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Abstract 

Water-induced reordering in ultrathin ionic liquid films has been observed using in situ X-ray 

photoelectron spectroscopy. An ultrathin layer of 1-butyl-3-methylimidazolium 

tetrafluoroborate ([C4C1Im][BF4]) was deposited on a rutile TiO2 (110) single crystal and 

exposed to water vapour at a relative humidity of ~70% in an in situ cell. Water was found 

to adsorb onto the ionic liquid surface, causing a reordering of the ions at the interface. 

Water initially remained trapped on the ionic liquid surface as the in situ cell was evacuated. 

This could have negative implications for supported ionic liquid phase catalysis, where 

reactants and products move in and out of an ionic liquid containing the catalyst. This 

insight into the behaviour at the water/ionic liquid interface provides a basis for 

understanding interfacial behaviour in more complex gas/ionic liquid systems. 
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Introduction 

Ionic liquids (ILs) are salts that are liquid at or around room temperature, and they possess a 

wide variety of unique and interesting properties. As such, they are being investigated for 

numerous applications, such as lubrication [1, 2], corrosion protection and CO2 capture and 

storage [3-5]. ILs are also being studied for catalysis applications, as their natural ionic state 

and their characteristic non-volatility make ILs promising alternative solvents for 

homogeneous catalysis [6, 7]. In fact, ILs are an integral part of two catalysis concepts: 
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Supported Ionic Liquid Phase (SILP) and Solid Catalyst with Ionic Liquid Layer (SCILL) [8, 9]. In 

SILP catalysis, a thin layer of IL containing the catalyst is spread over an inert support 

material that is high-area and porous [10]. SCILL is similar, but the catalyst is either a solid 

material, or is immobilised on the support material [11]. The reactions between the catalyst 

and the gaseous reactants and products take place near the IL/gas interface, so the thin film 

provides the necessary environment and minimises wastage of both the IL and the catalyst. 

SCILL and SILP catalysis are therefore attractive due to their cost-effectiveness. 

 

Figure 1. Ball-and-stick diagram of the structure of [C4C1Im][BF4]. Grey spheres are carbon 

atoms, dark blue spheres are nitrogen atoms, light blue spheres are fluorine atoms and the 

red sphere is a boron atom. 

 

ILs are more structured than most molecular liquids, and their ordering and structure is 

governed by the structure of their constituent ions. Interactions, and subsequent structure 

and ordering, at the IL/substrate interface have been investigated previously using ultrathin 

IL films. A study by Cremer et al [12] showed that imidazolium-based ILs display a different 

morphology at sub-monolayer coverages on Ni (111) compared to O-precovered Ni (111) 

(specifically Ni (111) with an O(√3×√3)R30° superstructure). They observed that on O-

precovered Ni, the cation and anion were both in direct contact with the substrate, 

arranged in a checkboard arrangement. However, on Ni (111) the ILs demonstrated a 

bilayer-type ordering, with only the cation in direct contact with the substrate and the anion 

sat on top of the imidazolium ring of the cation. The arrangement of the IL on the Ni surface 

was quite different to that observed for the same IL on Au (111) at similar coverages, which 

instead arranged in a checkerboard formation [8]. Cremer et al also observed that the IL 

tended to couple more strongly to the metallic Ni surface than the O-covered Ni surface.  
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At the IL/vacuum interface, it has been seen in imidazolium-based ILs that the ions order 

such that the alkyl chains of the cations face out toward vacuum [13-16], creating a charged 

under-layer that contains the anions and the imidazolium ring of the cations. It is this 

ordering that is believed to govern the gas adsorption and uptake by ionic liquids [17, 18] 

including that of water vapour. One obstacle that has yet to be overcome for the use of ILs 

in industrial applications is their tendency for water capture and uptake. Water has been 

shown to affect the physical properties of ILs [19-21], so this hygroscopic behaviour is often 

problematic. Many of their potential industrial applications will be subject to ambient 

conditions and thus will be, naturally, subject to water vapour. While the effect of water on 

the bulk properties of ILs has been studied relatively extensively, there have been few 

studies into the IL/water interface. There are two key concepts associated with the interface 

that still have yet to be understood: transport of water molecules on and through the 

surface, and the influence of water on IL surface structure. Understanding the mechanics of 

water ad/absorption at the IL/water interface is not only vital for a first model of gas 

capture in ILs, it is also important to understand the implications the addition of water 

creates for IL thin film applications in ambient conditions. 

