013) revealed that food safety knowledge has a negative relationship with food safety behaviour. Vo, Le, Le, Minh and Nuorti (2015) reported that although there were positive effects of training on knowledge, however, knowledge alone was insufficient to change food safety practices. Studies of trained food handlers (Rahman, Arif, Bakar, & Tambi, 2012) and insufficiently trained food handlers (Garayoa, Vitas, Diez-Leturia, & Garcia-Jalon, 2011) found that knowledge was not translated into good practices. There is a possibility that increasing knowledge can increase optimistic bias (OB) (Miles, Braxton, & Frewer, 1999). OB occurs when individuals felt shielded against risks or negative effects or ‘why it won't happen to me’ perception (Weinstein, 1984). Training or education based only on scientific communication may not encourage changes in behaviour or practices (Green et al., 2005; Park, Kwak, & Chang, 2012).

According to Bandura (2001), people are able to learn new knowledge, skills, rules, beliefs and attitudes in social systems. Although food safety education on allergens can be provided – this does not necessarily translate into practices. Hence, one way to approach food allergen education is through the social cognitive theory which emphasises enactive or vicarious learning from the social environment (Schunk, 2012a; Schunk and Usher, 2012). Enactive learning occurs through the consequences of performing actions e.g. accidental cross contamination of utensils with food allergen may result in allergic reactions hence leading to increased awareness in future food preparation. Enactive learning is useful as an informative indicator to repeat or not repeat a behaviour (Schunk, 2012a). Meanwhile, vicarious learning occurs by observing other people, non-human characters, electronic or print (Schunk 2012b).

The second hypothesis postulates that attitude affects practices and H2 is sustained based on Table 7. Attitude has a positive and significant relationship with food allergen practices ($\beta_1 = 0.43$, $p<0.05$). Figure 2 indicates that good practice increases by 0.43 unit with each unit increase in attitude. A positive attitude reflects the level of motivation and care required to manage food allergens effectively. Lim et al. (2016) also found food safety attitude as the most important factor in influencing consumers’ food safety behaviour. Attitude represents beliefs and can serve as a mediator between knowledge and practices. Dudeja, Singh, Sahni, Kaur and Goel (2017) found that food handlers in hospital settings with positive attitude helped to improve food safety practices whilst Abdul-Mutalib et al. (2012) reported that positive attitude among food handlers resulted in safe food storage practices. In addition to knowledge and attitudes, other factors such as experience, values and emotions can influence individuals’ thinking and judgement about the severity and acceptability of risks. Risk perceptions can motivate consumers to take action to avoid, prevent, adapt to or even ignore the risks (Wachinger, Renn, Begg, & Kuhlavec, 2013). Studies of risk perceptions towards food safety had been conducted. Parra, Kim, Shapiro, Gravani, & Bradley (2014) found that home food
safety practices among Mexican-Americans were associated with perceptions and awareness of risks whilst Tiozzo, Mari, Ruzza, Crovato and Ravarotto (2017) reported that there was a sense of incomplete control due to lack of information on recognising and preventing food risks among consumers in northeast Italy. This highlights the paradox of risk perceptions as different personal (e.g. age, gender, education level, profession, personal experience) and contextual factors (e.g. area of living, economy, country) can be important determinants of risk perceptions.

There is an insignificant relationship between food allergen knowledge and attitude in this study. In other words, knowledge and attitude independently influenced practices. Zanin and Stedefeldt (2017) provided an excellent review of past KAP studies and how knowledge and attitude influenced food safety practices. However, most studies were focused on food handlers. As food handlers, they are likely to be in contact with food or food contact surfaces and may be involved in preparation of raw materials, cooking, serving and cleaning (Dudeja & Singh, 2017), hence it is crucial to understand how training, education and personal beliefs affect food handlers’ practices. Other studies involving food safety KAP among consumers were also conducted. For example, Samapundo, Cam Thanh, Xhaferi and Devlieghere (2017) conducted a study among consumers in Vietnam and found adequate attitude levels whilst consumers of street food in Haiti exhibited average attitude levels towards food safety (Samapundo, Climat, Xhaferi, & Devlieghere, 2017). Tan et al. (2013) found weak correlations between knowledge and hand hygiene attitudes among food handlers in Malaysia including practices. KAP of food allergens among consumers are scarce in comparison. KAP can be combined with the Theory of Planned Behaviour to further understand how attitude, perceived behavioural control and social norms affect food allergen management practices. The current food allergen knowledge – attitudes – practices model can be expanded to include trust particularly if one is studying consumers’ behaviour while eating out (Begen et al., 2016; Begen et al., 2018). Furthermore, it is worth categorising and studying the specific measured variable in detail i.e. purchasing and understanding food labels, meal preparation and prevention of cross contamination and whilst eating out.

The only current method to prevent food allergy is complete avoidance of the trigger food. This requires vigilance from both consumers and food business operations. Food businesses are encouraged to provide clear written or verbal allergen information to consumers. In the UK, signposting of allergen information helps to ensure customers know where to find the information (FSA, 2015). Begen et al. (2017) also recommended that food allergic individuals should make allergen enquiries when eating out. This is particularly important in Malaysia as the provision of food allergen information is currently not a legal requirement. Food handlers in Malaysia are required to attend the Food Handlers Training programme as specified in Food Hygiene Regulations (2009). The topics focused on food safety topics such as personal hygiene, good hygiene/manufacturing practices, risk of food poisoning and food laws and regulations. Although some food safety training providers voluntarily incorporate food allergen management in the module, it is strongly recommended that all
food handlers should be made aware of the importance of food allergen management and the risk of food allergic reactions.

Conclusion

In general, the consumers in this study demonstrates moderate knowledge of food allergen and highly positive attitudes and self-reported practices. Within SEM, it is found that although the consumers are moderately knowledgeable, this does not translate into practices. However, an increase in personal beliefs can help to boost good practices. Understanding consumers’ risk perceptions towards food allergen – particularly among consumers with food allergic reactions or those caring for individuals with food allergic reactions can narrow the attitudinal – good food allergen practices (GAP). A number of food safety research had been conducted but food allergen studies remain sparse in Malaysia. The main limitations of this study were the small sample size and the findings cannot be generalised outside the study sample. Although the present study was conducted with a small sample size, this can be considered a pilot study to understand consumers’ knowledge, attitude and practices in managing food allergens. Understanding how consumers think about and respond to risks (i.e. respond to food allergens and impact of cross contamination) will aid risk mitigation strategies. Food allergy creates a significant health burden and can further impact upon consumer’s social and quality of life. National and international efforts should focus on food safety and appropriate food allergen management practices. More importantly, correct food allergen labelling is crucial to inform consumers of the presence of allergens.

References