In order to observe the IL/water interface in a more realistic environment, in situ 

measurements with high surface sensitivity must be taken. The emergence of near-ambient 

pressure X-ray photoelectron spectroscopy (NAPXPS) facilities allows the IL/water interface 

to be studied with the necessary surface sensitivity under more realistic conditions. Here we 

report on in situ XPS measurements of water with an ultrathin film of the water-miscible IL, 

1-butyl-3-methylimidazolium tetrafluoroborate, or [C4C1Im][BF4] (its structure is shown in 

Figure 1). 

Experimental Section 

The  IL, [C4C1Im][BF4] (>97%, Sigma Aldrich), was degassed in a modified Knudsen cell by 

heating to 393 K for three hours to remove water and other impurities. The substrate, a 

rutile TiO2 (110) single crystal (PI-KEM), was cleaned via Ar+ sputter/anneal cycles until the 

preliminary ultra-high vacuum (UHV) XP spectra showed no contamination. The IL was then 

heated to 460 K for vapour deposition onto the room temperature rutile TiO2 substrate for 

approximately 30 minutes under UHV conditions. The ultrathin deposition of IL was then 

transferred to the in situ cell, and exposed to water vapour at a pressure of 7 mbar and a 
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temperature of 283 K (relative humidity of ~70%). Measurements were taken on a SPECS 

near-ambient pressure X-ray photoelectron spectroscopy (NAPXPS) system in three regimes: 

one before water exposure, one during water exposure and one after water exposure. 

Three measurements were taken during the regime after water exposure (named Pump 

Stage 1, 2 and 3; shortened to PS 1, PS 2 and PS 3 in Figures 2 and 3), while only one was 

taken in the other regimes. Each measurement took approximately one hour, and each of 

the measurements after water exposure were separated by one hour. PS 1 was immediately 

after water vapour was closed off, and the in situ cell was opened to pumping. PS 2 was 

approximately two hours after pumping began, and PS 3 was approximately four hours after 

pumping began. Using the intensity of the O 1s peak associated with the lattice O in the 

TiO2, we calculated the thickness of IL to be (10 ± 1) Å, which corresponds to approximately 

three IL layers (calculation based on Beer-Lambert law- see SI for full calculation). One of the 

advantages of using an ultrathin film in this case allowed the IL/water interface to be 

observed directly without the need for more surface-sensitive grazing emission XP spectra 

(which is not possible on the NAPXPS system used for these measurements). 

All spectra are the result of merged raster scans (short scans taken at equally spaced points, 

specifically 0.6 mm part in a 6×5 grid on the sample, then merged), taken as such to reduce 

beam damage effects. A small-scale investigation was conducted into beam damage on the 

system studied, which is featured in the SI. In each regime, scans of the C 1s, O 1s, N 1s and 

F 1s regions were recorded, all at normal emission. The binding energies were referenced to 

the C 1s component that corresponds to the alkyl chain of the IL cation at 285.5 eV [22] and 

quoted to ± 0.1 eV. All spectra were fitted with a Shirley background and 30:70 

(Gaussian:Lorentzian) Voigt line shapes in the absence of sample charging or analyser 

artefacts. Peak fitting was performed using CasaXPS software. 

Results and Discussion 
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Figure 2. (a) C 1s spectrum before exposure to water, (b) C 1s spectrum at 70% RH, and (c) C 

1s spectrum from PS 1 to PS 3, together with the pre-water C 1s spectrum. 

 

Figure 2(a) shows the C 1s spectrum for the sample prior to water exposure. It can be fitted 

with four composite peaks, (corresponding to the numbered carbon atoms in Figure 1) and 

in good agreement with literature [22]. The peak at 285.5 eV corresponds to that of the 

alkyl chain carbons, labelled C1 in Figure 1. The peak at 286.8 eV corresponds to the C2 

carbons just outside of the imidazolium ring, the peak at 287.0 eV corresponds to the C3 

carbons inside the imidazolium ring and the peak at 287.9 eV corresponds to the C4 carbon, 

between the two N atoms in the imidazolium ring (binding energies and the assignments of 

these peaks are included in Table 1). The alkyl carbon peak and the imidazolium carbon 

peaks together create the characteristic two-peak shape of the C 1s region. A study by 

Wagstaffe et al [22] of multilayer and approximately monolayer coverages of [C4C1Im][BF4] 

on anatase TiO2 (101) highlighted distinct differences between the C 1s regions of the bulk 

and monolayer IL films. More specifically, the component associated with the alkyl chain 

and two of the three components associated with the imidazolium group were found to 

shift to a lower binding energy (BE) for the thin film. This observation is consistent with 

findings reported by Cremer et al with analogous ILs [8]. As expected, the binding energies 

of the components of the C 1s region in our study are more in line with those of a thin film. 

However, the alkyl chain component dominates the region, which is not consistent with the 

shape of the C 1s observed by Wagstaffe et al. The film studied here is indeed thicker than 

the monolayer film studied by Wagstaffe et al, and while it is known that alkyl chains face 

outward toward vacuum in imidazolium-based ILs, the strength of the alkyl chain signal here 

may be explained by a contribution from carbon contamination.  
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ILs have a tendency to become contaminated via external sources: such as the introduction 

of adventitious carbon from exposure to atmosphere [23, 24], or even Si contamination due 

to grease present in the IL from synthesis [25, 26]. It is possible that the vapour-deposited IL 

contained impurities, but we believe it is more likely that the contamination of the IL film in 

this study originates from the background vacuum of the in situ cell. Quantification of the C 

1s, O 1s and Ti 2p regions prior to IL deposition (on clean TiO2, taken in UHV) reveals (2.3 ± 

0.6)% carbon contamination present on the TiO2 surface (see Table S1 in the SI). The nature 

of the carbon contamination is not clear (i.e. whether it is flat coverage, island-like growth, 

etc.), but the presence of carbon prior to IL deposition could explain the strength of the alkyl 

chain signal in the C 1s region. Deyko et al [27] studied the influence of carbon coverage on 

the growth mechanisms of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide 

(or [C1C1Im][Tf2N]) on mica. They found that, on mica surfaces with minimal carbon 

coverage, the IL demonstrated 3D growth in the form of islands at sub-monolayer IL 

coverage (i.e. complete dewetting of the mica surface). On mica surfaces with partial or 

complete carbon coverage, the IL demonstrated 2D layer-by-layer growth on the 

contaminated areas, and 3D growth on the non-contaminated areas (i.e. partial or complete 

wetting of the mica surface). This illustrates that carbon contamination can play a rather 

significant role on the growth of ILs on oxide surfaces. The rutile TiO2 used in our study 

appears to have minimal carbon coverage prior to IL deposition. Therefore, the IL itself 

(rather than the TiO2 substrate) may have become contaminated when introduced to the in 

situ cell. One possible way to remove contamination from ILs is through gentle Ar+ 

sputtering [23, 25], but this was not possible with the sample in the in situ cell. 

Another noteworthy observation made by Wagstaffe et al [22] is that the IL adsorbed well-

ordered on the anatase TiO2, which was corroborated by X-ray absorption measurements. 

Although it cannot be determined whether the IL film in our study has grown in a 2D or 3D 

configuration with these data alone, it is likely that the IL film is highly ordered by both the 

TiO2 and vacuum interfaces. Also reported by Wagstaffe and colleagues was that 

[C4C1Im][BF4] chemically interacts with TiO2 via the F in the anion bonding with Ti, possibly 

at O-vacancy sites [22]. This statement is supported in the literature by a peak in the F 1s 

region, with a BE consistent with that of Ti-F bond formation. Because the IL layer studied 

was approximately a monolayer, this peak was the majority signal in the F 1s region. A 
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similar peak has been observed in the F 1s region in our study (see Figure S4 in the SI), which 

we also attribute to F-Ti bonding. Since it is only the first IL layer that bonds to the Ti 

surface, the F-Ti peak in our study makes up a smaller percentage of the F 1s signal than that 

presented by Wagstaffe et al. This therefore corroborates our assessment of the film 

thickness in our study. 

Table 1. Binding energies and assignments of peaks in C 1s and O 1s regions (Figures 2 and 3 

respectively). 

Region Binding Energy (eV) 
(± 0.1 eV) 

Assignment 

C 1s 285.5 C1, alkyl chain 

286.8 C2, imidazolium 

287.0 C3, imidazolium 

287.9 C4, imidazolium 

O 1s 530.2 TiO2 substrate 

531.5 Hydroxyl (Ti-OH) 

533.0 Hydroxyl (C-OH) 

533.3 Adsorbed H2O 

535.9 Gas-phase H2O 

 

Upon exposure to water, the contribution from the imidazolium ring increases relative to 

the contribution from the alkyl chain. This indicates a rearrangement of the cations at the 

surface of the IL, where the imidazolium ring becomes more prominent. We suggest that 

water adsorbed on the IL causes the cations to rearrange such that the imidazolium ring (the 

hydrophilic part) is orientated toward the adsorbed water, and the hydrophobic alkyl chain 

orientates away from the adsorbed water. This water-induced rearrangement of the surface 

ions could be explained by a dipole-dipole interaction between the imidazolium ring and 

water lone pair, an interaction previously proposed for water in the bulk of imidazolium-

based ILs and water [28]. In addition, the concentrations of C, N and F have been calculated 

for the regions before exposure to water and at PS 1 (as the reordering was most prevalent 

at this stage than at 70% RH) and compared. The concentrations were calculated using the 

total area of each region (see Table S2 in SI). At PS 1, there is a decrease in the 

concentration of C and an increase in the concentration of N and F. In each case, the 

concentration decrease/increase is beyond the range of the uncertainty boundaries 

calculated for the regime before water exposure. This change in composition of the surface 

further reiterates the idea that the charged parts of the IL, i.e. the anion and the charged 
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head of the cation, become more prominent at the IL/water interface than at the IL/vacuum 

interface. Previous work into the surface interactions between water and ILs by Deyko and  

Jones [29] suggest that water present on the surface of the analogous [C8C1Im][BF4] 

experiences greater interaction with itself than with the IL surface, behaving as though it 

were adsorbed on a hydrophobic surface. While this may be consistent with our proposition 

of water adsorbing on the surface of the IL, the system used by Deyko and Jones had been 

cooled prior to measurements, so was in fact a glassy solid rather than a liquid film. As 

water vapour is removed from the in situ cell, the shape of the C 1s peak begins to change 

again (see Figure 2(c)). The contribution from the alkyl chain now increases relative to the 

contribution from the imidazolium ring, and the C 1s region begins to resemble the shape of 

the region prior to water exposure, but the data does not show a complete reversal. This 

indicates that the ions at the surface begin to return to their original structure as the 

pressure in the cell returns to high vacuum. 

 

Figure 3. (a) O 1s spectrum before exposure to water, (b) O 1s spectrum at 70% RH, and (c) 

O1s spectrum from PS 1 to PS 3, together with the pre-water O 1s spectrum. 

 

Figures 3(a) and 3(b) show the O 1s spectrum for the IL/rutile TiO2 sample before and during 

exposure to water. Before exposure to water, the region can be fitted with three distinct 

component peaks. At the lower BE edge, the peak at 530.2 eV is assigned to the TiO2 lattice 

oxygen peak [30]. Numerous hydroxyl species can manifest peaks at higher binding energies 

than the lattice O, including C-OH groups [31] and bridging hydroxyls on the rutile TiO2 (110) 

surface [32], some of which can arise from water in the background vacuum even at high 

vacuum pressures [33].  Thus, the peaks at 531.5 eV and 533.0 eV are assigned as Ti-OH and 

C-OH species, respectively. 
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Upon exposure to water, two new peaks appear at the higher BE edge of the O 1s spectrum. 

The peak at 535.9 eV is attributed to gas-phase water, i.e. water vapour surrounding the 

sample [34, 35]. The peak at 533.3 eV (0.2 eV higher BE than that arising from C-OH), has 

been assigned to molecular water adsorbed on the IL film [36, 37]. Although the peaks 

assigned to hydroxyl species and molecular water are close in BE, two separate peaks were 

needed to properly fit the spectrum. Furthermore, in situ XPS measurements were 

previously taken for the same IL on anatase TiO2 (101), but with non-rastered 

measurements and at a lower RH (see SI for further details). While the data has not been 

included here due to beam damage, the peak assigned to molecular adsorbed water is more 

prominent in the O 1s spectrum due to less attenuation of the signal by the gas-phase water 

peak (see Figure S2 in the SI). The O 1s region from those measurements further support the 

BE assignment of molecular adsorbed water. All O 1s peak assignments are displayed in 

Table 1. When water is evacuated from the in situ cell, the gas-phase water peak disappears 

whereas the adsorbed water peak is present until the final scan (which was recorded at a 

background pressure of ≤1×10-7 mbar). While the corresponding changes in the O 1s region 

are small, they can be seen in the raw data presented in Figure 3c. The prolonged presence 

of the molecular water peak through PS 1 and 2 indicates water becomes trapped on top of 

the IL layers for some time. Furthermore, this indicates that the ultrathin IL deposition can 

stabilise a small amount of water at its surface even in UHV for a period of time. 

The ordering at the topmost surface undoubtedly plays a role in the sorption mechanics of 

ILs, but questions remain as to what kind of interactions occur at the IL/water interface. 

Rivera-Rubero et al [19] used sum-frequency generation (SFG) spectroscopy, to determine 

how the presence of water affects the surface ordering of imidazolium-based RTILs. They 

suggest that the surfaces of hydrophobic (water-immiscible) RTILs are more affected by the 

addition of water than those of hydrophilic (water-miscible) RTILs. They propose that, in the 

bulk of the hydrophilic IL, the water molecules are stabilised by intermolecular interactions, 

such as hydrogen bonding and dipole-dipole forces. In the SFG study, water was allowed to 

stabilise in a bulk IL, so the interactions and adsorption mechanisms at the IL/water 

interface were not studied directly. Our study, using an ultrathin film rather than bulk IL, 

shows that the cations of the water-miscible [C4C1Im][BF4] experience an interaction with 

water molecules at the IL/water interface, possibly through hydrogen bonding and dipole-
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dipole forces with the imidazolium groups. However, there appears to be no reaction with 

the imidazolium N atoms (see Figure S3). The interaction appears instead to influence a 

reorganisation of the molecules at the IL surface, where the imidazolium ring becomes more 

prominent. An in situ XPS study carried out by Broderick et al [35] investigated the 

interactions between water and a different water-miscible IL with the same cation. They 

also suggest that a rearrangement of ions occurs, but rather alkyl chains become more 

prevalent in the IL/water interfacial region at a water mole fraction of 0.6. However, the 

system in question was arguably a bulk film, able to absorb and stabilise a relatively large 

quantity of water in the bulk liquid. Numerous theoretical studies have been conducted into 

the interactions between [C4C1Im][BF4] [38, 39], and many of its analogues [40, 41], and 

while local structuring within the bulk liquid has been considered carefully, few have probed 

the structure and interactions that take place at the IL/water interface upon adsorption.  

We propose that the [C4C1Im][BF4] deposition investigated here was sufficiently thin to not 

have allowed the water molecules at the interface to be absorbed and stabilise between the 

layers. In a recent study by Buckley et al [42] of the interactions with water and 

[C8C1Im][BF4], it was found that more than 68 water molecules could be stabilised per IL pair 

due to long-range interactions with IL ions. This finding supports the idea that water is 

interacting with, and possibly even being stabilised by, the ultrathin IL film examined here. 

However, the ability for an IL thin film to adsorb water for a significant period may have a 

negative impact on IL thin film catalysis applications (such as SILP and SCILL). If the surface 

structure determines how gases are ad/absorbed into ILs, the presence of water could 

therefore alter the surface ordering of the IL thin films in these systems. This could then 

inhibit the reaction kinetics through inhibition of sorption of gaseous reactants and 

products. As a result, this could diminish the reaction rate and furthermore, diminish the 

efficiency of these systems. 

 

Conclusion 

Water-induced reordering in an ultrathin film of the IL [C4C1Im][BF4] has been observed 

using in situ X-ray photoelectron spectroscopy. The results indicate that water is adsorbed 

on the IL surface, involving an interaction between water and the cations, which leads to a 
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reorganisation of the ions at the surface. Water initially remains trapped on the IL surface 

even as water vapour is pumped out of the in situ cell. The water eventually desorbs when 

the cell has been under UHV for some time. The combination of water-induced reordering 

of the ions at the IL surface and the prolonged presence of molecular water under vacuum 

conditions could have negative implications for IL thin film catalysis. This insight into the 

behaviour at the interface provides some understanding of the interaction of water with ILs 

under realistic conditions, and provides a basis for understanding adsorption and absorption 

mechanisms found in SCILL/SILP catalysis and gas capture/separation applications. 
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